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Abstract: We show that the recent results on the Fundamental Theorem of Asset Pricing and
the super-hedging theorem in the context of model uncertainty can be extended to the case
in which the options available for static hedging (hedging options) are quoted with bid-ask
spreads. In this set-up, we need to work with the notion of robust no-arbitrage which turns
out to be equivalent to no-arbitrage under the additional assumption that hedging options
with non-zero spread are non-redundant. A key result is the closedness of the set of attainable
claims, which requires a new proof in our setting.

Keywords: Model uncertainty; bid-ask prices for options; semi-static hedging;
non-dominated collection of probability measures; Fundamental Theorem of Asset Pricing;
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1. Introduction

We consider a discrete time financial market in which stocks are traded dynamically and options are
available for static hedging. We assume that the dynamically traded asset is liquid and trading in them
does not incur transaction costs, but that the options are less liquid and their prices are quoted with
a bid-ask spread. (The more difficult problem with transaction costs on a dynamically traded asset is
analyzed in [1] and [2].) As in [3] we do not assume that there is a single model describing the asset
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price behavior but rather a collection of models described by the convex collection P of probability
measures, which does not necessarily admit a dominating measure. One should think of P as being
obtained from calibration to the market data. We have a collection rather than a single model because
generally we do not have point estimates but a confidence intervals for the parameters of our models.
Our first goal is to obtain a criteria for deciding whether the collection of models represented by P is
viable or not. Given that P is viable we would like to obtain the range of prices for other options written
on the dynamically traded assets. The dual elements in these result are martingale measures that price
the hedging options correctly (i.e., consistent with the quoted prices). As in classical transaction costs
literature, we need to replace the no-arbitrage condition by the stronger robust no-arbitrage condition, as
we shall see in Section 2. In Section 3 we will make the additional assumption that the hedging options
with non-zero spread are non-redundant (see Definition 3.1). We will see that, under this assumption,
no-arbitrage and robust no-arbitrage are equivalent. Our main results are Theorems 2.1 and 3.1.

2. Fundamental Theorem with Robust No Arbitrage

Let St = (S1
t , . . . , S

d
t ) be the prices of d traded stocks at time t ∈ {0, 1, . . . , T} and H be the set

of all predictable Rd-valued processes, which will serve as our trading strategies. Let g = (g1, . . . , ge)

be the payoff of e options that can be traded only at time zero with bid price g and ask price g, with
g ≥ g (the inequality holds component-wise). We assume St and g are Borel measurable, and there are
no transaction costs in the trading of stocks.

Definition 2.1 (No-arbitrage and robust no-arbitrage). We say that condition NA(P) holds if for all
(H, h) ∈ H × Re,

H • ST + h+(g − g)− h−(g − g) ≥ 0 P − quasi-surely (-q.s.)1

implies
H • ST + h+(g − g)− h−(g − g) = 0 P-q.s.

where h± are defined component-wise and are the usual positive/negative part of h.2

We say that condition NAr(P) holds if there exists g′, g′ such that [g′, g′] ⊆ ri[g, g] and NA(P) holds
if g has bid-ask prices g′, g′.3

Definition 2.2 (Super-hedging price). For a given a random variable f , its super-hedging price is
defined as

π(f) := inf{x ∈ R : ∃ (H, h) ∈ H × Re such that x+H • ST + h+(g − g)− h−(g − g) ≥ f P-q.s.}

Any pair (H, h) ∈ H × Re in the above definition is called a semi-static hedging strategy.

1 A set is P-polar if it is P -null for all P ∈ P . A property is said to hold P-q.s. if it holds outside a P-polar set.
2 When we multiply two vectors, we mean their inner product.
3 “ri" stands for relative interior. [g′, g′] ⊆ ri[g, g] means component-wise inclusion.
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Remark 2.1. [1] Let π̂(gi) and π̂(−gi) be the super-hedging prices of gi and −gi, where the hedging is
done using stocks and options excluding gi. NAr(P) implies either

−π̂(−gi) ≤ gi = gi ≤ π̂(gi)

or
− π̂(−gi) ≤ (g′)i < gi and gi < (g′)i ≤ π̂(gi) (2.1)

where g′, g′ are the more favorable bid-ask prices in the definition of robust no-arbitrage. The reason
for working with robust no-arbitrage is to be able to have the strictly inequalities in (2.1) for options
with non-zero spread, which turns out to be crucial in the proof of the closedness of the set of hedgeable
claims in (2.3) (hence the existence of an optimal hedging strategy), as well as in the construction of a
dual element (see (2.6)).

[2] Clearly NAr(P) implies NA(P), but the converse is not true. For example, assume in the market
there is no stock, and there are only two options: g1(ω) = g2(ω) = ω, ω ∈ Ω := [0, 1]. Let P be the
set of probability measures on Ω, g

1
= g1 = 1/2, g

2
= 1/4 and g2 = 1/2. Then NA(P) holds while

NAr(P) fails.

For b, a ∈ Re, let

Q[b,a] := {Q≪ P : Q is a martingale measure and EQ[g] ∈ [b, a]}

where Q ≪ P means ∃P ∈ P such that Q � P .4 Let Q[b,a]
ϕ := {Q ∈ Q : EQ[ϕ] < ∞}. When

[b, a] = [g, g], we drop the superscript and simply write Q,Qϕ. Also define

Qs := {Q≪ P : Q is a martingale measure and EQ[g] ∈ ri[g, g]}

and Qs
ϕ := {Q ∈ Qs : EQ[ϕ] <∞}.

Theorem 2.1. Let ϕ ≥ 1 be a random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e. The following
statements hold:

(a) (Fundamental Theorem of Asset Pricing): The following statements are equivalent

(i) NAr(P) holds.

(ii) There exists [g′, g′] ⊆ ri[g, g] such that ∀P ∈ P , ∃Q ∈ Q[g′,g′]
ϕ such that P � Q.

(b) (Super-hedging) Suppose NAr(P) holds. Let f : Ω → R be Borel measurable such that |f | ≤ ϕ.
The super-hedging price is given by

π(f) = sup
Q∈Qs

ϕ

EQ[f ] = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞] (2.2)

and there exists (H, h) ∈ H×Re such that π(f) +H • ST + h+(g − g)− h−(g − g) ≥ f P-q.s..

4 EQ[g] ∈ [b, a] means EQ[gi] ∈ [bi, ai] for all i = 1, . . . , e.
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Proof. It is easy to show (ii) in (a) implies that NA(P) holds for the market with bid-ask prices g′, g′,
Hence NAr(P) holds for the original market. The rest of our proof consists two parts as follows.
Part 1: π(f) > −∞ and the existence of an optimal hedging strategy in (b). Once we show that
the set

Cg := {H • ST + h+(g − g)− h−(g − g) : (H, h) ∈ H × Re} − L0
+ (2.3)

is P−q.s. closed (i.e., if (W n)∞n=1 ⊂ Cg andW n → W P−q.s., thenW ∈ Cg), the argument used in the
proof of ([3], [Theorem 2.3]) would conclude the results in part 1. We will demonstrate the closedness
of Cg in the rest of this part.

Write g = (u, v), where u = (g1, . . . , gr) consists of the hedging options without bid-ask spread,
i.e, gi = gi for i = 1, . . . , r, and v = (gr+1, . . . , ge) consists of those with spread, i.e., gi < gi for
i = r + 1, . . . , e, for some r ∈ {0, . . . , e}. Denote u := (g1, . . . , gr) and similarly for v and v. Define

C := {H • ST + α(u− u) : (H,α) ∈ H × Rr} − L0
+

Then C is P − q.s. closed by ([3], [Theorem 2.2]).
Let W n → W P − q.s. with

W n = Hn • ST + αn(u− u) + (βn)+(v − v)− (βn)−(v − v)− Un ∈ Cg (2.4)

where (Hn, αn, βn) ∈ H × Rr × Re−r and Un ∈ L0
+. If (βn)n is not bounded, then by passing to

subsequence if necessary, we may assume that 0 < ||βn|| → ∞ and rewrite (2.4) as

Hn

βn
• ST +

αn

||βn||
(u− u) ≥ W n

||βn||
−
(

βn

||βn||

)+

(v − v) +

(
βn

||βn||

)−
(v − v) ∈ C

where || · || represents the sup-norm. Since C is P − q.s. closed, the limit of the right hand side above is
also in C, i.e., there exists some (H,α) ∈ H × Rr, such that

H • ST + α(u− u) ≥ −β+(v − v) + β−(v − v), P − a.s.

where β is the limit of (βn)n along some subsequence with ||β|| = 1. NA(P) implies that

H • ST + α(u− u) + β+(v − v)− β−(v − v) = 0, P − a.s. (2.5)

As β =: (βr+1, . . . , βe) 6= 0, we assume without loss of generality (w.l.o.g.) that βe 6= 0. If βe < 0, then
we have from (2.5) that

ge +
H

β−e
• ST +

α

β−e
(u− u) +

e−1∑
i=r+1

[
β+
i

β−e
(gi − gi)− β−i

β−e
(gi − gi)

]
= ge, P − a.s.

Therefore π̂(ge) ≤ g
e
, which contradicts the robust no-arbitrage property (see (2.1)) of ge. Here π̂(ge) is

the super-hedging price of ge using S and g excluding ge. Similarly we get a contradiction if βe > 0.
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Thus (βn)n is bounded, and has a limit β ∈ Re−r along some subsequence (nk)k. Since by (2.4)

Hn • ST + αn(u− u) ≥ W n − (βn)+(v − v) + (βn)−(v − v) ∈ C

the limit of the right hand side above along (nk)k, W − β+(v − v) + β−(v − v), is also in C by its
closedness, which implies W ∈ Cg.
Part 2: (i) ⇒ (ii) in part (a) and (3.3) in part (b). We will prove the results by an induction on the
number of hedging options, as in ([3], [Theorem 5.1]). Suppose the results hold for the market with
options g1, . . . , ge. We now introduce an additional option f ≡ ge+1 with |f | ≤ ϕ, available at bid-ask
prices f < f at time zero. (When the bid and ask prices are the same for f , then the proof is identical
to [3].)

(i) =⇒ (ii) in (a): Let π(f) be the super-hedging price when stocks and g1, . . . , ge are available for
trading. By NAr(P) and (3.3) in part (b) of the induction hypothesis, we have

f > f
′ ≥ −π(−f) = inf

Q∈Qs
ϕ

EQ[f ] and f < f ′ ≤ π(f) = sup
Q∈Qs

ϕ

EQ[f ] (2.6)

where [f ′, f
′
] ⊆ (f, f) comes from the definition of robust no-arbitrage. This implies that there exists

Q+, Q− ∈ Qs
ϕ such that EQ+ [f ] > f ′′ and EQ− [f ] < f

′′
where f ′′ = 1

2
(f + f ′), f

′′
= 1

2
(f + f

′
). By (a)

of induction hypothesis, there exists [b, a] ⊆ ri[g, g] such that for any P ∈ P , we can find Q0 ∈ Q[b,a]
ϕ

satisfying P � Q0 ≪ P . Define

g′ = min(b, EQ+ [g], EQ− [g]), and g′ = max(a,EQ+ [g], EQ− [g])

where the minimum and maximum are taken component-wise. We have [b, a] ⊆ [g′, g′] ⊆ ri[g, g] and

Q+, Q− ∈ Q
[g′,g′]
ϕ .

Now, let P ∈ P . (a) of induction hypothesis implies the existence of aQ0 ∈ Q[b,a]
ϕ ⊆ Q[g′,g′]

ϕ satisfying
P � Q0 ≪ P . Define

Q := λ−Q− + λ0Q0 + λ+Q+

Then Q ∈ Q[g′,g′]
ϕ and P � Q. By choosing suitable weights λ−, λ0, λ+ ∈ (0, 1), λ−+ λ0 + λ+ = 1, we

can make EQ[f ] ∈ [f ′′, f
′′
] ⊆ ri[f, f ].

(3.3) in (b): Let ξ be a Borel measurable function such that |ξ| ≤ ϕ. Write π′(ξ) for its super-hedging
price when stocks and g1, . . . , ge, f ≡ ge+1 are traded, Q′ϕ := {Q ∈ Qϕ : EQ[f ] ∈ [f, f ]} and
Q′sϕ := {Q ∈ Qs

ϕ : EQ[f ] ∈ (f, f)}. We want to show

π′(ξ) = sup
Q∈Q′sϕ

EQ[ξ] = sup
Q∈Q′ϕ

EQ[ξ] (2.7)

It is easy to see that
π′(ξ) ≥ sup

Q∈Q′ϕ
EQ[ξ] ≥ sup

Q∈Q′sϕ
EQ[ξ] (2.8)

and we shall focus on the reverse inequalities. Let us assume first that ξ is bounded from above, and thus
π′(ξ) <∞. By a translation we may assume π′(ξ) = 0.
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First, we show π′(ξ) ≤ supQ∈Q′ϕ E
Q[ξ]. It suffices to show the existence of a sequence {Qn} ⊆ Qϕ

such that limnE
Qn [f ] ∈ [f, f ] and limnE

Qn [ξ] = π′(ξ) = 0. (See page 30 of [3] for why this is
sufficient.) In other words, we want to show that

{EQ[(f, ξ)] : Q ∈ Qϕ} ∩
(
[f, f ]× {0}

)
6= ∅

Suppose the above intersection is empty. Then there exists a vector (y, z) ∈ R2 with |(y, z)| = 1 that
strictly separates the two closed, convex sets, i.e., there exists b ∈ R s.t.

sup
Q∈Qϕ

EQ[yf + zξ] < b and inf
a∈[f,f ]

ya > b (2.9)

It follows that

y+f − y−f + π′(zξ) ≤ π′(yf + zξ) ≤ π(yf + zξ) = sup
Q∈Qϕ

EQ[yf + zξ] < b < y+f − y−f, (2.10)

where the first inequality is because one can super-replicate zξ = (yf + zξ) + (−yf) from initial capital
π′(yf + zξ) − y+f + y−f , the second inequality is due to the fact that having more options to hedge
reduces hedging cost, and the middle equality is by (b) of induction hypothesis. The last two inequalities
are due to (2.9).

It follows from (2.10) that π′(zξ) < 0. Therefore, we must have that z < 0, otherwise π′(zξ) =

zπ′(ξ) = 0 (since the super-hedging price is positively homogenous). Recall that we have proved in
part (a) that Q′ϕ 6= ∅. Let Q′ ∈ Q′ϕ ⊆ Qϕ. The part of (2.10) after the equality implies that yEQ′ [f ] +

zEQ′ [ξ] < y+f − y−f . Since EQ′ [f ] ∈ [f, f ], we get zEQ′ [ξ] < y+(f −EQ′ [f ])− y−(f −EQ′ [f ]) ≤ 0.
Since z < 0, EQ′ [ξ] > 0. But by (2.8), EQ′ [ξ] ≤ π′(ξ) = 0, which is a contradiction.

Next, we show supQ∈Q′ϕ E
Q[ξ] ≤ supQ∈Q′sϕ E

Q[ξ]. It suffices to show for any ε > 0 and every
Q ∈ Q′ϕ, we can find Qs ∈ Q′sϕ such that EQs

[ξ] > EQ[ξ] − ε. To this end, let Q′ ∈ Q′sϕ which is
nonempty by part (a). Define

Qs := (1− λ)Q+ λQ′

We have Qs ≪ P by the convexity of P , and Qs ∈ Q′sϕ if λ ∈ (0, 1]. Moreover,

EQs

[ξ] = (1− λ)EQ[ξ] + λEQ′ [ξ]→ EQ[ξ] as λ→ 0

So for λ > 0 sufficiently close to zero, the Qs constructed above satisfies EQs
[ξ] > EQ[ξ] − ε.

Hence, we have shown that the supremum over Q′ϕ and Q′sϕ are equal. This finishes the proof for upper
bounded ξ.

Finally, when ξ is not bounded from above, we can apply the previous result to ξ ∧ n, and then let
n→∞ and use the closedness of Cg in (2.3) to show that (3.3) holds. The argument would be the same
as the last paragraph in the proof of [3, Thoerem 3.4] and we omit it here.
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3. A Sharper Fundamental Theorem with the Non-Redundancy Assumption

We now introduce the concept of non-redundancy. With this additional assumption we will sharpen
our result.

Definition 3.1 (Non-redundancy). A hedging option gi is said to be non-redundant if it is not perfectly
replicable by stocks and other hedging options, i.e., there does not exist x ∈ R and a semi-static hedging
strategy (H, h) ∈ H × Re such that

x+H • ST +
∑
j 6=i

hjgj = gi P-q.s.

Remark 3.1. NAr(P) does not imply non-redundancy. For Instance, having only two identical options
in the market whose payoffs are in [c, d], with identical bid-ask prices b and a satisfying b < c and a > d,
would give a trivial counter example where NAr(P) holds yet we have redundancy.

Lemma 3.1. Suppose all hedging options with non-zero spread are non-redundant. Then NA(P) implies
NAr(P).

Proof. Let g = (g1, . . . , gr+s), where u := (g1, . . . , gr) consists of the hedging options without bid-ask
spread, i.e, gi = gi for i = 1, . . . , r, and (gr+1, . . . , gr+s) consists of those with bid-ask spread, i.e.,
gi < gi for i = r + 1, . . . , r + s. We shall prove the result by induction on s. Obviously the result holds
when s = 0. Suppose the result holds for s = k ≥ 0. Then for s = k + 1, denote v := (gr+1 . . . , gr+k),
v := (gr+1, . . . , gr+k) and v := (gr+1, . . . , gr+k). Denote f := gr+k+1.

By the induction hypothesis, there exists [v′, v′] ⊂ (v, v) be such that NA(P) holds in the market with
stocks, options u and options v with any bid-ask prices b and a satisfying [v′, v′] ⊂ [b, a] ⊂ (v, v). Let
vn ∈ (v, v′), vn ∈ (v′, v), f

n
> f and f

n
< f , such that vn ↘ v, vn ↗ v, f

n
↘ f and fn ↗ f . We

shall show that for some n, NA(P) holds with stocks, options u, options v with bid-ask prices vn and
vn, option f with bid-ask prices f

n
and fn. We will show it by contradiction.

If not, then for each n, there exists (Hn, hnu, h
n
v , h

n
f ) ∈ H × Rr × Rk × R such that

Hn•ST +hnu(u−u)+(hnv )+(v−vn)−(hnv )−(v−vn)+(hnf )+(f−fn)−(hnf )−(f−f
n
) ≥ 0, P−q.s. (3.1)

and the strict inequality for the above holds with positive probability under some Pn ∈ P . Hence hnf 6= 0.
By a normalization, we can assume that |hnf | = 1. By extracting a subsequence, we can w.l.o.g. assume
that hnf = −1 (the argument when assuming hnf = 1 is similar). If (hnu, h

n
v )n is not bounded, then w.l.o.g.

we assume that 0 < cn := ||(hnu, hnv )|| → ∞. By (3.1) we have that

Hn

cn
• ST +

hnu
cn

(u− u) +
(hnv )+

cn
(v − vn)− (hnv )−

cn
(v − vn)− 1

cn
(f − f

n
) ≥ 0, P − q.s.

By ([3], [Theorem 2.2]), there exists H ∈ H, such that

H • ST + hu(u− u) + h+v (v − v)− h−v (v − v) ≥ 0, P − q.s.
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where (hu, hv) is the limit of (hnu/c
n, hnu/c

n) along some subsequence with ||(hu, hv)|| = 1. NA(P)

implies that
H • ST + hu(u− u) + h+v (v − v)− h−v (v − v) = 0, P − q.s. (3.2)

Since (hu, hv) 6= 0, (3.2) contradicts the non-redundancy assumption of (u, v).
Therefore, (hnu, h

n
v )n is bounded, and w.l.o.g. assume it has the limit (ĥu, ĥv). Then applying

([3], [Theorem 2.2]) in (3.1), there exists Ĥ ∈ H such that

Ĥ • ST + ĥu(u− u) + ĥ+v (v − v)− ĥ−v (v − v)− (f − f) ≥ 0, P − q.s.

NA(P) implies that

Ĥ • ST + ĥu(u− u) + ĥ+v (v − v)− ĥ−v (v − v)− (f − f) = 0, P − q.s.

which contradicts the non-redundancy assumption of f .

We have the following FTAP and super-hedging result in terms of NA(P) instead of NAr(P), when
we additionally assume the non-redundancy of g.

Theorem 3.1. Suppose all hedging options with non-zero spread are non-redundant. Let ϕ ≥ 1 be a
random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e. The following statements hold:

(a’) (Fundamental Theorem of Asset Pricing): The following statements are equivalent

(i) NA(P) holds.

(ii) ∀P ∈ P , ∃Q ∈ Qϕ such that P � Q.

(b’) (Super-hedging) Suppose NA(P) holds. Let f : Ω → R be Borel measurable such that |f | ≤ ϕ.
The super-hedging price is given by

π(f) = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞] (3.3)

and there exists (H, h) ∈ H×Re such that π(f) +H • ST + h+(g − g)− h−(g − g) ≥ f P-q.s..

Proof. (a’)(ii) =⇒ (a’)(i) is trivial. Now if (a’)(i) holds, then by Lemma 3.1, (a)(i) in Theorem 2.1
holds, which implies (a)(ii) holds, and thus (a’)(ii) holds. Finally, (b’) is implied by Lemma 3.1 and
Theorem 2.1(b).

Remark 3.2. Theorem 3.1 generalizes the results of [3] to the case when the option prices are quoted
with bid-ask spreads. When P is the set of all probability measures and the given options are all
call options written on the dynamically traded assets, a result with option bid-ask spreads similar to
Theorem 3.1-(a) had been obtained by [4]; see Proposition 4.1 therein, although the non-redundancy
condition did not actually appear. (The objective of [4] was to obtain relationships between the option
prices which are necessary and sufficient to rule out semi-static arbitrage and the proof relies on
determining the correct set of relationships and then identifying a martingale measure.)
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However, the no arbitrage concept used in [4] is different: the author there assumes that there is
no weak arbitrage in the sense of [5]; see also [6] and [7].5 (Recall that a market is said to have
weak arbitrage if for any given model (probability measure) there is an arbitrage strategy which is an
arbitrage in the classical sense.) The arbitrage concept used here and in [3] is weaker, in that we say
that a non-negative wealth (P-q.s.) is an arbitrage even if there is a single P under which the wealth
process is a classical arbitrage. Hence our no-arbitrage condition is stronger than the one used in [4].
But what we get out from a stronger assumption is the existence of a martingale measure Q ∈ Qϕ for
each P ∈ P . Whereas [4] only guarantees the existence of only one martingale measure which prices
the hedging options correctly.
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