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Abstract: Insurance companies use conservative first order valuation bases to calculate
insurance premiums and reserves. These valuation bases have a significant impact on the
insurer’s solvency and on the premiums of the insurance products. Safety margins for
systematic biometric and financial risk are in practice typically chosen as time-constant
percentages on top of the best estimate transition intensities. We develop a risk-oriented
method for the allocation of a total safety margin to the single safety margins at each point in
time and each state. In a case study, we demonstrate the suitability of the proposed method
in different frameworks. The results show that the traditional method yields an unwanted
variability of the safety level with respect to time, whereas the variability can be significantly
reduced by the new method. Furthermore, the case study supports the German 60 percent
rule for the technical interest rate.

Keywords: safety margin; first order basis; systematic biometric risk; financial risk;
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1. Introduction

Before the current low-interest period, the interest surplus often dominated all other surplus sources
of insurance companies such that, in particular, the surplus from the biometric risk was considered
to be negligible. The low-interest period changed this situation, making insurers more dependent on
biometric surplus. Insurance products without large saving components, such as disability insurance,
usually imply a relatively high biometric surplus and therefore become more and more attractive for
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insurance companies. In contrast to other insurance products, the surplus of a disability insurance is
usually yearly forwarded as a cash bonus; thus it is necessary to not only keep track of the overall safety
loadings but also control them year by year. Still, adequate yearly safety loadings are also relevant
for insurance products with other bonus schemes, since shareholders are usually interested in smooth
dividend payments over the years. This issue is even more delicate from the regulator’s point of view. In
contrast to an insurance company, the regulator is interested that the safety loadings are neither too low
nor too high. On the one hand, the valuation basis of first order should be on the safe side, but on the
other hand it should be in some sense fair, because the insurance company has to forward only a part of
the surplus to the policyholder.

In this paper, we propose a sophisticated method for the calculation of a first order valuation basis
with respect to the systematic biometric risk and the interest rate risk. Essential for this calculation is
the decomposition of the total reserve according to the different risk sources. Since several possible
decompositions exist, there are several ways to define a first order valuation basis. We justify the
appropriateness of our method in a case study. Since the duration spent in one state is relevant when
dealing for example with disability insurance, we consider a semi-Markov framework.

In general, we follow a top-down approach, which means that in a first step a safety level that the total
reserve should meet is fixed. This implicitly defines the total safety margin, which, in a second step, is
allocated to the different transition rates and the interest rate. The top-down approach was introduced
by Bühlmann [1], who describes a general concept for the calculation of insurance premiums.
Pannenberg [2] considers an active-dead model and uses this approach to calculate safety margins for the
unsystematic biometric risk based on a yearly time grid. A calculation of the unsystematic biometric risk
and the biometric estimation risk within a general multi-state model can be found in [3,4], respectively.
Christiansen and Steffensen [5] derive a first order valuation basis by means of worst case scenarios.
They also take into account possible dependencies between interest and transition rates. The main
contribution of our paper is the derivation of an allocation method for the total safety margin to the
different risk sources and different points in time. This is done in a joint framework for biometric and
interest rate risk. Furthermore, we analyze the remaining risk in several examples. In particular, we
investigate the appropriateness of the 60 percent rule for the interest rate risk. This rule requires that the
technical interest rate in Germany is smaller than 60% of the interest rate of government bonds.

The paper is organized as follows. In Section 2 we briefly introduce the semi-Markov model for
insurance companies and discuss the risk decomposition. The theory for the derivation of the safety
margins is given in Section 3. The methods are discussed in more detail for a Markov disability
model including interest rate risk in Section 4, and for a semi-Markov model in Section 5. Finally,
Section 6 concludes.

2. Semi-Markov Model and Risk Decomposition

In what follows, we give a short introduction to the assumed continuous time semi-Markov
framework, which mainly follows [3], and from where we briefly repeat the most important definitions.
This framework goes back to [6] and is also discussed in [7]. Another possibility is to restrict this
framework to a discrete time semi-Markov framework, which approximates the continuous version.
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In [8,9] an efficient way is presented regarding how to use the discrete time framework in the context of
disability insurance. An extension of this method to a trivariate Markov process can be found in [10].
The continuous time framework is more challenging as it leads to differential equations, but solutions
can be easily found with the help of standard numerical methods.

We assume that the jump process (Xt)t≥0 on the probability space (Ω,F ,P) describes the state of the
policyholder at time t, i.e., Xt ∈ S for all t ≥ 0, where S denotes the finite state space. We define the
transition space J as J := {(i, j) ∈ S × S|i 6= j}. Furthermore, let (Ut)t≥0 be the duration that the
process (Xt)t≥0 has spent so far in the current state, i.e.,

Ut := max{s ∈ [0, t]|Xu = Xt for all u ∈ [t− s, t]} .

Then (Xt)t≥0 is called semi-Markovian if (Xt, Ut)t≥0 is Markovian. The counting process

Njk(t) := #{τ ∈ (0, t]|Xτ = k,Xτ− = j}, (j, k) ∈ J,

gives the number of jumps for each transition.

Definition 1. We define

1. the transition probabilities as

pij(t, τ, u, l) := P(Xτ = j, Uτ ≤ l|Xt = i, Ut = u),

2. the cumulative transition intensities as

qij(s, t) :=

∫
(s,t]

pij(s, dτ, 0)

1− pii(s, τ−, 0)
,

where pij(s, t, u) = P(T (s) ≤ t,XT (s) = j|Xs = i, Us = u) for i 6= j with T (t) := min{τ >
t|Xτ 6= Xt} and pii(s, t, u) = P(T (s) ≤ t|Xs = j, Us = u).

Furthermore, we call

Φ(t) =

∫
(0,t]

K(ds)

K(s−)

the cumulative interest rate for an accumulation function K : [0,∞) → [1,∞) with K(0) = 1 (cf. [6],
Definition 3.1). We can interpret K(t) as a bank account and define for t ≤ τ the discount factor
v(t, τ) := exp{Φ(t)− Φ(τ)}. We also define

• bij(t, u) as the (deterministic) transition payments, i.e., the policyholder gets the payment bij(t, u)

at time t when he changes his state at time t with duration u from state i to state j,
• Bi(s, t) as the aggregated (deterministic) payments, i.e., the policyholder gets the paymentBi(s, t)

in the time interval [s, t] when he changed into state i at time s and stays in this state during this
time interval.

As in [3] we assume that b and B are of bounded variation on compacts and Bi(s, ·) should be
right-continuous. In the next step we define the prospective reserve.
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Definition 2. Let S0, S1, ... be the series of the jump times of the process (Xt)t≥0.

1. Then we define the present value of all insurance benefits and premiums as

A(t) :=
∑
j∈S

∞∑
n=0

∫
(t,∞)

v(t, τ)1Xτ=j1Sn≤τ<Sn+1Bj(Sn, dτ) +
∑

(j,k)∈J

∫
(t,∞)

v(t, τ)bjk(τ, Uτ )dNjk(dτ).

2. The prospective reserve for a policyholder in state i with current duration u at time t is then
defined as

Vi(t, u) := E(A(t)|(Xt, Ut) = (i, u)).

Based on the reserve we can define the sum at risk for the transition from state i to state j at time t
with a duration in state i of u as

Rij(t, u) := bij(t, u) + Vj(t, 0) +Bj(t, t)− Vi(t, u)− (Bi(t− u, t)−Bi(t− u, t−)).

Then the prospective reserve can also be calculated by solving the system of Thiele’s integral equation
of type 2 (cf. [6], Corollary 4.22)

Vi(t, u) =

∫
(t,∞)

Bi(t− u, dτ)−
∫

(t,∞)

Vi(τ−, τ − t+ u) Φ(dτ) +
∑
j 6=i

∫
(t,∞)

Rij(τ, τ − t+ u) qij(t− u, dτ) .

(1)

For the next section we need a method to decompose the reserve with respect to the different risk
sources and the different points in time. Therefore, we give the following theorem, which can be found
in [11] for the Markov case and in [3] for the semi-Markov case but without considering interest rate risk.

We use the suffix ∗ for the first order valuation basis. First of all, a first order valuation basis is a set
of transition rates q∗ij(s, t) (i, j ∈ S and s ≤ t) and Φ∗(t) (t ≥ 0). As a general rule, it is a valuation basis
that implies a sufficiently large reserve at the beginning of the contract, i.e., P(Vi(0, 0, q

∗,Φ∗) ≥ 0) ≥ α,
where α is close to 1. Thus, in what follows Vi(t, u, q,Φ) denotes the reserve Vi(t, u) as defined above
with corresponding valuation basis q and Φ.

Theorem 3. Under the assumption that the cumulative transition intensities q∗ and q can be
represented as

q∗ij(s, t) =

∫
(s,t]

λ∗ij(τ, τ − s) dΛij(τ) and qij(s, t) =

∫
(s,t]

λij(τ, τ − s) dΛij(τ) ,

where Λij(τ) is an appropriate measure and λ∗ij and λij the transition intensities, we get
the decomposition

Si(t, u) :=Vi(t, u, q
∗,Φ∗)− Vi(t, u, q,Φ)

=
∑

(j,k)∈J

∫
(t,∞)

∫
[0,∞)

v∗(t, τ)Rjk(τ, l) (λ∗jk(τ, l)− λjk(τ, l)) p∗ij(t, τ, u, dl) dΛjk(τ)

+
∑
j∈S

∫
(t,∞)

∫
[0,∞)

v∗(t, τ)Vj(τ−, l) p∗ij(t, τ, u, dl) d(Φ(τ)− Φ∗(τ)) .

(2)
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The proof of this theorem is analogous to the proof of Proposition 4.2 in [3], but extended to
interest rate risk, see Appendix A. Note that the decomposition in Equation (2) depends on the order of
Vi(t, u,Φ

∗, q∗) and Vi(t, u,Φ, q). The presented framework comprises both continuous time and discrete
time payments. This is why we choose this setting even though some quantities have to be computed by
solving differential equations, for which we use numerical methods in Sections 4 and 5. In what follows,
we restrict our investigation to the case where the cumulative transition intensities q∗(s, t) and q(s, t) are
differentiable with respect to t, i.e., dΛij(τ) = dτ .

3. Safety Margins for Systematic Biometric and Financial Risk

In this section, we propose a new method to derive safety margins. Therefore, let λij and Φ be the
actual, probably random, transition and cumulative interest rate, respectively. Our goal is to derive a
deterministic first order valuation basis λ∗ij and Φ∗ such that the prospective reserve calculated with λ∗ij
and Φ∗ is sufficiently large with a probability of at least α ∈ (0, 1). Consequently, we start with

P (Va(0, 0, λ∗,Φ∗) ≥ Va(0, 0, λ,Φ)) ≥ α , (3)

where (λ(t, u))t≥0,u≥0 is a positive and pathwise at least piecewise continuous Ft-adapted stochastic
process with expected value λBE(t, u) at time t given duration u. Let (Φ(t))t≥0 be a semimartingale
with expected value ΦBE(t) at time t. Amongst others, [1–3] use Equation (3) for a general derivation of
safety margins. Since this calculation has to be made before the insurance contract is set up, we assume
that Equation (3) is fulfilled at the beginning of the contract (t = 0) with duration u = 0 and that the
policyholder is in state active (shortly state a). The following calculations are analogous for the general
case where we would assume that P (Vi(t, u, λ

∗,Φ∗) ≥ Vi(t, u, λ,Φ)) ≥ α for some fixed state i, time t,
and duration u. This allows to recalculate the first order valuation basis whenever it is needed. Since
it is desirable that the safety margins are neither too low nor too high, our aim is that the probability in
Equation (3) is close to α.

There are infinitely many first order valuation bases that fulfill Equation (3). Consequently, there
is not just one “correct” solution. In what follows, we will discuss one possible method applying
different risk measures that allows for time- and state-dependent safety margins. In the examples in
Sections 4 and 5, we will discuss how suitable the resulting rates are. However, it is an open question as
for what are fair first order rates. We take the risk manager’s perspective who wants to control the risk.
Therefore, we consider in the case study

(i) the instantaneous loss probability at each point in time,
(ii) the expected loss at each point in time (given there is a loss),

(iii) the density function of the loss at selected points in time.

Only the density function contains all relevant information, but there is no sole criterion that asserts
whether a density function is risky. Our main focus is to avoid heavy tails, since they can cause serious
solvency issues for the insurer. For criteria (i) and (ii) it is recommendable that the loss probability
and the expected loss are low. The initial condition in Equation (3) is the same for all methods and
principles so that the total loss is fixed, but it is desirable to have a rather constant loss probability and
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a rather constant expected loss. In particular, increasing loss probabilities and expected losses should
be avoided, since such situations can lead to solvency problems due to large bonuses in the first years
and large losses in the last years. In contrast, constant loss probabilities and constant expected losses
increase the predictability for the insurance company and also lead to smooth cash bonuses.

Generally, we follow the top-down approach introduced by [1], which means that we first define a
safety criterion for the total risk and then allocate it in a risk-oriented way to the individual risks. A safety
criterion is given by Equation (3), which fixes the total safety margin. However, this equation does not
define the first order basis uniquely. Therefore, we need a further criterion to allocate the total safety
margin to the single intensities and single points in time. Our idea is to use Theorem 3 to decompose
the total safety margin from Equation (3) to different points in time and to the different transitions and
to assume that large risks imply large safety margins. The risk resulting from the random transition and
interest rates is quantified by a suitable risk measure.

With this idea in mind, we start by rewriting condition Equation (3) as

P
(
Va(0, 0, λ∗,Φ∗)− Va(0, 0, λBE,ΦBE) ≥ Va(0, 0, λ,Φ)− Va(0, 0, λBE,ΦBE)

)
≥ α .

We use Theorem 3 to write the differences as

Va(0, 0,λ∗,Φ∗)− Va(0, 0, λBE,ΦBE)

=
∑

(j,k)∈J

∫
(0,∞)

∫
[0,∞)

v∗(0, τ)RBE
jk (τ, l) (λ∗jk(τ, l)− λBEjk (τ, l)) p∗aj(0, τ, 0, dl) dτ

+
∑
j∈S

∫
(0,∞)

∫
[0,∞)

v∗(0, τ)V BE
j (τ−, l) p∗aj(0, τ, 0, dl) d(ΦBE(τ)− Φ∗(τ)) ,

(4)

where RBE
jk is the sum at risk calculated with λBE , ΦBE , and V BE

j (τ, l) = Vj(τ, l, λ
BE,ΦBE), and

Va(0, 0,λ,Φ)− Va(0, 0, λBE,ΦBE)

=
∑

(j,k)∈J

∫
(0,∞)

∫
[0,∞)

v(0, τ)RBE
jk (τ, l) (λjk(τ, l)− λBEjk (τ, l)) paj(0, τ, 0, dl) dτ

+
∑
j∈S

∫
(0,∞)

∫
[0,∞)

v(0, τ)V BE
j (τ−, l) paj(0, τ, 0, dl) d(ΦBE(τ)− Φ(τ)) .

(5)

Equation (5) segments the total risk by states and time and Equation (4) specifies a corresponding
quantity including the wanted first order valuation basis. Since the summands in Equation (5) are not
independent, it is not possible to take the sum out of most risk measures and we necessarily have to
make an appropriate assumption. It is a reasonable assumption that the first order valuation basis is
proportional to the corresponding risk for each risk source and at each point in time. We specify this in
the following assumption, where we also make a corresponding assumption for the interest rate.

Assumption 4. (i) Let the deterministic integrands of the second line of Equation (4) be proportional
to the value of a risk measure applied to the random integrands of the second line of Equation (5),
i.e., for all (j, k) ∈ J and τ, l ≥ 0

v∗(0, τ)RBE
jk (τ, l) (λ∗jk(τ, l)− λBEjk (τ, l)) p∗aj(0, τ, 0, dl)

= c1 ρ
(
v(0, τ)RBE

jk (τ, l) (λjk(τ, l)− λBEjk (τ, l)) paj(0, τ, 0, dl)
)
,

(6)
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where ρ(·) is an adequate risk measure and c1 a free scaling factor.
(ii) Analogously we assume for the financial risk that for all τ ≥ 0

v∗(0, τ)
(∑
j∈S

∫
[0,∞)

V BE
j (τ−, l) p∗aj(0, τ, 0, dl)

)
d(ΦBE(τ)− Φ∗(τ))

= c2 ρ

(
v(0, τ)

(∑
j∈S

∫
[0,∞)

V BE
j (τ−, l) paj(0, τ, 0, dl)

)
d(ΦBE(τ)− Φ(τ))

)
,

(7)

where c2 is a free scaling factor.

The interest rate Φ∗(τ) depends neither on the state nor on the duration, and consequently the first
order interest rate should be the same in all states. Therefore, we exchange the sum and the integration
in the interest part of Equations (4) and (5) and get in Equation (7) only one condition for each point
in time.

Later on we will choose as risk measures the variance, the standard deviation, the value at risk, and
the tail value at risk. Assumption 4 cannot be theoretically justified and therefore we do a case study in
the following sections to verify its adequacy. Equation (6) has a similar structure as Principle 6.2 defined
in [4]. However, this principle is used for unsystematic biometric risk and thus cannot be compared to
Assumption 4.

The security level implied by integrating over Equations (6) and (7) cannot be compared to the security
level from Equation (3) for two reasons. First, in Equation (3) we use the value at risk as risk measure
but do not specify the risk measure in Assumption 4, thus they in general have a different structure.
Second, the integrands in Equations (6) and (7) are not independent, hence for most risk measures
it is not possible to take the integral out of the risk measure. Consequently, we have to choose the
constants c1 and c2 in such a way that Equation (3) is satisfied. Of course, it would be possible to choose
in Equation (3) a different risk measure, but the value at risk is the standard in the literature.

In case RBE
jk , v∗(0, τ) or p∗aj(0, τ, 0, dl) is equal to 0, we define correspondingly λ∗jk(τ, l) := λBEjk (τ, l)

and in case v∗(0, τ) or
∑
j∈S

∫
[0,∞)

V BE
j (τ−, l)p∗aj(0, τ, 0, dl) is equal to 0, we define dΦ∗(τ) := dΦBE(τ).

In all other cases, we solve Equations (6) and (7) with respect to λ∗jk and dΦ∗ and get

λ∗jk(τ, l) = λBEjk (τ, l) +
c1

v∗(0, τ) p∗aj(0, τ, 0, dl)
sbio
jk (τ, dl) (8)

with the auxiliary variable for the biometric (bio) risk sbio
jk defined as

sbio
jk (τ, dl) :=

1

RBE
jk (τ, l)

ρ
(
v(0, τ)RBE

jk (τ, l) (λjk(τ, l)− λBEjk (τ, l)) paj(0, τ, 0, dl)
)

and

dΦ∗(τ) = dΦBE(τ)− c2

v∗(0, τ)
∑
j∈S

∫
[0,∞)

V BE
j (τ−, l)p∗aj(0, τ, 0, dl)

sfin(dτ) (9)

with the auxiliary variable for the financial (fin) risk

sfin(dτ) := ρ

(
v(0, τ)

(∑
j∈S

∫
[0,∞)

V BE
j (τ−, l) paj(0, τ, 0, dl)

)
d(ΦBE(τ)− Φ(τ))

)
.
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The risk measures used are summarized in Table 1 together with the corresponding simplified values
of sbio

jk (τ, l). We refer to the different risk measures also as standard deviation principle, variance
principle, etc. This nomenclature is adopted from the premium calculation.

Table 1. Auxiliary function sbio
jk for different principles.

Shortcut ρ(·) sbiojk (τ, l)

Std
√

Var(.) sgn(RBEjk (τ, l))

√
Var

(
v(0, τ)(λjk(τ, l)− λBEjk (τ, l))paj(0, τ, 0, dl)

)
Var Var(·) RBEjk (τ, l)Var

(
v(0, τ)(λjk(τ, l)− λBEjk (τ, l))paj(0, τ, 0,dl)

)
VaR VaRβ(·) sgn(RBEjk (τ, l))VaRβ

(
sgn(RBEjk (τ, l))v(0, τ)(λjk(τ, l)− λBEjk (τ, l))paj(0, τ, 0, dl)

)
TVaR TVaRβ(·) sgn(RBEjk (τ, l))TVaRβ

(
sgn(RBEjk (τ, l))v(0, τ)(λjk(τ, l)− λBEjk (τ, l))paj(0, τ, 0,dl)

)

For sfin no significant simplifications are possible. For the calculation of λ∗jk(τ, l) and Φ∗(τ) we need
to determine c1 and c2 such that Equation (3) is fulfilled. Therefore, we have to specify the relation
between the biometric and the financial risk. Assuming the same risk measure for the calculation of
both risks, it seems to be adequate to set c = c1 = c2, which we will use henceforth. However, the
calculations are analogous for other relations between c1 and c2. For the calculation of c, we plug
Equations (8) and (9) into Equation (4), which gives us

Va(0, 0, λ∗,Φ∗)− Va(0, 0, λBE,ΦBE)

= c
∑

(j,k)∈J

∫
(0,∞)

∫
[0,∞)

RBE
jk (τ, l) sbio

jk (τ, dl) dτ + c

∫
(0,∞)

sfin(dτ)

=: cD .

This result is very nice, since p∗aj(0, τ, 0, dl) and v∗(0, τ) cancel out. As a result, D does not
depend on λ∗ and Φ∗. This is the case, since Equations (6) and (7) define the integrands of
Va(0, 0, λ∗,Φ∗) − Va(0, 0, λBE,ΦBE) to be equal to some expression independent of the first order
valuation basis. Consequently, we can calculate c by solving

P
(
cD ≥ Va(0, 0, λ,Φ)− Va(0, 0, λBE,ΦBE)

)
≥ α . (10)

If D is positive, Equation (10) is also fulfilled for every larger c and vice versa. Our goal is that the
safety level is close to α such that the safety margins are not unnecessarily large. Consequently, we
choose c as

c : = sgn(D) inf

{
x ∈ R

∣∣∣P(Va(0, 0, λ,Φ)− Va(0, 0, λBE,ΦBE)

|D|
≤ x

)
≥ α

}
= sgn(D) VaRα

(
Va(0, 0, λ,Φ)− Va(0, 0, λBE,ΦBE)

|D|

)
.

(11)

In the case study we calculate λ∗jk, p
∗
aj , Φ∗, and v∗ with the Euler method, since we also approximate

the stochastic differential equation of the intensities by the Euler method. With the starting conditions
p∗aj(0, 0, 0, l) = 1{i=j}1{0≤l}, v∗(0, 0) = 1, λ∗jk(0, l) = λBEjk (0, l), and dΦ∗(0) = dΦ∗(0), we can
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calculate p∗aj(0,∆, 0, l) and v∗(0,∆) for some step size ∆ > 0 by using the Euler method where only the
left values are needed. With these results we can apply Equations (8) and (9) to calculate λ∗jk(∆, l) and
dΦ∗(∆). Now we use these results to calculate again with the Euler method p∗aj(0, 2∆, 0, l) and v∗(0, 2∆)

from which we can obtain λ∗jk(2∆, l) and Φ∗(2∆). This procedure is repeated until we reach the finite
time horizon, which is given in most examples by the end of the payments or by the limiting age.

Note that for all risk measures, the sign of RBE tells us whether we have to increase or to reduce the
transition rates in order to get the first order valuation basis. Such a property is shown in Proposition 4.2
in [3] and in Formula (3.8) in [12]. When using a Markov model, the formulas simplify correspondingly.

In the case study in Sections 4 and 5 we want to compare the introduced risk-oriented safety margin
with the safety margin calculated with a constant principle that is often used in insurance practice for
deriving first order life tables. This means that λ∗const(τ) := (1 + s)λBe(τ) for a constant s such
that Equation (3) is fulfilled. Note that in general this cannot be calculated analytically, and we need
to use numerical methods. We will use later on the bisection method. In Section 4 we consider a
Markovian multi-state model for disability insurance with and without interest rate risk and in Section 5
a semi-Markov model for the mortality of disabled people without interest rate risk.

4. Markov Model for Disability Insurance with Interest Rate Risk

In this section, we first calculate the safety margins for (a) different transition rates and then in a
second step for (b) transition rates and interest rate simultaneously. As example, we consider a disability
insurance with reactivation and the following states: active (a), disabled/invalid (i), dead (d). Thus, the
state space equals S = {a, i, d} and the set of possible transitions is J = {(a, i), (a, d), (i, a), (i, d)}. The
model is visualized in Figure 1.

We model the transition rates with a multivariate Lee–Carter model introduced by [13]. In the context
of disability insurance, it was first calibrated by [14]. The transition rates are modeled as

log (λij(t, x)) = mij(x) + φij(x)βij(t) for (i, j) ∈ J and x ∈ N, t ∈ Z, (12)

where λij(t, x) = λij([t], [x]) for x ≥ 0, t ∈ R, φij and mij are deterministic functions and the
increments β(t) − β(t − 1), t ∈ {1, 2, ...}, are stochastically independent and identically normally
distributed (compare [14], p. 259). The calibration based on German disability insurance data is also
adopted from [14]. We use this model for the derivation of safety margins for all four transition rates of
the disability insurance.

a i

d

Figure 1. Possible transitions between the states of a disability insurance with reactivation.
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We perform a Monte Carlo simulation and approximate the first order intensities by the
Euler–Maruyama method. We use the same pseudo-random numbers for the calculation of the different
principles to ensure comparability. The corresponding parameters are shown in Table 2. Note that we
use the same parameters for the value at risk and the tail value at risk, whereas there are no additional
necessary parameters for the standard deviation and the variance. The safety level α is also the safety
level for unsystematic biometric risk in the life tables of the Deutsche Aktuarvereinigung (the German
actuarial society, DAV). As we see later on, our results correspond to a time-constant safety margin of
round about 10%, which the Deutsche Aktuarvereinigung actually uses for most of their life tables as
safety margin for systematic biometric risk.

Table 2. Parameters for the Markov model.

Variable Value Description

N 100,000 number of Monte Carlo simulations
n 20 number of steps per year for the Euler–Maruyama method
α 0.95 safety level in Equation (3)
β 0.80 safety level for the risk measures value at risk and tail value at risk

Bi(τ) 10,000τ payment function for the annuity payment in state invalid
x0 30 initial age of the insured
T 30 duration of the contract

We want to calculate a continuously paid premium such that V ∗(0, 0) = 0 and that the first order
valuation basis still fulfills Equation (3). Unfortunately, the premium is necessary to calculate the first
order valuation basis where it is needed for the calculation of the sum at risk. The absolute value of
the sum at risk is needed for the constant c and the sign of the sum at risk for sbio

jk and sfin. If we just
assumed any premium, used it for the calculation of a first order valuation basis and calculated with the
valuation basis a constant premium such that V ∗(0) = 0, it would not be guaranteed that this premium
has together with the first order valuation basis the safety level α from Equation (3). We want to have
a premium Ba(τ) = pτ for a constant p ∈ R. To obtain the adequate premium and first order valuation
basis we perform the following algorithm:

Step 1: set p0 = −100 and i = 0

Step 2: calculate the first order intensities with premium pi (and optionally first order interest rate)
Step 3: if the absolute value of V ∗(0) is smaller than 10−10, stop the algorithm
Step 4: calculate new premium pi+1 by solving V ∗(0) = 0 and go the step 2 with i = i+ 1

In the example considered in this section, the algorithm was finished after 7 iterations in case (a)
(only transition rates) and after 10 iterations in case (b) (transition rates and interest rate). However, it is
not clear whether this method always converges. As an alternative it is also possible to calculate the
premium with the bisection method.
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4.1. Case (a): Disability Insurance without Interest Rate Risk

We exclude interest rate risk in case (a) in order to study the biometric effects separately and choose
the short rate constant as r(t) = r∗(t) ≡ 0.02. The premium function calculated with the method
described above is Ba(τ) = −312.02τ , where we have used the tail value at risk as the risk measure.
Since we want to compare the different principles, we choose for all of them the same premium.
However, we would get different premiums for different principles.

We also derive a safety margin with the time-constant method. The Deutsche Aktuarvereinigung
proposes in its current life tables for disability insurance that for the systematic biometric risk there
should be a 10% loading on the disability probabilities, a 10% reduction of the mortality probabilities
for invalid people, and a 10% reduction of the recovery rates (compare [15]). For the mortality of
active policyholders there is no extra table and it is recommended to use the regular mortality table.
The mortality table DAV 1994 T, to which [15] refer, has an age-dependent loading between 7% and
20%, but the new table DAV 2008 T (compare [16]) includes no loading for systematic biometric risk.
However, during most time of the contract a deduction would be reasonable as we will see later on.
Since the proposed loading is the same in all three cases and since it simplifies the calculation, we derive
a constant principle that assumes the same loading for all transition rates, only with a different sign.
Consequently, the transition rates of the constant principle with loading s are λconst

ai (τ) := (1+s)λBEai (τ),
λconst
ia (τ) := (1− s)λBEia (τ), λconst

ad (τ) := (1− s)λBEad (τ), and λconst
id (τ) := (1− s)λBEid (τ).

4.1.1. First Order Transition Rates

In Figure 2 the first order intensities λ∗ai, λ
∗
ia, λ∗ad, and λ∗id calculated with different principles are shown

as percentages of λBE . The stochastic model used in this section is time-discrete so that the intensities
are constant within one year. This is the reason why most of the intensities of first order are also mostly
constant within one year. The intensities calculated with the variance principle are an exception; they
are strongly influenced by the sum at risk and thus alternate more.

In Figure 2a we see that the intensities λ∗ai have the highest safety margin and strongly increase at the
end of the contract. Only the intensity calculated with the variance principle is going back to the best
estimate case, since the sum at risk is zero at the end of the contract. The high value around age 50 is
due to an outlier that transferred to φai(x). The standard deviation, the value at risk, and the tail value at
risk principles all lead to comparable results. The constant level is at the beginning larger than the other
methods and at the end significantly smaller.
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Figure 2. First order intensities λ∗ for (a) the transition (a, i); (b) the transition (i, a); (c)
the transition (a, d); (d) the transition (i, d) each calculated with different principles (values
given relative to λBE).

The intensities λ∗ia in Figure 2b have a negative safety margin. Since the deterministic function
φia is close to zero between age 50 and 55, the corresponding transition rate is almost deterministic.
Consequently, the intensities are returning to the best estimate level between age 50 and 55 with most of
the principles.

The intensity λ∗ad shown in Figure 2c has the lowest safety margin. The safety margin has two sign
changes. The first one after a few years and the second one between age 53 and 54. The first sign change
is due to the fact that the best estimate reserve V BE

a (0) is negative at the beginning of the contract. This is
the case since we calculated the premium such that V ∗a (0) = 0. At the end of the contract we have again
a sign change, since the reserve of an active policyholder is negative for the last years of the contract.
The variance principle suggests only a tiny margin, since the sum at risk for the transition from active to
dead is small compared with other sums at risk.

We would expect that the intensities λ∗id shown in Figure 2d are decreasing monotonically. However,
the first order intensities λ∗id are going back to the best estimate case at the end of the contract. This is
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due to the stochastic model for the intensity λid, where φid(x) is mainly decreasing from 1 to 0 during the
time of the contract and consequently there is less uncertainty at the end of the contract. Furthermore,
the values of φid(x) alternate so that the resulting intensities λ∗id alternate over time as well.
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(a) Loss probabilities tail value at risk principle
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(c) Expected losses tail value at risk principle
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(d) Expected losses constant principle

Figure 3. Loss probabilities calculated with (a) the tail value at risk principle; (b) the
constant principle; expected losses calculated with (c) the tail value at risk principle; (d) the
constant principle.

4.1.2. Loss Probabilities and Expected Losses

In Figure 3 we see the corresponding loss probabilities and expected losses calculated with the tail
value at risk principle and the constant principle. We choose exemplarily the tail value at risk principle,
since the results with the standard deviation principle and the value at risk principle are similar. The
loss probabilities calculated with the tail value at risk principle in Figure 3a are quite constant compared
with the loss probabilities calculated with the constant principle shown in Figure 3b. While the sign
changes in the reserve of an active policyholder only lead to two peaks in the loss probability for the
transition from active to dead in Figure 3a, the loss probability calculated with the constant principle is
at the beginning of the contract close to 1 and increases at the end of the contract again to close to 70%,
since the constant principle cannot reproduce the sign change. The peak at age 50 in Figure 2a for the
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transition (a, i) even leads to a trough in the loss probability at age 50 for the tail value at risk principle.
In contrast, it leads to a peak in the loss probabilities calculated with the constant principle.

However, the expected loss has a peak at age 50 for both the tail value at risk principle and the constant
principle, as we can see in Figure 3c,d. The expected losses look very similar for the two principles with
the only difference that the level of the constant principle is a little bit higher. However, the absolute
amounts of the expected losses are at most 35, which is quite moderate compared with the premium of
around 300 and the annuity of 10,000. The expected losses are dominated by the transition from active
to invalid in the second half of the contract. This justifies the high safety margins that we saw in the
second half of Figure 2a for the standard deviation, value at risk, and tail value at risk principles. The
loss probabilities are slightly decreasing with the tail value at risk principle so that the high expected
losses can be compensated a little bit. With the constant principle, the loss probabilities for the transition
(a, i) are nearly twice as high as for the tail value at risk principle, thus the high expected loss leads to a
high risk for the insurance company when using the constant principle.
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(a) Density of the surplus for transition (a, i)
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(b) Density of the surplus for transition (i, a)

−1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

 

 

Std

Var

VaR

TVaR

const

(c) Density of the surplus for transition (a,d)
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(d) Density of the surplus for transition (i,d)

Figure 4. Kernel density estimation of the surplus at time t = 15 for different principles
calculated with the MATLAB function ksdensity for (a) the transition (a, i); (b) the transition
(i, a); (c) the transition (a, d); (d) the transition (i, d).
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As a result, we see that it is indeed possible with the proposed allocation method to smooth the loss
probabilities considerably. This underlines the adequacy of the method. However, the expected losses
are not significantly improved.

4.1.3. Empirical Densities of the Surplus

In Figure 4 the densities of an instantaneous loss at time 15 are shown for all four transitions , i.e.,
the probabilities that the integrands of Equation (2) are negative. We see that using different safety
margins does not change the shape of the density but merely shift them to the left or right. This is
because a safety margin is just one deterministic value that does not affect the probability distribution
of the random transition rates. In general, the densities are mostly symmetric and the different safety
margins lead to a shift of the densities. The consequence is that the standard deviation, the value at risk,
and tail value at risk principles lead to similar results. The surplus (and so the losses) are significantly
smaller for the transition (a, d). As mentioned before this is the case since the reserve for an active
policyholder is significantly smaller than for an invalid policyholder.

4.2. Case (b): Disability Insurance with Interest Rate Risk

Now we add interest rate risk to the model from case (a). Therefore, we model the interest rate
stochastically with the model from Cox, Ingersoll, and Ross (CIR) proposed in [17]. The short rate
follows the differential equation

dr(t) = κ(θ − r(t)) dt+ σ
√
r(t) dWt ,

which is approximated by the Euler–Maruyama method as above. We adopt the calibration of the model
from [18] with the difference that we set the short rate at time zero to the currently more accurate value
of r(0) = 0.02. The values are summarized in Table 3.

Table 3. Parameters of the CIR process (cf. [18]).

Variable Value Description

r(0) 0.02 starting value
κ 0.2 mean reversion speed
θ 0.04 mean reversion level
σ 0.1 volatility of the model

Since the Feller condition 2κθ ≥ σ2 is fulfilled, the process (r(t))t≥0 is theoretically always
strictly positive. The model for the transition rates, the contract specifications, and all other parameters
are the same as in case (a). In this example, we get a premium of Ba(τ) = −301.18τ compared with
Ba(τ) = −312.02τ in case (a).

4.2.1. First Order Transition and Interest Rates

The calculated first order intensities, as well as the first order short rate, the loss probabilities, the
expected losses and the density functions, are shown in Figures 5 and 6. For this model we do not
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calculate the intensities with the constant principle, since it is unclear how we should compare the interest
rate with the intensities. It does not seem to be appropriate to take the same factor, since the volatility in
the short rate model is much higher. In contrast, the method proposed in Section 3 enables us to calculate
the first order transition intensities and short rate within one framework.
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(b) Loss probabilities for tail value at risk
(smoothed)
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(c) Expected losses for tail value at risk

Figure 5. (a) First order interest rates r∗ calculated with different principles (values given
relative to rBE; (b) loss probabilities; and (c) expected losses each calculated with the tail
value at risk principle.

The first order interest rate is shown in Figure 5a. It is first increasing and then we have a rapid sign
change after around 3 years. This is the point where

∑
j∈S V

BE
j (τ−)p∗aj(0, τ) changes its sign from

negative to positive. Consequently, we have an asymptote and have to be careful with the numerics.
With the standard deviation, the value at risk, and the tail value at risk principles, the first order interest
rate has a level of 50% to 60% of the best estimate value after 4 years and is then slowly increasing to
a level between 60% to 70%. We see here minor differences between the three principles. In particular,
the interest rate calculated with the tail value at risk principle has at the beginning a higher level than
the others and then increases only very slowly in time. The level of about 60% matches the German law
where in §65 Versicherungsaufsichtsgesetz it is required that the technical interest rate is smaller than
60% of the interest rate of government bonds. Thus it seems as if our result confirms the suitability of
this law. At the end of this section, we will make a sensitivity analysis of this level with respect to the
parameters of the interest rate model. The first order interest rate calculated with the variance principle
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has for most of the time a very large safety margin, but increases at the end to the best estimate case, since
the reserve of an active and an invalid policyholder is going to zero at the end of the contract. In contrast
to other principles, the weighted reserves do not cancel in Equation (7). We do not show the safety
margins for the transitions intensities again, since they are basically equal to the ones from case (a). The
only exception is that the intensities calculated with the variance principle have a significant lower level
when adding interest rate risk.

4.2.2. Loss Probabilities and Expected Losses

The probabilities of having a loss are shown in Figure 5b for the tail value at risk principle. We
smoothed them with the moving average method with a span of n/4, in particular to avoid the oscillation
in the loss probability of the interest rate risk resulting from the Monte Carlo simulations. The loss
probabilities for the transition rates are similar to those from Figure 3a, only except that the level is
slightly lower and therefore the probabilities are slightly increasing in time. The loss probability for
the interest rate is at the beginning of the contract increasing considerably and then only slightly. The
general level is higher than for the intensities. After around 3 years we have a peak resulting from the
sign change of the weighted reserves.

The corresponding expected losses shown in Figure 5c are again similar to the intensities from
case (a). The expected loss coming from the interest rate is monotonically increasing until age 48 with
exception of the peak after 3 years. After that the probability decreases to zero again. These two figures
might lead to the conclusion that the interest rate risk dominates the biometric risk. We have to keep in
mind that we implicitly assume that our artificial insurance company invests all its money in the short
rate or a corresponding bank account. This is far away from reality, since life insurance companies
usually invest their money in bonds with long maturities and therefore do not face such a huge interest
rate risk. The modeling of the assets of an insurance company is very complex, which we avoided here.
With a “correct” model for the assets we would have to make a lot of assumptions and we also would no
longer see which effects are coming from the asset model and which are general effects.

In general we have similar results as in Section 4.1. The loss probabilities are quite constant while
the expected losses are significantly increasing or decreasing.
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(e) Density of the surplus for the interest rate

Figure 6. Kernel density estimation of the surplus at time t = 20 for different principles
calculated with the MATLAB function ksdensity for (a) the transition (a, i); (b) the
transition (i, a); (c) the transition (a, d); (d) the transition (i, d); and (e) the interest rate.

4.2.3. Empirical Densities of the Surplus

The density functions of the transition rates and the interest rate in Figure 6 at time t = 20 are no
longer symmetric but skewed instead. In particular, Figure 6a shows that the intensity for the transition
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(a, i) has a heavy tail on the loss side. This is the case since λBEai is hardly over 1% during the time
of the contract. The intensity is bounded by zero but can be significantly positive. This results in the
skewed density function with the heavy tail on the loss side. In contrast, the densities in Figure 6b–e
have a heavy tail on the profit side, which is of course not a big issue from a risk manager’s perspective.
They all include a negative safety margin meaning that the high intensities indicate a gain and the loss is
bounded, since the intensities cannot be smaller than zero. Consequently, we also see more differences
between the risk measures standard deviation, value at risk, and tail value at risk. The skewed functions
also explain why we show in this section the loss probabilities and the expected loss for the tail value at
risk principle. These density functions seem to require a risk measure that takes into account the tails on
the loss side as the tail value at risk does. Consequently, we see in Figure 6a that the density function
calculated with the tail value at risk principle is shifted the most to the right (to the profit side). The
density function of the interest rate in Figure 6e is more skewed than the others, since the interest rate
has a high probability to be close to zero, whereas the intensities have a lower probability to be close to
zero. Comparing the x-axes of the different densities, we see that the transition (a, i) and the interest risk
dominate all other risk sources. Since the transition from active to invalid has a heavy tail with losses
that exceed the yearly premium, this transition seems to imply more risk than the interest rate. With the
interest rate risk we have a high probability to obtain a loss close to 100, but there are hardly any larger
losses. To conclude, the proposed method with the tail value at risk takes into account the risky tails, but
can—as it holds for any other safety margin—only shift the density function and cannot change the tail.

4.2.4. Sensitivity Analysis of the First Order Interest Rate

In Figure 5a we have seen that our model requires a first order interest rate of about 60% of the best
estimate interest rate, which corresponds to the German regulation praxis. In what follows, we want to
investigate how reliable this result is. Therefore, we calculate five sensitivities of the model from above
with the tail value at risk principle by taking different parameters for the short rate model. The results
are shown in Figure 7 together with the above case as base case.
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Figure 7. Sensitivities for the first order interest rate calculated with the TVaR (smoothed).

To focus on the main parts, we have smoothed the results again by the moving average method with a
span of n and we also show the results starting with age 37, since the peak before is not relevant for the
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main level. First of all, we have changed the volatility σ to 0.20 and 0.05, respectively, which is a large
change compared with the initial level of 0.1. We see that the short rate level fundamentally changes;
more precisely, we get a level of 40% to 50% and of around 80%, respectively. Reducing the mean
reversion level θ from 0.04 to 0.02 reduces the main level by 5%, which is quite small compared with the
volatility change. Increasing the mean reversion speed κ from 0.2 to 0.4 results in a significant increase
to 75% to 80%. Changing the initial interest rate from r(0) = 0.02 to r(0) = 0.005 does not change
the main level significantly. In total, this analysis shows that the percentage of the first order interest
rate with respect to the best estimate interest rate is not fixed at around 60%, but changes considerably
with the parameters of the short rate model. Furthermore, this level also changes with the safety level α,
which is not shown here.

5. Semi-Markov Invalid-Dead Model

In this section, we demonstrate how the safety margins look like in a semi-Markov model. Therefore,
we pick up the so-called Danish model ([19], pp. 100–102), which is a model for a disability insurance
as in Figure 1, but with the difference that reactivation of a disabled person is not possible. We model the
mortality rate of the disabled policyholder by the semi-Markov model presented in [20]. The transition
intensities from active to invalid and from active to dead are given by (cf. [19], p. 100)

λai(x) = 0.0004 + 100.06x−5.46 and λad(x) = 0.0005 + 100.038x−4.12 , (13)

where x is the age of the policyholder. Consequently, we assume that these two transition rates are
deterministic. In [19] it is assumed that λid(x) = λad(x), which we do not adopt. However, we assume
that the transition rates λid depend on the time spent in the state invalid and that they are time-dependent.
Only the future transition rates from invalid to dead are random, so we only need safety margins for
this transition. From the last section we know that this transition is not the one with the most risk for
an insurance company and it could be more seen as a toy example to demonstrate the method within a
semi-Markov model. Note that we cannot consider just an invalid-dead model, since the policyholder
would then have one duration at inception of the contract and this would hold for every point in time.
In contrast, in the specified model the point in time when the policyholder gets invalid is random. The
transition intensities from invalid to dead are considered to fulfill the following model (compare [20])

log(λid(x, d, t)) = αxγd + βxκt for x, d, t ∈ N,

where λid(x, d, t) = λid([x], [d], [t]) and x is the age, d the duration in the state invalid, and t the time.
We adopt the calibration of the model from [20], where x ∈ {40, ..., 59} and d ∈ {0, ..., 6} and we
assume that d = 6 is representative for all durations larger than 6. The model is fitted to data from the
German statutory pension insurance (Deutsche Rentenversicherung) from the years 1994 to 2009 and we
adopt the calibration of the ARIMA(0,1,0) model for the time parameter κt to forecast the model into
the future.

The parameters of the example are shown in Table 4. In this section we use a semi-Markov model,
so the Euler–Maruyama method has to be applied in time and duration, which makes the numerical
calculations more expensive. Therefore, we have to reduce the number of Monte Carlo simulations.
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Nevertheless, the results are still robust as we verify in further analyses. An explanation is that there is
no interaction between different rates, which makes the results more stable.

Table 4. Parameters for the semi-Markov model.

Variable Value Description

N 10,000 number of Monte Carlo simulations
n 10 number of steps per year for the Euler–Maruyama method
α 0.95 safety level in Equation (3)
β 0.80 safety level for the risk measures value at risk and tail value at risk

Bi(τ) 10,000τ payment function for the annuity payment in state invalid
x0 40 initial age of the insured
T 15 duration of the contract
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Figure 8. First order intensities λ∗id calculated with (a) the standard deviation principle;
(b) the variance principle (values given in relation to λBEid ); loss probabilities calculated with
(c) the standard deviation principle; (d) the constant principle.
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Since λai and λad are deterministic, the payment function in the state active is not relevant for the
calculation of the safety margins of the transition rates. The resulting transition rates and the probabilities
of having a loss are shown in Figure 8 and the expected losses and selected density functions are
shown in Figure 9. Since we consider now a semi-Markov framework, the first order transition rates
λ∗id are two-dimensional. In what follows, we investigate the appropriateness of our method in such
a framework.
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(c) Density function of the loss at time t = 4 with
duration d = 1

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

Std

Var

VaR

TVaR

const

(d) Density function of the loss at time t = 10 with
duration d = 9

Figure 9. Expected losses calculated with (a) the standard deviation principle; (b) the
constant principle; kernel density estimation of the surplus (c) at time t = 4 (duration d = 1);
(d) at time t = 10 (duration d = 9).

5.1. First Order Transition Rates

In Figure 8a,b we see the first order intensities λ∗id calculated with the standard deviation and the
variance principles. We do not show the intensities calculated with the value at risk and the tail value
at risk principles, since they are nearly equal to the one calculated with the standard deviation principle.
The constant principle results in a first order intensity with a constant level of 73.6% of the best estimate
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intensity. The intensities calculated with the standard deviation principle show steps for the different ages
and are quite constant with respect to the duration. This can be explained by the model in Equation (13),
where all the randomness is modeled by κt, which only affects the age parameter βx. Consequently, there
is no randomness in the duration, so the proportion to the best estimate intensity is quite constant. This
is not the case for the variance principle, since the sum at risk plays a crucial role here and the safety
margin calculated with the variance principle is zero at the end. In contrast, the safety margin is very
high at the beginning of the contract. However, the scale of the z-axis shows that the resulting safety
margin calculated with the variance principle is quite extreme. For these reasons, we do not study the
variance principle anymore and focus on the other three principles. Since they are very similar, we study
basically only the standard deviation principle and compare it with the constant principle.

5.2. Loss Probabilities and Expected Losses

Figure 8c shows the loss probabilities for the intensities calculated with the standard deviation
principle. They are more or less constant in time and in duration. Therefore, our proposed allocation
method for calculating safety margins produces also good results in a duration-dependent framework.
The loss probabilities of the constant principle shown in Figure 8d are quite constant in duration but
significantly different in age. The corresponding expected losses in Figure 9a,b are similar; the ones
of the standard deviation principle are smoother compared with the constant principle, but the level is
comparable.

5.3. Empirical Densities of the Surplus

The density functions are shown for time t = 4 and duration u = 1 in Figure 9c and time t = 10 and
duration u = 9 in Figure 9d. They are both roughly symmetric with a slight tail on the profit side. We see
that the standard deviation, the value at risk, and the tail value at risk principles are not distinguishable.
At time t = 4 with the low duration the constant principle has a lower safety margin, and at time t = 10

the safety margins of the constant principle and the standard deviation principle are similar. The absolute
values of the expected losses and of the x-axes of the densities are quite low, compared with the disability
annuity of 10,000 and also compared with the results of Section 4.

All in all, the standard deviation principle, the value at risk, and the tail value at risk principles perform
well with this semi-Markov model, whereas the variance principle does not seem to be favorable. The
constant principle leads to loss probabilities that are jumping with different ages, which does not seem
to be adequate for an insurance company.

6. Conclusions

The paper proposes a risk-oriented method for the allocation of the total safety margin to different
points in time and transitions. The formulas are presented within a very general semi-Markov framework
and allow the use of different risk measures. In a case study, we apply the method to two different
life insurance contracts and deduce safety margins for them. The results are very promising, since the
calculated transition rates of first order lead to quite constant ruin probabilities, whereas they significantly
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vary over time with the classical time-constant method. The latter is calculated as a constant percentage
of the best estimate calculation basis. Our results show that the technical interest rate should be equal
to around 60% of the best estimate. However, this value heavily depends on the parametrization of the
interest rate model, as we show in a sensitivity analysis.

A weakness of our method is that for the calculation of the safety margins we decompose
V ∗(t, u)−V BE(t, u) and−(V (t, u)−V BE(t, u)), whereas for the surplus we consider the decomposition
of V ∗(t, u) − V (t, u). These two decompositions are different and we would obtain even better results
should we also use the first one to define the surplus, but we followed the standard practice in the
literature that uses only the latter. It should be kept in mind that there are no mathematically established
arguments for one or the other decomposition. Another drawback of our proposed method is that we
need a safety margin for every contract.

For the calculation of the safety margin, stochastic models are needed that describe the future
development of the calculation basis. In spite of the rich literature on models for mortality rates, there
are only a few models for multi-state insurance products. More research is needed here in order to make
the method more applicable.
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A. Appendix

Proof of Theorem 3. We follow the proof of Proposition 4.2 in [3] but extend the result by allowing
for interest rate Φ and Φ∗. We replace Vi(t, u) and V ∗i (t, u) by Thiele’s integral equation of type 2 from
Equation (1) and get

Si(t, u) =−
∫

(t,∞)

(V ∗i (τ−, τ − t+ u)− Vi(τ−, τ − t+ u)) Φ∗(τ)

−
∫

(t,∞)

Vi(τ−, τ − t+ u) (Φ∗(dτ)− Φ(dτ))

+
∑
j 6=i

∫
(t,∞)

(
R∗ij(τ, τ − t+ u)−Rij(τ, τ − t+ u)

)
q∗ij(t− u, dτ)

+
∑
j 6=i

∫
(t,∞)

Rij(τ, τ − t+ u)(q∗ij − qij)(t− u, dτ)

=−
∫

(t,∞)

W (τ−, τ − t+ u)Φ∗(τ) +
∑
j 6=i

∫
(t,∞)

(Wj(τ, 0)−Wi(τ, τ − t+ u)) q∗ij(t− u, dτ)

−
∫

(t,∞)

(
Vi(τ−, τ − t+ u) (Φ∗(dτ)− Φ(dτ)) +

∑
j 6=i

Rij(τ, τ − t+ u)(q∗ij − qij)(t− u, dτ)

)
︸ ︷︷ ︸

=:Ci(t−u,dτ)
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and this is again a Thiele’s integral equation of type 2 with annuity payment Ci. The solution of this
equation is given by Equation (2) (cf. [6], Theorem 4.6).
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