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Abstract

This paper investigates the finite sample properties of the two-step estimators of
dynamic factor models when unobservable common factors are estimated by the princi-
pal components methods in the first step. Effects of the number of individual series on
the estimation of an autoregressive model of a common factor are investigated both by
theoretical analysis and by a Monte Carlo simulation. When the number of the series
is not sufficiently large relative to the number of time series observations, the autore-
gressive coefficient estimator of positively autocorrelated factor is biased downward and
the bias is larger for a more persistent factor. In such a case, bootstrap procedures
are effective in reducing the bias and bootstrap confidence intervals outperform naive

asymptotic confidence intervals in terms of controlling the coverage probability.
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1 Introduction

The estimation of dynamic factor models has become popular in macroeconomic analysis
after influential works by Sargent and Sims (1977), Geweke (1977) and Stock and Watson
(1989). Later studies by Stock and Watson (1998, 2002), Bai and Ng (2002) and Bai (2003)
emphasize the consistency of the principal components estimator of unobservable common
factors under the asymptotic framework with a large number of cross-sectional observations.
This paper investigates the finite sample properties of two-step persistence estimators in
dynamic factor models when unobservable common factors are estimated by the principal
components method in the first step. The first-step estimation is followed by the estimation
of autoregressive models of common factors in the second step. Using analytical results and
simulation experiments, we evaluate the effect of the number of the series (N) relative to the
time series observations (7') on the performance of the two-step estimator of a persistence
parameter. Furthermore, we propose a simple bootstrap procedure that works well in the
case of relatively small N.

In this paper, we focus on the persistence parameter of the common factor because of
its empirical relevance in macroeconomic analysis. In modern macroeconomics literature, dy-
namic stochastic general equilibrium (DSGE) models predict that a small set of driving forces
is responsible for covariation in macroeconomic variables. Theoretically, the persistence of
the common factor often plays a key role on implications of these models. For example, in the
real business cycle model, there is a well-known trade-offs between the persistence of tech-
nology shock and the performance of the model. When the shock becomes more persistent,
the performance improves along some dimensions but deteriorates along other dimensions
(King et al., 1988, Hansen, 1997, Ireland, 2001). In DSGE models with a monetary sector,
the optimal monetary policy highly depends on the persistence of real shocks in the economy
(Woodford, 1999). In open economy models, the welfare gain from the introduction of in-
ternational risk sharing becomes larger when the technology shock becomes more persistent
(Baxter and Crucini, 1995). Since these common shocks are not directly observable, a dy-

namic factor model offers a simple robust statistical framework to measure the persistence of



such common components that are responsible in explaining macroeconomic fluctuations.!

Dynamic factor models have also been used to construct a business cycle index (e.g.,
Stock and Watson, 1989, Kim and Nelson, 1993) and to extract a measure of underlying, or
core, inflation (e.g., Bryan and Cecchetti, 1993). In such applications, persistence of a single
factor can often be of main interest. For example, Clark (2006) examines the possibility of a
structural shift in the persistence of a single common factor estimated using the first principal
component of disaggregate inflation series. In this paper, we only consider the case where
a single common factor is generated from a univariate autoregressive (AR) model of order
one. This keeps our problem simple since the persistence measure corresponds to the AR
coefficient. However, in principle, the main idea of our approach can be applicable to AR
models of higher order.?

The principal components estimation of the unobserved common factors is computation-
ally simple and feasible with a large number of cross-sectional observations N. The method
also allows for an approximate factor structure with possible cross-sectional correlations of
idiosyncratic errors.> The large N asymptotic results obtained by Connor and Korajczyk
(1986) and Bai (2003) imply v/N-consistency of the principal components estimators of com-
mon factors up to a scaling constant. Therefore, if N is sufficiently large, we can treat the
estimated common factor as if we directly observe the true common factor when conducting
inference. However, since this argument is based on the asymptotic theory, an approximation
may not work with small N relative to the time series observation 7" typically available in
practice. Consistent with our theoretical prediction, results from our Monte Carlo experiment
using positively autocorrelated factors suggest the downward bias in the AR coefficient esti-
mator and significant under-coverage of the naive confidence interval when N is small. The
simulation results also suggest that a simple bootstrap procedure works well in correcting the

bias and improves the coverage rate of the confidence interval.

'Recently, Boivin and Giannoni (2006) propose estimating a dynamic factor model in which they impose
the full structure of the DSGE model on the transition equation of the latent factors.

2In the case of AR(p) models, however, there are several measures of persistence, including the sum of AR
coefficients, largest characteristic root, and first-order autocorrelation.

3The principle components estimator of the common factor with large N can also be used to estimate
nonlinear models (Connor, Korajczyk and Linton, 2006, Diebold, 1998, Shintani, 2005, 2008) or to test the
hypothesis of a unit root (Bai and Ng, 2004, and Moon and Perron, 2004).



The bootstrap part of our analysis is closely related to recent studies by Gongalves and
Perron (2012) and Yamamoto (2012). Both papers also employ bootstrap procedures for the
purpose of improving the finite sample performance of estimators of dynamic factor models.
Gongalves and Perron (2012) employ a bootstrap procedure in factor-augmented forecasting
regression models with multiple factors. The factor-augmented forecasting regression models
offer a very useful framework in forecasting macroeconomic time series using information
extracted from many variables. This aspect is emphasized in Stock and Watson (1998, 2002),
Marcellino, Stock and Watson (2003) and Bai and Ng (2006) among others. Gongalves
and Perron (2012) provide the first order asymptotic validity of their bootstrap procedure
for factor-augmented forecasting regression models, but not in the context of estimation of
persistence parameter of the common factor. It should also be noted that, unlike their factor-
augmented forecasting regression models with multiple factors, bootstrapping common factor

4 Yamamoto

in our univariate AR model is not subject to the scaling and rotation issues.
(2012) examines the performance of the bootstrap procedure applied to factor-augmented
vector autoregressive (FAVAR) models of Bernanke, Boivin and Eliasz (2005). While his
multiple factor structure is more general than our single factor structure, his main focus is
the identification of structural parameters in the FAVAR, analysis using various identifying
assumptions. In contrast, we are more interested in the role of parameters in the model in
explaining the deviation from the large N asymptotics when N is small.

There are several simulation results available in the literature on the principal compo-
nents estimator of dynamic factor models. Stock and Watson (1998) report the finite sample
simulation results on the magnitude of the first-step estimation error of the common factor
as well as the performance of an out-of-sample forecast based on the estimated factor relative
to that of an infeasible forecast with a true factor. Boivin and Ng (2006) report similar
performance measures in investigating the marginal effect of increasing N when there is a

strong cross-sectional correlation of the errors. In addition, Stock and Watson (1998) and Bai

and Ng (2002) find that information criteria designed to determine the number of the factors

4To be more specific, under our normalizing assumption, the factor is estimated up to sign but autore-
gressive coefficient can be identifed as the sign cancels out from both side of the regression.



perform well in a finite sample. However, none of these studies directly investigate the effect
of N on the estimation of dynamic structure of the common factors.

The remainder of the paper is organized as follows: Section 2 reviews the asymptotic
theory of the two-step estimator and investigate the finite sample performance of the estimator
in simulation. Section 3 considers a bootstrap approach to reduce the bias. Section 4 considers
a bootstrap approach to improve the coverage performance of the confidence interval. Section
5 provides an empirical illustration of our procedures. Some concluding remarks are made in

Section 6. All the proofs of theoretical results are provided in the Appendix.

2 Two-Step Estimation of Autoregressive Model of La-

tent Factor

We begin our discussion by reviewing the literature of finite sample bias correction of
infeasible estimator of an AR(1) model and then provide asymptotic properties of a two-
step estimator of dynamic factor structure. Let z;; be an i-th component of N-dimensional
multiple time series Xy = (z14,...,2n5¢)" and t = 1,...,T. A natural way to explain the
comovement of x;;’s caused by a single factor, such as productivity shocks, is to use a simple

one-factor model

Tip = Nify + e (1)

fori =1,..., N, where )\;’s are factor loadings with respect to i-th series, f; is a scalar common
factor, and e;;’s are possibly cross-sectionally correlated idiosyncratic shocks. If a dynamic
structure is introduced by incorporating (i) a dynamic data generating process for f;, (ii) lags
of fy in (1) or (iii) serial correlation in e;’s, then the model becomes a dynamic factor model.
In this paper, we limit our attention to a simple case with a single factor generated from a

zero-mean linear stationary AR(1) model,

fi=plic1+& (2)

where |p| < 1, and ¢, is i.i.d. with E (g;) = 0, E(&;2) = 02 and a finite fourth moment.



When f; is directly observable, the AR parameter p can be estimated by ordinary least

squares (OLS),

- (z f) S S, 3

Under the assumption described above, the limiting distribution of the OLS estimator (3) is
given by
VT (7 - p) % N(0,1 - p?), (4)

as T' tends to infinity, which justifies the use of the asymptotic confidence intervals for p. For

example, the 90% confidence interval is typically constructed as

[0 —1.645 x SE(p), p+ 1.645 x SE(p)] (5)

where SE(p) is the standard error of p defined as SE(p) = (6°/ X, f2,)/?, 6% = (T —
1)~ ZtTﬂg? and &, = f; —pfi-1.

When T is small, the presence of bias of the OLS estimator (3) is well-known and several
procedures have been proposed to reduce the bias in the literature. Using the approximation
formula of the bias obtained in early studies by Hurwicz (1950), Marriott and Pope (1954)
and Kendall (1954), one can construct a simple bias-corrected estimator. For example, in
the current setting with a zero-mean restriction, the bias-corrected estimator is given by
Pxpe = T(T — 2)~'p which is a solution to the bias approximation formula E(p) — p =
—2T 'p+ O(T?) for p with E(p) replaced by p. Alternatively, one can use the bootstrap
method for the bias correction. A similar methodology was first employed by Quenouille
(1949) who proposed a subsampling procedure to correct the bias. The bootstrapping AR
models from resampling residuals was later formalized by Bose (1988) and extended to the
multivariate case by Kilian (1998). In particular, the bias-corrected estimator is given by
Ppe =P — bias where the bootstrap bias estimate is bias = B~ Zszl p, — p and p, is the
b-th AR estimate from the bootstrap sample and B is the number of bootstrap replications.
By using either the Kendall-type bias correction or bootstrap bias correction procedures, the

small T bias is reduced by the order of T-1.



Table 1 reports the mean values of the OLS estimator p along with the effective coverage
rates of the nominal 90% conventional asymptotic confidence intervals (5) in 1,000 replications
using f; generated from (2) with the AR parameter, p = 0.5 and 0.9 combined with &, ~
itdN (0,1 — p*).> The sample sizes are T' = 100 and 200. The initial value f; is drawn from
the unconditional distribution of f;, that is N(0,1). In addition to the OLS estimator p,
the mean values of the Kendall-type bias-corrected estimator py g~ and the bootstrap bias-
corrected estimator pg are also reported. For the bootstrap bias correction, we use B = 499.
The results suggest that the coverage of conventional asymptotic confidence intervals seems
very accurate for sample sizes 7" = 100 and 200. In addition, comparisons between two
bias correction methods suggest that the small T bias of the OLS estimator (p) can be
corrected reasonably well either by Kendall-type correction (pypo) or the bootstrap-type
correction (pge). In what follows, we use the results in Table 1 as a benchmark to evaluate
the performance of the two-step estimator when the factor f; is not known.

Let us now review the asymptotic property of the two-step estimator for the persistence
parameter p when only x; from (1) is observable. Under very general conditions, f; can
still be consistently estimated (up to scale) by using the first principal component of the
N x N matrix X’X where X is the T'x N data matrix with ¢-th row X/, or by using the first
eigenvector of the T' x T' matrix X X'.° We denote this common factor estimator by ]?t with
a normalization 71 ZtT:l f;z — 1. Once f, is obtained, we can replace f; in (3) by £, and the

feasible estimator of p is

T
7= (L) Tk ©
t=1 t=1
Below, we first show the asymptotic validity of this two-step estimator, followed by the
examination of its finite sample performance using a simulation. To this end, we employ the
following assumptions on the moment conditions for factors, factor loadings and idiosyncratic

errors. Below, we let M be some finite positive constant.

5Since our results are based on 1,000 replications, the standard error of 90% coverage rate in the simulation

is about 0.01 (& /0.9 x 0.1/1000).

6Since principal components are not scale-invariant, it is common practice to standardized all z;;’s to have
zero sample mean and unit sample variance before applying the principal components method.



Assumption F (factors): (i) E(f,) =0, E(f,?) =07 =1, E(f*) <M, and (ii) F'F/T —
05 = op (1) where F = [fy,---, fr] as T — oc.

Assumption FL (factor loadings): (i) F (\;) = 0, £ (\?) = 03, E(N*) < M, and (ii)
ANA/N — 0% =op (1) where A = [\, , Ay as N — oo.

Assumption E (errors): (i) F (e;) =0, E(ey?) = 0% < M, E |ei®| < M, (ii) E(e;sey) =0
for all t # s, (iii) E(eye;) = 7i; < M for allt, i and j, (iv) E[N~Y/2 N eieis—E(eiess))])? <

M and (v) E=limyr oo T Ethl 2, > 0, where =, = Var(N~/? Zf;l N\i€it)-

Assumption E allows cross-sectional correlation and heteroskedasticity but not serial cor-
relation of idiosyncratic error terms. It should be noted that Assumption E can be replaced
by a weaker assumption that allows serial correlations of idiosyncratic errors (see Bai, 2003,
and Bai and Ng, 2002). In addition, we employ the following assumption on the relation

among three random variables.

Assumption I (independence): The variables {f;}, {\;} and {e;} are three mutually

independent groups. Dependence within each group is allowed.

The following proposition provides the asymptotic properties of the two-step estimator of

the autoregressive coefficient.

Proposition 1. Let xy; and f; be generated from (1) and (2), respectively, and suppose
that assumptions F, FL, E and I are satisfied. Then, as T — oo and N — oo such that
VT /N — ¢ where 0 < ¢ < 00,

E(p—p) = =T""Pcpo, S+ o(T1/?) (7)

and

VT (7= p) 5 N(—cpoy'Z,1 - p?). (8)



The proposition is derived using the asymptotic framework employed by Bai (2003) and
Gongalves and Perron (2012) in their analysis of factor-augmented forecasting regression
model. In particular, it relies on the simultaneous limit theory where both N and T are
allowed to grow simultaneously with a rate of N being at least as fast as /7. The bias
term of order 77%/2 in (7) is analogues to the bias term in the factor-augmented forecasting
regression discussed by Ludvigson and Ng (2010) and Gongalves and Perron (2012). Bai
(2003) emphasizes that the factor estimation error has no effect on the estimation of the factor-
augmented forecasting regression model if v/T /N is sufficiently small in the limit (¢ = 0).
Similarly, in the context of estimation of the autoregressive model of the common factor, the
factor estimation error can be negligible for small v/T' /N. A special case of Proposition 1
with ¢ = 0 implies

VT (p—p) % N(0,1 - p?) 9)

as T tends to infinity, so that the limiting distribution of p in Theorem 1 is same as that of
p given by (4). In fact, we can also show the asymptotic equivalence of p and p with their
difference given by p — p = op(T~Y/2)." Therefore, when the number of the series (N) is
sufficiently large relative to the time series observations (T), the estimated factor f; can be
treated in exactly the same way as in the case of observable f;. Combined with the consistency
of the standard error, asymptotic confidence intervals analogues to (4) can be used for the

two-step estimator p. For example, the 90% confidence interval can be constructed as
[p—1.645 x SE(p), p+ 1.645 x SE(p)] (10)

where SE(p) is the standard error of 7 defined as SE(p) = (5%/ Zthl };2)1/2, 52 = (T —
)7 Y5 and & = o = Dl

When N is small (relative to T'), however, the distribution of p may better be approximated
by (8) in Proposition 1, rather than by (9). In such a case, the presence of bias term in (8)
can result in bad coverage performance of a naive asymptotic confidence interval (10). Since

—T~2cpo *= in (7) can also be rewritten as —N~!po *Z, in what follows, we refer this bias

"See the proof of Proposition 1.



as the small N bias as oppose to the small T' bias, —27!p, discussed above. Within our
asymptotic framework, the small N bias dominates the small T bias since the former is of
order T71/2 and the latter is of order 7~'. However, it is interesting to note some similarity
between the small N bias and the small 7" bias. For positive values of p, both types of bias
are downward and increasing in p. However, the small NV bias also depends on the dispersion
of the factor loadings (¢3) and covariance structure of the factor loadings and idiosyncratic
errors (Z).

To examine the finite sample performance of the two-step estimator p in a simulation, we
now generate z;; from (1) with the factor loading A\; ~ N(0, 1), serially and cross-sectionally
uncorrelated idiosyncratic error e;; ~ N (0, c?), and the factor f; from the same DGP as before.
Relative size of common component and idiosyncratic error in x; is expressed in term of the
signal-to-noise ratio defined by Var(\:f;)/Var(e;) = 1/02 which is controlled by changing
o2. The set of values of the signal-to-noise ratio we consider is {0.5,0.75,1.0,1.5,2.0}. We
also follow Bai and Ng (2006) and Gongalves and Perron (2012) and consider the performance
in the presence of cross-sectionally correlated errors where the correlation between e;; and ey
is given by 0.5=7! if |i — j| < 5. For a given value of T, the relative sample size N is set
according to N = [v/T/c] for ¢ = {0.5,1.0, 1.5} where [z] is integer part of z. Therefore, sets
of Ns under consideration are {7,10,20} for 7" = 100 and {9, 14, 28} for 7" = 200.

Table 2 reports the mean values of the two-step estimator p, along with the effective
coverage rates of the nominal 90% asymptotic confidence intervals (10). While the theory
predicts that the coverage probability should be 0.90 only if NV is sufficiently large relative to
T, we are interested in examining its finite performance when N is small. The upper panel
of the table shows the results with cross-sectionally uncorrelated errors while the lower panel
shows those with cross-sectionally correlated errors.

Overall, the point estimates of two-step estimator p are clearly biased downward for small
N. Compared to the results for the infeasible estimator p in Table 1, the magnitude of bias
is much larger with p reflecting the fact that the theoretical order of small N bias dominates
that of the small T" bias. In addition, consistent with the theoretical prediction in Proposition

1, the magnitude with bias increases when (i) p increases, (ii) ¢ increases (or N decreases) and



(iii) the signal-to-noise ratio decreases (or = increases). For the same parameter values for
p, ¢ and signal-to-noise ratio, introduction of the cross-sectional correlation seems to increase
the bias of p. This effect does not show up in the first order asymptotics in Proposition 1
since it does not change the value of =. However, when the signal-to-noise ratio is the highest,
the difference in point estimates between cross-sectionally uncorrelated and cross-sectionally
correlated cases is the smallest.

The coverage performance of the standard asymptotic confidence intervals also becomes
worse compared to the results in Table 1. For all the cases, the actual coverage frequency is
much less than the nominal coverage rate of 90%. The most closest coverage to the nominal
rate is obtained when p = 0.5 combined with a small ¢ (a large N) and a large signal-to-
noise ratio. In this case, there are about 2 to 4% under-coverage. The deviation from the
nominal rate becomes larger when p increases, ¢ increases, the signal-to-noise ratio decreases
and the cross-sectional correlation is introduced. The fact that the degree of under-coverage
is in parallel relationship to the magnitude of the small N bias can also be explained by
Proposition 1. When —cpo*Z in (8) is not negligible, confidence interval (10), which is
based on approximation (9), cannot be expected to perform well. In summary, the asymptotic
confidence interval (10) may work well in terms of the coverage rate when N is as large as a
half of T and when the AR parameter is not close to unity. Otherwise, the presence of the
small N bias results in a poor coverage of the naive confidence interval. The effect of this
downward bias becomes more severe as the AR parameter approaches to unity. In the next
section, we consider the possibility of improving the performance of the two-step estimator

for small N by approximating the true distribution by bootstrap procedures.

3 Bootstrap Approach to Bias Correction

In the previous section, we find that the presence of small sample bias associated with
finite N is likely the main source of poor coverage of the asymptotic confidence interval.
Recall that in the case of correcting the small T" bias, an analytical bias formula is utilized

to obtain py o while the bootstrap estimate of bias is used to construct pzo. Similarly, we

10



can either utilize the explicit bias function and correct bias analytically using the formula
in Proposition 1, or estimate bias using the bootstrap method for the purpose of correction.
Here we take the latter approach and employ the bootstrap procedure designed to work with
cross-sectionally uncorrelated errors (7;; = 0 for all i # j). However, in simulation, we also
investigate its performance in the presence of cross-sectionally correlated errors. We first

describe a simple bootstrap procedure for the bias correction.

Bootstrap Bias Correction [

1. Estimate factors and factor loadings using principal components method and obtain

residuals €;; = xy — A f;.

2. Recenter ¢y, \; and ﬁ around zero. Generate rj, = X{ﬁ +ej, fort =1,...,T by first
drawing A} from X and then drawing ej, fort =1,...,T from €, given \] = Xj. Repeat

the same procedure N times to generate all z},’s for i = 1,..., N.
3. Apply the principal components method to z}, and estimate f;*
4. Compute bootstrap AR coefficient estimate p* from f't*

5. Repeat steps 2 to 4 B times to obtain the bootstrap bias estimator bias* = B~} Zle o
p where py is the b-th bootstrap AR estimate and p is the AR estimate from ﬁ The

bias-corrected estimator of p is given by pp- = p — bias*.

Beran and Srivastava (1985) have established the validity of applying the bootstrap pro-
cedure to the principal components analysis. Our procedure slightly differs from theirs in
that we resample z}, using estimated factor model in step 2. It should be noted that the
procedure above is designed to evaluate the bias from small N in the principal components
method rather than the bias from small T" in the autoregression. In order to incorporate
the small 7" bias and the small N bias simultaneously, we may combine the procedure with
bootstrapping autoregressive models. This possibility is considered in the second bootstrap

bias correction method described below.

Bootstrap Bias Correction I

11



. Estimate factors and factor loadings using principal components method and obtain

residuals €;; = xj — Xzﬁ
. Compute the AR coefficient estimate p from ﬁ and obtain residuals &, = ﬁ — ,Bﬁ_l.

. Recenter ¢; around zero if necessary and generate £; by resampling from &;. Then

generate pseudo factors using f = pf", + ;.

. Recenter ¢, A; and f, around zero. Generate xy, = N ff +ej fort =1,....T by first
drawing A from X and then drawing e}, for t = 1, ..., T from e;; given \] = Xj. Repeat

the same procedure N times to generate all z},’s for i = 1,..., N.
. Apply principal components method to z}, and estimate ﬁ*
. Compute bootstrap AR coefficient estimate p* from ft*

. Repeat steps 2 to 6 B times to obtain the bootstrap bias estimator bias* = B~1 Zle 0y —
p where p, is the b-th bootstrap AR estimate and 7 is the AR estimate from ﬁ The

bias-corrected estimator of p is given by pp- = p — bias®.

The second procedure for the bias correction involves a combination of bootstrapping

principal components and bootstrapping the residuals in autoregressive models (Freedman,

1984, and Bose, 1988). Note that our procedures employ the bootstrap bias correction based

on a constant bias function. While this form of bias correction seems to be the one most

frequently used in practice (e.g., Kilian, 1998), the performance of the bias-corrected estimator

may be improved by introducing linear or nonlinear bias functions in the correction (see

MacKinnon and Smith, 1998).

The asymptotic justification of using our bootstrap methods to correct the small N bias

is established in the following proposition.

Proposition 2. Let all the assumptions of Proposition 1 and of cross-sectionally uncorrelated

errors are satisfied and the bootstrap data {X*} are generated as described in Bootstrap Bias

12



Correction I or in Bootstrap Bias Correction II. Then, as T — oo and N — oo such that

VT /N — ¢ where 0 < ¢ < 00, bias* = E*(p" —p) = E(p — p) + op(T~V/?).

Since the first order bias term is of order 7-'/2 in (7) unless ¢ = 0, Proposition 2 implies
the consistency of the bootstrap bias estimator. This also suggest that the bias-corrected

~1/2 Since the consistency

estimator by pg~ = p — bias* has bias of order smaller than T
holds for both Bootstrap Bias Correction I and Bootstrap Bias Correction II, whether or not
bootstrapping autoregressive models does not matter asymptotically.

Let us now conduct the simulation to evaluate the performance the bootstrap bias correc-
tion method. The results of simulation under the same specification as in Table 2 are shown
in Table 3. For each specification, the true bias E(p — p) is first evaluated by using the mean
value of p— p in 1,000 replications. The first-order theoretical bias term —T~2cpo *Z in (7)
is also reported. The performance of bootstrap bias estimator is evaluated by using the mean
value of bias* in 1,000 replications. Since the results turns out to be very similar between the
cases of Bootstrap Bias Correction I and Bootstrap Bias Correction II, we only report the
results from the latter method. The similar performance between the two can be expected
since the results in Table 1 suggest that the small 7" bias is almost negligible for the size of
T we consider. Number of the bootstrap replications is set at B = 499.

The results of the simulation can be summarized as follows. First, the bootstrap bias
estimate matches closely with the true bias for both p = 0.5 and p = 0.9 cases unless the
signal-to-noise ratio is too small. Second, while the direction of the changes of theoretical
first-order bias term is consistent with that of true bias, it only accounts for the fraction of
the actual bias. In many case, the bootstrap bias estimates are much closer to the actual
bias than the first-order theoretical bias term. Third, the bootstrap bias estimate does not
seem to capture the effect of increased bias in the presence of the cross-sectional correlation.
However, this is not surprising because our bootstrap procedure is designed for the case
of cross-sectionally uncorrelated errors. Overall, the performance of bootstrap correction

method seem to be satisfactory.
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4 Bootstrap Approach to Confidence Intervals

Since the bootstrap bias correction method is proven to be effective in simulation, we now turn
to the issue of improving the performance of confidence intervals using a bootstrap approach.
Recall that the deviation of the actual coverage rate of naive asymptotic confidence interval
(10) from the nominal rate is proportional to the size of bias in Table 2. Thus, it is natural
to expect that a recentered asymptotic confidence interval using the bootstrap bias estimates
improves the coverage accuracy. For example, the 90% confidence interval can be constructed

as

[Ppo — 1.645 x SE(p), b + 1.645 x SE(p)). (11)

The asymptotic validity of the confidence interval (11) can be easily shown using the consis-
tency result of bootstrap bias estimator provided in Proposition 2.

Alternatively, we can directly utilize the bootstrap distribution of the estimator to con-
struct bootstrap confidence intervals. Here we consider Efron’s equal-tailed percentile boot-
strap confidence interval based on the original estimator p* as well as the equal-tailed percentile-
t bootstrap confidence interval based on the ¢ statistic of p*,defined as t(p*) = (0" —ppc)/SE(D")

where SE(p") is the standard error of p*, which is asymptotically pivotal.® We now describe

our procedure of constructing the bootstrap confidence intervals.
Bootstrap Confidence Interval

1. Follow either steps 1 to 3 in Bootstrap Bias Correction I or steps 1 to 5 in Bootstrap

Bias Correction I1.

~k

2. Compute bootstrap AR coefficient estimate p* or ¢(p*) from f;*

3. Repeat steps 1 to 2 B times to obtain the empirical distribution of p* —bias* to construct
the percentile confidence interval and of ¢(p*) to construct the percentile-t confidence

interval.

8See Hall (1992) on the importance of using asymptically pivotal statistics in achieving the higher order
accuracy of the bootstrap confidence interval.
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Note that, as in Kilian’s (1998) argument on vector autoregression, p in step 3 in Boot-
strap Bias Correction II can be replaced by bias corrected estimates pp- without changing
the limiting distribution of the bootstrap estimator. The following proposition provides the

asymptotic validity of the bootstrap confidence intervals.

Proposition 3. Let all the assumptions of Proposition 1 and of cross-sectionally uncorre-
lated errors are satisfied and the bootstrap data {X*} are generated as described in Bootstrap
Confidence Interval. Then, as T — oo and N — oo such that ﬁ/N — ¢ where 0 < ¢ < 00,
sup,eq | P*(VT(p* ~ p) < #) = P(VT(p— p) < )] 0.

Proposition 3 implies the consistency of our bootstrap procedure in the sense that the
limiting distribution of the bootstrap estimator p* is asymptotically equivalent to that of .’
Since the limiting distribution of p is given by (8) in Proposition 1, the same distribution can
be used to describe the limiting behavior of p*. Since the coverage rate of the asymptotic
confidence interval around the bias-corrected estimate, given by (11), approaches the nominal
coverage rate in the limit, the same is true for the percentile bootstrap confidence interval.
Similarly, we can modify Proposition 3 and replace p* and p by their studentized statistics
t(p*) and (p — E(p))/SE(p) and show the bootstrap consistency of ¢(p*) and the asymptotic
validity of the percentile-t confidence interval.’

Table 4 reports coverage of three confidence intervals based on the bootstrap applied
to the two-step estimator p for p = 0.5 and p = 0.9 cases. For the bootstrap bias cor-
rection method required in the confidence interval (11), we use Bootstrap Bias Correction
I mainly because it involves less computation. The table shows that such a simple bias
corrected asymptotic interval (11) significantly improves over the conventional asymptotic

interval without bias correction (10) in Table 2. Especially, when T' = 200 and ¢ = 0.5, the

coverage rates are nearly the nominal rate regardless of the signal-to-noise ratio. For per-

91n general, signs of the coefficients in the factor forecasting regression cannot be identified and Gongalves
and Perron (2012) argue the consistency of their bootstrap procedure in renormalized parameter space. In
contrast, our result is not subject to the sign identification problem since slope coefficients in univariate AR
models can still be identified.

10Note that here we are not claiming the higher order refinement of the percentile-t bootstrap confidence
interval.
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centile and percentile-t confidence intervals, we report the case when we use Bootstrap Bias
Correction II combined with Bootstrap Confidence Interval. Both percentile and percentile-t
confidence intervals also improve over the naive asymptotic intervals (10). The percentile
confidence interval seem to dominate other intervals when ¢ is small (N is large) or p = 0.5.
The percentile-t confidence interval seem to work relatively well when ¢ is small and the
signal-to-noise ratio is small. As in the case of the bias correction result, the performance of
all confidence intervals generally improves when the signal-to-noise ratio increases. Likewise,
the performance deteriorates when errors are cross-sectionally correlated. Yet, their coverage
is much closer to the nominal rate compared to the corresponding results for the naive as-
ymptotic confidence interval. In summary, none of the three bootstrap confidence intervals

uniformly dominate others so that three methods may be used complementarily in practice.

5 Empirical Application to US Diffusion Index

In this section, we apply our bootstrap procedure to the analysis of a diffusion index
based on a dynamic factor model. Stock and Watson (1998, 2002) extract common factors
from 215 U.S. monthly macroeconomic time series and report that the forecasts based on
such diffusion indexes outperform the conventional forecasts.!’ We use the same data source
(and transformations) as Stock and Watson and sample period is from 1959:3 to 1998:12
giving a maximum number of time series observation 7' = 478. By excluding the series with
missing observation, we first construct a balance panel with N = 159.!2 For the purpose
of visualizing the effect of small NV on the estimation of persistence parameter of the single
common factor, we then generate multiple subsamples using the following procedure. Based
on the full balanced panel, we select variables 1, 4, 7 and so on to construct a balanced panel

subsample. Next, construct another subsample by selecting variables 2, 5, 8 and so on. By

UThe list provided in Appendix B of Stock and Watson (2002) shows that individual series are from 14
categories that consist of (1) real output and income; (2) employment and hours; (3) real retail, manufacturing
and trade sales; (4) consumption; (5) housing starts and sales; (6) real inventories and inventory-sales ratios;
(7) orders and unfilled orders; (8)stock prices; (9) exchange rates; (10) interest rates; (11) money and credit
quantity aggregates; (12) price indexes; (13) average hourly earnings; and (14) miscellaneous.

12The number of the series in the full balanced panel differs from that of Stock and Watson (2002) due to
the different treatment of outliers.
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repeating such a selection three times, we can construct three balanced panel with 1" = 478
and N = 53. Similarly, we can select variables 1, 6, 11 and so on to construct five balanced
panel with T" = 478 and N = 32. Since numbers of the series in the full balanced panel
and the two subsamples are N = 159, 53 and 32, corresponding /T /N are 0.14, 0.41 and
0.68. Since the values of v/T' /N are not close to zero, the bootstrap method is likely more
appropriate than the naive asymptotic approximation in the two-step estimation. Diffusion
indexes obtained in the first step by applying the principal components method are shown
in Figure 1. The bold line shows the estimated common factor using the full balanced panel
with N = 159. The darker shaded area represents the range of common factor estimates
among three subsamples with NV = 53 while the lighter shaded area represents the range of
common factor estimates among five subsamples with N = 32. As the asymptotic theory
predicts, we observe that the variation among the indexes based on N = 32 is much larger
than the variation among indexes based on N = 53.

In the next step, we estimate the dynamic structure of three diffusion indexes using the
AR(1) specification. Table 5 reports the point estimates p, naive 90% confidence intervals
(10), bias-corrected estimates ppo, and 90% confidence intervals (11) which are based on
the bootstrap bias-corrected estimates. The bias-corrected estimates are computed with the
number of bootstrap replication B = 799. One notable observation from this empirical
exercise is that the size of the bootstrap bias correction is substantial for all three cases with
the size largest for the N = 32 case and smallest for the N = 159 case. In addition, the
non-overlapping range between the naive and bootstrap intervals seems to be wider when N

is smaller. These observations are consistent with our finding in the Monte Carlo section.

6 Conclusion

In this paper, we examined the finite sample properties of the two-step estimator of the
persistence parameter in dynamic factor models when unobservable common factors are es-
timated by the principal components methods in the first step. As a result of the simulation

experiment with small N, we found that the AR coefficient estimator of positively autocor-
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related factor is biased downward and the bias is larger for a more persistent factor. This
finding is consistent with the theoretical prediction. The property of small N bias somewhat
resembles the bias problem of AR estimator for small 7. However, the bias caused by small
N is also present in the large T' case. When there is a possibility of such a downward bias, a
bootstrap procedure proposed in the paper is effective in correcting bias and controlling the
coverage rate of confidence interval.

Using a large number of series in the dynamic factor analysis has become a very popular
approach in applications. The finding of this paper suggests that practitioners need to pay
attention to the relative size of N and T before relying too much on a naive asymptotic
approximation. Finally, it would be interesting to extend the experiments to allow for higher

order AR models and nonlinear factor dynamics.
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Appendix: Proofs

Proof of Proposition 1.

~ ~ ~ 7/
The principal components estimator F' = [ fi,0 0, fT] is the first eigenvector of the

T x T matrix XX’ with normalization T=' Y., f2 = 1, where

/
X Tl o+ TN

i
Xr 1T -+ INT

By definition, (I/TN)XX’ﬁ = Fun7 where vy is the largest eigenvalue of (1/TN)X X',

Let Gy = N7 einei—E(eiseir), 1y = N1 3000, Nieir, and £, = NTUA YY) Nie.
Following the proof of Theorem 5 in Bai (2003), the estimation error of the factor can be
decomposed as

T T T
fo—Hnrfe = IneT™'>  Folo+ INeT ™Y fange + IneT ™Y by

s=1 s=1 s=1
= Op (NTV2555) + 0p (N2) 4 0p (N7Y205}) = 0p (N7172)
where Hyr = (F'F/T)(NA/N)JInr, Inr = (vnr — T—lag)‘l, 72 =N"1YN o2 and
ONT = min{\/]v7 \/T} From Bai’s (2003) Lemma A.3, we have plim vyy = XpXp =0

T,N—o0
and plim HZ, = plim (F'F/T)(NA/N)2(F'F/T)J%,; = vEav~2 = S (EaSp) ! =
T,N—oo T,N—oo
YRl =1

If f;_1 is observable,

T
> frae=T?Y " fiae+op(1)
=1 =1

VG- =T (30

since 71 Zle 21— 1=op(1). If f;_q is replaced with the factor estimator,

T -l
TG-p = VE(SR) S (R i)
t=1 t=1

T
TN fi (ft - pft—l) +op(1)
t=1
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since T~! Zthl ]?;271 — 1 =o0p(1). By decomposing the dominant term, we have
T ~ ~ ~
T-1/2 Z ft—1 (ft - Pft—l)
t=1

T T
T71/2HNT Zﬁ_lé} + -1/ Z ﬁ—l {ﬁ —Hyrfi—p (ﬁ—l - HNTft—l)}

t=1 t=1

T T
= T Y?H%, th—lﬁt - T’”QPZ = (ft—l - HNTft_l)
t=1 t=1
T N T .
+T2NY " fia (ft - HNTft) + T2 Hyry (ft—l - HNTft_l) ot
— t=1

We next show (i) T~ pzt 1ft \(fic1 — Hyrfeo1) = 2007 2N1Z 4 op(0n); (i)
1Zt \ fealfi=Hyr f) = po 2 N™'E40p(037); (#6) T~ Hyr 3o,y (feor—Hnr fi1)er =
op(6x7)-

We decompose (i) as,

T T T
TﬁlPZﬁ—l(ﬁq —Hyrfio1) = T 'p Z(ﬁ—1 — Hyrfio1)* + Tﬁlpz Hyrfio1(fior — Hyrfioa)
t=1 t=1 t=1
= p(A+ B).

For A, we have,

T T T T
A = T TR D fCami + D fangmr + Y Fséui]’
t=1 s=1 s=1 s=1
T
= JXrT! Z(Alt—l + Agi1 + Azi1)%

t=1

First,
T T T
- ZAlt o= T ;[T_l(; foCu))? =T7" ;[T_l ;(fs Hyr fs + Hnr f5)C 1]
T T T
< 77! Z[T_l (fo = Hyrf Sy )P+ T Z - ZHNTfs Cot1)?
t=1 s=1 t=1
= O0p(0yyN~") = 0p(0y7),
since

T T T T
T71 Z[T71 Z(.]?S_HNTfs)Cstfl]z S IZ f HNTfs ZZ st 1

t=1 s=1 s=1

= Op(ox7N7h),
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where the last equality follows from Assumption E(iv), and

T T T T N
T7'E Z[T_l Z flwal? = TT'E Z[T_l Z fsNT! Z(eit—leis — E(ei—1€is))]”
t=1 s=1 t=1 s=1 =1
T T N
= O?TilEZTizz[Nil Z(eit_leis 7E(6it_161'8))]2
t=1 s=1 i=1

- OP((NT)_1)7

provided ch = 1. Second,

1ZA2t1 = 77

T

T
Z fo = Hyrfoma 1+ZHNTfsnst 1%

s=1 s=1

MH

H
Il
—

(Aot—11+ Aop—120+ Ast 190+ Ast—1.4).

|
’ﬂ
MH

~
Il
-

We have

T T
T712A2t—1.1 < [t Z( — Hyr f?) 2227751 1
t=1 s=1 t=1 s=1

= OP(6]7\72TN_1)7

where the last equality follows from

T T T T N T N
72E;Z st—=1 = TﬁzZZE(Nflfs;/\ieit—DQ:Tflofct_zlE(N71§)\ieit)2

t=1 s=1
= OP(N_l)v
and
T T T N
Ty Ayva = HypT2) (O fN lst/\ €it—1 Zfs Y N a)
t=1 t=1 s=1 i=1
T T N
= Hyp(T' Y ST (N Y Nieiea)
s=1 t=1 =1
= N '2+40p(0n7) = Op(0nm);
and

Therefore, T='Y°1_, A%, | = N"'E + 0p (%) = Op(§x5%). Third,

T
1ZA3t 1 = T712T72[Z(f~‘8_HNTfs)gst—l+ZHNTfS§st—1]27

T T
t= s=1 s=1

—

T
= 1 1Z(A3t 11+ Ast10 4+ Ase—1.2 + Azi—1.4) = 0p (S 7).

~
Il
=
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The proof of T—! Zthl Asi 11 = Op(é&?r) and T—1 Zthl Asp_10 = Op((S;/?T) is similar
as the proof of ! Zthl Aoy 11 = 0p(5§r2r) and 7! Zthl Agt_1.0 = OP((sJ:IZT)'

T T T N
T Asva = Hyp(T Y fEDMTT Y ONT! Y fodiews)” = Op((NT) ™),

t=1 t=1 s=1 =1

since

T N T N
TN N fohe)? = ETTPNT2Y 200 Ness)’]
s=1 =1

s=1i=1

T N
— 3BT’ ZN’Q(Z Aieis)?] = Op((NT)™H).

By the Cauchy-Schwartz inequality, we can show that 7! Zt 1 A1 Ay = Op((S;\;QT)7

1Zf L A1 A = 0p(5NT) and T~ lzt 1As 1Az = 0p(5N2T) By combin-

ing all the results we have T~ 1Zt 1(ft | — Hyrfio1)? = J3rNT'E+ 0p(0yy) =
v2N"'Z + op(d %) For B, we have

T T
B = HyodneT7> Y0 [ferfoCoos + frorfoneor + fe1fsboei]

t=1 s=1
HyrJnT(B1 + Bs + Bs).

First,
T T T
By = QZth 1fsCan < Z HRe O Z(T_lszlcSt_l)Q]l/Q
t=1 s=1 s=1 s=1 =t
= Op((NT)™'/?).
Second,
T T T a
By, = T_QZth 1felgo1 < Z e Z(T_lzft*m“*ﬁlﬂ
t=1 s=1 s=1 =1 =t
T T T
Y PP Y N Y e
s=1 s=1 t=1 =1
T T
Y B NS fe e
=1 s=1 t=1 1=1
= Op((NT)™'7?)
Third,

T T T T
By = T7?) % frafbua =T72Y Y fia(fo = Hyrfo+ Hyrf)bg
t=1s

t=1 s=1 =1
= Bs; + Bs».
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For Bsq,

P
I

N

= -2 Z JNT Z ftCts + ftnts + ftgts

s=1 t=1 i=1

= Jnr(Bsi1 + Bsio+ Bzi3) +op(dy7),

where
T T N
By = T2Y > fig, N7 Z Ai€is
s:Tl t=1 N
[T71 z —1 ch 1/2 Z(Nfl Z)\ieis)z] /2
s=1 s=1 =1
and
T T
Bsi2 = QZthmsN ZA Cis = thft Y
s=1t=1 t=1 s=1
= HyrN™ 1:+0p(<5N2T).
and

T T N
T Z TS (Fe = Hyr N7 Niesd]
s=1 i=1

= Op(Oyp N~

Z Ai€is + OP((SN’ZT)

T T
Byis=T"2% "> (fi — Hyrfi + Hyr f1)6 N7 Z)\ eis = Op(SypN™Y),

s=1 t=1 =1
since
T T
T*QZZ(ft Hyt ft)€s N ZA Cis
s=1 t=1
T
< [TV (fe - Hyrfo)) V2T 1Z£ts
=1 t:l
T T T
< [T (fe— Hyofo)1PUT2 YD &80T Z
=1 t=1 s=1 s=
= Op(6ypN~'T71/?)
and

T T
T72Y Y Hnrfil N

s=1t=1

N
Y Neis =
1=1
— Op((NT)Y),
&271) For ng,

T T T T
T3 N fiarHyrfobgyor =T *Hyr Y Y fi1fs

Thus, B3, = HNTN‘lE + Op(é

B3y =
t=1 s=1 t=1 s=1
T T N
= (T'Hyr ) fE0)@ NN fodiess) = Op
t=1 s=11i=1
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Therefore, B3 = HyrN~1Z + 0p(6;,2T) In total, we have T pzt 1Hyr feo 1(ft 1 -
Hyrfi1) = pTg Hyg NS 40p(3) = pv 2N 40p(35). Thus, T-1p 0 Jis (o
HNTft—l) = 2/)1}72]\7715 + OP((S]:IT)'

Using an argument similar to the one used in (i), we can decompose (i) as
T T N T B
T fialfi—Hyrfo) = T (fior — Hyrfor)(fo = Hyofe) + Hve T fioa(fo — Hyr fi)
t=1 t=1 t=1
= v NT'E+o0p(dy7).
The proof is almost the same as the proof of (). We only mention the difference. To show

T (fior — Hyrfoo1)(fr — Hyrfe) = op(653%), we need use

T
Tﬁlz fior = Hyrfio1)(fe — Hyr f2)
=1

!

T

N T N
= B Hir T3 O AN Nea) O LN Near) +op(537)

t=1 s=1 i=1 s=1 i=1

'ﬂ

T

N N
= JRrHXrT 202D (N e 1) (NTHY - Niear) + op(357)
s=1 =1 i=1 i=1

= op(Oy7)-

To show HyrT ! Zthl fio1(fe — Hyp ft) = pv 2N1E + 0p(03%), we need use

T T T N
HyrT™! Z fe-1(fe — Hyr fy) T Z froafr! Z(}; — Hypfs)N™! Z Ai€is) +op(On7)

t=1 t=1 s=1 i=1

T
= pT_l Z( HNTf.s 1ZA €is +0P(6N?T)
s=1

1=1
= pHyxtN'Z 4 0p(637).

For (i)
T T T _ B
T 'Hyr Y (ficr = Hyrfe1)ee = HyrdneT 2 0> [foloiet + fang 18 + feoror]
t=1 t=1 s=1
= HyrJnr(C1+ Cy + Cs).
For Cl,

T T
Cl — QZZ]CS st 1€t Z 1/2 Z(T_lzcst—lgt)z] /2
s=1 =1

t=1 s=1

= Op((NT)V2),



where the last equality follows from

T T
TS BT (yoae)’ = T
s=1 t=1 s

T
2T~ 1ZT EZ

s=1 t=1

Op((NT)™).

T N
T ! Z Z €it—1€is — ezt—leis))]gt)2
t=1 i=1

N

T
=1

ezt 1€is — 6”5,161'5))]2

For Cs,

T
22 fsnst 16t < Z 1/2 Z 1Znst lgt / =Op((NT)~ 1/2)’

t=1 s=1 s=1
where the last equality follows from

T

T T T
o Z:E(Ti1 Znst—lst)Z = o'T7! ZE(TJ Znit—l)
t=1 s=1 t=1
T T
o 2—1 -2 -1 0 2
= ST BT 2y (N Zfsx\eltl
s=1 t=1 i=1
T
= 020?T72E[Z(N71 Z )\?eit—l)2] = OP((NT)71)~
t=1 =1

Similarly, we can show C3 = Op((NT)~'/2?). In total, we have T~'Hyr Zthl(J?t—l _
Hyrfi1)er = Op((NT)~'/2). Finally,

T
\/T(’ﬁ — p) = T_1/2 Z ft—lat — CpU_2E + Op(l).
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Proof of Proposition 2.

~ ~ ~ 7/
The bootstrap principal components estimator F* = [ i, f}] is the first eigen-

vector of the T' x T matrix X*X* with normalization 7! Zthl ft*Q = 1, where the
bootstrap sample is given by

*/ * *
Xq Ty ot T
X* = : =
*/ * *
X7 LTyp 0 INT

Analogous to the original version, we have (1/TN)X* X*’f‘* ﬁ*v}“\,T where vy, is
the largest eigenvalue of (1/TN)X*X*. Let (¥, = N7! ZZ Lenen — E*(efer), ny =
N-Lfr Z (Aren, and &5, = N71fy Zl 1 Ajel, = nj,. As the proof of proposition 1, the

7 ztﬂ 1 7,S
estimation error of the factor can be decomposed as

fi = Hirff = Jr T Z i+ Tia T Z fime+ Tia T Z fi€
s=1 s=1
where Hyyq = (F*F*/T)(AYA* /N) Ty, Jigp = (Vip — T2572) 7 a2 = NN 072,
and o7} = E*(e;7). From Lemma C.1 of Gongalves and Perron (2012) under our as-
sumption F, FL and E, we have (i) 7! thl |fi— Hyr fo|* = Op(1), (i) N~ Zf;l A —
Hyb il = 0p(1), (iii) (NT) " N, S°F, & = Op(1). This result implies that E*(ef) =
Op(1),

N N N
* )k - 14 - 3 — —
E X =N N <8NTIO D = Hyphl ) IHyphl!) = 0p(1),
L= =1

i=1

and

E*ept

T T
TN (fo—phia) = Z — Hyrfo+ Hyr fo = p(fi1 = Hyr fia) = pHyr fra]?
t=1 t=1

T
ST N = Hyefo) + (Hyr i)' + 54 (fe1 — Hyr fio1)* + (pPHr fi1)"] = Op(1).

IA

The bootstrap estimation error can be approximated as

VT (5" —p) = ﬁ(i (ﬁ*1>2> ZT:ft 1( — bl 1)

= 1/2th 1( —pli 1)+0P*(1)
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N2
since T~! Zthl (ft*—l) — 1 =o0p«(1). By decomposing the dominant term, we have
T ~ ~ ~
T2 Z fioa (ft* - :bft*71>
t=1

T T
TS (it =3 (T Hirdin )} 1 i YT
t=

t=1

T
= 1/2H*2 th 16f — 71/2,52]?—1 (ft*—l - H;ITft*—l)
t=1

T
+T 12 th*—l (ft* - H}:fot*) + Tﬁl/QHX/TZ (ft*—l B HETft*_l) ot
t=1

t=1

The leading term can be written as

T
—1/2 H*2 — th 16+ T 1/2th 165 = 71/22ft*—152k+0P*(1)~

t=1

The last equality follows from the fact that v = v* + op«(1) where v* = L}iX¥,
=MNA/N =P vand % = F'F/T =1, and Hy% — 1 = op«(1) because
Hifp = (F'F" [ T) (AN N) Y F [ T) Ty = S5+ 00 (1),

In what follows, we show that (i) T-%/2p3]_, Iy (ft*_l - Hj*\,Tft*_l) = 2p02N71= +

OP(5NT) (it) T=/%p 23:1 ft*—l (ﬁ* - H;fot*) = pv2N715+0P(5NT) (#1) T~ Hyp 23:1(};*—1*

* * * -2
Hyrfio)er = op(On)
The proof of the above three equations is quite similar as those in Proposition 1. Here,
we only focus on the differences. For (i), we decompose it as

T T T
Tﬁlpi:—l(ft*—l —Hyrfia) = T7'p Z(ft*—l — Hyrfi1)? + TﬁlH}T/TﬁZ Jia(fioy — Hyr fin)
t=1 t=1 t=1
= p(A* + B").

We first show 7! ZtT:l(]?t*,l — Hir f1)? = Op-(0n7),

T T T
AT = IZ Z:: Z UZt+T_IZf§€§t)2
T B = T
< T*ZT (D facs)? +T12T Z ) +T12T (> feew?
t=1 s=1 s=1 s=
= 3JF (AT + AL+ A3
First,
T T
Z DTN Y G = 0p-(657)
s=1 t=1 s=1
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where the last equality follows from

T T T T N
TEY N B = TN BN Y lehe - B elel)’
=1 s= =1 s=1 i=
t 1 t T T N '
= 2222‘/ Cis zt OP( )

o~
Il

1 s=11:=1

provided E*(ef) = Op(1). Second,
T T
1Zf N© 1f*ZAz WP =TT T D LN Y Neh?
1Zf*2 —1Zf;k2 12)\2 zt
=1

T

1Zf T Z( 12/\1 zt OP*(JNT)

A5 =

Ma &Mﬂ ”Mﬂ

= (17!

s=1

which follows from 7! Zil f#? = Op«(1) using Theorem 4.1 of Freedman (1984) and

from

T
Tﬁle* 1Z>‘z zt
t=1

T

N
2T 1 ZZE* )\*2 *2 72T71 ZE*()\;Q)(Zl 62}2)
‘ -

t=1 i=1

T
< ZE )\*4 1/2 ZE* Ze 1/2
i=1 t=1
N
S —1 N71 ZE*)\?4)1/2(N71 ZT 1E* 26*4 1/2 N*l)’
i=1 i=1 =

provided E*(A\f*) = Op(1). Third,

T
Ay = (T (T 1ZfN12AZ er,)
t=1
T

T
< (T’Ith*z)(T’IZfQ‘Q)[T’ DN IZAZ ef)’] = Op-(OyT) -

s=1

Therefore, A* = Op-(J ). By using one additional condition that N 17! Zthl Zfil fidies

i €it =
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Op((NT)~1/?),
T T N N

f(NTIT 12212&* )’ (ND)2E DY S S S N e el

t=1 i=1 t=1 s=11i=1 j=1

T N
— (NT)_2 Z Z f*2)\*2 *2

t=1 i=1

T
< ( 1E*Z 1E*Z 12/\*2 *2
t=1 i=1
T N
< (NT)fl(TflE* Z ft*4 -1 Z Z E*)\*4E* ;kt4
t=1 t=1i=1
= OP((s&%“)’
then we show
T N T T
TN (fiy = Hirfi)® = TR DT Hyrfing—)” +0p(087)
t=1 t=1 s=1

T

T
= Jz’%QTHEQT(T’lZf;Q)QT’IZ( 12)‘1 ¢ir-1)? + 0p(dn7)

T

= JZE2TH;/'2TT_1 Z( 12)‘2 Cit— 1 +073(5;[2T)
t=1

= v ANT'ZE40h(0nn),

where the last equality follows from

T T
Ty N WZAZ )t = T Var(N “22% €i) + ol
t=1 i=1 t=1

provided we assume cross-sectionally uncorrelated errors (7;; = 0) in the Bootstrap Bias
Correction and the Bootstrap Confidence Interval. Therefore, we have T1p Z v ( ft 11—
Hiyrfiq)? = pu 2N "1E+05(0n7) = pv 2N E+0}5 (6 y7). Toshow T HY 1 Zt=1 fia(fioi—
Hirfiy) = pv 2N712 + 05(6 %), we need

T T T
TﬁlHXITth*—l(ft*—l —Hyrfio) = JNpHyrT™ 2ZZf NN 12)‘1 el + 0p(OnT)
t=1 s=1 t=1
T T
= JNpHyp(T™ 12 cfOT Z 1Z>‘z e)’] + 0p(On7)

Therefore, T Hiypp Sy fi1(ffo1 — Hiypfi1) = pv 2N 71Z + 0% (55%)- In total, we
show T=1/2p 0 fry (ft 1 HNTft_1> = 200> N2 + 05 (6 %). Similarly, we can
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show T-1/2p Zthl fiy (ﬁ* - Hj{,Tft*> = p?N~'Z2 4 05(dy%) by using one additional
condition that

T
T2 Z(ft*—l — Hypfi_)(ff — Hyo ff)

t=1
T T
= J HX?T(T_lZ ! Z( 12)‘1 Cit— 1 12)‘1 it +OP 5]\72T)
s=1 t=1 i=1
= 0p(ox7)-
Finally, we prove that
T
VI (" =p)=T7"2> " f7 165 — cpv ™2+ 0p(1).
t=1

Since E*(T~1/? Zil fref) =0, B! 2521 P — p is a consistent estimator of the dom-
inant term of E(p) — p. |

Proof of Proposition 3.

From proposition 2, we can apply the bootstrap central limit theorem to the term
T2 fr e, Since E*[ffef|fioef_1,.-] = 0, we can use the central limit theo-
rem for the martingale difference sequence under the bootstrap probability measure and
thus P*(VT(p* — p) < ) approaches normal distribution function with mean —cpv=22
and variance E*(f}?,e;?) = T! Zt L f7-122 under the bootstrap probability measure.
Combining it with 7! Zt 1 ft &2 =P B(f2,€e2) = T, we have P*(VT(p* — p) <
z) — PWT(p—p) <z) =L 0 for any z. By using Polya’s theorem, we have the uniform
convergence result given by

:gglP*(ﬁ(b* —p) <a) = P(VT(p—p) <z)| =" 0.
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Table 1: AR Estimation

Estimator
p T 0 PKBC  PBC Coverage Rate
0.5 100 0.49 0.50  0.50 0.90
200 0.50 0.50  0.50 0.90
0.9 100 0.88 0.90 0.90 0.91
200 0.89 090 0.90 0.89

Note: Mean values of the OLS estimator (p), Kendall-type bias-
corrected estimator (px pc) and bootstrap bias-corrected estimator
(pBc) and coverage rates of the asymptotic confidence interval (5)
in 1,000 replications.

Table 2: Two-step AR Estimation

P Coverage Rate
p T ¢ S/N=05 075 1 15 2 ~S§/N=05 075 1 15 2
(A) No cross-sectional correlation

0.5 100 0.5 042 043 044 045 045 0.78 0.81 0.81 0.88 0.86
1 0.36 0.39 0.41 042 043 0.58 0.68 0.76 0.78 0.80

1.5 0.32 036 037 040 041 0.45 0.56 0.62 0.73 0.76

200 0.5 0.45 0.46 0.46 047 0.47 0.79 083 0.85 0.88 0.86

1 0.41 0.42 044 045 0.46 0.59 0.69 0.76 081 0.85

1.5 037 039 041 043 0.44 0.41 054 0.60 0.72 0.76

09 100 0.5 0.73 0.76 0.78 0.81 0.81 0.26 0.38 0.47 0.58 0.61
1 0.62 0.68 0.72 0.75 0.77 0.07 0.16 0.24 0.30 041

1.5 0.54 0.60 0.65 0.70 0.72 0.04 0.06 0.12 0.18 0.25

200 0.5 0.80 0.82 0.83 0.85 0.85 0.27 042 0.51 0.62 0.68

1 0.71  0.76 0.79 0.81 0.82 0.05 0.14 0.22 035 0.44

1.5 0.64 0.70 0.73 0.77 0.79 0.02 0.05 0.06 0.18 0.27

(B) Cross-sectional correlation

0.5 100 0.5 0.40 0.42 043 045 0.45 0.72 078 081 0.86 0.85
1 0.28 035 0.38 041 0.42 0.38 055 068 072 0.77

1.5 0.22 028 0.32 037 0.39 025 036 050 0.62 0.69

200 0.5 0.44 045 0.46 047 047 0.75 0.81 0.85 0.87 0.85

1 0.37 041 043 045 045 0.41 0.59 0.70 0.79 0.83

1.5 0.27 034 0.37 041 043 0.22 037 046 0.63 0.70

09 100 0.5 0.66 0.74 0.77 0.80 0.81 0.18 033 0.41 0.54 0.59
1 0.43 0.57 0.64 0.71 0.73 0.05 0.13 0.19 0.28 0.36

1.5 0.33 043 0.52 0.61 0.66 0.04 0.05 0.09 0.17 0.23

200 0.5 0.78 0.81 0.83 0.84 0.85 0.22 0.38 0.48 0.59 0.66

1 0.62 0.72 0.76 0.80 0.81 0.04 0.11 0.19 032 041

1.5 0.47 0.60 0.65 0.74 0.77 0.02 0.05 0.06 0.17 0.24

Note: Mean values of the two-step estimator (p) and coverage rates of the asymptotic confidence
interval (10) in 1,000 replications. S/N denotes signal-to-noise ratio.
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Table 3: Bootstrap Bias Corrections

T =100 T =200
p c S/N =0.5 0.75 1 1.5 2 S/N =0.5 0.75 1 1.5 2
(A) No cross-sectional correlation

0.5 0.5 Dbias -0.09 -0.06 -0.06 -0.05 -0.04 -0.05 -0.04 -0.04 -0.03 -0.03
1st bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01

bias* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.14 -0.11 -0.09 -0.08 -0.07 -0.10 -0.08 -0.07 -0.05 -0.04

1st bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02

biasg* -0.09 -0.09 -0.08 -0.07 -0.07 -0.07 -0.06 -0.06 -0.05 -0.04

1.5 bias -0.18 -0.14 -0.12 -0.10 -0.09 -0.13 -0.10 -0.09 -0.07 -0.06

1st bias -0.15 -0.10 -0.08 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03

bias* -0.10 -0.10 -0.10 -0.09 -0.09 -0.09 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.17 -0.13 -0.12 -0.09 -0.08 -0.10 -0.08 -0.07 -0.06 -0.05
1st bias -0.09 -0.06 -0.05 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02

bias* -0.13 -0.12 -0.10 -0.09 -0.08 -0.09 -0.08 -0.07 -0.06 -0.05

1 bias -0.28 -0.22 -0.19 -0.15 -0.13 -0.19 -0.14 -0.12 -0.09 -0.08

1st bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03

bias* -0.17 -0.16 -0.15 -0.13 -0.12 -0.14 -0.12 -0.11 -0.09 -0.08

1.5 Dbias -0.36 -0.29 -0.24 -0.20 -0.17 -0.26 -0.20 -0.16 -0.13 -0.11

1st bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05

bias* -0.18 -0.18 -0.17 -0.16 -0.15 -0.16 -0.15 -0.14 -0.12 -0.11

(B) Cross-sectional correlation

0.5 0.5 bias -0.10 -0.07 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.03 -0.03
1st bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01

bias* -0.07 -0.06 -0.05 -0.05 -0.04 -0.06 -0.04 -0.03 -0.03 -0.03

1 bias -0.21 -0.16 -0.12 -0.09 -0.08 -0.14 -0.10 -0.08 -0.05 -0.05

1st bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02

bias* -0.08 -0.08 -0.08 -0.07 -0.07 -0.07 -0.06 -0.06 -0.05 -0.04

1.5 Dbias -0.30 -0.22 -0.18 -0.14 -0.11 -0.22 -0.16 -0.12 -0.08 -0.07

1st bias -0.15 -0.10 -0.08 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03

bias* -0.08 -0.09 -0.09 -0.09 -0.09 -0.08 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.23 -0.16 -0.13 -0.10 -0.09 -0.12  -0.09 -0.08 -0.06 -0.05
1st bias -0.09 -0.06 -0.05 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02

bias* -0.12 -0.11 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.45 -0.34 -0.27 -0.19 -0.16 -0.29  0.19 -0.15 -0.10 -0.09

1st bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03

bias* -0.14 -0.14 -0.14 -0.13 -0.12 -0.12 -0.11 -0.10 -0.09 -0.08

1.5 Dbias -0.58 -0.46 -0.37 -0.29 -0.23 -0.44 -031 -0.24 -0.17 -0.14

1st bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05

biasg* -0.13 -0.15 -0.16 -0.16 -0.16 -0.13 -0.14 -0.14 -0.12 -0.11

Note: Actual bias (bias) and bootstrap bias estimator (bias*) are mean values
first-order theoretical bias term (1st bias) is the first term in the right hand

signal-to-noise ratio.
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Table 4: Coverage Rate of Bootstrap Confidence Intervals

T =100 T =200
p c S/N=0.5 0.75 1 1.5 2 S/N=0.5 0.75 1 1.5 2
(A) No cross-sectional correlation

0.5 0.5 Bc 0.85 0.84 085 0.86 0.86 0.86 0.89 087 0.90 0.87
Per 0.87 0.87 087 0.88 0.88 0.87 0.89 087 0.90 0.87

Per-t 0.85 0.85 0.85 0.88 0.86 0.86 0.89 0.87 0.90 0.87

1  Bce 0.77 0.81 0.83 085 084 0.83 0.83 084 087 087

Per 0.78 0.83 0.87 0.87 0.88 0.82 0.86 0.87 0.89 0.89

Per-t 0.81 0.81 0.83 0.85 0.83 0.86 0.84 0.84 0.87 0.87

1.5 Bec 0.69 0.74 079 0.81 0.81 0.72 081 081 0.82 0.86

Per 0.68 0.76 0.81 0.85 0.86 0.73 084 086 087 0091

Per-t 0.73 0.77 0.79 0.81 0.81 0.78 0.85 0.84 0.83 0.87

09 05 Bc 0.77 0.81 0.83 0.83 0.83 0.85 090 087 089 0.87
Per 0.78 0.83 085 0.88 0.89 0.89 094 094 095 094

Per-t 0.76 0.75 0.75 0.77 0.75 0.86 0.87 085 0.87 0.87

1 Be 0.61 0.72 0.74 0.80 0.80 0.71 0.80 0.82 0.86 0.84

Per 0.54 0.68 0.71 0.80 0.81 0.72 0.83 0.87 093 0.92

Per-t 0.70 0.73 0.72 0.76 0.72 0.83 0.84 0.85 0.86 0.82

1.5 Bc 0.46 0.60 0.69 0.73 0.77 0.51 065 074 0.76 0.80

Per 0.38 0.52 0.61 0.66 0.72 0.51 0.67 0.78 0.82 0.88

Per-t 0.60 0.67 0.68 0.68 0.71 0.71 0.80 0.80 0.80 0.80

(B) Cross-sectional correlation

0.5 05 Bce 0.83 085 0.85 087 0.86 0.84 088 0.87 0.89 0.87
Per 0.82 086 0.86 0.88 0.88 0.85 0.89 0.87 0.90 0.88

Per-t 0.84 085 0.85 087 0.87 0.85 0.89 0.87 090 0.88

1  Be 0.59 070 0.77 083 0.83 0.66 0.78 0.82 0.86 0.87

Per 0.57 0.69 0.78 0.84 0.85 0.65 0.77 0.83 087 0.88

Per-t 0.65 074 0.79 084 0.83 0.73 081 0.83 087 0.87

1.5 Bc 043 0.60 0.67 075 0.78 048 0.67 0.74 080 0.83
Per 0.38 0.56 0.66 0.75 0.80 0.45 064 0.74 083 0.85

Per-t 0.51 064 0.71 0.77 0.79 0.57 071 0.78 0.83 0.84

0.9 05 Bc 0.62 074 0.77 081 0.81 0.75 085 0.86 0.87 0.88
Per 0.60 0.75 0.79 0.83 0.87 0.79 089 090 0.93 094

Per-t 0.63 0.70 073 076 0.75 0.78 086 0.84 0.85 0.87

1 Be 0.32 046 0.57 0.72 0.75 0.40 0.62 0.70 0.80 0.84

Per 029 044 054 071 0.75 0.41 064 0.75 0.86 0.90

Per-t 0.40 054 0.58 0.70 0.69 0.50 0.70 0.74 0.82 0.83

1.5 Bc 023 036 0.48 0.60 0.68 0.24 040 054 0.64 0.70
Per 0.17 030 0.41 0.53 0.63 024 042 059 0.71 0.81

Per-t 0.31 042 0.51 0.60 0.66 0.38 054 0.66 0.72 0.73

Note: Coverage rates of three nominal 90% confidence intervals in 1,000 replications. Bc denotes
bootstrap bias corrected asymptotic confidence interval (11), Per denotes equal-tailed percentile
bootstrap confidence interval and Per-t denotes equal-tailed percentile-t bootstrap confidence inter-
val. S/N denotes signal-to-noise ratio.
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Table 5: AR(1) Estimates of US diffusion index

Series D Confidence interval pPBC Confidence interval
(A) Full sample (N = 159)
1 066 (0.60, 0.71) 0.69 (0.64, 0.75)
(B) Long subsample (N = 53)
1 0.65 (0.60, 0.71) 0.74 (0.69, 0.80)
2 0.58 (0.52, 0.64) 0.66 (0.60, 0.72)
3 0.68 (0.63, 0.73) 0.78 (0.72, 0.83)
average 0.64 (0.58, 0.69) 0.73 (0.67, 0.79)
(C) Short subsample (N = 32)
1 0.57 (0.51, 0.63) 0.75 (0.69, 0.81)
2 0.83 (0.79, 0.87) 0.95 (0.91, 0.99)
3 063 (0.58, 0.69) 0.75 (0.70, 0.81)
4 0.55 (0.49, 0.61) 0.65 (0.58, 0.71)
5 054 (0.48, 0.60) 0.67 (0.61, 0.73)
average 0.62 (0.57, 0.68) 0.75 (0.70, 0.81)

Note: Sample period is from 1959:3 to 1998:12 (T' = 478). ¢ = VT /N is
0.14, 0.41 and 0.68, respectively, for series A, B and C. The first confidence
interval next to p is the 90% asymptotic confidence interval (10). The
second confidence interval next to ppc is the 90% bootstrap bias-corrected
confidence interval (11).
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N=32

1959:3 1964:3 1969:3 1974:3 1979:3 1984:3 1989:3 1994:3

Figure 1: US Diffusion Index





