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Abstract: The problem of the valuation of life insurance payments with policyholder
behavior is studied. First, a simple survival model is considered, and it is shown how cash
flows without policyholder behavior can be modified to include surrender and free policy
behavior by calculation of simple integrals. In the second part, a more general disability
model with recovery is studied. Here, cash flows are determined by solving a modified
Kolmogorov forward differential equation. We conclude the paper with numerical examples
illustrating the methods proposed and the impact of policyholder behavior.

Keywords: Kolmogorov’s differential equations; surrender; free policy; Solvency 2

1. Introduction

In this paper, we study policyholder behavior in life and pension insurance with a focus on
two so-called policyholder options: first, the surrender option, where the policyholder may surrender
the contract, canceling all future payments and instead receiving a single payment corresponding to the
value of the contract on a technical basis; second, the free policy option1, where the policyholder may
cancel the future premiums and have the benefits reduced according to the technical basis. Policyholder

1 The free policy option is sometimes referred to as a “paid-up policy” in the literature.
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modeling has a significant influence on future cash flows. If the technical basis differs considerably from
the market basis, policyholder behavior can also have a substantial impact on the market value of the
contract.

In a classic Markov chain multi-state life insurance setup, we show how policyholder behavior can
be included in cash flow projections. We study two approaches. First, we consider the survival model
and show how simple integral expressions can solve the problem. Second, we consider the disability
model and present certain ordinary differential equations that solve the problem. This second method
has recently been suggested in a more general semi-Markov setup in [1]. We discuss how the integral
expressions originating from the survival model can be used to approximate the more correct modeling
in the disability model, for a very simple, yet effective type of policyholder behavior modeling.

The policyholder behavior is modeled as random transitions in a Markov model as in [2,3], and the
rationality behind surrender and free policy modeling is thus disregarded. An empirical analysis of
policyholder behavior in the German market and further references on policyholder modeling can be
found in [4]. In contrast, one can consider surrender and free policy exercises as rational, where they
purely occur if it is beneficial for the policyholder with some objective measure, see, e.g., [5]. For an
introduction to policyholder modeling and a comparison of various approaches, see [6] and the references
therein. Attempts to couple the two approaches have been made for surrender behavior, where surrender
occurs randomly, but where the probability is somewhat controlled by rational factors, e.g., [7,8]. From
a Solvency 2 point of view, the modeling of policyholder behavior is required; see Section 3.5 in [9].
In practice, surrenders and free policy conversions of life insurance contracts are often triggered by
external events. Hence, it can be of relevance to study the situation where the policyholder options are
exercised randomly, independently of the value of the contract. For example, this might be the case
in the labor- and company-based pension insurance market, where the employer or labor organization
chooses one pension insurance company for all of their employees or certain groups of their employees;
see, e.g., [6]. If one of these employees changes jobs and starts working for a new employer with
another pension insurance company, the free policy option will normally be exercised, such that the
policyholder stops paying premiums to the original pension company. Similarly, the policyholder may
decide to exercise the surrender option and surrender or transfer the contract to the new pension insurance
company in order to collect his pension savings in one company.

In the first part of the paper, a simple survival model is considered. We calculate cash flows without
policyholder behavior as integral expressions. Then, we extend the model by including first surrender
behavior and then both surrender and free policy behavior. We see that these extensions can be obtained
via simple modifications of the cash flows without policyholder behavior. This can be viewed as a
formula for extending current cash flows without policyholder behavior. However, this modification of
the cash flows is only correct for the survival model and not for, e.g., a disability model. If this method is
applied to cash flows from a disability model, it could be viewed as an approximation to a more correct
way of modeling policyholder behavior. Furthermore, we show that the cash flows with policyholder
behavior can be derived from cash flows with surrender behavior. This method can be used in the case
where one has access to cash flows with surrender behavior, but not free policy behavior. In practice,
many life insurance companies work with cash flows without policyholder behavior; hence, the proposed
method may be viewed as a simple alternative to full, combined modeling of policyholder behavior and
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insurance risk. The quality of these formulae as an approximation is assessed numerically in the last
part of the paper. This issue is also studied numerically in [3], where they examine ways to simplify the
calculations when modeling policyholder behavior.

In the second part, we consider the more correct way of modeling policyholder behavior in a
multi-state life insurance setup. This model is presented in [1] for the general semi-Markov setup, and
here, we present the special case of a Markov process for the disability model with recovery. Within this
setup, the transition probabilities are first calculated using Kolmogorov’s forward differential equation,
and then, the cash flow can be determined. When including policyholder behavior, duration dependence
is introduced, since the future payments are affected by the time of the free policy conversion. This
complicates calculations significantly, since it becomes necessary to determine the joint distribution of
the Markov process and the time of the free policy conversion in order to calculate the cash flows.
In practice, we would have to solve partial instead of ordinary differential equations. We present the
main result from [1] that allows us to effectively dismiss the duration dependence and to calculate cash
flows with policyholder behavior by simply calculating a slightly modified version of Kolmogorov’s
forward (ordinary) differential equation. The complexity of the calculations is therefore not increased
significantly by inclusion of policyholder behavior.

In the third part of the paper, a numerical example is studied, which illustrates, in part, the
importance of including policyholder modeling when valuating cash flows and, in part, the quality of
the approximating cash flows obtained by applying the integral expressions from the first part to cash
flows without policyholder behavior from a disability model. We see that the structure of the cash flows
changes significantly in our example, and the dollar duration measuring interest rate risk is reduced by
about 66%, when including policyholder behavior. For hedging of interest rate risk, it is thus essential
to consider policyholder behavior. We compare the approximate method with the correct approach of
solving the modified Kolmogorov differential equations and find cash flows with policyholder behavior
in a disability model. We find that in our example, the approximation is very precise. In the last part of
the numerical study, we have exploited the main result of the paper and solved our modified version of
Kolmogorov’s forward differential equations numerically.

Since the results obtained in the second part of the paper can be viewed as a special case of the ones
presented in the more general semi-Markov framework in [1], we briefly describe the main differences
between the two presentations. As mentioned above, in [1], the Kolmogorov forward integro-differential
equation in the semi-Markov framework is studied, and a modified version is presented that allows for
the inclusion of policyholder behavior in an efficient manner. The present paper contains three parts.
In the first part, we discuss a simple approach to modeling policyholder behavior, which is based on a
modification of the underlying cash flows without policyholder behavior. This construction provides
simple pedagogical interpretations for the various new terms that arise in the cash flows when we
introduce policyholder behavior. Similar results are presented in [3], who compare with alternative
modifications of the cash flows in more abstract models, such as the disability model. The second
part presents the modified Kolmogorov equation in the classic Markov model. We believe that the
presentation in this part could be accessible to a wider audience than [1], since we can avoid the more
technical issues related to the semi-Markov framework with duration dependence. This leads to simpler
results that are more easy to interpret, implement and more directly applicable than the semi-Markov



Risks 2015, 3 293

framework. Moreover, the proofs are more direct and should be easy to follow for readers familiar with
the classic Markov models as presented in, e.g., [10].

2. Life Insurance Setup

The general setup is the classic multi-state setup in life insurance, consisting of a Markov process,
Z, in a finite state space J = {0, 1, . . . , J} indicating the state of the insured; see [11]. We associate
payments with sojourns in states and transitions between states, and this specifies the life insurance
contract. We go through the setup and basic results; for more details, see, e.g., [6,10,12].

Assume that Z is a Markov process in J and that Z(0) = 0. The transition probabilities are
defined by:

pij(s, t) = P (Z(t) = j|Z(s) = i)

for i, j ∈ J and s ≤ t. Define the transition rates, for i 6= j,

µij(t) = lim
h↘0

1

h
pij(t, t+ h)

µi.(t) =
∑
j∈J
j 6=i

µij(t)

We assume that these quantities exist. Define also the counting processes Nij(t), for i, j ∈ J , i 6= j,
counting the transitions between state i and j. They are defined by:

Nij(t) = # {s ∈ (0, t] |Z(s) = j, Z(s−) = i}

where we have used the notation f(t−) = limh↘0 f(t− h).
The payments consist of continuous payment rates during sojourns in states and single payments upon

transitions between states. Denote by bi(t) the payment rate at time t if Z(t) = i, and let bij(t) be the
payment upon transition from state i to j at time t. Then, the accumulated payments at time t are denoted
B(t) and are given by:

dB(t) =
∑
i∈J

1{Z(t)=i}bi(t) dt+
∑
i,j∈J
i 6=j

bij(t) dNij(t) (1)

Positive values of the payment functions bi(t) and bij(t) correspond to benefits, while negative values
correspond to premiums. It is also possible to include single payments during sojourns in states, but that
is, for notational simplicity, omitted here.

We assume that the interest rate r(t) is deterministic. Then, the present value at time t of all future
payments is denoted PV (t), and it is given by:

PV (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s)

The formula is interpreted as the sum over all future payments, dB(s), which are discounted
by e−

∫ s
t r(τ) dτ . For a current valuation, we take the expectation conditional on the current state,

E [PV (t)|Z(t) = i]. This expected present value is called the prospective (state-wise) reserve.
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Definition 1. The prospective reserve at time t for state i ∈ J is denoted Vi(t) and given as:

Vi(t) = E

[∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s)

∣∣∣∣Z(t) = i

]
The prospective reserve can be calculated using the following classic results.

Proposition 1. The prospective reserve at time t given Z(t) = i, i ∈ J , satisfies,

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

∑
j∈J

pij(t, s)

bj(s) +
∑
k∈J
k 6=j

µjk(s)bjk(s)

 ds

Proof. See Formula (5.2) in [12] or Theorem 4.6.10 in [10].

Proposition 2. The prospective reserve at time t given Z(t) = i, i ∈ J , satisfies Thiele’s
differential equation,

d

dt
Vi(t) = r(t)Vi(t)− bi(t)−

∑
j∈J ,j 6=i

µij(t) (bij(t) + Vj(t)− Vi(t))

with boundary conditions Vi(∞) = 0, for i ∈ J .

Proof. See Formula (4.7) in [11].

Remark 1. If a time point T ≥ 0 exists, such that bi(t) = bij(t) = 0 for t > T and all i, j ∈ J , then the
boundary conditions Vi(T ) = 0 for i ∈ J are used with Thiele’s differential equation.

It can be convenient to calculate not only the expected present value (the prospective reserve), but
also the expected cash flow. From here on, we simply refer to the expected cash flow as the cash flow,
and it is a function giving the expected payments at any future time s. The cash flow is, in this setup,
independent of the interest rate, and thus, the cash flow can be useful for hedging and for an assessment
of the interest rate risk associated with the life insurance liabilities.

Definition 2. The cash flow at time t associated with the payment process (B(t))t≥0, conditional on
Z(t) = i, i ∈ J , is the function s 7→ Ai(t, s), given by:

Ai(t, s) = E [B(s)−B(t)|Z(t) = i]

for s ∈ [t,∞).

A formal calculation yields an expression for the cash flow: from Definition 1, we note that:

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ d(E [B(s)|Z(t) = i])

=

∫ ∞
t

e−
∫ s
t r(τ) dτ d(E [B(s)−B(t)|Z(t) = i])

=

∫ ∞
t

e−
∫ s
t r(τ) dτ dAi(t, s)

where we have used that B(t) is a constant and does not change the dynamics in s. We state the result in
a proposition.
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Proposition 3. The cash flow Ai(t, s) satisfies,

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dAi(t, s)

dAi(t, s) =
∑
j∈J

pij(t, s)

(
bj(s) +

∑
k∈J
k 6=j

µjk(s)bjk(s)

)
ds

Proof. The first result is proven in Proposition 2.3 in [1] using integration by parts. The second result
follows from the first result and from Proposition 1.

In order to actually calculate the cash flow, one must first calculate the transition probabilities pij(s, t).
In sufficiently simple models, the so-called hierarchical models, where you cannot return to a state
after you have left it, the transition probabilities can be calculated using only integrals and known
functions. These kind of models are considered in Section 3. In more general Markov models, closed
form expressions for the transition probabilities typically do not exist, except for certain cases when the
transition rates are piecewise constant. Usually, the transition probabilities are found numerically by
solving Kolmogorov’s forward or backward differential equation.

Proposition 4. The transition probabilities pij(t, s), for i, j ∈ J , are unique solutions to Kolmogorov’s
backward differential equation,

d

dt
pij(t, s) = µi.(t)pij(t, s)−

∑
k∈J
k 6=i

µik(t)pkj(t, s)

with boundary conditions pij(s, s) = 1{i=j} and Kolmogorov’s forward differential equation,

d

ds
pij(t, s) = −pij(t, s)µj.(s) +

∑
k∈J
k 6=j

pik(t, s)µkj(s)

with boundary conditions pij(t, t) = 1{i=j}.

Proof. See [10], Theorem 2.3.4.

Using Kolmogorov’s differential equations, the transition probabilities needed in order to calculate
the cash flow from Proposition 3 can be found. It is worth noting that for calculating the cash flow, using
the forward differential equation is the easiest way to obtain the desired transition probabilities.

Remark 2. The payments are for notational simplicity assumed to be continuous throughout the paper.
It is straightforward to include single payments at deterministic time points, which allows for, e.g.,
an endowment insurance. For example, if a single state-dependent payment at time T is included, ∆Bi,
Formula (1) would read:

dB(t) =
∑
i∈J

1{Z(t)=i} (bi(t) dt+ ∆Bi dεT (t)) +
∑
i,j∈J
i 6=j

bij(t) dNij(t)

where εT is the point measure at T . In that case, the cash flow from Proposition 3 would read:

dAi(t, s) =
∑
j∈J

pij(t, s)

(bj(s) +
∑
k∈J
k 6=j

µjk(s)bjk(s)

)
ds+ ∆Bj dεT (s)
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2.1. Technical Basis and Market Basis

In practice and in our examples, we distinguish between calculations on the so-called technical basis,
used to settle premiums, and the market basis, used to calculate the market consistent value of the
life insurance liabilities, referred to as the market value. A basis is a set of assumptions used for the
calculations of life insurance liabilities, and it typically consists of an interest rate r(t) and a set of
transition rates (µij(t))i,j∈J . There can also be different administration costs associated with different
bases; however, administration costs are not considered in this paper. The Markov model can also be
different in different bases, and the policyholder behavior modeling of this paper is an example of this.
Here, policyholder behavior is not included in the technical basis, but is included in the market basis, so
the Markov models differ by the surrender and free policy states.

Throughout the paper, we let r̂(t) and µ̂ij(t) be the first order interest and transition rates, respectively,
i.e., the interest and transition rates associated with the technical basis. We let r(t) and µij(t) be the
interest and transition rates, respectively, for the market basis. In general, values marked with aˆare
associated with the technical basis. Thus, V (t) is the prospective reserve for the market basis, and V̂ (t)

is the prospective reserve for the technical basis.

2.2. The Policyholder Options

We study life insurance contracts with two options for the policyholder. She can surrender the contract
at any time or she can stop the premium payments and convert the policy into a so-called free policy.

If the policyholder surrenders the contract at time t, all future payments are canceled, and instead,
the policyholder receives compensation for the premiums she has paid so far. Usually, the prospective
reserve calculated on the technical basis, V̂i(t), is paid out, but the formula allows it to be any
deterministic value. In this paper, we allow for a deductible and say that the payment upon surrender
is (1 − κ)V̂i(t). Since any deterministic value can be chosen, in particular, we can choose κ to be
time dependent.

If the policyholder stops the premium payments, i.e., exercises the free policy option, all future
premiums are canceled, and the size of the benefits is decreased to account for the missing future
premium payments. In this paper, we assume that the free policy conversion can only occur from
State 0. If the free policy option is exercised at time t, all future benefits are decreased by a factor ρ(t).
In order to handle this, we split the payment process into positive and negative payments, corresponding
to benefits and premiums, respectively. The benefit and premium cash flows are denoted by A+ and A−,
respectively, and are given by:

dA+
i (t, s) =

∑
j∈J

pij(t, s)

bj(s)+ +
∑
k∈J
k 6=j

µjk(s)bjk(s)
+

 ds

dA−i (t, s) =
∑
j∈J

pij(t, s)

bj(s)− +
∑
k∈J
k 6=j

µjk(s)bjk(s)
−

 ds
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where the notation f(x)+ = max(f(x), 0) and f(x)− = max(−f(x), 0) for a function f(x) is used.
The prospective reserve can then be decomposed, as well, and we have:

V +
i (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dA+

i (t, s)

V −i (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dA−i (t, s)

and Vi(t) = V +
i (t)−V −i (t). The relations also hold on the technical basis; thus, V̂i(t) = V̂ +

i (t)− V̂ −i (t),
where V̂ +

i (t) and V̂ −i (t) are the values of the future benefits and premiums, respectively, valuated on the
technical basis.

If the free policy is exercised at time t, then at a future time s, the payment rate while in state i is
ρ(t)bi(s)

+, and the payment if a transition from state i to j occurs is ρ(t)bij(s)
+. Hence, the prospective

reserve on the technical basis at time s in state i, given the free policy option is exercised at time t ≤ s, is:∫ ∞
s

e−
∫ u
s r̂(τ) dτρ(t) dÂ+

i (s, u) = ρ(t)V̂ +
i (s)

where dÂ+
i (s, u) is the cash flow calculated with the first order transition probabilities and rates,

determined by µ̂ij(t).
We recall that free policy conversion can only occur from State 0, and from here on, we generally

omit the subscript 0 from, e.g., V̂0(t) when there is no ambiguity. The free policy factor ρ(t) should
be deterministic and is usually chosen according to the equivalence principle on the technical basis:
the prospective reserve for the technical basis should not change as a consequence of the exercise of
the free policy option. If we assume the free policy conversion is exercised at time t, the prospective
reserve on the technical basis before the conversion, V̂ (t), should be equal to the prospective reserve
after conversion, ρ(t)V̂ +(t). Thus, we require V̂ (t) = ρ(t)V̂ +(t), yielding:

ρ(t) =
V̂ (t)

V̂ +(t)

We see that ρ is the value on the technical basis of benefits less premiums, divided by the value on the
technical basis of the benefits only. We refer to ρ(t) as the free policy factor.

3. The Survival Model

We consider the survival model and extend it gradually to include policyholder behavior. First,
we include the surrender option, and afterwards, we include the free policy option, as well. The survival
model consists of two states, 0 (alive) and 1 (dead), corresponding to Figure 1.

1, dead0, alive

Figure 1. Survival Markov model.
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Assume the insured is x years old at Time 0. The payments consist of a benefit rate b(t) and a premium
rate π(t), as well as a payment bad(t) upon death at time t. Referring to the general setup, we have:

b0(t) = b(t)− π(t)

b01(t) = bad(t)

and also, we denote the mortality intensity µ01(t) = µad(t). The prospective reserve on the technical
basis at time t in State 0 is given by Proposition 1, and we get:

V̂ (t) =

∫ ∞
t

e−
∫ s
t r̂(u) dus−tp̂x+t (b(s)− π(s) + µ̂ad(s)bad(s)) ds

We have used the actuarial notation for the survival probability, s−tp̂x+t = p̂00(t, s), and it is given by,

tp̂x = e−
∫ t
0 µ̂ad(x+u) du

Thus, tp̂x is the survival probability of an x-year old reaching age x + t, calculated on the
technical basis.

The market values of benefits and premiums, respectively, are then given by:

V +(t) =

∫ ∞
t

e−
∫ s
t r(u) dus−tpx+t (b(s) + µad(s)bad(s)) ds

V −(t) =

∫ ∞
t

e−
∫ s
t r(u) dus−tpx+tπ(s) ds

and the associated cash flows, conditioning on being alive at time t, are:

dA+(t, s) = s−tpx+t (b(s) + µad(s)bad(s)) ds

dA−(t, s) = s−tpx+tπ(s) ds
(2)

with V (t) = V +(t)− V −(t) and dA(t, s) = dA+(t, s)− dA−(t, s) being the total prospective reserve
and cash flow, respectively. Here, we have omitted the subscript 0 from the notation dÂ0(t, s).

The free policy factor is determined by:

ρ(t) =
V̂ (t)

V̂ +(t)

where V̂ +(t) is the value on the technical basis of the benefits only. If the free policy option is exercised
immediately, the market value is:

ρ(t)V +(t) =
V̂ (t)

V̂ +(t)
V +(t)

and in Denmark, this is often referred to as the market value of the guaranteed free policy benefits.

3.1. Survival Model with Surrender Modeling

We continue the example from above and determine the market value including the valuation of the
surrender option. The Markov model is extended to include a surrender state, corresponding to Figure 2.
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The surrender modeling is only included in the market basis, and the valuation on the technical basis does
not change. This is reasonable, since if the technical reserve is paid out upon surrender, modeling the
surrender option on the technical basis does not affect the value of the technical reserve. If the surrender
value differs from the technical reserve, one should also model the surrender option on the technical
basis when setting premiums. This can be handled with the results of the present paper, since they hold
for any deterministic surrender payments.

1, dead0, alive2, surrender

Figure 2. Survival Markov model with surrender.

On the market basis, we denote the surrender rate by µas(t). We introduce a quantity tp
s
x, which is the

probability that an x-year old does not die, nor surrender before time x + t. It is thus the probability of
staying in State 0 and is given by,

s−tp
s
x+t := p00(t, s) = e−

∫ s
t (µad(τ)+µas(τ)) dτ = s−tpx+te

−
∫ s
t µas(τ) dτ

Here, the transition rates µad and µas are for an x-year old at Time 0, which for simplicity, is
suppressed in the notation.

The payment upon surrender at time s is (1 − κ)V̂ (s), and the cash flow valuated at time t is,
by Proposition 3,

dAs(t, s) = s−tp
s
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds (3)

We decompose the cash flow in all payments excluding the surrender payments,

dAs1(t, s) = s−tp
s
x+t (b(s)− π(s) + µad(s)bad(s)) ds

= e−
∫ s
t µas(τ) dτ dA(t, s)

and the surrender payments,

dAs2(t, s) = s−tp
s
x+tµas(s)(1− κ)V̂ (s) ds

Here, dA(t, s) is the cash flow from the model in Figure 1, as defined by Equation (2). The market
value calculated on the market basis including surrender is denoted V s(t) and is given by:

V s(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAs1(t, s) + dAs2(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t µas(τ) dτ dA(t, s)

+

∫ ∞
t

e−
∫ s
t r(τ) dτ s−tp

s
x+tµas(s)(1− κ)V̂ (s) ds

(4)

We see that the cash flow and market value including surrender modeling are found using the
original cash flow without surrender modeling, dA(t, s), and multiplying the probability of no surrender
e−

∫ s
t µas(τ) dτ . Thus, finding the cash flow and the market value in the survival model with surrender is

particularly simple when the existing cash flow is known.
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3.2. Survival Model with Surrender and Free Policy Modeling

We extend the model to include free policy modeling on the market basis, and the Markov model is
extended in Figure 3 to include free policy states. The mortality and surrender transition rates in the free
policy states are identical to those in the premium paying states, µad and µas.

1, dead0, alive2, surrender

4, dead
free policy

3, alive
free policy

5, surrender
free policy

Figure 3. Survival Markov model with surrender and free policy.

We introduce a free policy rate µaf(t), which is the transition rate of becoming a free policy at time t.
We introduce the notation:

s−tp
fs
x+t = e−

∫ s
t (µad(τ)+µas(τ)+µaf(τ)) dτ

= e−
∫ s
t (µas(τ)+µaf(τ)) dτ s−tpx+t

= e−
∫ s
t µaf(τ) dτ s−tp

s
x+t

which is the probability of staying in State 0, i.e., not becoming a free policy, surrendering nor dying.
If the free policy transition occurs at time t, the future benefits are reduced by a factor ρ(t), and the

future premiums are canceled. Thus, in the free policy state at a later time s, the payment rate is ρ(t)b(s),
and the payment upon death is ρ(t)bad(s). The surrender payment, if surrender occurs as a free policy,
is ρ(t)(1− κ)V̂ +(s), where ρ(t)V̂ +(s) is the prospective reserve on the technical basis.

The payment process is dependent on the exact time of the free policy transition, i.e., the payments
are dependent on the duration since the free policy transition. It can be shown that the cash flow valuated
at time t is given by:

dAf(t, s) = s−tp
fs
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds

+

∫ s

t
τ−tp

fs
x+tµaf(τ)s−τp

s
x+τ

×
(
ρ(τ)b(s) + µad(s)ρ(τ)bad(s) + µas(s)ρ(τ)(1− κ)V̂ +(s)

)
dτ ds

(5)

The result can be obtained as a special case of Proposition 5 below, where the disability rate is set
to zero, but for completeness, a separate proof is given in Appendix A.1. The first line is the payments
in State 0 and the payments upon death and surrender. The second and third lines contain the payments
as a free policy. This expression can be interpreted as the probability of staying in State 0 until time τ ,
then becoming a free policy at time τ and then neither dying nor surrendering from time τ to time s.
This is multiplied with the payments as a free policy at time s, given the free policy occurred at time τ .
Finally, we integrate over all possible free policy transition times from s to t.
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The cash flow is decomposed into four parts. First, the benefits and premiums, excluding surrender
payments, while alive and not a free policy,

dAf1(t, s) = s−tp
fs
x+t (b(s)− π(s) + µad(s)bad(s)) ds

= e−
∫ s
t (µas(u)+µaf(u)) du

(
dA+(t, s)− dA−(t, s)

)
.

(6)

Then, the surrender payments, if the free policy transition has not occurred,

dAf2(t, s) = s−tp
fs
x+tµas(s)(1− κ)V̂ (s) ds

= e−
∫ s
t µaf(u) dus−tp

s
x+tµas(s)(1− κ)V̂ (s) ds

(7)

Note that these cash flows correspond to the cash flows in the surrender model, but reduced with the
probability of the free policy transition not happening.

The third cash flow is the benefits while a free policy:

dAf3(t, s) =

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ (b(s) + µad(s)bad(s)) ds (8)

=

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(τ, s) dτ

and the fourth cash flow is the surrender payments while a free policy,

dAf4(t, s) =

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ · µas(s)(1− κ)V̂ +(s) ds (9)

The third cash flow Equation (8) seems complicated, since the cash flows at time s evaluated at time τ ,
dA+(τ, s), are needed for any τ ∈ (t, s) and all s ≥ t. However, a straightforward calculation yields,

τ−tp
fs
x+tµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(τ, s)

= e−
∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) duτ−tpx+t dA+(τ, s)

= e−
∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(t, s)

which simplifies things, and insertion of this into dAf3 yields,

dAf3(t, s) =

(∫ s

t

e−
∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dτ

)
dA+(t, s)

Define the quantity:

rρ(t, s) =

∫ s

t

e−
∫ τ
t µaf(u) duµaf(τ)ρ(τ) dτ (10)

and note that:

dAf3(t, s) = rρ(t, s)e−
∫ s
t µas(u) du dA+(t, s)

dAf4(t, s) = rρ(t, s)s−tp
s
x+tµas(s)(1− κ)V̂ +(s) ds
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The market value including surrender and free policy modeling is denoted V f(t), and it may finally
be written as:

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAf1(t, s) + dAf2(t, s) + dAf3(t, s) + dAf4(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t (µas(u)+µaf(u)) du

(
dA+(t, s)− dA−(t, s)

)
+

∫ ∞
t

e−
∫ s
t r(τ) dτ s−tp

fs
x+tµas(s)(1− κ)V̂ (s) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s)e−

∫ s
t µas(u) du dA+(t, s)

+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s)s−tp

s
x+tµas(s)(1− κ)V̂ +(s) ds

(11)

The last four lines in Equation (11) have the following interpretation.

• The first line is the value of the original cash flow Equation (2) without policyholder behavior,
reduced by the probability of not surrendering and not becoming a free policy.
• The second line is the value of the surrender payments, when not a free policy.
• The third line is the benefit payments as a free policy, i.e., the positive payments reduced with the

free policy factor ρ(τ) at the time τ of the free policy transition.
• The fourth line is the surrender payments if surrender occurs after the free policy transition.

The formula gives the market value of future guaranteed payments, including valuation of the
surrender and free policy options. In order to calculate the value, the following quantities are needed:

• The original cash flows dA+(t, s) and dA−(t, s).
• The prospective reserve on the technical basis V̂ +(s) and V̂ −(s), for all future time points s ≥ t,

which allow us to determine the surrender payments and the free policy factor ρ(s).
• The factor rρ(t, s), which is a simple integral of the free policy transition rate.

3.3. Free Policy Modeling When Surrender Is Already Modeled

In the previous section, we found the market value including surrender and free policy modeling based
on cash flows without any policyholder behavior modeling. It is also possible to find this market value
based on cash flows including surrender modeling. This could be relevant if the existing cash flows
already include surrender modeling and one wishes to modify these cash flows to include free policy
modeling. Thus, we assume that the cash flows including surrender behavior modeling, Equation (3), are
available, and that these are split into a cash flow associated with the benefits and a cash flow associated
with premiums, i.e.,

dAs,+(t, s) = s−tp
s
x+t

(
b(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ +(s)

)
ds

dAs,−(t, s) = s−tp
s
x+t

(
π(s) + µas(s)(1− κ)V̂ −(s)

)
ds

(12)

Note that the payment upon surrender is split between the two cash flows, through the decomposition
V̂ (t) = V̂ +(t)− V̂ −(t), i.e., the value of the future benefits less the value of the future premiums.
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The market value with surrender modeling, but not free policy modeling, V s(t) from Equation (4), is
then given by:

V s(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAs,+(t, s)− dAs,−(t, s)

)
We find the cash flow including free policy modeling by modifying the existing cash flows into

two cash flows: one, which is reduced by the probability of not becoming a free policy, and a special
free policy cash flow. With a few calculations using Equations (6), (7) and (12), we see that:

dAf1(t, s) + dAf2(t, s) = s−tp
fs
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds

= e−
∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
and also, by Equations (8)–(10) and (12),

dAf3(t, s) + dAf4(t, s)

=

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ

(
b(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ +(s)

)
ds

= rρ(t, s) dAs,+(t, s)

The total cash flow is then given as:

dAf(t, s) = e−
∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
+ rρ(t, s) dAs,+(t, s)

This cash flow can be interpreted as a weighted average between the original cash flow, reduced with
the probability of not becoming a free policy, and the payments as a free policy. The payments as a
free policy are the positive payments multiplied with rρ(t, s). The quantity rρ(t, s) is interpreted as the
probability of becoming a free policy multiplied with the free policy factor ρ(τ) at the time τ of the free
policy transition.

The market value from before, V f(t), can then be calculated as:

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAf1(t, s) + dAf2(t, s) + dAf3(t, s) + dAf4(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s) dAs,+(t, s)

If we only include surrender modeling, the needed extra quantities are simple integrals of the surrender
rate µas(t). If we in addition include free policy modeling, the free policy factor ρ(t) must also be found,
which requires access to future prospective reserves on the technical basis. When these are found, the
market value is relatively simple to calculate.

3.4. Approximate Method

An essential assumption for these calculations is that there are no payments after leaving the active
state, i.e., that the prospective reserve is zero in the dead and surrender states. That is, after the
payment upon
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death or surrender, there are no future payments. If one adds a disability state, similar simple results can
only be obtained if the prospective reserve is zero in the disability state. This is typically not satisfied, and
as such, the methods of modifying the cash flows presented here are not applicable. However, assuming
one has cash flows from a more general model without policyholder behavior (e.g., a disability model),
Formula (11) can be applied to these cash flows in order to obtain an approximation to cash flows with
policyholder behavior. We refer to this method as the approximate method.

In the following section, we examine how to correctly model policyholder behavior in a disability
Markov model.

4. A General Disability Markov Model

In this section, we consider the survival model extended with a disability state, from which it is
possible to recover. We extend the model further by including states for surrender and free policy and
end up with an eight-state model; see Figure 4. By solving certain ordinary differential equations for
the relevant transition probabilities and a special free policy quantity, similar to rρ from Equation (10),
the cash flow and prospective reserve can be found.

2, dead

1, disabled0, active3, surrender

4, active
free policy

6, dead
free policy

5, disabled
free policy

7, surrender
free policy

J

J f

Figure 4. The eight-state Markov model, with disability, surrender and free policy.
The transition rates between States 0, 1 and 2 are identical to the transition rates between
States 4–6. The two surrender states can be considered one state, and then, this model is
known as the so-called “seven-state model”.

The results can easily be extended to more general Markov models than the disability model, as long
as free policy conversion only occurs from the active State 0. A more general setup is studied in [1],
which is here specialized to the case of the survival-disability model.

For valuation on the technical basis, the survival-disability Markov model, consisting of States 0, 1
and 2, is used. In this section, the payments are labeled by the state they correspond to instead of the
labels used previously. Thus, the payment rate in State 0, active, is b0(t), and in State 1, disabled, it is
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b1(t). Upon disability, there is a payment b01(t); upon death as active, there is a payment b02(t); and
upon death as disabled, there is a payment b12(t). The payment function in State 0, b0(t), is decomposed
into positive payments b0(t)+, which are benefits, and negative payments, b0(t)−, which are premiums.
Thus,

b0(t) = b0(t)
+ − b0(t)−

We assume that all other payments functions are positive. The notation corresponds to the notation
used in Equation (1) for the payment functions b0(t), b1(t), b01(t), b02(t) and b12(t), and all other payment
functions bi and bij are zero. The transition rates are also labeled by numbers, e.g., the transition rate
from state i to j is µij(t).

Using Proposition 3, the cash flow for State 0 under the technical basis is,

dÂ(t, s) = p̂00(t, s) (b0(s) + µ̂02(s)b02(t) + µ̂01(s)b01(s))

+ p̂01(t, s) (b1(s) + µ̂12(s)b12(s))

where the notation p̂ and µ̂ refers to the transition probabilities and rates on the technical basis.
The first line contains payments while in State 0, active, and payments during transitions out of State 0.
The payments on the second line are payments in State 1, disabled, and payments during transitions out
of State 1. We decompose the cash flow into positive and negative payments and define,

dÂ+(t, s) = p̂00(t, s)
(
b0(s)

+ + µ̂02(s)b02(s) + µ̂01(s)b01(s)
)

ds

+ p̂01(t, s) (b1(s) + µ̂12(s)b12(s)) ds,

dÂ−(t, s) = p̂00(t, s)b0(s)
− ds

such that dÂ(t, s) = dÂ+(t, s) − dÂ−(t, s). The prospective reserve on the technical basis V̂ (t) is
also decomposed,

V̂ +(t) =

∫ ∞
t

e−
∫ s
t r̂(u) du dÂ+(t, s)

V̂ −(t) =

∫ ∞
t

e−
∫ s
t r̂(u) du dÂ−(t, s)

and we have V̂ (t) = V̂ +(t)− V̂ −(t). Here, we again omit the notation 0 for the state in the reserves and
cash flows.

For valuation on the market basis, we consider the extended Markov model in Figure 4. We define a
duration, U(t), which is the time since the free policy option was exercised (or since surrender),

U(t) = inf {s ≥ 0 |Z(t− s) ∈ {0, 1, 2}}

If the free policy option is exercised and the current time is t, the time of the free policy transition is
then t−U(t). Upon transition to a free policy, the benefits are reduced by the factor ρ(t−U(t)), and the
premiums are canceled. The payments in the free policy states are thus duration dependent, and at time
t, they are,
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b4(t, U(t)) = ρ(t− U(t))b0(t)
+

b5(t, U(t)) = ρ(t− U(t))b1(t)

b45(t, U(t)) = ρ(t− U(t))b01(t)

b46(t, U(t)) = ρ(t− U(t))b02(t)

b56(t, U(t)) = ρ(t− U(t))b12(t)

Upon surrender from State 0, an amount (1 − κ)V̂ (t) is paid out, where V̂ (t) is the prospective
reserve on the technical basis. If the free policy option is exercised and surrender occurs from State
4, the prospective reserve on the technical basis is the value of the future benefits, reduced by the free
policy factor ρ(t−U(t)). Thus, the payment upon surrender as a free policy is (1−κ)ρ(t−U(t))V̂ +(t).
The parameter κ is a surrender strain and is usually zero. We have,

b03(t) = (1− κ)V̂ (t)

b47(t, U(t)) = (1− κ)ρ(t− U(t))V̂ +(t)

The total payment process is then given by,

dB(t) =
(
1{Z(t)=0}b0(t) + 1{Z(t)=1}b1(t)

)
dt

+ b01(t) dN01(t) + b02(t) dN02(t) + b12(t) dN12(t)

+ (1− κ)V̂ (t) dN03(t)

+ ρ(t− U(t))
{(

1{Z(t)=4}b0(t)
+ + 1{Z(t)=5}b1(t)

)
dt

+ b01(t) dN45(t) + b02(t) dN46(t) + b12(t) dN56(t)

+ (1− κ)V̂ +(t) dN47(t)
}

(13)

The first two lines contain the benefits and premiums in the States 0, alive, 1, disabled, and 2, dead.
Line 3 contains the payment upon surrender as a premium paying policy, and Line 6 contains the payment
upon surrender as a free policy. Lines 4 and 5 contain the payments as a free policy.

We find the cash flow, and to this end, it is convenient to define the quantity:

pρij(t, s) = E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i
]

for i ∈ {0, 1, 2}, j ∈ {4, 5, 6}, and t ≤ s. Then, it holds that:

pρij(t, s) =

∫ s

t

pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ (14)

For a proof of Equation (14), see Appendix A.2. For ρ(t) = 1, this quantity is simply the transition
probability from state i to j: it is the probability of going from State i to 0 at time τ and then transitioning
to State 4 at time τ and, finally, going from State 4 to State j from time τ to s. Since a transition
from a state i ∈ {0, 1, 2} to a state j ∈ {4, 5, 6} can only occur through a transition from State 0 to 4,
this gives the transition probability. When ρ(t) 6= 1, the quantity corresponds to the transition probability
multiplied by ρ(t) at the time of transition to a free policy.

We now state the cash flow.
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Proposition 5. The cash flow in State 0, dAf(t, s), for payments at time s valued at time t, is given by:

dAf(t, s) = p00(t, s)
(
b0(s) + µ01(s)b01(s) + µ02(s)b02(s) + µ03(s)(1− κ)V̂ (s)

)
ds

+ p01(t, s) (b1(s) + µ12(s)b12(s)) ds

+ pρ04(t, s)
(
b0(s)

+ + µ45(s)b01(s) + µ46(s)b02(s) + µ47(s)(1− κ)V̂ +(s)
)

ds

+ pρ05(t, s) (b1(s) + µ56(s)b12(s)) ds

(15)

Proof. See Appendix A.3.

Calculation of the cash flow requires pρij(t, s) to be calculated, and with Equation (14), this requires
the transition probabilities p4j(τ, s) for all s and τ satisfying t ≤ τ ≤ s. However, it turns out that this
is not necessary, since there exists a differential equation for pρij(t, s) similar to Kolmogorov’s forward
differential equation. Using this, one can calculate all of the usual transition probabilities and the pρij(t, s)
quantities together. This eliminates the need to calculate p4j(τ, s) for all τ and s satisfying t ≤ τ ≤ s.

Proposition 6. The quantities pρij(t, s) satisfy the forward differential equation, for i ∈ {0, 1, 2}
and j ∈ {4, 5, 6},

d

ds
pρij(t, s) = 1{j=4}pi0(t, s)µ04(s)ρ(s)− pρij(t, s)µj.(s) +

∑
`∈{4,5,6}
`6=j

pρi`(t, s)µ`j(s)

with boundary conditions pρij(t, t) = 0.

Proof. See Appendix A.4.

A more general version of this result is presented in Theorem 4.2 in [1] for the general semi-Markov
case and can also be found for the general Markov case as Equation (4.8) in [1]. However, for
completeness, a straightforward proof is given in the Appendix. For the proposition, we recall that
µj.(s) is the sum of all of the transition rates out of state j. Note, in particular, that if j = 4, the last sum
is simply the one term pρi5(t, s)µ54(s) and if j = 5, the last term is pρi4(t, s)µ45(s).

The market value including surrender and free policy modeling is denoted V f(t) and is given by,

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dAf(t, s)

=

∫ ∞
t

e−
∫ s
t r(τ) dτp00(t, s) (b0(s) + µ01(s)b01(s) + µ02(s)b02(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτp01(t, s) (b1(s) + µ12(s)b12(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτp00(t, s)µ03(s)(1− κ)V̂ (s) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ04(t, s)

(
b0(s)

+ + µ45(s)b01(s) + µ46(s)b02(s)
)

ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ05(t, s) (b1(s) + µ56(s)b12(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ04(t, s)µ47(s)(1− κ)V̂ +(s) ds

(16)
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The first three lines are the payments when the free policy option is not exercised, and the last
three lines are payments as a free policy. The first two lines are the payments without policyholder
behavior, which is similar to the first line in Equation (11). The third line is the surrender payments
when the free policy option is not exercised, and this is similar to Line 2 in Equation (11). The fourth
and fifth lines are the payments as a free policy, without the surrender payment, corresponding to the
third line in Equation (11). The last line is the surrender payments as a free policy, which corresponds to
the fourth line in Equation (11). If the disability state is removed, the formula simplifies to Equation (11).

Remark 3. In Remark 2, single payments at time T were allowed. This can be included in the above
results: if we assume single payments at time T , ∆B0 in state alive and ∆B1 in state disabled,
the following terms must be added to the cash flow Equation (15),(

p00(t, s)∆B0 + p01(t, s)∆B1 + pρ04(t, s)∆B
+
0 + pρ05(t, s)∆B

+
1

)
dεT (s)

As a consequence, the following terms must be added to the market value Equation (16),

1{t<T}e
−

∫ T
t r(τ) dτ

(
p00(t, T )∆B0 + p01(t, T )∆B1 + pρ04(t, T )∆B+

0 + pρ05(t, T )∆B+
1

)
5. Numerical Example

We present a numerical example that illustrates the methods presented in the previous sections. First,
we illustrate the impact of modeling policyholder behavior, and in particular, we see that the structure
of the cash flows changes considerably. With the modeling of policyholder behavior, the interest rate
sensitivity (duration) of the cash flow is significantly reduced, which is of importance if one applies
duration matching techniques in order to hedge the interest rate risk.

Second, we illustrate the error when using the simple model from Section 3.1 to modify existing
cash flows from a disability model to include policyholder behavior. In Section 3.1, it is shown how
to manipulate cash flows from a life-death model to include policyholder behavior according to the
model shown in Figure 3. When using the methods on cash flows originating from the three-state
disability model shown in Figure 5, the formulae do not give the correct result, but they can serve as
an approximation to the full model from Figure 4. As illustrated in this example, it can indeed be a very
good approximation.

2, dead

1, disabled0, active

Figure 5. Disability Markov model.

We consider a 40-year-old male now at Time 0, with retirement age 65. He enters a new policy with
two products:

• A disability annuity consisting of an annual payment of 100.000 while disabled, until age 65.
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• A life annuity consisting of an annual payment of 100.000 while alive, from age 65 until death.

He pays a yearly premium while active, determined by the principle of equivalence on the technical
basis. The principle of equivalence states that the prospective reserve on the technical basis is zero before
any payments are made. The technical basis consists of:

• The three-state disability Markov-model, as shown in Figure 5;
• Interest rate of 1%;
• Transition rates, where x is the age,

µ̂01(x) =
(
0.0004 + 104.54+0.06x−10) 1{x≤65}

µ̂10(x) =
(
2.0058 · e−0.117x

)
1{x≤65}

µ̂02(x) = 0.0005 + 105.88+0.038x−10

µ̂12(x) = µ̂02(x)
(
1 + 1{x≤65}

)
The transition rates are designed such that we do not distinguish between disabled and active after

retirement; thus, the mortality rate as disabled is simply set to the mortality rate as active after age 65,
and this is simply interpreted as the average mortality rate from alive to dead.

With the technical basis and the equivalence principle, the premium paid while active is found to be
of annual size 46.409 until age 65. Using the technical basis, we also find the technical reserve at future
time points for the active and the free policy state. This determines the surrender payments and the free
policy conversion factor, which are needed for the calculations below.

For the market basis, the interest rate provided by the Danish FSAof 2 September 2013 is used.
The transition rates loosely resemble those used by a large Danish life and pension insurance company
in the competitive market. With x being the age, they are given by,

• active to dead, µ02(x): the mortality benchmark from 2012 from The Danish FSA,
• active to disabled: µ01(x) = 1{x≤65} (105.662015+0.033462x−10),
• disabled to active: µ10(x) = 4.0116e−0.117x,
• disabled to dead: µ12(x) = 0.010339 + 105.070927+0.05049x−10.

The active to surrender (as), respectively to free policy (af), transition rates are for age x ≤ 65 given as

µas(x) = 0.06− 0.002 · (x− 40)+

µaf(x) = 0.05

and they are set to zero for x > 65.
The transition rates are shown in Figure 6 together with the transition probabilities, which have

been calculated using Kolmogorov’s forward differential equation, Proposition 4. The probability of
surrender and free policy conversion are significant, and already around age 47, the probability of having
surrendered or made a free policy conversion is greater than the probability of still being active. We also
note that the transition probabilities are smooth except at age 65, where the disability, recovery, surrender
and free policy transition rates jump to zero.
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Figure 6. Transition rates (left) and transition probabilities (right). In the left figure,
the transition rates between the states in the disability model, (0, active, 1, disabled, and
2, dead) are shown, as well as the surrender (active to surrender (as)) and free policy (active
to free policy (af)) transition rates. In the right figure, the full lines are the non-free policy
states, and the dashed lines are corresponding free policy states. The active, free policy and
surrender states are dominant.
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Figure 7. Cash flows (left) and market value for different parallel shifts in the interest
rate structure (right), measured in basis points. In the figures, we see that the modeling
of policyholder behavior has a major impact. Furthermore, it seems difficult to distinguish
the approximate and the correct method using the eye-ball norm only. The approximation
yields a slightly larger cash flow and market value than the correct modeling does.

We perform three calculations. First, we consider the disability model without policyholder behavior,
as shown in Figure 5. In this model, the cash flow and the corresponding market value are calculated,
using Propositions 3 and 4. In Figure 7, these results are shown as the black lines. In the beginning, the
premiums are paid, and the cash flow starts at the annual premium level−46.409. If the insured dies, the
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premium stops, and upon disability, the premium stops and the disability annuity is paid. Thus, we see a
slightly increasing cash flow until age 65. After retirement, a life annuity is paid out instead. The value
of the cash flow at age 65 is slightly less than 100.000, corresponding to a strictly positive probability of
death before age 65. The cash flow decreases to zero as the insured eventually dies.

In Table 1, the market value and the dollar duration are presented. The technical reserve is zero due
to the equivalence principle, corresponding to this being a new policy. The market value is negative,
which expresses a surplus inherent in the contract, because the technical basis is on the safe side. We
see that the dollar duration is significant, and from Figure 7, it is seen that a decrease of a little more
than 100 basis points in the interest rate leads to an increase in the market value, eliminating the surplus
completely.

Table 1. Market value of the cash flow and dollar durations (DV01), without policyholder
behavior (PHB), with the approximative method and the correct method. The duration is
greatly reduced when policyholder behavior is included, and the approximation is close to
the result from the correct method.

Results Without PHB Approximation Correct

Market value −183.798 −76.599 −72.641
DV01 130.792 42.462 44.239

For the second calculation, we consider the approximate method, as discussed in Section 3.4.
The cash flow without any modeling of policyholder behavior, dA0(0, s) = dA+

0 (0, s) − dA−0 (0, s),
is modified by Formula (11) in order to obtain approximate cash flows including policyholder behavior.
As mentioned above, this is only correct if the cash flows originate from a two-state survival model, as
shown in Figure 1. However, we perform the modification anyway and examine the quality of this as
an approximation. One can show that this calculation corresponds to allowing surrender and free policy
from the disability state; see [3]. In Figure 7, the results from this modification are shown as the red lines.

As mentioned above, free policy modeling leads to duration-dependent payments, since the payments
in the free policy states depend not only on the current state, but also on the time of the free policy
conversion. This implies that one would need to determine the joint distribution of the Markov process
and of the time of free policy conversion in order to calculate the cash flows correctly, which in practice
amounts to solving a partial differential equation. In the numerical calculations for this study, we have
used Propositions 5 and 6 from Section 4 and correctly calculated the cash flows, where surrender and
free policy conversion are only possible from the active states. By these results, we simply solved
ordinary differential equations. In Figure 7, this is shown as the blue lines.

We see that including modeling of policyholder behavior has an effect on both the market value and
the structure of the cash flow. The market value is increased, since the surplus inherent in the contract is
reduced if the insured surrenders or converts to a free policy. In the right part of Figure 7, we however
see that if the interest rate drops by 100 basis points, the market values with and without modeling of
policyholder behavior are identical, and we conclude that the effect on the market value of modeling
policyholder behavior is greatly influenced by the current market interest rate. The different structures
of the cash flows also lead to significantly different interest rate sensitivities. The cash flow still begins
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at the premium level −46.409, but due to the large amount of surrenders and free policy conversions,
it increases rapidly, in part because the premium stops and in part because of the payment upon surrender.
After retirement, the cash flow is significantly smaller than without policyholder modeling, in part due
to surrender, in which case there is no life annuity, and in part due to free policy conversions reducing
the size of the life annuity. In both the right part of Figure 7 and in Table 1, it is seen that the sensitivity
of the market value with respect to the interest is reduced to about one third of the original sensitivity.
Thus, for hedging the actual interest rate risk inherent in the cash flows, one sees that it is essential to
model policyholder behavior.

In this example, the results from the approximate and the correct method are almost identical.
The cash flow and market value are slightly larger by using the approximation. We recall that the
approximate method corresponds to allowing surrender and free policy conversion from the disabled
state. The larger cash flow and market value are thus due to the fact that surrender and free policy
conversion as disabled corresponds to the insured giving up the disability annuity in return for either
a smaller technical reserve upon surrender or a strictly smaller disability annuity upon free policy
conversion. However, since the disability rate and probability are small, as seen in Figure 6, this error
only has a minor effect on the cash flow.
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Appendix

A. Proofs

A.1. Cash Flow for Section 3.2

We here prove Formula (5) for the model presented in Figure 3. Define first the duration U(t) since
entering the free policy state, that is:

U(t) = inf {s ≥ 0 |Z(t− s) ∈ {0, 1, 2}}
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Now, the payments in the setup lead to the payment process:

dB(t)

= 1{Z(t)=0}(b(t)− π(t)) dt+ bad(t) dNad(t) + (1− κ)V̂ (t) dNas(t)

+ ρ(t− U(t))
(

1{Z(t)=3}b(t) dt+ bad(t) dNaf,df(t) + (1− κ)V̂ +(t) dNaf,sf(t)
)

Here, Nad is the counting process that counts the number of jumps from state active to state
dead. Similarly, Nas, Naf,df and Naf,sf counts the number of jumps from state active to surrender,
from state active, free policy to dead, free policy and from state active, free policy to surrender, free
policy, respectively.

The cash flow is then given as:∫ T

t

dAf(t, s)

= E

[∫ T

t

dB(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t

1{Z(s)=0}(b(s)− π(s)) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t

bad(s) dNad(s) + (1− κ)V̂ (s) dNas(s)

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t

ρ(s− U(s))1{Z(s)=3}b(s) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t

ρ(s− U(s))
(
bad(s) dNaf,df(s) + (1− κ)V̂ +(s) dNaf,sf(s)

)∣∣∣∣Z(t) = 0

]
=

∫ T

t
s−tp

fs
x+t(b(s)− π(s)) ds

+

∫ T

t
s−tp

fs
x+t

(
bad(s)µad(s) + (1− κ)V̂ (s)µas(s)

)
ds

+ E

[∫ T

t

ρ(s− U(s))1{Z(s)=3}b(s) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t

ρ(s− U(s))
(
bad(s) dNaf,df(s) + (1− κ)V̂ +(s) dNaf,sf(s)

)∣∣∣∣Z(t) = 0

]
For the first expectation, we used that the expectation of an indicator function is a probability.

For the second expectation, we recall that the counting process here can be replaced by the
predictable compensator.

For the third expectation, we condition on the stochastic variable s − U(s), which is the time of
transition. Then, conditional on Z(t) = 0 and with the indicator function 1{Z(s)=3}, we know that
a transition has occurred; thus s − U(s) ∈ (t, s), which determine the integral limits. Furthermore,
the density of the time of the transition from State 0 to State 3 is τ 7→ τ−tp

fs
x+tµaf(τ). Using these

observations, we calculate:
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∫ T

t

E
[
ρ(s− U(s))1{Z(s)=3}b(s)

∣∣Z(t) = 0
]

ds

=

∫ T

t

∫ s

t

E
[
ρ(τ)1{Z(s)=3}b(s)

∣∣Z(t) = 0, s− U(s) = τ
]

× dP (s− U(s) ≤ τ |Z(t) = 0) ds

=

∫ T

t

∫ s

t

ρ(τ) E
[
1{Z(s)=3}

∣∣Z(τ) = 3
]
b(s)τ−tp

fs
x+tµaf(τ) dτ ds

=

∫ T

t

∫ s

t

ρ(τ)s−τp
s
x+τb(s)τ−tp

fs
x+tµaf(τ) dτ ds

=

∫ T

t

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτb(s) ds

(A1)

For the fourth expectation, we only consider the first part, since the second part is analogous. Since
U(s) is continuous whenever Naf,df(s) (and Naf,sf(s)) increase in value, we can replace U(s) by U(s−).
Using that ρ(s−U(s−)) is predictable, we can integrate with respect to the compensator of the counting
process Naf,df(s) instead, so we get:

E

[∫ T

t

ρ(s− U(s))bad(s) dNaf,df(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t

ρ(s− U(s−))bad(s) dNaf,df(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t

ρ(s− U(s−))bad(s)1{Z(s−)=3}µad(s) ds

∣∣∣∣Z(t) = 0

]
=

∫ T

t

E
[
ρ(s− U(s−))1{Z(s−)=3}

∣∣Z(t) = 0
]
bad(s)µad(s) ds

=

∫ T

t

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτbad(s)µad(s) ds

Since in the second to last line, the expression is analogous to the third expectation, the last line was
obtained using the same calculations as Equation (A1). Gathering the results, the cash flow dAf(t, s)

is obtained.

A.2. Proof of Equation (14)

Conditioning on the time of transition from States 0 to 4, s− U(s) and using that the density for the
transition time is pi0(t, τ)µ04(τ), we find:

pρij(t, s)

= E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i
]

=

∫ s

t

E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i, s− U(s) = τ
]

dP (s− U(s) ≤ τ |Z(t) = i)

=

∫ s

t

E
[
1{Z(s)=j}

∣∣Z(t) = i, s− U(s) = τ
]
ρ(τ)pi0(t, τ)µ04(τ) dτ
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=

∫ s

t

pi0(t, τ)µ04(τ) E
[
1{Z(s)=j}

∣∣Z(τ) = 4
]
ρ(τ) dτ

=

∫ s

t

pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ

At Line 5, we used that if we know that s − U(s) = τ , then in particular, we know that Z(τ) = 4.
Since Z is Markov, we can then drop the condition that Z(t) = i and s − U(s) = τ . Note that for the
proof, it is essential that i ∈ {0, 1, 2} and j ∈ {4, 5, 6}, since we at the conditioning on Line 3 use that
s − U(s) ∈ (t, s), i.e., a transition to the free policy states occurs in the time interval (t, s). We can do
that, since it must hold if Z(t) = i ∈ {0, 1, 2} and Z(s) = j ∈ {4, 5, 6}.

A.3. Proof of Proposition 5

Proof. The cash flow is given as:∫ T

t

dAf(t, s) = E

[∫ T

t

dB(s)

∣∣∣∣Z(t) = 0

]
where B(t) is given in Equation (13). Inserting B(t) yields,∫ T

t

dAf(t, s)

=

∫ T

t

E

[ (
1{Z(s)=0}b0(s) + 1{Z(s)=1}b1(s)

) ∣∣∣∣Z(t) = 0

]
ds (A2)

+

∫ T

t

E

[
ρ(s− U(s))

(
1{Z(s)=4}b0(s)

+ + 1{Z(s)=5}b1(s)
) ∣∣∣∣Z(t) = 0

]
ds (A3)

+ E

[ ∫ T

t

(
b01(s) dN01(s) + b02(s) dN02(s) + b12(s) dN12(s)

+ (1− κ)V̂ (s) dN03(s)
)∣∣∣∣Z(t) = 0

] (A4)

+ E

[ ∫ T

t

ρ(s− U(s))
(
b01(s) dN45(s) + b02(s) dN46(s) + b12(s) dN56(s)

+ (1− κ)V̂ +(s) dN47(s)
)∣∣∣∣Z(t) = 0

] (A5)

The four expectations Equations (A2) to (A5) are calculated separately. The first expectation
Equation (A2) is the expectation of indicator functions, and we replace by the transition probabilities,∫ T

t

(p00(t, s)b0(t) + p01(t, s)b1(t)) ds

In the second expectation Equation (A3), the same calculations as in Section A.2 can be performed
to obtain, ∫ T

t

(
pρ04(t, s)b0(s)

+ + pρ05(t, s)b1(s)
)

ds
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In the third expectation Equation (A4), we integrate deterministic functions with respect to a counting
process. Taking the expectation, we can instead integrate with respect to the predictable compensator,
and we get, ∫ T

t

E
[
1{Z(s−)=0} (b01(s)µ01(s) + b02(s)µ02(s)) + 1{Z(s−)=1}b12(s)µ12(s)

+ 1{Z(s−)=0}(1− κ)V̂ (s)µ03(s) ds
∣∣∣Z(t) = 0

]
ds

=

∫ T

t

(
p00(t, s) (b01(s)µ01(s) + b02(s)µ02(s)) + p01(t, s)b12(s)µ12(s)

+ p00(t, s)(1− κ)V̂ (s)µ03(s)
)

ds

For the fourth expectation Equation (A5), we start by replacing U(s) with U(s−), since whenever
any of N45(s), N46(s), N56(s) or N47(s) are increasing, then U(s) is continuous. Thus, we integrate
a predictable process with respect to a counting process, and we can integrate with respect to the
predictable compensator instead,

E

[ ∫ T

t

ρ(s− U(s−))
(
b01(s) dN45(s) + b02(s) dN46(s)

+ b12(s) dN56(s) + (1− κ)V̂ +(s) dN47(s)
)∣∣∣∣Z(t) = 0

]
=

∫ T

t

E
[
ρ(s− U(s−))

(
1{Z(s−)=4} (b01(s)µ45(s) + b02(s)µ46(s))

+ 1{Z(s−)=5}b12(s)µ56(s) + 1{Z(s−)=4}(1− κ)V̂ +(s)µ47(s)
)∣∣∣Z(t) = 0

]
ds

=

∫ T

t

(
pρ04(t, s) (b01(s)µ45(s) + b02(s)µ46(s))

+ pρ05(t, s)b12(s)µ56(s) + pρ04(t, s)(1− κ)V̂ +(s)µ47(s)
)

ds

For the last equality, we again used the calculations from Section A.2. Gathering the four expectations,
the result is obtained.

A.4. Proof of Proposition 6

Proof. We differentiate pρij(t, s) for i ∈ {0, 1, 2} and j ∈ {4, 5, 6},

d

ds
pρij(t, s)

=
d

ds

∫ s

t

pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ

= pi0(t, s)µ04(s)p4j(s, s)ρ(s) +

∫ s

t

pi0(t, τ)µ04(τ)
d

ds
p4j(τ, s)ρ(τ) dτ

= 1{j=4}pi0(t, s)µ04(s)ρ(s)

+

∫ s

t

pi0(t, τ)µ04(τ)

−p4j(τ, s)µj.(s) +
∑

`∈{4,5,6}
`6=j

p4`(τ, s)µ`j(s)

 ρ(τ) dτ
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= 1{j=4}pi0(t, s)µ04(s)ρ(s)− pρij(t, s)µj.(s) +
∑

`∈{4,5,6}
`6=j

pρi`(t, s)µ`j(s).

For the third equality sign, we used that p4`(τ, s)µ`j(s) = 0 for ` 6∈ {4, 5, 6}.

References

1. Buchardt, K.; Møller, T.; Schmidt, K.B. Cash flows and policyholder behavior in the semi-Markov
life insurance setup. Scand. Actuar. J. 2014, doi:10.1080/03461238.2013.879919.

2. Linnemann, P. Valuation of Participating Life Insurance Liabilities. Scand. Actuar. J. 2004,
2, 81–104.

3. Henriksen, L.F.B.; Nielsen, J.W.; Steffensen, M.; Svensson, C. Markov chain modeling of policy
holder behavior in life insurance and pension. Eur. Actuar. J. 2014, 4, 1–29.

4. Eling, M.; Kiesenbauer, D. What Policy Features Determine Life Insurance Lapse? An Analysis
of the German Market. J. Risk Insur. 2013, 81, 241–269.

5. Steffensen, M. Intervention options in life-insurance. Insur. Math. Econ. 2002, 31, 71–85.
6. Møller, T.; Steffensen, M. Market-Valuation Methods in Life and Pension Insurance; International

Series on Actuarial Science; Cambridge University Press: Cambridge, UK, 2007.
7. Giovanni, D.D. Lapse Rate Modeling: A Rational Expectation Approach. Scand. Actuar. J. 2010,

1, 56–67.
8. Buchardt, K. Dependent interest and transition rates in life insurance. Insur. Math. Econ. 2014,

55, 167–179.
9. CEIOPS. CEIOPS’ Advice for Level 2 Implementing Measures on Solvency II: Technical

Provisions, Article 86 a, Actuarial and Statistical Methodologies to Calculate the Best
Estimate. Available online: https://eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/
CEIOPS-L2-Final-Advice-on-TP-Best-Estimate.pdf (accessed on 20 July 2015).

10. Koller, M. Stochastic Models in Life Insurance; European Actuarial Academy Series;
Springer-Verlag: Berlin Heidelberg, 2012.

11. Hoem, J.M. Markov Chains in Life Insurance. Bl. DGVFM 1969, 9, 91–107.
12. Norberg, R. Reserves in life and pension insurance. Scand. Actuar. J. 1991, 1991, 1–22.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Life Insurance Setup
	Technical Basis and Market Basis
	The Policyholder Options

	The Survival Model
	Survival Model with Surrender Modeling
	Survival Model with Surrender and Free Policy Modeling
	Free Policy Modeling When Surrender Is Already Modeled
	Approximate Method

	A General Disability Markov Model
	Numerical Example
	Proofs
	Cash Flow for Section 3.2
	Proof of Equation (14)
	Proof of Proposition 5
	Proof of Proposition 6


