
Shintani, Mototsugu; Guo, Zi-Yi

Preprint

Finite Sample Performance of Principal Components
Estimators for Dynamic Factor Models: Asymptotic vs.
Bootstrap Approximations

Suggested Citation: Shintani, Mototsugu; Guo, Zi-Yi (2011) : Finite Sample Performance of Principal
Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations,
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum
Wirtschaft, Kiel und Hamburg

This Version is available at:
https://hdl.handle.net/10419/167627

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/167627
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/




1 Introduction

The estimation of dynamic factor models has become popular in macroeconomic analysis

after in�uential works by Sargent and Sims (1977), Geweke (1977) and Stock and Watson

(1989). Later studies by Stock and Watson (1998, 2002), Bai and Ng (2002) and Bai (2003)

emphasize the consistency of the principal components estimator of unobservable common

factors under the asymptotic framework with a large number of cross-sectional observations.

This paper investigates the �nite sample properties of two-step persistence estimators in

dynamic factor models when unobservable common factors are estimated by the principal

components method in the �rst step. The �rst-step estimation is followed by the estimation

of autoregressive models of common factors in the second step. Using analytical results and

simulation experiments, we evaluate the e¤ect of the number of the series (N) relative to the

time series observations (T ) on the performance of the two-step estimator of a persistence

parameter. Furthermore, we propose a simple bootstrap procedure that works well in the

case of relatively small N .

In this paper, we focus on the persistence parameter of the common factor because of

its empirical relevance in macroeconomic analysis. In modern macroeconomics literature, dy-

namic stochastic general equilibrium (DSGE) models predict that a small set of driving forces

is responsible for covariation in macroeconomic variables. Theoretically, the persistence of

the common factor often plays a key role on implications of these models. For example, in the

real business cycle model, there is a well-known trade-o¤s between the persistence of tech-

nology shock and the performance of the model. When the shock becomes more persistent,

the performance improves along some dimensions but deteriorates along other dimensions

(King et al., 1988, Hansen, 1997, Ireland, 2001). In DSGE models with a monetary sector,

the optimal monetary policy highly depends on the persistence of real shocks in the economy

(Woodford, 1999). In open economy models, the welfare gain from the introduction of in-

ternational risk sharing becomes larger when the technology shock becomes more persistent

(Baxter and Crucini, 1995). Since these common shocks are not directly observable, a dy-

namic factor model o¤ers a simple robust statistical framework to measure the persistence of
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such common components that are responsible in explaining macroeconomic �uctuations.1

Dynamic factor models have also been used to construct a business cycle index (e.g.,

Stock and Watson, 1989, Kim and Nelson, 1993) and to extract a measure of underlying, or

core, in�ation (e.g., Bryan and Cecchetti, 1993). In such applications, persistence of a single

factor can often be of main interest. For example, Clark (2006) examines the possibility of a

structural shift in the persistence of a single common factor estimated using the �rst principal

component of disaggregate in�ation series. In this paper, we only consider the case where

a single common factor is generated from a univariate autoregressive (AR) model of order

one. This keeps our problem simple since the persistence measure corresponds to the AR

coe¢ cient. However, in principle, the main idea of our approach can be applicable to AR

models of higher order.2

The principal components estimation of the unobserved common factors is computation-

ally simple and feasible with a large number of cross-sectional observations N . The method

also allows for an approximate factor structure with possible cross-sectional correlations of

idiosyncratic errors.3 The large N asymptotic results obtained by Connor and Korajczyk

(1986) and Bai (2003) imply
p
N -consistency of the principal components estimators of com-

mon factors up to a scaling constant. Therefore, if N is su¢ ciently large, we can treat the

estimated common factor as if we directly observe the true common factor when conducting

inference. However, since this argument is based on the asymptotic theory, an approximation

may not work with small N relative to the time series observation T typically available in

practice. Consistent with our theoretical prediction, results from our Monte Carlo experiment

using positively autocorrelated factors suggest the downward bias in the AR coe¢ cient esti-

mator and signi�cant under-coverage of the naive con�dence interval when N is small. The

simulation results also suggest that a simple bootstrap procedure works well in correcting the

bias and improves the coverage rate of the con�dence interval.

1Recently, Boivin and Giannoni (2006) propose estimating a dynamic factor model in which they impose
the full structure of the DSGE model on the transition equation of the latent factors.

2In the case of AR(p) models, however, there are several measures of persistence, including the sum of AR
coe¢ cients, largest characteristic root, and �rst-order autocorrelation.

3The principle components estimator of the common factor with large N can also be used to estimate
nonlinear models (Connor, Korajczyk and Linton, 2006, Diebold, 1998, Shintani, 2005, 2008) or to test the
hypothesis of a unit root (Bai and Ng, 2004, and Moon and Perron, 2004).
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The bootstrap part of our analysis is closely related to recent studies by Gonçalves and

Perron (2012) and Yamamoto (2012). Both papers also employ bootstrap procedures for the

purpose of improving the �nite sample performance of estimators of dynamic factor models.

Gonçalves and Perron (2012) employ a bootstrap procedure in factor-augmented forecasting

regression models with multiple factors. The factor-augmented forecasting regression models

o¤er a very useful framework in forecasting macroeconomic time series using information

extracted from many variables. This aspect is emphasized in Stock and Watson (1998, 2002),

Marcellino, Stock and Watson (2003) and Bai and Ng (2006) among others. Gonçalves

and Perron (2012) provide the �rst order asymptotic validity of their bootstrap procedure

for factor-augmented forecasting regression models, but not in the context of estimation of

persistence parameter of the common factor. It should also be noted that, unlike their factor-

augmented forecasting regression models with multiple factors, bootstrapping common factor

in our univariate AR model is not subject to the scaling and rotation issues.4 Yamamoto

(2012) examines the performance of the bootstrap procedure applied to factor-augmented

vector autoregressive (FAVAR) models of Bernanke, Boivin and Eliasz (2005). While his

multiple factor structure is more general than our single factor structure, his main focus is

the identi�cation of structural parameters in the FAVAR analysis using various identifying

assumptions. In contrast, we are more interested in the role of parameters in the model in

explaining the deviation from the large N asymptotics when N is small.

There are several simulation results available in the literature on the principal compo-

nents estimator of dynamic factor models. Stock and Watson (1998) report the �nite sample

simulation results on the magnitude of the �rst-step estimation error of the common factor

as well as the performance of an out-of-sample forecast based on the estimated factor relative

to that of an infeasible forecast with a true factor. Boivin and Ng (2006) report similar

performance measures in investigating the marginal e¤ect of increasing N when there is a

strong cross-sectional correlation of the errors. In addition, Stock and Watson (1998) and Bai

and Ng (2002) �nd that information criteria designed to determine the number of the factors

4To be more speci�c, under our normalizing assumption, the factor is estimated up to sign but autore-
gressive coe¢ cient can be identifed as the sign cancels out from both side of the regression.
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perform well in a �nite sample. However, none of these studies directly investigate the e¤ect

of N on the estimation of dynamic structure of the common factors.

The remainder of the paper is organized as follows: Section 2 reviews the asymptotic

theory of the two-step estimator and investigate the �nite sample performance of the estimator

in simulation. Section 3 considers a bootstrap approach to reduce the bias. Section 4 considers

a bootstrap approach to improve the coverage performance of the con�dence interval. Section

5 provides an empirical illustration of our procedures. Some concluding remarks are made in

Section 6. All the proofs of theoretical results are provided in the Appendix.

2 Two-Step Estimation of Autoregressive Model of La-

tent Factor

We begin our discussion by reviewing the literature of �nite sample bias correction of

infeasible estimator of an AR(1) model and then provide asymptotic properties of a two-

step estimator of dynamic factor structure. Let xit be an i-th component of N -dimensional

multiple time series Xt = (x1t; : : : ; xNt)
0 and t = 1; :::; T . A natural way to explain the

comovement of xit�s caused by a single factor, such as productivity shocks, is to use a simple

one-factor model

xit = �ift + eit (1)

for i = 1; :::; N , where �i�s are factor loadings with respect to i-th series, ft is a scalar common

factor, and eit�s are possibly cross-sectionally correlated idiosyncratic shocks. If a dynamic

structure is introduced by incorporating (i) a dynamic data generating process for ft, (ii) lags

of ft in (1) or (iii) serial correlation in eit�s, then the model becomes a dynamic factor model.

In this paper, we limit our attention to a simple case with a single factor generated from a

zero-mean linear stationary AR(1) model,

ft = �ft�1 + "t (2)

where j�j < 1, and "t is i.i.d. with E ("t) = 0; E("t2) = �2 and a �nite fourth moment.
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When ft is directly observable, the AR parameter � can be estimated by ordinary least

squares (OLS),

b� =  TX
t=1

f 2t�1

!�1 TX
t=1

ft�1ft: (3)

Under the assumption described above, the limiting distribution of the OLS estimator (3) is

given by
p
T (b�� �) d! N(0; 1� �2); (4)

as T tends to in�nity, which justi�es the use of the asymptotic con�dence intervals for �. For

example, the 90% con�dence interval is typically constructed as

[b�� 1:645� SE(b�);b�+ 1:645� SE(b�)] (5)

where SE(b�) is the standard error of b� de�ned as SE(b�) = (b�2=PT
t=1 f

2
t�1)

1=2, b�2 = (T �

1)�1
PT

t=1b"2t and b"t = ft � b�ft�1.
When T is small, the presence of bias of the OLS estimator (3) is well-known and several

procedures have been proposed to reduce the bias in the literature. Using the approximation

formula of the bias obtained in early studies by Hurwicz (1950), Marriott and Pope (1954)

and Kendall (1954), one can construct a simple bias-corrected estimator. For example, in

the current setting with a zero-mean restriction, the bias-corrected estimator is given byb�KBC = T (T � 2)�1b� which is a solution to the bias approximation formula E(b�) � � =
�2T�1� + O(T�2) for � with E(b�) replaced by b�. Alternatively, one can use the bootstrap
method for the bias correction. A similar methodology was �rst employed by Quenouille

(1949) who proposed a subsampling procedure to correct the bias. The bootstrapping AR

models from resampling residuals was later formalized by Bose (1988) and extended to the

multivariate case by Kilian (1998). In particular, the bias-corrected estimator is given byb�BC = b� � dbias where the bootstrap bias estimate is dbias = B�1PB
b=1 b��b � b� and b��b is the

b-th AR estimate from the bootstrap sample and B is the number of bootstrap replications.

By using either the Kendall-type bias correction or bootstrap bias correction procedures, the

small T bias is reduced by the order of T�1.
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Table 1 reports the mean values of the OLS estimator b� along with the e¤ective coverage
rates of the nominal 90% conventional asymptotic con�dence intervals (5) in 1,000 replications

using ft generated from (2) with the AR parameter, � = 0:5 and 0:9 combined with "t �

iidN(0; 1 � �2).5 The sample sizes are T = 100 and 200. The initial value ft is drawn from

the unconditional distribution of ft, that is N(0; 1). In addition to the OLS estimator b�,
the mean values of the Kendall-type bias-corrected estimator b�KBC and the bootstrap bias-
corrected estimator b�BC are also reported. For the bootstrap bias correction, we use B = 499.
The results suggest that the coverage of conventional asymptotic con�dence intervals seems

very accurate for sample sizes T = 100 and 200. In addition, comparisons between two

bias correction methods suggest that the small T bias of the OLS estimator (b�) can be
corrected reasonably well either by Kendall-type correction (b�KBC) or the bootstrap-type
correction (b�BC). In what follows, we use the results in Table 1 as a benchmark to evaluate
the performance of the two-step estimator when the factor ft is not known.

Let us now review the asymptotic property of the two-step estimator for the persistence

parameter � when only xit from (1) is observable. Under very general conditions, ft can

still be consistently estimated (up to scale) by using the �rst principal component of the

N �N matrix X 0X where X is the T �N data matrix with t-th row X 0
t, or by using the �rst

eigenvector of the T � T matrix XX 0.6 We denote this common factor estimator by eft with
a normalization T�1

PT
t=1
ef 2t = 1. Once eft is obtained, we can replace ft in (3) by eft and the

feasible estimator of � is

e� =  TX
t=1

ef 2t�1
!�1 TX

t=1

eft�1 eft: (6)

Below, we �rst show the asymptotic validity of this two-step estimator, followed by the

examination of its �nite sample performance using a simulation. To this end, we employ the

following assumptions on the moment conditions for factors, factor loadings and idiosyncratic

errors. Below, we let M be some �nite positive constant.

5Since our results are based on 1,000 replications, the standard error of 90% coverage rate in the simulation
is about 0.01 (�

p
0:9� 0:1=1000).

6Since principal components are not scale-invariant, it is common practice to standardized all xit�s to have
zero sample mean and unit sample variance before applying the principal components method.
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Assumption F (factors): (i) E (ft) = 0, E (ft2) = �2f = 1, E (ft
4) < M , and (ii) F 0F=T �

�2f = oP (1) where F = [f1; � � � ; fT ]
0 as T !1.

Assumption FL (factor loadings): (i) E (�i) = 0, E (�i2) = �2�, E (�i
4) < M , and (ii)

�0�=N � �2� = oP (1) where � = [�1; � � � ; �N ]
0 as N !1.

Assumption E (errors): (i) E (eit) = 0, E(eit2) = �2ei �M , E jeit8j �M , (ii) E(eiseit) = 0

for all t 6= s, (iii) E(eitejt) = � ij �M for all t, i and j, (iv) E[N�1=2PN
i=1(eiteis�E(eiteis))]2 �

M and (v) � � limN;T!1 T
�1PT

t=1 �t > 0, where �t � V ar(N�1=2PN
i=1 �ieit).

Assumption E allows cross-sectional correlation and heteroskedasticity but not serial cor-

relation of idiosyncratic error terms. It should be noted that Assumption E can be replaced

by a weaker assumption that allows serial correlations of idiosyncratic errors (see Bai, 2003,

and Bai and Ng, 2002). In addition, we employ the following assumption on the relation

among three random variables.

Assumption I (independence): The variables fftg, f�ig and feitg are three mutually

independent groups. Dependence within each group is allowed.

The following proposition provides the asymptotic properties of the two-step estimator of

the autoregressive coe¢ cient.

Proposition 1. Let xit and ft be generated from (1) and (2), respectively, and suppose

that assumptions F, FL, E and I are satis�ed. Then, as T ! 1 and N ! 1 such that
p
T=N ! c where 0 � c <1,

E(~�� �) = �T�1=2c���4� � + o(T�1=2) (7)

and
p
T (e�� �) d! N(�c���4� �; 1� �2). (8)
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The proposition is derived using the asymptotic framework employed by Bai (2003) and

Gonçalves and Perron (2012) in their analysis of factor-augmented forecasting regression

model. In particular, it relies on the simultaneous limit theory where both N and T are

allowed to grow simultaneously with a rate of N being at least as fast as
p
T . The bias

term of order T�1=2 in (7) is analogues to the bias term in the factor-augmented forecasting

regression discussed by Ludvigson and Ng (2010) and Gonçalves and Perron (2012). Bai

(2003) emphasizes that the factor estimation error has no e¤ect on the estimation of the factor-

augmented forecasting regression model if
p
T=N is su¢ ciently small in the limit (c = 0).

Similarly, in the context of estimation of the autoregressive model of the common factor, the

factor estimation error can be negligible for small
p
T=N . A special case of Proposition 1

with c = 0 implies
p
T (e�� �) d! N(0; 1� �2) (9)

as T tends to in�nity, so that the limiting distribution of e� in Theorem 1 is same as that ofb� given by (4). In fact, we can also show the asymptotic equivalence of e� and b� with their
di¤erence given by e� � b� = oP (T

�1=2).7 Therefore, when the number of the series (N) is

su¢ ciently large relative to the time series observations (T ), the estimated factor eft can be
treated in exactly the same way as in the case of observable ft. Combined with the consistency

of the standard error, asymptotic con�dence intervals analogues to (4) can be used for the

two-step estimator e�. For example, the 90% con�dence interval can be constructed as

[e�� 1:645� SE(e�);e�+ 1:645� SE(e�)] (10)

where SE(e�) is the standard error of e� de�ned as SE(e�) = (e�2=PT
t=1
ef 2t )1=2, e�2 = (T �

1)�1
PT

t=1e"2t and e"t = eft � e� eft�1.
WhenN is small (relative to T ), however, the distribution of e�may better be approximated

by (8) in Proposition 1, rather than by (9). In such a case, the presence of bias term in (8)

can result in bad coverage performance of a naive asymptotic con�dence interval (10). Since

�T�1=2c���4� � in (7) can also be rewritten as �N�1���4� �, in what follows, we refer this bias

7See the proof of Proposition 1.
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as the small N bias as oppose to the small T bias, �2T�1�, discussed above. Within our

asymptotic framework, the small N bias dominates the small T bias since the former is of

order T�1=2 and the latter is of order T�1. However, it is interesting to note some similarity

between the small N bias and the small T bias. For positive values of �, both types of bias

are downward and increasing in �. However, the small N bias also depends on the dispersion

of the factor loadings (�2�) and covariance structure of the factor loadings and idiosyncratic

errors (�).

To examine the �nite sample performance of the two-step estimator e� in a simulation, we
now generate xit from (1) with the factor loading �i � N(0; 1), serially and cross-sectionally

uncorrelated idiosyncratic error eit � N(0; �2e), and the factor ft from the same DGP as before.

Relative size of common component and idiosyncratic error in xit is expressed in term of the

signal-to-noise ratio de�ned by V ar(�ift)=V ar(eit) = 1=�2e which is controlled by changing

�2e. The set of values of the signal-to-noise ratio we consider is f0:5; 0:75; 1:0; 1:5; 2:0g. We

also follow Bai and Ng (2006) and Gonçalves and Perron (2012) and consider the performance

in the presence of cross-sectionally correlated errors where the correlation between eit and ejt

is given by 0:5ji�jj if ji � jj � 5. For a given value of T , the relative sample size N is set

according to N = [
p
T=c] for c = f0:5; 1:0; 1:5g where [x] is integer part of x. Therefore, sets

of Ns under consideration are f7; 10; 20g for T = 100 and f9; 14; 28g for T = 200.

Table 2 reports the mean values of the two-step estimator e�, along with the e¤ective
coverage rates of the nominal 90% asymptotic con�dence intervals (10). While the theory

predicts that the coverage probability should be 0.90 only if N is su¢ ciently large relative to

T , we are interested in examining its �nite performance when N is small. The upper panel

of the table shows the results with cross-sectionally uncorrelated errors while the lower panel

shows those with cross-sectionally correlated errors.

Overall, the point estimates of two-step estimator e� are clearly biased downward for small
N . Compared to the results for the infeasible estimator b� in Table 1, the magnitude of bias
is much larger with e� re�ecting the fact that the theoretical order of small N bias dominates

that of the small T bias. In addition, consistent with the theoretical prediction in Proposition

1, the magnitude with bias increases when (i) � increases, (ii) c increases (or N decreases) and
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(iii) the signal-to-noise ratio decreases (or � increases). For the same parameter values for

�, c and signal-to-noise ratio, introduction of the cross-sectional correlation seems to increase

the bias of e�. This e¤ect does not show up in the �rst order asymptotics in Proposition 1
since it does not change the value of �. However, when the signal-to-noise ratio is the highest,

the di¤erence in point estimates between cross-sectionally uncorrelated and cross-sectionally

correlated cases is the smallest.

The coverage performance of the standard asymptotic con�dence intervals also becomes

worse compared to the results in Table 1. For all the cases, the actual coverage frequency is

much less than the nominal coverage rate of 90%. The most closest coverage to the nominal

rate is obtained when � = 0:5 combined with a small c (a large N) and a large signal-to-

noise ratio. In this case, there are about 2 to 4% under-coverage. The deviation from the

nominal rate becomes larger when � increases, c increases, the signal-to-noise ratio decreases

and the cross-sectional correlation is introduced. The fact that the degree of under-coverage

is in parallel relationship to the magnitude of the small N bias can also be explained by

Proposition 1. When �c���4� � in (8) is not negligible, con�dence interval (10), which is

based on approximation (9), cannot be expected to perform well. In summary, the asymptotic

con�dence interval (10) may work well in terms of the coverage rate when N is as large as a

half of T and when the AR parameter is not close to unity. Otherwise, the presence of the

small N bias results in a poor coverage of the naive con�dence interval. The e¤ect of this

downward bias becomes more severe as the AR parameter approaches to unity. In the next

section, we consider the possibility of improving the performance of the two-step estimator

for small N by approximating the true distribution by bootstrap procedures.

3 Bootstrap Approach to Bias Correction

In the previous section, we �nd that the presence of small sample bias associated with

�nite N is likely the main source of poor coverage of the asymptotic con�dence interval.

Recall that in the case of correcting the small T bias, an analytical bias formula is utilized

to obtain b�KBC while the bootstrap estimate of bias is used to construct b�BC . Similarly, we
10



can either utilize the explicit bias function and correct bias analytically using the formula

in Proposition 1, or estimate bias using the bootstrap method for the purpose of correction.

Here we take the latter approach and employ the bootstrap procedure designed to work with

cross-sectionally uncorrelated errors (� ij = 0 for all i 6= j). However, in simulation, we also

investigate its performance in the presence of cross-sectionally correlated errors. We �rst

describe a simple bootstrap procedure for the bias correction.

Bootstrap Bias Correction I

1. Estimate factors and factor loadings using principal components method and obtain

residuals eeit = xit � e�i eft.
2. Recenter eeit, e�i and eft around zero. Generate x�1t = ��1

eft + e�1t for t = 1; :::; T by �rst
drawing ��1 from e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j. Repeat
the same procedure N times to generate all x�it�s for i = 1; :::; N .

3. Apply the principal components method to x�it and estimate ef �t .
4. Compute bootstrap AR coe¢ cient estimate e�� from ef �t .
5. Repeat steps 2 to 4B times to obtain the bootstrap bias estimator bias� = B�1

PB
b=1 e��b�e� where e��b is the b-th bootstrap AR estimate and e� is the AR estimate from eft. The

bias-corrected estimator of � is given by e�BC = e�� bias�.
Beran and Srivastava (1985) have established the validity of applying the bootstrap pro-

cedure to the principal components analysis. Our procedure slightly di¤ers from theirs in

that we resample x�it using estimated factor model in step 2. It should be noted that the

procedure above is designed to evaluate the bias from small N in the principal components

method rather than the bias from small T in the autoregression. In order to incorporate

the small T bias and the small N bias simultaneously, we may combine the procedure with

bootstrapping autoregressive models. This possibility is considered in the second bootstrap

bias correction method described below.

Bootstrap Bias Correction II
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1. Estimate factors and factor loadings using principal components method and obtain

residuals eeit = xit � e�i eft.
2. Compute the AR coe¢ cient estimate e� from eft and obtain residuals e"t = eft � e� eft�1.
3. Recenter e"t around zero if necessary and generate "�t by resampling from e"t. Then
generate pseudo factors using f �t = e�f �t�1 + "�t .

4. Recenter eeit, e�i and eft around zero. Generate x�1t = ��1f �t + e�1t for t = 1; :::; T by �rst
drawing ��1 from e�i and then drawing e�1t for t = 1; :::; T from eejt given ��1 = e�j. Repeat
the same procedure N times to generate all x�it�s for i = 1; :::; N .

5. Apply principal components method to x�it and estimate ef �t .
6. Compute bootstrap AR coe¢ cient estimate e�� from ef �t .
7. Repeat steps 2 to 6B times to obtain the bootstrap bias estimator bias� = B�1

PB
b=1 e��b�e� where e��b is the b-th bootstrap AR estimate and e� is the AR estimate from eft. The

bias-corrected estimator of � is given by e�BC = e�� bias�.
The second procedure for the bias correction involves a combination of bootstrapping

principal components and bootstrapping the residuals in autoregressive models (Freedman,

1984, and Bose, 1988). Note that our procedures employ the bootstrap bias correction based

on a constant bias function. While this form of bias correction seems to be the one most

frequently used in practice (e.g., Kilian, 1998), the performance of the bias-corrected estimator

may be improved by introducing linear or nonlinear bias functions in the correction (see

MacKinnon and Smith, 1998).

The asymptotic justi�cation of using our bootstrap methods to correct the small N bias

is established in the following proposition.

Proposition 2. Let all the assumptions of Proposition 1 and of cross-sectionally uncorrelated

errors are satis�ed and the bootstrap data fX�g are generated as described in Bootstrap Bias
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Correction I or in Bootstrap Bias Correction II. Then, as T ! 1 and N ! 1 such that
p
T=N ! c where 0 � c <1, bias� = E�(e�� � e�) = E(~�� �) + oP (T�1=2).
Since the �rst order bias term is of order T�1=2 in (7) unless c = 0, Proposition 2 implies

the consistency of the bootstrap bias estimator. This also suggest that the bias-corrected

estimator by e�BC = e� � bias� has bias of order smaller than T�1=2. Since the consistency
holds for both Bootstrap Bias Correction I and Bootstrap Bias Correction II, whether or not

bootstrapping autoregressive models does not matter asymptotically.

Let us now conduct the simulation to evaluate the performance the bootstrap bias correc-

tion method. The results of simulation under the same speci�cation as in Table 2 are shown

in Table 3. For each speci�cation, the true bias E(~�� �) is �rst evaluated by using the mean

value of ~��� in 1,000 replications. The �rst-order theoretical bias term �T�1=2c���4� � in (7)

is also reported. The performance of bootstrap bias estimator is evaluated by using the mean

value of bias� in 1,000 replications. Since the results turns out to be very similar between the

cases of Bootstrap Bias Correction I and Bootstrap Bias Correction II, we only report the

results from the latter method. The similar performance between the two can be expected

since the results in Table 1 suggest that the small T bias is almost negligible for the size of

T we consider. Number of the bootstrap replications is set at B = 499.

The results of the simulation can be summarized as follows. First, the bootstrap bias

estimate matches closely with the true bias for both � = 0:5 and � = 0:9 cases unless the

signal-to-noise ratio is too small. Second, while the direction of the changes of theoretical

�rst-order bias term is consistent with that of true bias, it only accounts for the fraction of

the actual bias. In many case, the bootstrap bias estimates are much closer to the actual

bias than the �rst-order theoretical bias term. Third, the bootstrap bias estimate does not

seem to capture the e¤ect of increased bias in the presence of the cross-sectional correlation.

However, this is not surprising because our bootstrap procedure is designed for the case

of cross-sectionally uncorrelated errors. Overall, the performance of bootstrap correction

method seem to be satisfactory.
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4 Bootstrap Approach to Con�dence Intervals

Since the bootstrap bias correction method is proven to be e¤ective in simulation, we now turn

to the issue of improving the performance of con�dence intervals using a bootstrap approach.

Recall that the deviation of the actual coverage rate of naive asymptotic con�dence interval

(10) from the nominal rate is proportional to the size of bias in Table 2. Thus, it is natural

to expect that a recentered asymptotic con�dence interval using the bootstrap bias estimates

improves the coverage accuracy. For example, the 90% con�dence interval can be constructed

as

[e�BC � 1:645� SE(e�);e�BC + 1:645� SE(e�)]: (11)

The asymptotic validity of the con�dence interval (11) can be easily shown using the consis-

tency result of bootstrap bias estimator provided in Proposition 2.

Alternatively, we can directly utilize the bootstrap distribution of the estimator to con-

struct bootstrap con�dence intervals. Here we consider Efron�s equal-tailed percentile boot-

strap con�dence interval based on the original estimator e�� as well as the equal-tailed percentile-
t bootstrap con�dence interval based on the t statistic of e��,de�ned as t(e��) = (e���e�BC)=SE(e��)
where SE(e��) is the standard error of e��, which is asymptotically pivotal.8 We now describe
our procedure of constructing the bootstrap con�dence intervals.

Bootstrap Con�dence Interval

1. Follow either steps 1 to 3 in Bootstrap Bias Correction I or steps 1 to 5 in Bootstrap

Bias Correction II.

2. Compute bootstrap AR coe¢ cient estimate e�� or t(e��) from ef �t .
3. Repeat steps 1 to 2 B times to obtain the empirical distribution of e���bias� to construct
the percentile con�dence interval and of t(e��) to construct the percentile-t con�dence
interval.

8See Hall (1992) on the importance of using asymptically pivotal statistics in achieving the higher order
accuracy of the bootstrap con�dence interval.
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Note that, as in Kilian�s (1998) argument on vector autoregression, e� in step 3 in Boot-
strap Bias Correction II can be replaced by bias corrected estimates e�BC without changing
the limiting distribution of the bootstrap estimator. The following proposition provides the

asymptotic validity of the bootstrap con�dence intervals.

Proposition 3. Let all the assumptions of Proposition 1 and of cross-sectionally uncorre-

lated errors are satis�ed and the bootstrap data fX�g are generated as described in Bootstrap

Con�dence Interval. Then, as T !1 and N !1 such that
p
T=N ! c where 0 � c <1,

supx2< jP �(
p
T (~�� � ~�) � x)� P (

p
T (~�� �) � x)j P! 0.

Proposition 3 implies the consistency of our bootstrap procedure in the sense that the

limiting distribution of the bootstrap estimator ~�� is asymptotically equivalent to that of e�.9
Since the limiting distribution of e� is given by (8) in Proposition 1, the same distribution can
be used to describe the limiting behavior of ~��. Since the coverage rate of the asymptotic

con�dence interval around the bias-corrected estimate, given by (11), approaches the nominal

coverage rate in the limit, the same is true for the percentile bootstrap con�dence interval.

Similarly, we can modify Proposition 3 and replace ~�� and ~� by their studentized statistics

t(e��) and (e��E(~�))=SE(e�) and show the bootstrap consistency of t(e��) and the asymptotic
validity of the percentile-t con�dence interval.10

Table 4 reports coverage of three con�dence intervals based on the bootstrap applied

to the two-step estimator e� for � = 0:5 and � = 0:9 cases. For the bootstrap bias cor-

rection method required in the con�dence interval (11), we use Bootstrap Bias Correction

I mainly because it involves less computation. The table shows that such a simple bias

corrected asymptotic interval (11) signi�cantly improves over the conventional asymptotic

interval without bias correction (10) in Table 2. Especially, when T = 200 and c = 0:5, the

coverage rates are nearly the nominal rate regardless of the signal-to-noise ratio. For per-

9In general, signs of the coe¢ cients in the factor forecasting regression cannot be identi�ed and Gonçalves
and Perron (2012) argue the consistency of their bootstrap procedure in renormalized parameter space. In
contrast, our result is not subject to the sign identi�cation problem since slope coe¢ cients in univariate AR
models can still be identi�ed.
10Note that here we are not claiming the higher order re�nement of the percentile-t bootstrap con�dence

interval.
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centile and percentile-t con�dence intervals, we report the case when we use Bootstrap Bias

Correction II combined with Bootstrap Con�dence Interval. Both percentile and percentile-t

con�dence intervals also improve over the naive asymptotic intervals (10). The percentile

con�dence interval seem to dominate other intervals when c is small (N is large) or � = 0:5.

The percentile-t con�dence interval seem to work relatively well when c is small and the

signal-to-noise ratio is small. As in the case of the bias correction result, the performance of

all con�dence intervals generally improves when the signal-to-noise ratio increases. Likewise,

the performance deteriorates when errors are cross-sectionally correlated. Yet, their coverage

is much closer to the nominal rate compared to the corresponding results for the naive as-

ymptotic con�dence interval. In summary, none of the three bootstrap con�dence intervals

uniformly dominate others so that three methods may be used complementarily in practice.

5 Empirical Application to US Di¤usion Index

In this section, we apply our bootstrap procedure to the analysis of a di¤usion index

based on a dynamic factor model. Stock and Watson (1998, 2002) extract common factors

from 215 U.S. monthly macroeconomic time series and report that the forecasts based on

such di¤usion indexes outperform the conventional forecasts.11 We use the same data source

(and transformations) as Stock and Watson and sample period is from 1959:3 to 1998:12

giving a maximum number of time series observation T = 478. By excluding the series with

missing observation, we �rst construct a balance panel with N = 159.12 For the purpose

of visualizing the e¤ect of small N on the estimation of persistence parameter of the single

common factor, we then generate multiple subsamples using the following procedure. Based

on the full balanced panel, we select variables 1, 4, 7 and so on to construct a balanced panel

subsample. Next, construct another subsample by selecting variables 2, 5, 8 and so on. By

11The list provided in Appendix B of Stock and Watson (2002) shows that individual series are from 14
categories that consist of (1) real output and income; (2) employment and hours; (3) real retail, manufacturing
and trade sales; (4) consumption; (5) housing starts and sales; (6) real inventories and inventory-sales ratios;
(7) orders and un�lled orders; (8)stock prices; (9) exchange rates; (10) interest rates; (11) money and credit
quantity aggregates; (12) price indexes; (13) average hourly earnings; and (14) miscellaneous.
12The number of the series in the full balanced panel di¤ers from that of Stock and Watson (2002) due to

the di¤erent treatment of outliers.
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repeating such a selection three times, we can construct three balanced panel with T = 478

and N = 53. Similarly, we can select variables 1, 6, 11 and so on to construct �ve balanced

panel with T = 478 and N = 32. Since numbers of the series in the full balanced panel

and the two subsamples are N = 159; 53 and 32, corresponding
p
T=N are 0.14, 0.41 and

0.68. Since the values of
p
T=N are not close to zero, the bootstrap method is likely more

appropriate than the naive asymptotic approximation in the two-step estimation. Di¤usion

indexes obtained in the �rst step by applying the principal components method are shown

in Figure 1. The bold line shows the estimated common factor using the full balanced panel

with N = 159. The darker shaded area represents the range of common factor estimates

among three subsamples with N = 53 while the lighter shaded area represents the range of

common factor estimates among �ve subsamples with N = 32. As the asymptotic theory

predicts, we observe that the variation among the indexes based on N = 32 is much larger

than the variation among indexes based on N = 53.

In the next step, we estimate the dynamic structure of three di¤usion indexes using the

AR(1) speci�cation. Table 5 reports the point estimates e�, naive 90% con�dence intervals

(10), bias-corrected estimates e�BC , and 90% con�dence intervals (11) which are based on

the bootstrap bias-corrected estimates. The bias-corrected estimates are computed with the

number of bootstrap replication B = 799. One notable observation from this empirical

exercise is that the size of the bootstrap bias correction is substantial for all three cases with

the size largest for the N = 32 case and smallest for the N = 159 case. In addition, the

non-overlapping range between the naive and bootstrap intervals seems to be wider when N

is smaller. These observations are consistent with our �nding in the Monte Carlo section.

6 Conclusion

In this paper, we examined the �nite sample properties of the two-step estimator of the

persistence parameter in dynamic factor models when unobservable common factors are es-

timated by the principal components methods in the �rst step. As a result of the simulation

experiment with small N , we found that the AR coe¢ cient estimator of positively autocor-
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related factor is biased downward and the bias is larger for a more persistent factor. This

�nding is consistent with the theoretical prediction. The property of small N bias somewhat

resembles the bias problem of AR estimator for small T . However, the bias caused by small

N is also present in the large T case. When there is a possibility of such a downward bias, a

bootstrap procedure proposed in the paper is e¤ective in correcting bias and controlling the

coverage rate of con�dence interval.

Using a large number of series in the dynamic factor analysis has become a very popular

approach in applications. The �nding of this paper suggests that practitioners need to pay

attention to the relative size of N and T before relying too much on a naive asymptotic

approximation. Finally, it would be interesting to extend the experiments to allow for higher

order AR models and nonlinear factor dynamics.
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Appendix: Proofs

Proof of Proposition 1.

The principal components estimator eF = h ef1; � � � ; efT i0 is the �rst eigenvector of the
T � T matrix XX 0 with normalization T�1

PT
t=1

ef2t = 1, where
X =

264 X 0
1
...
X 0
T

375 =
264 x11

...
x1T

� � �
. . .
� � �

xN1
...

xNT

375 :
By de�nition, (1=TN)XX 0 eF = eFvNT where vNT is the largest eigenvalue of (1=TN)XX 0.

Let �st = N
�1PN

i=1 eiseit�E(eiseit), �st = N�1fs
PN

i=1 �ieit, and �st = N
�1ft

PN
i=1 �ieis.

Following the proof of Theorem 5 in Bai (2003), the estimation error of the factor can be
decomposed as

eft �HNT ft = JNTT
�1

TX
s=1

efs�st + JNTT�1 TX
s=1

efs�st + JNTT�1 TX
s=1

efs�st
= OP

�
N�1=2��1NT

�
+OP

�
N�1=2

�
+OP

�
N�1=2��1NT

�
= OP

�
N�1=2

�
where HNT = ( eF 0F=T )(�0�=N)JNT , JNT = �vNT � T�1�2e��1, �2e = N�1PN

i=1 �
2
ei and

�NT = minf
p
N;
p
Tg. From Bai�s (2003) Lemma A.3, we have p lim

T;N!1
vNT = ���F = v

and p lim
T;N!1

H2
NT = p lim

T;N!1
( eF 0F=T )(�0�=N)2(F 0 eF=T )J2NT = v��v�2 = ��(���F )�1 =

��1F = 1.
If ft�1 is observable,

p
T (b�� �) = pT  TX

t=1

f2t�1

!�1 TX
t=1

ft�1"t = T
�1=2

TX
t=1

ft�1"t + oP (1)

since T�1
PT

t=1 f
2
t�1 � 1 = oP (1). If ft�1 is replaced with the factor estimator,

p
T (e�� �) =

p
T

 
TX
t=1

ef2t�1
!�1 TX

t=1

eft�1 � eft � � eft�1�
= T�1=2

TX
t=1

eft�1 � eft � � eft�1�+ oP (1)
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since T�1
PT

t=1
ef2t�1 � 1 = oP (1). By decomposing the dominant term, we have

T�1=2
TX
t=1

eft�1 � eft � � eft�1�
= T�1=2HNT

TX
t=1

eft�1"t + T�1=2 TX
t=1

eft�1 n eft �HNT ft � �� eft�1 �HNT ft�1�o
= T�1=2H2

NT

TX
t=1

ft�1"t � T�1=2�
TX
t=1

eft�1 � eft�1 �HNT ft�1�
+T�1=2

TX
t=1

eft�1 � eft �HNT ft�+ T�1=2HNT TX
t=1

� eft�1 �HNT ft�1� "t:
We next show (i) T�1�

PT
t=1

eft�1( eft�1 � HNT ft�1) = 2�v�2N�1� + oP (�
�2
NT ); (ii)

T�1
PT

t=1
eft�1( eft�HNT ft) = �v�2N�1�+oP (�

�2
NT ); (iii) T

�1HNT
PT

t=1(
eft�1�HNT ft�1)"t =

oP (�
�2
NT ).

We decompose (i) as,

T�1�
TX
t=1

eft�1( eft�1 �HNT ft�1) = T�1�
TX
t=1

( eft�1 �HNT ft�1)2 + T�1� TX
t=1

HNT ft�1( eft�1 �HNT ft�1)
= �(A+B):

For A, we have,

A = T�1
TX
t=1

T�2J2NT [
TX
s=1

efs�st�1 + TX
s=1

efs�st�1 + TX
s=1

efs�st�1]2
= J2NTT

�1
TX
t=1

(A1t�1 +A2t�1 +A3t�1)
2:

First,

T�1
TX
t=1

A21t�1 = T�1
TX
t=1

[T�1(
TX
s=1

efs�st�1)]2 = T�1 TX
t=1

[T�1
TX
s=1

( efs �HNT fs +HNT fs)�st�1]2
� T�1

TX
t=1

[T�1
TX
s=1

( efs �HNT fs)�st�1]2 + T�1 TX
t=1

[T�1
TX
s=1

HNT fs�st�1]
2

= OP (�
�2
NTN

�1) = oP (�
�2
NT );

since

T�1
TX
t=1

[T�1
TX
s=1

( efs �HNT fs)�st�1]2 � [T�1
TX
s=1

( efs �HNT fs)2][T�2 TX
t=1

TX
s=1

�2st�1]

= OP (�
�2
NTN

�1);
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where the last equality follows from Assumption E(iv), and

T�1E
TX
t=1

[T�1
TX
s=1

fs�st�1]
2 = T�1E

TX
t=1

[T�1
TX
s=1

fsN
�1

NX
i=1

(eit�1eis � E(eit�1eis))]2

= �2fT
�1E

TX
t=1

T�2
TX
s=1

[N�1
NX
i=1

(eit�1eis � E(eit�1eis))]2

= OP ((NT )
�1);

provided �2f = 1. Second,

T�1
TX
t=1

A22t�1 = T�3
TX
t=1

[
TX
s=1

( efs �HNT fs)�st�1 + TX
s=1

HNT fs�st�1]
2;

= T�1
TX
t=1

(A2t�1:1 +A2t�1:2 +A2t�1:2 +A2t�1:4):

We have

T�1
TX
t=1

A2t�1:1 � [T�1
TX
s=1

( efs �HNT f0s )2][T�2 TX
t=1

TX
s=1

�2st�1]

= OP (�
�2
NTN

�1);

where the last equality follows from

T�2E
TX
t=1

TX
s=1

�2st�1 = T�2
TX
t=1

TX
s=1

E(N�1fs

NX
i=1

�ieit�1)
2 = T�1�2f

TX
t=1

E(N�1
NX
i=1

�ieit)
2

= OP (N
�1);

and

T�1
TX
t=1

A2t�1:4 = H2
NTT

�3
TX
t=1

(
TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)(
TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)

= H2
NT (T

�1
TX
s=1

f2s )
2T�1

TX
t=1

(N�1
NX
i=1

�ieit�1)
2

= N�1� + oP (�
�2
NT ) = OP (�

�2
NT );

and

T�1
TX
t=1

A2t�1:2 � [T�1
TX
t=1

A2t�1:1]
1=2[T�1

TX
t=1

A2t�1:4]
1=2 = OP (�

�2
NTN

�1=2):

Therefore, T�1
PT

t=1A
2
2t�1 = N

�1� + oP (�
�2
NT ) = OP (�

�2
NT ). Third,

T�1
TX
t=1

A23t�1 = T�1
TX
t=1

T�2[
TX
s=1

( efs �HNT fs)�st�1 + TX
s=1

HNT fs�st�1]
2;

= T�1
TX
t=1

(A3t�1:1 +A3t�1:2 +A3t�1:2 +A3t�1:4) = oP (�
�2
NT ):
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The proof of T�1
PT

t=1A3t�1:1 = oP (�
�2
NT ) and T

�1PT
t=1A3t�1:2 = oP (�

�2
NT ) is similar

as the proof of T�1
PT

t=1A2t�1:1 = oP (�
�2
NT ) and T

�1PT
t=1A2t�1:2 = oP (�

�2
NT ).

T�1
TX
t=1

A3t�1:4 = H
2
NT (T

�1
TX
t=1

f2t�1)
2(T�1

TX
s=1

N�1
NX
i=1

fs�ieis)
2 = OP ((NT )

�1);

since

E(T�1N�1
TX
s=1

NX
i=1

fs�ieis)
2 = E[T�2N�2

TX
s=1

f2s (
NX
i=1

�ieis)
2]

= �2fE[T
�2

TX
s=1

N�2(
NX
i=1

�ieis)
2] = OP ((NT )

�1):

By the Cauchy-Schwartz inequality, we can show that T�1
PT

t=1A1t�1A2t�1 = oP (�
�2
NT ),

T�1
PT

t=1A1t�1A3t�1 = oP (�
�2
NT ), and T

�1PT
t=1A2t�1A3t�1 = oP (�

�2
NT ). By combin-

ing all the results, we have T�1
PT

t=1(
eft�1 � HNT ft�1)2 = J2NTN

�1� + oP (�
�2
NT ) =

v�2N�1� + oP (�
�2
NT ): For B, we have

B = HNTJNTT
�2

TX
t=1

TX
s=1

[ft�1 efs�st�1 + ft�1 efs�st�1 + ft�1 efs�st�1]
= HNTJNT (B1 +B2 +B3):

First,

B1 = T�2
TX
t=1

TX
s=1

ft�1 efs�st�1 � [T�1 TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=1

ft�1�st�1)
2]1=2

= OP ((NT )
�1=2):

Second,

B2 = T�2
TX
t=1

TX
s=1

ft�1 efs�st�1 � [T�1 TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=1

ft�1�st�1)
2]1=2

= [T�1
TX
s=1

ef2s ]1=2[T�1 TX
s=1

(T�1
TX
t=1

ft�1N
�1

NX
i=1

fs�ieit�1)
2]1=2

= [T�1
TX
s=1

ef2s ]1=2[(T�1 TX
s=1

f2s )(T
�1N�1

TX
t=1

NX
i=1

ft�1�ieit�1)
2]1=2

= OP ((NT )
�1=2):

Third,

B3 = T�2
TX
t=1

TX
s=1

ft�1 efs�st�1 = T�2 TX
t=1

TX
s=1

ft�1( efs �HNT fs +HNT fs)�st�1
= B31 +B32:
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For B31,

B31 = [T�1
TX
t=1

f2t�1][T
�1

TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis]

= T�2
TX
s=1

JNT

TX
t=1

[ eft�ts + eft�ts + eft�ts]N�1
NX
i=1

�ieis + oP (�
�2
NT )

= JNT (B31:1 +B31:2 +B31:3) + oP (�
�2
NT );

where

B31:1 = T�2
TX
s=1

TX
t=1

eft�tsN�1
NX
i=1

�ieis

� [T�1
TX
s=1

(T�1
TX
t=1

eft�ts)2]1=2[T�1 TX
s=1

(N�1
NX
i=1

�ieis)
2]1=2 = OP (�

�1
NTN

�1);

and

B31:2 = T�2
TX
s=1

TX
t=1

eft�tsN�1
NX
i=1

�ieis = (T
�1

TX
t=1

eftft)[T�1 TX
s=1

(N�1
NX
i=1

�ieis)
2]

= HNTN
�1� + oP (�

�2
NT ):

and

B31:3 = T
�2

TX
s=1

TX
t=1

( eft �HNT ft +HNT ft)�tsN�1
NX
i=1

�ieis = OP (�
�1
NTN

�1);

since

T�2
TX
s=1

TX
t=1

( eft �HNT ft)�tsN�1
NX
i=1

�ieis

� [T�1
TX
t=1

( eft �HNT ft)2]1=2[T�1 TX
t=1

(T�1
TX
s=1

�tsN
�1

NX
i=1

�ieis)
2]1=2

� [T�1
TX
t=1

( eft �HNT ft)2]1=2[(T�2 TX
t=1

TX
s=1

�2ts)T
�1

TX
s=1

(N�1
NX
i=1

�ieis)
2]1=2

= OP (�
�1
NTN

�1T�1=2);

and

T�2
TX
s=1

TX
t=1

HNT ft�tsN
�1

NX
i=1

�ieis = HNTT
�2[

TX
s=1

N�1
NX
i=1

fs�ieis]
2:

= OP ((NT )
�1):

Thus, B31 = HNTN�1� + oP (�
�2
NT ). For B32,

B32 = T�2
TX
t=1

TX
s=1

ft�1HNT fs�st�1 = T
�2HNT

TX
t=1

TX
s=1

ft�1fsN
�1

NX
i=1

ft�1�ieis

= (T�1HNT

TX
t=1

f2t�1)(T
�1N�1

TX
s=1

NX
i=1

fs�ieis) = OP ((NT )
�1=2):
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Therefore, B3 = HNTN
�1� + oP (�

�2
NT ). In total, we have T

�1�
PT

t=1HNT ft�1(
~ft�1 �

HNT ft�1) = �J
2
NTH

2
NTN

�1�+oP (�
�2
NT ) = �v

�2N�1�+oP (�
�2
NT ). Thus, T

�1�
PT

t=1
eft�1( eft�1�

HNT ft�1) = 2�v
�2N�1� + oP (�

�2
NT ).

Using an argument similar to the one used in (i), we can decompose (ii) as

T�1
TX
t=1

eft�1( eft �HNT ft) = T�1
TX
t=1

( eft�1 �HNT ft�1)( eft �HNT ft) +HNTT�1 TX
t=1

ft�1( eft �HNT ft)
= �v�2N�1� + oP (�

�2
NT ):

The proof is almost the same as the proof of (i). We only mention the di¤erence. To show
T�1

PT
t=1(

eft�1 �HNT ft�1)( eft �HNT ft) = oP (��2NT ), we need use
T�1

TX
t=1

( eft�1 �HNT ft�1)( eft �HNT ft)
= J2NTH

2
NTT

�3
TX
t=1

(

TX
s=1

fsN
�1fs

NX
i=1

�ieit�1)(

TX
s=1

fsN
�1fs

NX
i=1

�ieit) + oP (�
�2
NT )

= J2NTH
2
NTT

�3(

TX
s=1

f2s )
2
TX
t=1

(N�1
NX
i=1

�ieit�1)(N
�1

NX
i=1

�ieit) + oP (�
�2
NT )

= oP (�
�2
NT ):

To show HNTT�1
PT

t=1 ft�1(
eft �HNT ft) = �v�2N�1� + oP (�

�2
NT ), we need use

HNTT
�1

TX
t=1

ft�1( eft �HNT ft) = [T�1
TX
t=1

ft�1ft][T
�1

TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis] + oP (�
�2
NT )

= �T�1
TX
s=1

( efs �HNT fs)N�1
NX
i=1

�ieis + oP (�
�2
NT )

= �HNTN
�1� + oP (�

�2
NT ):

For (iii)

T�1HNT

TX
t=1

( eft�1 �HNT ft�1)"t = HNTJNTT
�2

TX
t=1

TX
s=1

[ efs�st�1"t + efs�st�1"t + efs�st�1"t]
= HNTJNT (C1 + C2 + C3):

For C1;

C1 = T�2
TX
t=1

TX
s=1

efs�st�1"t � (T�1 TX
s=1

ef2s )1=2[T�1 TX
s=1

(T�1
TX
t=1

�st�1"t)
2]1=2

= OP ((NT )
�1=2);
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where the last equality follows from

T�1
TX
s=1

E(T�1
TX
t=1

�st�1"t)
2 = T�1

TX
s=1

E(T�1
TX
t=1

[N�1
NX
i=1

(eit�1eis � E(eit�1eis))]"t)2

= �2T�1
TX
s=1

T�2E
TX
t=1

[N�1
NX
i=1

(eit�1eis � E(eit�1eis))]2

= OP ((NT )
�1):

For C2;

C2 = T
�2

TX
t=1

TX
s=1

efs�st�1"t � (T�1 TX
s=1

ef2s )1=2[T�1 TX
s=1

(T�1
TX
t=1

�st�1"t)
2]1=2 = OP ((NT )

�1=2);

where the last equality follows from

T�1
TX
s=1

E(T�1
TX
t=1

�st�1"t)
2 = �2T�1

TX
s=1

E(T�2
TX
t=1

�2st�1)

= �2T�1
TX
s=1

E[T�2
TX
t=1

(N�1
NX
i=1

f0s �
0
i eit�1)

2]

= �2�2fT
�2E[

TX
t=1

(N�1
NX
i=1

�0i eit�1)
2] = OP ((NT )

�1):

Similarly, we can show C3 = OP ((NT )
�1=2): In total, we have T�1HNT

PT
t=1(

eft�1 �
HNT ft�1)"t = OP ((NT )

�1=2). Finally,

p
T (e�� �) = T�1=2 TX

t=1

ft�1"t � c�v�2� + oP (1).
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Proof of Proposition 2.

The bootstrap principal components estimator eF � = h ef�1 ; � � � ; ef�T i0 is the �rst eigen-
vector of the T � T matrix X�X�0 with normalization T�1

PT
t=1

ef�2t = 1, where the
bootstrap sample is given by

X� =

264 X�0
1
...
X�0
T

375 =
264 x�11

...
x�1T

� � �
. . .
� � �

x�N1
...

x�NT

375 :
Analogous to the original version, we have (1=TN)X�X�0 eF � = eF �v�NT where v�NT is

the largest eigenvalue of (1=TN)X�X�0. Let ��st = N�1PN
i=1 e

�
ise

�
it � E�(e�ise�it), ��st =

N�1f�s
PN

i=1 �
�
i e
�
it, and �

�
st = N

�1f�t
PN

i=1 �
�
i e
�
is = �

�
ts. As the proof of proposition 1, the

estimation error of the factor can be decomposed as

ef�t �H�
NT f

�
t = J

�
NTT

�1
TX
s=1

ef�s ��st + J�NTT�1 TX
s=1

ef�s ��st + J�NTT�1 TX
s=1

ef�s ��st
whereH�

NT = (
eF �0F �=T )(��0��=N)J�NT , J�NT = �v�NT � T�1���2e ��1 ; ���2e = N�1PN

i=1 �
�2
ei ;

and ��2ei = E�(e�2is ). From Lemma C.1 of Gonçalves and Perron (2012), under our as-
sumption F, FL and E, we have (i) T�1

PT
t=1 j eft�HNT ftj4 = OP (1), (ii) N�1PN

i=1 j~�i�
H�1
NT�ij4 = OP (1), (iii) (NT )�1

PN
i=1

PT
t=1 ~e

4
it = OP (1). This result implies that E

�(e�4it ) =
OP (1),

E���4i = N�1
NX
i=1

~�
4

i � 8N�1(
NX
i=1

j~�i �H�1
NT�ij

4 +
NX
i=1

jH�1
NT�ij

4) = OP (1);

and

E�"�4t = T�1
TX
t=1

( eft � ~� eft�1)4 = T�1 TX
t=1

[ eft �HNT ft +HNT ft � ~�( eft�1 �HNT ft�1)� ~�HNT ft�1]4
� 43T�1

TX
t=1

[( eft �HNT ft)4 + (HNT ft)4 + ~�4( eft�1 �HNT ft�1)4 + (~�HNT ft�1)4] = OP (1):
The bootstrap estimation error can be approximated as

p
T (e�� � ~�) =

p
T

 
TX
t=1

� ef�t�1�2
!�1 TX

t=1

ef�t�1 � ef�t � ~� ef�t�1�
= T�1=2

TX
t=1

ef�t�1 � ef�t � ~� ef�t�1�+ oP�(1)
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since T�1
PT

t=1

� ef�t�1�2 � 1 = oP�(1). By decomposing the dominant term, we have

T�1=2
TX
t=1

ef�t�1 � ef�t � ~� ef�t�1�
= T�1=2

TX
t=1

ef�t�1 n ef�t �H�
NT f

�
t � ~�

� ef�t�1 �H�
NT f

�
t�1

�o
+ T�1=2H�

NT

TX
t=1

ef�t�1"�t
= T�1=2H�2

NT

TX
t=1

f�t�1"
�
t � T�1=2~�

TX
t=1

ef�t�1 � ef�t�1 �H�
NT f

�
t�1

�
+T�1=2

TX
t=1

ef�t�1 � ef�t �H�
NT f

�
t

�
+ T�1=2H�

NT

TX
t=1

� ef�t�1 �H�
NT f

�
t�1

�
"�t :

The leading term can be written as

T�1=2
�
H�2
NT � 1

� TX
t=1

f�t�1"
�
t + T

�1=2
TX
t=1

f�t�1"
�
t = T

�1=2
TX
t=1

f�t�1"
�
t + oP�(1).

The last equality follows from the fact that v�NT = v� + oP�(1) where v� = ����
�
F ,

��� =
e�0e�=N !P v and ��F = eF 0 eF=T = 1, and H�2

NT � 1 = oP�(1) because

H�2
NT = ( eF �0F �=T )(��0��=N)(F �0 eF �0=T )J�2NT = ���1F + op�(1):

In what follows, we show that (i) T�1=2~�
PT

t=1
ef�t�1 � ef�t�1 �H�

NT f
�
t�1

�
= 2�v2N�1� +

o�P (�
�2
NT ); (ii) T

�1=2~�
PT

t=1
ef�t�1 � ef�t �H�

NT f
�
t

�
= �v2N�1�+o�P (�

�2
NT ); (iii) T

�1H�
NT

PT
t=1(

ef�t�1�
H�
NT f

�
t�1)"

�
t = o

�
P (�

�2
NT )

The proof of the above three equations is quite similar as those in Proposition 1. Here,
we only focus on the di¤erences. For (i), we decompose it as

T�1~�
TX
t=1

ef�t�1( ef�t�1 �H�
NT f

�
t�1) = T�1~�

TX
t=1

( ef�t�1 �H�
NT f

�
t�1)

2 + T�1H�
NT ~�

TX
t=1

f�t�1(
ef�t�1 �H�

NT f
�
t�1)

= ~�(A� +B�):

We �rst show T�1
PT

t=1(
ef�t�1 �H�

NT f
�
t�1)

2 = OP�(��2NT ),

A� = J�2NT

"
T�1

TX
t=1

(T�1
TX
s=1

~f�s �
�
st + T

�1
TX
s=1

~f�s �
�
st + T

�1
TX
s=1

~f�s �
�
st)

2

#

� 3J�2NT

"
T�1

TX
t=1

T�2(
TX
s=1

~f�s �
�
st)

2 + T�1
TX
t=1

T�2(
TX
s=1

~f�s �
�
st)

2 + T�1
TX
t=1

T�2(
TX
s=1

~f�s �
�
st)

2

#
= 3J�2NT [A

�
1 +A

�
2 +A

�
3] :

First,

A�1 � (T�1
TX
s=1

~f�2s )(T
�2

TX
t=1

TX
s=1

��2st ) = OP�(��2NT )
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where the last equality follows from

T�2
TX
t=1

TX
s=1

E���2st = T�2
TX
t=1

TX
s=1

E�(N�1
NX
i=1

[e�ise
�
it � E�(e�ise�it)])2

= (NT )�2
TX
t=1

TX
s=1

NX
i=1

V ar�(e�ise
�
it) = OP (N

�1)

provided E�(e�4it ) = OP (1). Second,

A�2 = T�1
TX
t=1

(T�1
TX
s=1

~f�sN
�1f�s

NX
i=1

��i e
�
it)
2 = T�1

TX
t=1

(T�1
TX
s=1

~f�s f
�
s )
2(N�1

NX
i=1

��i e
�
it)
2

� T�1
TX
t=1

(T�1
TX
s=1

~f�2s )(T
�1

TX
s=1

f�2s )(N
�1

NX
i=1

��i e
�
it)
2

= (T�1
TX
s=1

~f�2s )(T
�1

TX
s=1

f�2s )[T
�1

TX
t=1

(N�1
NX
i=1

��i e
�
it)
2] = OP�(��2NT )

which follows from T�1
PT

s=1 f
�2
s = OP�(1) using Theorem 4.1 of Freedman (1984) and

from

T�1
TX
t=1

E�(N�1
NX
i=1

��i e
�
it)
2 = N�2T�1

TX
t=1

NX
i=1

E�(��2i e
�2
it ) = N

�2T�1
NX
i=1

E�(��2i )(
TX
t=1

e�2it )

� N�2T�1(
NX
i=1

E���4i )
1=2(

NX
i=1

E�(
TX
t=1

e�2it )
2)1=2

� N�1(N�1
NX
i=1

E���4i )
1=2(N�1

NX
i=1

T�1E�
TX
t=1

e�4it )
1=2 = OP (N

�1);

provided E�(��4i ) = OP (1). Third,

A�3 = (T�1
TX
t=1

f�2t )(T
�1

TX
s=1

~f�sN
�1

NX
i=1

��i e
�
is)

2

� (T�1
TX
t=1

f�2t )(T
�1

TX
s=1

~f�2s )[T
�1

TX
s=1

(N�1
NX
i=1

��i e
�
is)

2] = OP�(��2NT ) :

Therefore, A� = OP�(��2NT ). By using one additional condition thatN
�1T�1

PT
t=1

PN
i=1 f

�
t �

�
i e
�
it =
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O�P ((NT )
�1=2),

E�(N�1T�1
TX
t=1

NX
i=1

f�t �
�
i e
�
it)
2 = (NT )�2[E�

TX
t=1

TX
s=1

NX
i=1

NX
j=1

f�t f
�
s �

�
i �
�
je
�
ite

�
js]

= (NT )�2E�
TX
t=1

NX
i=1

f�2t �
�2
i e

�2
it

� (NT )�2(T�1E�
TX
t=1

f�4t )[T
�1E�

TX
t=1

(N�1
NX
i=1

��2i e
�2
it )

2]

� (NT )�1(T�1E�
TX
t=1

f�4t )[(NT )
�1

TX
t=1

NX
i=1

E���4i E
�e�4it ]

= OP (�
�4
NT );

then we show

T�1
TX
t=1

( ef�t�1 �H�
NT f

�
t�1)

2 = T�1J�2NT

TX
t=1

[T�1
TX
s=1

H�
NT f

�
s �st�1]

2 + o�P (�
�2
NT )

= J�2NTH
�2
NT (T

�1
TX
s=1

f�2s )
2T�1

TX
t=1

(N�1
NX
i=1

��i e
�
it�1)

2 + o�P (�
�2
NT )

= J�2NTH
�2
NTT

�1
TX
t=1

(N�1
NX
i=1

��i e
�
it�1)

2 + o�P (�
�2
NT )

= v�2N�1� + o�P (�
�2
NT );

where the last equality follows from

T�1
TX
t=1

(N�1=2
NX
i=1

��i e
�
it)
2 = T�1

TX
t=1

V ar�(N�1=2
NX
i=1

��i e
�
it) + o

�
P (1)

= T�1N�1
TX
t=1

NX
i=1

e�2i ee2it + o�P (1) = � + o�P (1);
provided we assume cross-sectionally uncorrelated errors (� ij = 0) in the Bootstrap Bias
Correction and the Bootstrap Con�dence Interval. Therefore, we have T�1~�

PT
t=1(

ef�t�1�
H�
NT f

�
t�1)

2 = ~�v�2N�1�+o�P (�
�2
NT ) = �v

�2N�1�+o�P (�
�2
NT ): To show T

�1H�
NT ~�

PT
t=1 f

�
t�1(

ef�t�1�
H�
NT f

�
t�1) = �v

�2N�1� + o�P (�
�2
NT ), we need

T�1H�
NT

TX
t=1

f�t�1(
ef�t�1 �H�

NT f
�
t�1) = J�2NTH

�
NTT

�2
TX
s=1

TX
t=1

ef�t ��tsN�1
NX
i=1

��i e
�
is + o

�
P (�

�2
NT )

= J�2NTH
�
NT (T

�1
TX
t=1

ef�t f�t )[T�1 TX
s=1

(N�1
NX
i=1

��i e
�
is)

2] + o�P (�
�2
NT )

= v�2N�1� + o�P (�
�2
NT ):

Therefore, T�1H�
NT ~�

PT
t=1 f

�
t�1(

ef�t�1 �H�
NT f

�
t�1) = �v

�2N�1� + o�P (�
�2
NT ). In total, we

show T�1=2~�
PT

t=1
ef�t�1 � ef�t�1 �H�

NT f
�
t�1

�
= 2�v2N�1� + o�P (�

�2
NT ). Similarly, we can
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show T�1=2~�
PT

t=1
ef�t�1 � ef�t �H�

NT f
�
t

�
= �v2N�1� + o�P (�

�2
NT ) by using one additional

condition that

T�1=2
TX
t=1

( ef�t�1 �H�
NT f

�
t�1)(

ef�t �H�
NT f

�
t )

= J�2NTH
�2
NT (T

�1
TX
s=1

f�2s )
2T�1

TX
t=1

(N�1
NX
i=1

��i e
�
it�1)(N

�1
NX
i=1

��i e
�
it) + o

�
P (�

�2
NT )

= o�P (�
�2
NT ):

Finally, we prove that

p
T (e�� � ~�) = T�1=2 TX

t=1

f�t�1"
�
t � c�v�2� + o�P (1):

Since E�(T�1=2
PT

t=1 f
�
t�1"

�
t ) = 0, B

�1PB
b=1 e��b � e� is a consistent estimator of the dom-

inant term of E(~�)� �.

Proof of Proposition 3.

From proposition 2, we can apply the bootstrap central limit theorem to the term
T�1=2

PT
t=1 f

�
t�1"

�
t . Since E

�[f�t�1"
�
t jf�t�2"�t�1; :::] = 0, we can use the central limit theo-

rem for the martingale di¤erence sequence under the bootstrap probability measure and
thus P �(

p
T (~�� � ~�) � x) approaches normal distribution function with mean �c�v�2�

and variance E�(f�2t�1"
�2
t ) = T�1

PT
t=1

~f2t�1~"
2
t under the bootstrap probability measure.

Combining it with T�1
PT

t=1
~f2t�1~"

2
t !P E(f2t�1"

2
t ) = ��1, we have P �(

p
T (~�� � ~�) �

x)� P (
p
T (~�� �) � x)!P 0 for any x. By using Polya�s theorem, we have the uniform

convergence result given by

sup
x2R

jP �(
p
T (~�� � ~�) � x)� P (

p
T (~�� �) � x)j !P 0:
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Table 1: AR Estimation

Estimator
ρ T ρ̂ ρ̂KBC ρ̂BC Coverage Rate

0.5 100 0.49 0.50 0.50 0.90
200 0.50 0.50 0.50 0.90

0.9 100 0.88 0.90 0.90 0.91
200 0.89 0.90 0.90 0.89

Note: Mean values of the OLS estimator (ρ̂), Kendall-type bias-
corrected estimator (ρ̂KBC) and bootstrap bias-corrected estimator
(ρ̂BC) and coverage rates of the asymptotic confidence interval (5)
in 1,000 replications.

Table 2: Two-step AR Estimation

ρ̃ Coverage Rate
ρ T c S/N =0.5 0.75 1 1.5 2 S/N=0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 100 0.5 0.42 0.43 0.44 0.45 0.45 0.78 0.81 0.81 0.88 0.86

1 0.36 0.39 0.41 0.42 0.43 0.58 0.68 0.76 0.78 0.80
1.5 0.32 0.36 0.37 0.40 0.41 0.45 0.56 0.62 0.73 0.76

200 0.5 0.45 0.46 0.46 0.47 0.47 0.79 0.83 0.85 0.88 0.86
1 0.41 0.42 0.44 0.45 0.46 0.59 0.69 0.76 0.81 0.85

1.5 0.37 0.39 0.41 0.43 0.44 0.41 0.54 0.60 0.72 0.76
0.9 100 0.5 0.73 0.76 0.78 0.81 0.81 0.26 0.38 0.47 0.58 0.61

1 0.62 0.68 0.72 0.75 0.77 0.07 0.16 0.24 0.30 0.41
1.5 0.54 0.60 0.65 0.70 0.72 0.04 0.06 0.12 0.18 0.25

200 0.5 0.80 0.82 0.83 0.85 0.85 0.27 0.42 0.51 0.62 0.68
1 0.71 0.76 0.79 0.81 0.82 0.05 0.14 0.22 0.35 0.44

1.5 0.64 0.70 0.73 0.77 0.79 0.02 0.05 0.06 0.18 0.27

(B) Cross-sectional correlation
0.5 100 0.5 0.40 0.42 0.43 0.45 0.45 0.72 0.78 0.81 0.86 0.85

1 0.28 0.35 0.38 0.41 0.42 0.38 0.55 0.68 0.72 0.77
1.5 0.22 0.28 0.32 0.37 0.39 0.25 0.36 0.50 0.62 0.69

200 0.5 0.44 0.45 0.46 0.47 0.47 0.75 0.81 0.85 0.87 0.85
1 0.37 0.41 0.43 0.45 0.45 0.41 0.59 0.70 0.79 0.83

1.5 0.27 0.34 0.37 0.41 0.43 0.22 0.37 0.46 0.63 0.70
0.9 100 0.5 0.66 0.74 0.77 0.80 0.81 0.18 0.33 0.41 0.54 0.59

1 0.43 0.57 0.64 0.71 0.73 0.05 0.13 0.19 0.28 0.36
1.5 0.33 0.43 0.52 0.61 0.66 0.04 0.05 0.09 0.17 0.23

200 0.5 0.78 0.81 0.83 0.84 0.85 0.22 0.38 0.48 0.59 0.66
1 0.62 0.72 0.76 0.80 0.81 0.04 0.11 0.19 0.32 0.41

1.5 0.47 0.60 0.65 0.74 0.77 0.02 0.05 0.06 0.17 0.24

Note: Mean values of the two-step estimator (ρ̃) and coverage rates of the asymptotic confidence
interval (10) in 1,000 replications. S/N denotes signal-to-noise ratio.
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Table 3: Bootstrap Bias Corrections

T = 100 T = 200
ρ c S/N =0.5 0.75 1 1.5 2 S/N =0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 0.5 bias -0.09 -0.06 -0.06 -0.05 -0.04 -0.05 -0.04 -0.04 -0.03 -0.03

1st bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.14 -0.11 -0.09 -0.08 -0.07 -0.10 -0.08 -0.07 -0.05 -0.04
1st bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias* -0.09 -0.09 -0.08 -0.07 -0.07 -0.07 -0.06 -0.06 -0.05 -0.04

1.5 bias -0.18 -0.14 -0.12 -0.10 -0.09 -0.13 -0.10 -0.09 -0.07 -0.06
1st bias -0.15 -0.10 -0.08 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias* -0.10 -0.10 -0.10 -0.09 -0.09 -0.09 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.17 -0.13 -0.12 -0.09 -0.08 -0.10 -0.08 -0.07 -0.06 -0.05
1st bias -0.09 -0.06 -0.05 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias* -0.13 -0.12 -0.10 -0.09 -0.08 -0.09 -0.08 -0.07 -0.06 -0.05

1 bias -0.28 -0.22 -0.19 -0.15 -0.13 -0.19 -0.14 -0.12 -0.09 -0.08
1st bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03
bias* -0.17 -0.16 -0.15 -0.13 -0.12 -0.14 -0.12 -0.11 -0.09 -0.08

1.5 bias -0.36 -0.29 -0.24 -0.20 -0.17 -0.26 -0.20 -0.16 -0.13 -0.11
1st bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias* -0.18 -0.18 -0.17 -0.16 -0.15 -0.16 -0.15 -0.14 -0.12 -0.11

(B) Cross-sectional correlation
0.5 0.5 bias -0.10 -0.07 -0.06 -0.05 -0.04 -0.06 -0.05 -0.04 -0.03 -0.03

1st bias -0.05 -0.03 -0.03 -0.02 -0.01 -0.04 -0.02 -0.02 -0.01 -0.01
bias* -0.07 -0.06 -0.05 -0.05 -0.04 -0.05 -0.04 -0.03 -0.03 -0.03

1 bias -0.21 -0.16 -0.12 -0.09 -0.08 -0.14 -0.10 -0.08 -0.05 -0.05
1st bias -0.10 -0.07 -0.05 -0.03 -0.03 -0.07 -0.05 -0.04 -0.02 -0.02
bias* -0.08 -0.08 -0.08 -0.07 -0.07 -0.07 -0.06 -0.06 -0.05 -0.04

1.5 bias -0.30 -0.22 -0.18 -0.14 -0.11 -0.22 -0.16 -0.12 -0.08 -0.07
1st bias -0.15 -0.10 -0.08 -0.05 -0.04 -0.11 -0.07 -0.05 -0.04 -0.03
bias* -0.08 -0.09 -0.09 -0.09 -0.09 -0.08 -0.08 -0.08 -0.07 -0.06

0.9 0.5 bias -0.23 -0.16 -0.13 -0.10 -0.09 -0.12 -0.09 -0.08 -0.06 -0.05
1st bias -0.09 -0.06 -0.05 -0.03 -0.02 -0.06 -0.04 -0.03 -0.02 -0.02
bias* -0.12 -0.11 -0.10 -0.09 -0.08 -0.09 -0.07 -0.07 -0.05 -0.05

1 bias -0.45 -0.34 -0.27 -0.19 -0.16 -0.29 0.19 -0.15 -0.10 -0.09
1st bias -0.18 -0.12 -0.09 -0.06 -0.05 -0.13 -0.08 -0.06 -0.04 -0.03
bias* -0.14 -0.14 -0.14 -0.13 -0.12 -0.12 -0.11 -0.10 -0.09 -0.08

1.5 bias -0.58 -0.46 -0.37 -0.29 -0.23 -0.44 -0.31 -0.24 -0.17 -0.14
1st bias -0.27 -0.18 -0.14 -0.09 -0.07 -0.19 -0.13 -0.10 -0.06 -0.05
bias* -0.13 -0.15 -0.16 -0.16 -0.16 -0.13 -0.14 -0.14 -0.12 -0.11

Note: Actual bias (bias) and bootstrap bias estimator (bias*) are mean values in 1,000 replications. The
first-order theoretical bias term (1st bias) is the first term in the right hand side of (7). S/N denotes
signal-to-noise ratio.
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Table 4: Coverage Rate of Bootstrap Confidence Intervals

T = 100 T = 200
ρ c S/N=0.5 0.75 1 1.5 2 S/N=0.5 0.75 1 1.5 2

(A) No cross-sectional correlation
0.5 0.5 Bc 0.85 0.84 0.85 0.86 0.86 0.86 0.89 0.87 0.90 0.87

Per 0.87 0.87 0.87 0.88 0.88 0.87 0.89 0.87 0.90 0.87
Per-t 0.85 0.85 0.85 0.88 0.86 0.86 0.89 0.87 0.90 0.87

1 Bc 0.77 0.81 0.83 0.85 0.84 0.83 0.83 0.84 0.87 0.87
Per 0.78 0.83 0.87 0.87 0.88 0.82 0.86 0.87 0.89 0.89
Per-t 0.81 0.81 0.83 0.85 0.83 0.86 0.84 0.84 0.87 0.87

1.5 Bc 0.69 0.74 0.79 0.81 0.81 0.72 0.81 0.81 0.82 0.86
Per 0.68 0.76 0.81 0.85 0.86 0.73 0.84 0.86 0.87 0.91
Per-t 0.73 0.77 0.79 0.81 0.81 0.78 0.85 0.84 0.83 0.87

0.9 0.5 Bc 0.77 0.81 0.83 0.83 0.83 0.85 0.90 0.87 0.89 0.87
Per 0.78 0.83 0.85 0.88 0.89 0.89 0.94 0.94 0.95 0.94
Per-t 0.76 0.75 0.75 0.77 0.75 0.86 0.87 0.85 0.87 0.87

1 Bc 0.61 0.72 0.74 0.80 0.80 0.71 0.80 0.82 0.86 0.84
Per 0.54 0.68 0.71 0.80 0.81 0.72 0.83 0.87 0.93 0.92
Per-t 0.70 0.73 0.72 0.76 0.72 0.83 0.84 0.85 0.86 0.82

1.5 Bc 0.46 0.60 0.69 0.73 0.77 0.51 0.65 0.74 0.76 0.80
Per 0.38 0.52 0.61 0.66 0.72 0.51 0.67 0.78 0.82 0.88
Per-t 0.60 0.67 0.68 0.68 0.71 0.71 0.80 0.80 0.80 0.80

(B) Cross-sectional correlation
0.5 0.5 Bc 0.83 0.85 0.85 0.87 0.86 0.84 0.88 0.87 0.89 0.87

Per 0.82 0.86 0.86 0.88 0.88 0.85 0.89 0.87 0.90 0.88
Per-t 0.84 0.85 0.85 0.87 0.87 0.85 0.89 0.87 0.90 0.88

1 Bc 0.59 0.70 0.77 0.83 0.83 0.66 0.78 0.82 0.86 0.87
Per 0.57 0.69 0.78 0.84 0.85 0.65 0.77 0.83 0.87 0.88
Per-t 0.65 0.74 0.79 0.84 0.83 0.73 0.81 0.83 0.87 0.87

1.5 Bc 0.43 0.60 0.67 0.75 0.78 0.48 0.67 0.74 0.80 0.83
Per 0.38 0.56 0.66 0.75 0.80 0.45 0.64 0.74 0.83 0.85
Per-t 0.51 0.64 0.71 0.77 0.79 0.57 0.71 0.78 0.83 0.84

0.9 0.5 Bc 0.62 0.74 0.77 0.81 0.81 0.75 0.85 0.86 0.87 0.88
Per 0.60 0.75 0.79 0.83 0.87 0.79 0.89 0.90 0.93 0.94
Per-t 0.63 0.70 0.73 0.76 0.75 0.78 0.86 0.84 0.85 0.87

1 Bc 0.32 0.46 0.57 0.72 0.75 0.40 0.62 0.70 0.80 0.84
Per 0.29 0.44 0.54 0.71 0.75 0.41 0.64 0.75 0.86 0.90
Per-t 0.40 0.54 0.58 0.70 0.69 0.50 0.70 0.74 0.82 0.83

1.5 Bc 0.23 0.36 0.48 0.60 0.68 0.24 0.40 0.54 0.64 0.70
Per 0.17 0.30 0.41 0.53 0.63 0.24 0.42 0.59 0.71 0.81
Per-t 0.31 0.42 0.51 0.60 0.66 0.38 0.54 0.66 0.72 0.73

Note: Coverage rates of three nominal 90% confidence intervals in 1,000 replications. Bc denotes
bootstrap bias corrected asymptotic confidence interval (11), Per denotes equal-tailed percentile
bootstrap confidence interval and Per-t denotes equal-tailed percentile-t bootstrap confidence inter-
val. S/N denotes signal-to-noise ratio.
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Table 5: AR(1) Estimates of US diffusion index

Series ρ̃ Confidence interval ρ̃BC Confidence interval
(A) Full sample (N = 159)

1 0.66 (0.60, 0.71) 0.69 (0.64, 0.75)

(B) Long subsample (N = 53)
1 0.65 (0.60, 0.71) 0.74 (0.69, 0.80)
2 0.58 (0.52, 0.64) 0.66 (0.60, 0.72)
3 0.68 (0.63, 0.73) 0.78 (0.72, 0.83)

average 0.64 (0.58, 0.69) 0.73 (0.67, 0.79)

(C) Short subsample (N = 32)
1 0.57 (0.51, 0.63) 0.75 (0.69, 0.81)
2 0.83 (0.79, 0.87) 0.95 (0.91, 0.99)
3 0.63 (0.58, 0.69) 0.75 (0.70, 0.81)
4 0.55 (0.49, 0.61) 0.65 (0.58, 0.71)
5 0.54 (0.48, 0.60) 0.67 (0.61, 0.73)

average 0.62 (0.57, 0.68) 0.75 (0.70, 0.81)

Note: Sample period is from 1959:3 to 1998:12 (T = 478). c =
√
T/N is

0.14, 0.41 and 0.68, respectively, for series A, B and C. The first confidence
interval next to ρ̃ is the 90% asymptotic confidence interval (10). The
second confidence interval next to ρ̃BC is the 90% bootstrap bias-corrected
confidence interval (11).
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Figure 1: US Diffusion Index

1




