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Abstract 
 
Theory predicts that the equilibrium real interest rate, r*t, and the perceived trend in inflation, 
π*t, are key determinants of the term structure of interest rates. However, term structure analyses 
generally assume that these endpoints are constant. Instead, we show that allowing for time 
variation in both r*t and π*t is crucial for understanding the empirical dynamics of U.S. 
Treasury yields and risk pricing. Our evidence reveals that accounting for fluctuations in both 
r*t and π*t substantially increases the accuracy of long-range interest rate forecasts, helps 
predict excess bond returns, improves estimates of the term premium in long-term interest rates, 
and captures a substantial share of interest rate variability at low frequencies. 

JEL-Codes: E430, E440, E470. 
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1 Introduction

The level of the risk-free real rate of return that would prevail in the absence of transitory

disturbances has long been of interest to researchers, policymakers, and financial investors.

However, recent structural changes in the global economy have brought questions about the

variation and influence of this equilibrium real rate to the forefront (Clarida, 2014; Yellen,

2015). Various underlying fundamental economic forces, such as lower productivity growth

and an aging population, appear to have slowly altered global saving and investment and, in

turn, pushed down the steady-state real interest rate. Accordingly, much new research has

examined potential changes in the level of the equilibrium real short-term interest rate, which

we denote as r∗t .
1 Remarkably, thus far, there has been very little work addressing the effects

of changes in r∗t on the dynamics of the term structure of interest rates. We fill this gap and

analyze how changes in the equilibrium real rate will alter yield curves and bond risk pricing.

A useful illustration of the potential importance of accounting for the equilibrium real

rate is provided in Figure 1. The secular decline in the 10-year Treasury yield since the early

1980s reflects a gradual downtrend in the general level of U.S. interest rates. Early on, a key

driver of this decline was the reduction in the long-run expected level of inflation, which is

often referred to as trend inflation and denoted as π∗t . Figure 1 displays a measure of U.S.

trend inflation based largely on long-horizon inflation projections from a survey of professional

forecasters (details of this measure are described in the data section below). While the link

between trend inflation and interest rates has been highlighted by some, e.g., Cieslak and

Povala (2015), this macroeconomic trend clearly cannot account for all of the decline in yields

on its own. For the past two decades, π∗t has stabilized close to 2 percent while longer-term

interest rates have continued to drift lower. Instead, much of the recent downtrend in yields

seems to reflect a lower equilibrium real short-term interest rate, as is evident in the simple

composite measure of r∗t shown in Figure 1 (details of this measure are also described below).

According to this measure, the equilibrium real short rate remained little changed in a range

between 2 and 3 percent from 1970 to around 2000 when it started to gradually fall to below

1 percent currently. We argue that accounting for this recent downtrend in r∗t as well as the

earlier decline in π∗t—that is, an environment of falling stars—is critical for understanding the

dynamics of interest rates and for assessing bond risk and expected returns.

Long-term nominal interest rates reflect expectations of future inflation and real short

rates—including their trend components—subject to a risk adjustment. We first demonstrate

1 Discussions of the decline in r∗ include Hamilton et al. (2016), Rachel and Smith (2015), Laubach and
Williams (2003), Johannsen and Mertens (2016), Kiley (2015), Lubik and Matthes (2015), Christensen and
Rudebusch (2017), and Holston et al. (2017) among many others. In the macroeconomics literature, r∗t is often
labeled the neutral or natural rate of interest.
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the theoretical significance of such longer-run components in an affine no-arbitrage term struc-

ture model that allows for stochastic trends in inflation and the real short rate—π∗t and r∗t .

The model shows that π∗t and r∗t act as level factors for the nominal yield curve, as sug-

gested by Figure 1. In addition, the model describes how the cyclical components of inflation

and the real rate disproportionately influence the shorter end of the yield curve and how a

risk-premium factor affects long rates more than short rates. Our model leads to testable

implications about the importance of both r∗t and π∗t for interest rates, which we take to the

data. Our empirical examination considers five tests of whether the trends in inflation and the

real rate are quantitatively important for the determination of interest rates, using common

empirical proxies of these macroeconomic trends.

As a first test, we document that time variation in both π∗t and r∗t is responsible for most

of the persistence in yields. While interest rates themselves are extremely persistent, the

difference between long-term interest rates and the equilibrium nominal short rate, which is

denoted i∗t = π∗t + r∗t , exhibits quick mean reversion. Furthermore, regressions of long-term

yields on the macroeconomic trends recover the unit coefficients predicted by our theoretical

model. Our findings generalize the results of Cieslak and Povala (2015), henceforth CP, who

regress nominal yields on a proxy for trend inflation. While we confirm their finding that π∗t is

an important persistent component of interest rates, we show that it is also crucial to include

r∗t in order to fully capture the trend component. Furthermore, after accounting for shifts in

r∗t , we uncover strong evidence for a long-run Fisher effect, which has found at best lukewarm

support in previous studies that have focused only on a bivariate relationship between yields

and inflation.2 Instead, from our broader perspective that allows for fluctuations in the equi-

librium real rate, we find that the trend components of inflation and the real rate are related

to interest rates exactly as standard finance theory predicts.

Second, we show that accounting for both macroeconomic trends leads to substantial

improvements in interest rate forecast accuracy at medium and long forecast horizons relative

to the usual martingale forecasting benchmark. Our theoretical model shows that such forecast

improvements are a natural consequence of the time series properties of inflation and the real

short rate. We document that, relative to the random walk alternative, the improvements in

forecast accuracy from including the trend components are both economically and statistically

significant. In addition, as predicted by our model, to achieve these better forecasts, it is

crucial to incorporate r∗t in the shifting endpoint of nominal interest rates—including only π∗t

is insufficient.

Third, accounting for a time-varying r∗t is important for understanding return predictabil-

2Prominent examples include Mishkin (1992), Wallace and Warner (1993), and Evans and Lewis (1995).
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ity and estimating bond risk premia. Recently, CP used the connection between trend inflation

and interest rates to decompose the nominal yield curve into risk premiums and the expec-

tations hypothesis (EH) component (i.e., a term that equals the average short-term interest

rate that investors expect to prevail during the life of a bond). They present strong evidence

for the predictive power of the inflation trend for excess bond returns, which suggests that

incorporating the inflation trend is important to understand the risk premium/EH decompo-

sition. Since r∗t plays the same role of a persistent level factor for nominal interest rates as

does π∗t , our theoretical analysis then suggests that r∗t , like π∗t , should have predictive power

for bond returns. Hence, we extend the results of CP by introducing shifts in the equilibrium

real interest rate into the prediction of risk premiums, and we find substantial improvements

from incorporating r∗t in predicting excess bond returns.

Fourth, these bond return results suggest that measures of the bond risk premium should

account for movements in both r∗t and π∗t . Therefore, we provide an empirical decomposition

of long-term yields into expectations and term premium components that takes into account

the macroeconomic trends. We contrast our estimated decomposition with a conventional one

based on a stationary VAR of yield-curve factors. The conventional decomposition implies

an implausibly stable expectations component and attributes most of the secular decline in

interest rates to the residual term premium, as discussed in critiques by Kim and Orphanides

(2012) and Bauer et al. (2014). Our decomposition, which allows the mean of nominal yields

to shift with i∗t , leads to a very different interpretation of the historical evolution of long-term

yields: the majority of their secular decline is attributed to the decrease in i∗t . Consequently,

the term premium, instead of exhibiting a dubious secular downtrend, behaves in a predomi-

nantly cyclical fashion like other risk premia in asset prices (Campbell and Cochrane, 1999).

As a final avenue of empirical examination, we compare the variance of changes in the

trend components of inflation and real rates to the variance of interest rate changes at different

frequencies. Duffee (2016) proposes using the ratio of the variance of inflation news to the

variance of innovations in nominal interest rates as a useful metric to assess the importance of

inflation in the determination of interest rates. He documents that for one-quarter innovations,

this ratio is small for U.S. Treasury yields. We generalize his measure to consider variance

ratios for longer h-period innovations, which allows us to compare the size of unexpected

changes, over, say, a span of five years, in inflation and in nominal bond yields. For one-

quarter changes, we replicate the small inflation variance ratio reported by Duffee. But in

line with our theoretical predictions, the inflation variance ratio increases substantially with

the horizon. We also generalize Duffee’s measure to incorporate fluctuations in r∗t and i∗t .

Although confidence intervals are unavoidably wide, our estimates suggest that during the
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postwar U.S. sample, a large share of the interest rate variability faced by investors over longer

holding periods was due to changes in the macroeconomic trend components of nominal yields.

Taken altogether, these five complementary strands of evidence provide the key contri-

bution of our paper: strong empirical support for the significance of macroeconomic trends

in understanding the nominal yield curve. Variations in both the inflation trend and the

equilibrium real interest rate are shown to be quantitatively important, and while the former

has been increasingly recognized in yield curve analysis, a time-varying r∗t has been essentially

ignored—a substantial oversight in the literature. Our empirical evidence linking inflation and

real rate trends to the yield curve and risk pricing has far-reaching implications for modeling

of interest rates and bond risk premia. In order to accurately capture interest rate dynamics,

both structural and reduced-form models of the yield curve should allow for slow-moving trend

components. The common approach of specifying a stationary system for the term structure

of interest rates with constant means for the risk factors is problematic, because it counter-

factually rules out any structural, long-run changes of economic variables and asset prices.

Accounting for such long-run changes, i.e., for shifting trends, is crucial for researchers and

practitioners assessing the term premium in long-term interest rates, forecasting bond yields

and returns, and understanding the drivers and historical evolution of the term structure of

interest rates.

Our paper relates to several strands of literature. A large literature documents the impor-

tance of a trend component in the inflation rate, notably Kozicki and Tinsley (2001), Stock

and Watson (2007), Faust and Wright (2013), and Clark and Doh (2014). The persistence in

the real interest rate is considered early on by Rose (1988) and was surveyed by Neely and

Rapach (2008). A related literature investigates the long-run Fisher effect (see the references

in footnote 2). Much recent literature uses macroeconomic models and data to estimate the

equilibrium real interest rate and to understand its structural drivers (see the references in

footnote 1). Our paper sheds a new light on these related strands of literature by showing

that the apparent trends in inflation and real interest rates are not only consistent with the

observed behavior of the yield curve, but are in fact critially important to understanding that

behavior. Within the macro-finance literature on the term structure of interest rates, some

models have been proposed that allow for changes in trend inflation; see Hördahl et al. (2006),

Rudebusch and Wu (2008), and Bekaert et al. (2010). However these models, like essentially

all equilibrium models (including Wachter, 2006; Bansal and Shaliastovich, 2013) and reduced-

form no-arbitrage models (such as Chernov and Mueller, 2012; Joslin et al., 2014) of the term

structure of interest rates, generally assume a constant equilibrium real rate, in contrast to
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the findings of the literature cited above.3 Finally, we contribute to the literature on interest

rate forecasting. The work in this area most closely related to ours is Dijk et al. (2014), who

documented improvements in forecast relative to a random walk by including shifting end-

points that were linked to proxies for trend inflation. We demonstrate that substantial further

gains are possible by forecasting that interest rates gradually revert to the endpoint i∗t which

includes the equilibrium real rate

The paper is structured as follows: Section 2 introduces a simple no-arbitrage model of

the yield curve that allows for trend components in inflation and the real rates, and derives

testable implications. Section 3 describes our empirical proxies for π∗t and r∗t . In Section 4,

we investigate sources for the persistence of interest rates. In Section 5, we show substantial

improvements in forecast accuracy are possible after accounting for macroeconomic trends in

interest rates. Section 6 documents the evidence for the incremental predictive power of π∗t

and r∗t for future excess bond returns. In Section 7, we present a novel estimate of the term

premium in long-term interest rates that accounts for shifting endpoints. Section 8 provides

new variance ratios for assessing the importance of the inflation and real-rate trends for interest

rate changes at different frequencies. Section 9 concludes.

2 A no-arbitrage model with macro trends

Our theoretical framework is a stylized affine term structure model for real and nominal

yields that demonstrates how, under absence of arbitrage, changes in π∗t and r∗t—the inflation

trend and the equilibrium real short rate—affect interest rates. Although our framework is

quite parsimonious—with few risk factors, no stochastic volatility, and strong risk pricing

restrictions—it is sufficient to provide some important testable predictions about fundamental

aspects of the relationship between the trend in inflation, the equilibrium real rate, and the

yield curve.4

We model inflation, πt, as the sum of trend, cycle, and noise components:

πt+1 = π∗t + ct + et+1, π∗t = π∗t−1 + ξt, ct = φcct−1 + ut,

where the innovations ξt and ut and the noise component et are mutually independent iid

3The only exceptions we are aware of are Ang et al. (2008), who allow regime switching in the mean of the
real short rate, and the macro-finance models of Hans Dewachter and co-authors, including Dewachter and
Lyrio (2006) where r∗t is deterministically linked to π∗

t and Dewachter and Iania (2011) where r∗t is tied to
trend output growth.

4This model generalizes the one in CP to allow for time variation in r∗t and flexible trend-cycle dynamic
specifications.
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normal random variables with standard deviations σξ, σu and σe. Inflation expectations at

various horizons are given by Etπt+h+1 = π∗t + φhc ct. In the limit, expectations converge to

the time-varying inflation endpoint, lim
h→∞

Etπt+h = π∗t , which can be viewed as the perceived

inflation target of the central bank. This specification of inflation dynamics is in line with

the modern empirical macro literature, which allows for a trend component in inflation (e.g.,

Stock and Watson, 2007) and is similar to the one in Duffee (2016). We assume that the

shocks ξt and ut affect only expectations of future inflation but not current inflation, which

slightly simplifies the bond pricing formulas but has no fundamental significance.

The one-period real rate, rt, also has trend and stationary components, respectively, the

equilibrium real rate, r∗t , and the cyclical real-rate gap, gt:

rt = r∗t + gt, r∗t = r∗t−1 + ηt, gt = φggt−1 + vt.

The shocks are again mutually uncorrelated and iid normal, with standard deviations ση and

σv. Since lim
h→∞

Etrt+h = r∗t , the equilibrium real rate can be understood as the real rate that

prevails in the economy after all shocks have died out.

Formally, of course, this specification includes an exact unit root in inflation and the real

rate. We view this assumption merely as a convenient way to model very persistent processes.

The use of unit roots simplifies the exposition of our model and the arguments regarding

trend components, but it is not crucial. Taken literally, a unit root specification is implausible

because the forecast error variances of inflation and real rates do not in fact increase linearly

with the forecast horizon as predicted by a unit root. Instead, both variables have always

remained within certain bounds. However, in finite samples, a stationary process can always

be approximated arbitrarily well by a unit root process, and it is well-known that doing so

can often be beneficial for forecasting (e.g., Campbell and Perron, 1991). Thus, π∗t and r∗t can

be viewed simply as highly persistent components of πt and rt that capture expectations at

the long horizons relevant for investors, even if infinite-horizon expectations are constant. In

practice, these relevant time horizons are often in the 5- to 10-year range when cyclical shocks

have largely dissipated, as noted by Laubach and Williams (2003) and Summers (2015).

The final state variable determining interest rates is a risk price factor xt, which follows

an independent autoregressive process:5

xt = µx + φxxt−1 + wt,

5Cochrane and Piazzesi (2005) provide evidence supporting a stationary single factor driving bond risk
premiums. Also, see the discussion in CP.

6



where wt is iid normal with standard deviation σw. We collect the state variables as Zt =

(π∗t , ct, r
∗
t , gt, xt)

′, so their dynamics can be compactly written as a first-order vector autore-

gression, a VAR(1):

Zt = µ+ φZt−1 + Σεt, (1)

where µ = (0, 0, 0, 0, µx)
′, φ = diag(1, φc, 1, φg, φx), Σ = diag(σξ, σu, ση, σv, σw), and εt is a

(5 × 1) iid standard normal vector process.

The model is completed by a specification for the log real stochastic discount factor (SDF),

mr
t+1, for which we choose the usual essentially affine form of Duffee (2002):

mr
t+1 = −rt −

1

2
λ′tλt − λ′tεt+1, λt = Σ−1(λ0 + λ1Zt).

We only allow xt to affect the price of risk, so that the first four columns of λ1 are zero.

Furthermore, shocks to xt are not priced, so that the last element of λ0 and the last row of λ1

are zero. The non-zero elements of λ0 are denoted by λ0π∗ , λ0c, λ0r∗ , and λ0g, and those of λ1

by λπ∗x, λcx, λr∗x, and λgx.

The log nominal SDF is mn
t+1 = mr

t+1 − πt+1, and the nominal short-term interest rate is

it = −Etmn
t+1 −

1

2
V art(m

n
t+1) = r∗t + gt + π∗t + ct −

1

2
σ2
e .

Due to our timing assumption for the inflation process, and because the noise shocks et are

not priced, there is no inflation risk premium in the nominal short rate.6 Prices of zero-

coupon bonds with maturity n, denoted by P
(n)
t , are easily verified to be exponentially affine,

i.e., log(P
(n)
t ) = An + B′nZt, using the pricing equation P

(n+1)
t = Et(exp(mn

t+1)P
(n)
t+1). The

coefficients follow the usual recursions of affine term structure models (e.g., Ang and Piazzesi,

2003):

An+1 = An+B′n(µ−λ0)+Cn, Cn :=
1

2
(σ2

e+B′nΣΣ′Bn), Bn+1 = −(1, 1, 1, 1, 0)′+(φ−λ1)′Bn,

where Cn captures the convexity in bond prices. The initial conditions are A0 = 0, B0 =

(0, 0, 0, 0, 0)′. For the individual loadings of bond prices on the risk factors we have

Bπ∗

n+1 = Bπ∗

n − 1, Bc
n+1 = φcB

c
n − 1, Br∗

n+1 = Br∗

n − 1, Bg
n+1 = φgB

g
n − 1,

6That is, Covt(m
r
t+1, πt+1) = 0. CP make the same assumption, which is justified because estimates of this

short-run inflation risk premium are typically very small. Note that the nominal short rate equation can be
related to the popular Taylor rule for monetary policy in which r∗t +π∗

t represents the level of the policy-neutral
nominal short rate and gt + ct captures the cyclical response of the central bank.
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Bx
n+1 = −λπ∗xB

π∗

n − λcxB
c
n − λr∗xB

r∗

n − λgxB
g
n + φxB

x
n,

and the explicit solutions are

Bπ∗

n = −n, Bc
n =

φnc − 1

1 − φc
, Br∗

n = −n, Bg
n =

φng − 1

1 − φg
,

Bx
n =

λπ∗x + λr∗x
1 − φx

(
n− 1 − φnx

1 − φx

)
+

λcx
1 − φc

(
1 − φnx
1 − φx

− φnx − φnc
φx − φc

)
+

λgx
1 − φg

(
1 − φnx
1 − φx

−
φnx − φng
φx − φg

)
.

For nominal bond yields, the model implies the following decomposition:

y
(n)
t = − log(P

(n)
t )/n = −An/n−B′nZt/n

= π∗t +
1 − φnc
n(1 − φc)

ct︸ ︷︷ ︸∑n
i=1 Etπt+i/n

+ r∗t +
1 − φng

n(1 − φg)
gt︸ ︷︷ ︸∑n−1

i=0 Etrt+i/n

−An/n−Bx
nxt/n.︸ ︷︷ ︸

convexity and yield term premium

(2)

This equation shows the effect of fluctuations in the trend and cyclical components of inflation

and real rates and the risk-premium factor on interest rates of different maturities. The

trend components π∗t and r∗t naturally act as level factors by affecting yields of all maturities

equally.7 The cyclical components ct and gt are slope factors as they affect short-term yields

more strongly than long-term yields, and their loadings approach zero for large n. The risk-

premium factor affects long-term yields more strongly than short-term yields: The loadings of

yields on xt start at zero and tend to lim
n→∞

−Bn
x/n = −(λπ∗x+λr∗x)/(1−φx). Thus, long-term

yields are mostly driven by the trend components π∗t and r∗t , as well as by the risk-premium

factor xt. Appendix A provides additional details and results for this affine model, including

expressions for forward rates.

The model has several predictions about the relationship between interest rates and the two

macroeconomic trends. A first straightforward prediction is that for any yield maturity n, the

detrended yield y
(n)
t − π∗t − r∗t will be much less persistent than the yield itself. The difference

in persistence is particularly pronounced for long-term yields or forward rates, which place a

heavy weight on the trend components. Strictly speaking, under the unit root specification,

y
(n)
t is I(1) while y

(n)
t − π∗t − r∗t is I(0). Furthermore, a regression of y

(n)
t on π∗t and r∗t is a

cointegrating regression that should recover unit coefficients, since the cointegrating vector

of (y
(n)
t , π∗t , r

∗
t ) is (1,−1,−1). The model also predicts that a partial detrending with only

7The constant loadings of yields on the trend variables shows that unit roots are also present under the
risk-neutral measure. Strictly speaking, this is inconsistent with absence of arbitrage—see Dybvig et al. (1996)
and Campbell et al. (1997, p. 433)—because the convexity in −An/n diverges to minus infinity. However, as
in the case of the real-world measure, our predictions are unaffected if the largest roots under the risk-neutral
measure are taken to be very close to but below one.
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the inflation trend will be much less successful. Namely, y
(n)
t − π∗t will exhibit substantial

persistence. Similarly, a regression of y
(n)
t on π∗t is a spurious regression that will not recover

a unit coefficient and will produce residuals that remain highly persistent. We will investigate

these predictions empirically in Section 4.

The fact that interest rates do not have a constant mean but contain the stochastic trend

i∗t = π∗t + r∗t also has important implications for yield forecasts. From (1) and (2) we have

lim
h→∞

Ety
(n)
t+h = k(n) + π∗t + r∗t ,

where the constant k(n) captures convexity and the unconditional mean term premium. Hence,

interest rates mean-revert to a “shifting endpoint” (Kozicki and Tinsley, 2001) that is driven

by both macroeconomic trends. For our empirical investigation we will ignore the constant

k(n), which is of second-order concern for our purposes here. The model predicts that forecasts

of long-horizon interest rates that incorporate knowledge of i∗t are more accurate than forecasts

that ignore it. In particular, long-range forecasts that account for i∗t should improve upon the

common forecast benchmark of a random walk. We will examine these potential forecast

improvements empirically in Section 5.

A third area in which macro trends may be empirically relevant is for the prediction of

excess bond returns. CP report substantial gains in such prediction from including their

measure of trend inflation. In our model, as in CP’s model, excess bond returns, rx
(n)
t+1, are

driven only by the risk premium factor xt:

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t − y

(1)
t = −1

2
B′n−1ΣΣ′Bn−1 +B′n−1(λ0 + λ1ι5)xt +B′n−1Σεt+1,

where p
(n)
t denotes the log-price of a zero-coupon bond with maturity of n quarters and ι5

is a (5 × 1)-vector of ones. The better performance found by CP in predicting excess bond

returns with trend inflation suggests that accounting for the trend component can uncover

the information about expected returns (i.e., about xt) that is contained in observed interest

rates. In other words, detrending interest rates with inflation helps estimate bond risk premia.

However, according to our model, the equilibrium real rate can drive nominal yields in the same

fashion as the trend component of inflation. Therefore, our model’s prediction is that including

not only π∗t but also r∗t should improve the predictive power of excess return regressions and

the estimation of bond risk premia. We assess the roles of both trend components for return

predictability in Section 6. Another measure of the bond risk premium is the term premium

in long-term yields, and in Section 7, we contrast term premium estimates that account for

shifts in π∗t and r∗t with conventional estimates that do not.

9



Finally, the model predicts that macroeconomic trends should play a particularly important

role in accounting for interest rate changes at low frequencies. The trend components are

highly persistent, so while their influence can be obscured by transitory volatility at higher

frequencies, they should key drivers of interest rate changes over longer intervals (e.g., over

several years or more). This pattern implies that variance ratios of changes in the trend

components relative to changes in interest rates should exhibit a pronounced tendency to rise

with the span of the changes. In Section 8, we will use such variance ratios to estimate the

importance of the trend components at different frequencies.

In sum, our stylized theoretical model provides clear predictions about five aspects of the

link between interest rates and macroeconomic trends. Of course, these predictions will be

evident in the data only to the extent that there is material variation in the trend components.

Furthermore, an empirical assessment requires accurate estimates of π∗t and r∗t . Thus, our

empirical analysis should be viewed as tests of the joint hypothesis that (a) the behavior of

the trend components and their links to the yield curve conform to our no-arbitrage model, (b)

variation in the trend components is quantitatively important, and (c) our empirical proxies

accurately capture the evolution of the trend components.

3 Data and trend estimates

We now describe the data and the estimates of the macroeconomic trends that we will use

in testing the model’s predictions. Our data set is quarterly and extends from 1971:Q4

to 2015:Q4. The interest rate data are end-of-quarter zero-coupon Treasury yields from

Gürkaynak et al. (2007) with maturities from one to 15 years. We augment these data with

three- and six-month Treasury bill rates from the Federal Reserve’s H.15 data. In our empiri-

cal analysis, we mainly focus on long-term (five-year and ten-year) yields as well as long-term

(five-to-ten-year) forward rates to exhibit the importance of π∗t and r∗t , and these are the

relevant horizons for our trend measures as well.

For measuring the macroeconomic trends, we simply take existing estimates from the

macroeconomics literature. Our goal is to assess whether such off-the-shelf measures can

provide evidence linking the inflation and real rate trends to the yield curve and risk pricing.

An alternative strategy would be to estimate time-varying r∗t and π∗t within a no-arbitrage term

structure model. Our approach, which conditions on existing estimates, is more conservative,

because our macro estimates of r∗t and π∗t have not been fine-tuned to incorporate no-arbitrage

restrictions or information in long-term yields. We do not include trend estimates that are

based on information in the yield curve, such as estimates of π∗t by Christensen et al. (2010)
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or estimates of r∗t by Johannsen and Mertens (2016), Christensen and Rudebusch (2017),

or Del Negro et al. (2017). All our empirical trend proxies are based only on information

in macroeconomic variables, short-term interest rates and surveys, in order to provide the

cleanest evidence of the empirical links between macro trends and the yield curve.

Several different empirical proxies for trend inflation, π∗t , are available including surveys,

statistical models, or a combination of the two—see, for example, Stock and Watson (2016) and

the references therein. We employ a well-known survey-based measure, namely, the Federal

Reserve’s research series on the perceived inflation target rate, denoted PTR. It measures long-

run expectations of inflation in the price index of personal consumption expenditure (PCE),

and is often used in empirical work—see, for example, Clark and McCracken (2013). PTR is

based exclusively on survey expectations since 1979 (i.e., for most of our sample).8 Figure 1

shows that from the beginning of our sample to the late 1990s, this estimate mostly mirrored

the increase and decrease in the ten-year yield. Since then, however, it has been essentially

flat at two percent, which is the level of the longer-run inflation goal of the Federal Reserve,

which was first publicly designated as such in 2012. Other survey expectations of inflation

over the longer run, such as the long-range forecasts in the Blue Chip survey, exhibit a similar

pattern. The inflation trend that CP use is a simple weighted moving average of past core

inflation, which, as they note, co-moves closely with PTR.

The recent literature on macro-based estimation of the equilibrium real interest rate has

grown rapidly. These estimates almost invariably rely on models with macroeconomic struc-

tural underpinnings and macroeconomic data.9 A popular example is the model of Laubach

and Williams (2003), in which the unobserved natural rate is inferred from macroeconomic

data using a simple structural specification and the Kalman filter. In Figure 2, we plot the

(filtered) Laubach-Williams estimate of r∗t . In addition, the figure also includes the estimates

of Lubik and Matthes (2015), who employ a time-varying parameter VAR model, and Kiley

(2015), who augments the Laubach-Williams model with credit spreads. Figure 2 shows that

since the early 1980s, these three macro-based estimates have evolved in a broadly similar

fashion. A straightforward method to aggregate and smooth the information from these three

specific modeling strategies is to take their average. In the 1970s, 80s, and 90s, this average

8Since 1979, PTR corresponds to long-run inflation expectations from the Survey of Professional Fore-
casters. Before 1979, PTR is based on estimates from the learning model for expected inflation of Koz-
icki and Tinsley (2001). For details on the construction of PTR, see Brayton and Tinsley (1996). PTR
can be downloaded with the updates of the Federal Reserve’s FRB/US large-scale macroeconomic model at
https://www.federalreserve.gov/econresdata/frbus/us-models-package.htm.

9Alternative survey-based estimates of r∗t would require long-run expectations of both nominal interest
rates and inflation. Unfortunately, the available time span for the former is quite limited (the earliest is a
biannual Blue Chip Financial Forecasts series that starts in 1986) and they have also been found to be less
accurate than forecasts of inflation (see, for example, Dijk et al., 2014).

11

https://www.federalreserve.gov/econresdata/frbus/us-models-package.htm


fluctuated modestly between 2 and 3 percent, which is consistent with the common view of

that era that viewed the equilibrium real rate as effectively constant. However, from 2000 to

2015, all of the measures fell, with an average decline of 2.5 percentage points, consistent with

the shifts in global saving and investment that have been identified.10

Ideally, our trend estimates should reflect information that was available contemporane-

ously to investors. Having a reasonable alignment of r∗t and π∗t to the real-time evolution of

investors’ information sets is particularly relevant for properly assessing the value of macro

trends in predicting future yields and bond returns and determining the term premium in

long-term yields (as in Sections 5–7). Since 1979, our survey-based estimate of π∗t has been

available to bond investors at the end of each quarter, when our yields are sampled. Real-time

concerns have been more acute for estimates of r∗t (Clark and Kozicki, 2005). To construct r∗t ,

we use filtered (i.e, one-sided) estimates of the equilibrium real rate from the three macroeco-

nomic models cited above. That is, these estimates only use data up to quarter t to infer the

unobserved value of r∗t . While the estimated model parameters are based on the full sample of

final revised data, Laubach and Williams (2016) show that truly real-time estimation of their

model delivers an estimated series of r∗t that is close to their final revised estimate over the

period that both are available. This suggests that an alternative real-time estimation with

real-time empirical trend proxies would be unlikely to overturn our results.

Intuitively, our empirical measures of π∗t and r∗t are consistent with a compelling narrative

about the evolution of long-term nominal interest rates, as shown in Figure 1. Starting

with the Volcker disinflation of the 1980s, interest rates and inflation trended down together.

Around the turn of the millennium, long-run inflation expectations stabilized near 2 percent.

However, long-term interest rates continued to decline in part because structural changes in

the global economy started pushing down the equilibrium real rate. These structural changes

likely included slowdowns in trend growth in various countries, increases in desired saving due

to global demographic forces and strong precautionary saving flows from emerging market

economies, as well as declines in desired investment spending partly reflecting a fall in the

relative price of capital goods (Rachel and Smith, 2015; Carvalho et al., 2016). The following

analysis investigates whether the link between macro trends and the yield curve that underlies

this narrative is supported by the empirical evidence.

10Laubach and Williams (2003) and Kiley (2015) define r∗t as the neutral real rate at which monetary policy
is neither expansionary nor contractionary. This differs from our definition (and that in Lubik and Matthes
(2015)) of r∗t as the trend (or long-run) component of the real rate. However, in the models of Laubach
and Williams (2003) and Kiley (2015), r∗t is assumed to follow a random walk, so the two definitions in fact
coincide.
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4 Persistence in long-term yields from r∗t and π∗t

If the trend components of inflation and the real interest rate play an important role in driving

interest rates, then these trends should exhibit a close statistical relationship with long-term

interest rates and account, in particular, for most of the persistence of these rates. A natural

starting point for assessing this relationship is to consider simple regressions of yields on

the trend components. Table 1 reports the results for such regressions with three different

dependent variables: bond yields with 5 and 10 years maturity, and the 5-to-10-year forward

rate. For each maturity, we estimate two versions of the regressions (with standard errors

calculated using the Newey-West estimator with six lags). The first version has only a constant

and π∗t as regressors, which is the same regression that CP estimated using their simple moving-

average estimate of the inflation trend (see their table 1). These regression results show high

R2’s at all maturities and π∗t coefficients that are just above one and highly significant.11 CP

interpret these results as indicating that trend inflation drives the level of yield curve. However,

the results for the second regression specification show that incorporating the real rate trend

is also important. Indeed, with the addition of r∗t to the regressions, both the inflation and

real rate trends coefficients are highly significant, and the regression R2’s increase a further 7

to 12 percentage points.

Taken at face value, these estimates suggest that changes in r∗t along with fluctuations in

π∗t , are key sources of variation in long-term interest rates. The interpretation of these results

is complicated by the fact that all of the variables in the regressions are highly persistent.

Conventional asymptotic arguments, which justify inference based on the Newey-West stan-

dard errors and R2’s in Table 1, are not valid if some of the variables contain autoregressive

roots close to or equal to one. For example, under the assumptions of the model in Section

2, these roots are equal to one, and the static regressions in Table 1 estimate cointegrating

relationships between long-term interest rates, inflation, and real rates.12 If there is indeed

such a cointegrating relationship, then the regression provides super-consistent estimates of

the cointegrating vector, the R2 converges to one, and conventional hypothesis tests are likely

invalid for inference about the coefficients (e.g., Hamilton, 1994, Chapter 19). Consequently,

the regression results in Table 1—although suggestive of the joint importance of r∗t and π∗t for

the determination of yields—cannot provide definitive answers.

11Our estimated coefficients on π∗
t are somewhat higher than in CP because our measure of the inflation

trend is less variable, though when r∗t is added, the estimated coefficients for π∗
t decrease toward one.

12Much empirical work, for example, King et al. (1991), has documented the substantial persistence in
nominal interest rates, inflation, and real interest rates. The main difference between our static regressions
and the usual cointegration regressions in this context (as in Rose, 1988, for example) is that we use directly
observable proxies for the trend components of πt and rt.
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To provide more compelling statistical evidence that our measures of π∗t and r∗t capture

the persistent variation in interest rates, we examine the time series properties of detrended

long-term interest rates with one or both of the trend components subtracted out. For the

same three interest rates considered above, Table 2 reports the standard deviation and two

measures of persistence: the estimated first-order autocorrelation coefficient, ρ̂, and the half-

life, which indicates the number of quarters until half of a given shock has died out and is

calculated as ln(0.5)/ ln(ρ̂). For each interest rate, the table reports these statistics for five

different series: the level of the interest rate, the rate detrended by simply subtracting out π∗t

or i∗t (assuming unit coefficients on these trends), and the detrended rate calculated as the

residuals from one of the two static detrending regressions in Table 1. Several findings stand

out: First, detrending with r∗t as well as π∗t removes substantially more persistence, typically

reducing the half-life by about 40-50%. That is, π∗t is not the only important driver of interest

rate persistence. Second, the detrended series are substantially less variable and less persistent

than the original interest rate series. For example, shocks to the ten-year yield have a half-life

of about 5-1/2 years, whereas shocks to the difference between the ten-year yield and i∗t have

a half-life of just under one year. Finally, there is little difference in the statistical properties

between series that are detrended using unit coefficients and those that are detrended using

estimated coefficients, notably for the forward rate.

Unit root tests provide further evidence supporting detrending with both r∗t and π∗t . The

last two columns of Table 2 provide parametric Augmented Dickey-Fuller (ADF) t-statistics

and non-parametric Phillips-Perron (PP) Zα statistics, which examine the persistence prop-

erties of these series by testing the null hypothesis of a unit autoregressive root.13 These tests

show strong evidence against the unit root null for the series that are detrended with both π∗t

and r∗t . By contrast, the unit root null is never rejected at the 5 percent level for the original

interest rate series or for series that are detrended with just π∗t . This evidence strongly sup-

ports the use of i∗t = r∗t + π∗t when accounting for interest rate persistence and understanding

interest rate dynamics. Finally, when detrending with both π∗t and r∗t , the rejections are at

least as strong for the series that are detrended using unit coefficients as for the residuals from

the static regressions, consistent with the prediction of equation (2).

These results have important implications for the debate about the long-run Fisher effect,

13For the ADF test, we include a constant and k lagged difference in the test regression, where k is determined
using the general-to-specific procedure suggested by Ng and Perron (1995). We start with k = 4 quarterly lags
and reduce the number of lags until the coefficient on the last lag is significant at the ten percent level. For
the PP test, we use a Newey-West estimator of the long-run variance with four lags. When the series under
consideration is a residual from an estimated cointegration regression, we don’t include intercepts in the ADF
or PP regression equations and use the critical values provided by Phillips and Ouliaris (1990), which depend
on the number of regressors in the cointegration equation.
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which posits a common trend for inflation and interest rates with a unit coefficient (leaving

aside tax considerations). A sizeable literature has tested this hypothesis with mixed results,

often estimating an inflation coefficient that is larger than one (see the references in footnote

2). We have provided evidence that long-term interest rates contain two trend components

but that the series yt − π∗t − r∗t is stationary, consistent with the prediction of our model.

Our results thus provide strong support for a long-run Fisher effect if shifts in the equilibrium

real rate are taken into account. The importance of time variation in r∗t can explain why

past research has generally been unable to find a stable relationship between nominal interest

rates and inflation, going back to Rose (1988) and recently summarized by Neely and Rapach

(2008). Under the unit root assumption, ignoring r∗t as a trend component, by regressing

interest rates only on π∗t (or πt), leads to a misspecified cointegration relationship as the

residual contains the trend r∗t . In such a situation, it will be very difficult to uncover the

Fisher effect. By contrast, including both r∗t and π∗t , we obtain clear, unambiguous results:

the trend components of inflation and the real rate are related to interest rates exactly as

standard finance theory predicts with a long-run Fisher effect and the two trends together

capture a large share of the persistence in long-term interest rates.

5 Forecasting interest rates with r∗t and π∗t

The previous section illustrated the strong persistence of interest rates and the close link

between that persistence and measures of the inflation trend, π∗t , and the equilibrium real

rate, r∗t . Here, we provide complementary evidence based on interest rate forecasts.

We forecast the five- and ten-year yields and the five-to-ten-year forward rate. At each

point in time, starting in 1976:Q1 (at t = 20) when five years of data are available, we forecast

each interest rate, yt, at horizons from h = 1 to h = 40 quarters. The benchmark model in

the literature is a driftless random walk, i.e., the forecast ŷt+h = yt for all h. This benchmark

is denoted in the results as Method 1. The two alternative forecast specifications assume that

interest rates mean-revert to a time-varying endpoint ı̂t. Of these, Method 2 assumes that

this endpoint is only driven by the inflation trend, i.e., that ı̂t equals π∗t plus a constant. We

estimate this constant recursively as the mean of yτ − π∗τ , using observations from τ = 1 to

τ = t.14 Method 3 instead assumes that the endpoint is ı̂t = i∗t = π∗t + r∗t . For both shifting

endpoint forecast methods, the speed of mean-reversion is recursively estimated as the first-

order autocorrelation coefficient of yt − ı̂t. Denoting this coefficient as ρ̂t, the forecasts for

Methods 2 and 3 are constructed as ŷt+h = ρ̂ht yt + (1 − ρ̂ht )̂ıt. The exact value of ρ̂t, or even

14We have found in additional, unreported results that forecasts which assume that this constant is zero
perform much worse than this method.
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the methodology for determining it, affects short-horizon forecasts but was inconsequential for

our main results.

Table 3 reports the results of this forecasting exercise in terms of root-mean-squared errors

(RMSEs) and mean-absolute errors (MAEs), in percentage points. We also calculate p-values

for tests of equal finite-sample forecast accuracy using the approach of Diebold and Mariano

(1995) (DM).15 We calculate these DM p-values, using standard normal critical values, for

one-sided tests of whether forecasts using the endpoint i∗t (Method 3) improve upon random

walk forecasts (Method 1) and upon forecasts that use only π∗t for the endpoint (Method 2).

We find that Method 3 leads to substantial and highly significant gains in forecast accuracy

at long horizons. Such gains are evident for both RMSEs and MAEs, but are larger and more

strongly significant for absolute-error loss. For example, when forecasting the ten-year yield

five years ahead, using the information in i∗t lowers the RMSE by over 25% relative to the

random walk forecast, an improvement that is significant at the five-percent level, while the

MAE drops by more than 40% and is significant at the one percent level. Using i∗t for forecasts

also improves upon Method 2, which does not use r∗t , by a magnitude that is typically large

and statistically significant.

This long-horizon forecast exercise thus confirms that interest rates exhibit reversion to

the time-varying endpoint i∗t , as predicted by the theory of Section 2.16 Earlier research, such

as Dijk et al. (2014), has found that when forecasting interest rates it is beneficial to link

long-run projections of interest rates to long-run expectations of inflation. Our new result

shows that including r∗t along with π∗t improves on long-horizon interest rate forecasting to

an even greater degree. That is, accounting only for the time variation in π∗t is insufficient,

as it is important to include r∗t in understanding yield curve dynamics. Furthermore, while

earlier authors ran regressions of the level of interest rates on long-run inflation expectations

to scale π∗t for forecasting, our results show that no such scaling or estimation is necessary for

accurate long-range forecasts if the endpoint is simply taken as i∗t .
17

Many studies have documented that it is difficult to beat the random walk model when

15Following common use, we construct the DM test with a rectangular window for the long-run variance
and the small-sample adjustment of Harvey et al. (1997). Monte Carlo evidence in Clark and McCracken
(2013) indicates that this test has good size in finite samples. However, for very long forecast horizons there
are of course only few non-overlapping observations in our sample, so the p-values are subject to substantial
uncertainty.

16The model in Section 2 implies that the endpoint equals a maturity-specific constant plus i∗t , but our
results show that it is not necessary to try to estimate and include this constant in the endpoint to obtain
accurate forecasts.

17Our approach could easily be extended to jointly forecast the whole yield curve as in Diebold and Li (2006)
and Dijk et al. (2014), by simply forecasting the Nelson-Siegel level factor in the same fashion that we have
forecast each individual interest rate above.
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forecasting bond yields, which reflects the extreme persistence of interest rates.18 But our

results show that one can obtain better forecasts if one accounts for the source of this persis-

tence. Our use of empirical proxies for the macroeconomic trends inherent in interest rates

leads to substantially better long-term forecasts than the random walk model.

6 Predicting bond returns with r∗t and π∗t

We now turn to the role of macroeconomic trends in predicting bond returns. In the analysis

of CP, proxies for the inflation trend have significant predictive power for annual excess bond

returns, above and beyond the information contained in the yield curve itself. Since r∗t also is

an important trend driving long-term interest rates, we address the natural question of what

role it plays in such predictive regressions.

We predict excess returns for holding periods of one quarter and four quarters. The excess

return for a holding period of h quarters for a bond with maturity n is calculated as

rx
(n)
t,t+h = p

(n−h)
t+h − p

(n)
t − hy

(h)
t = −(n− h)y

(n−h)
t+h + ny

(n)
t − hy

(h)
t .

Our long-term bond yields are available only at annual maturities, so we calculate one-quarter

returns with the usual approximation y
(n−1)
t+1 ≈ y

(n)
t+1. Our dependent variable is the average

excess return for all bonds with two to 15 years maturity.19 We begin with three specifications

of the predictive regressions: The first includes a constant and the first three principal com-

ponents (PCs) of yields. This common baseline regression is motivated by work going back to

Fama and Bliss (1987) and Campbell and Shiller (1991) that showed there is information in

the yield curve itself, and in particular in its slope (PC2), about expected bond returns. The

second specification adds π∗t and is closely related to the specification with an inflation trend

that was estimated by CP. The third specification also includes r∗t in order to simultaneously

capture the effects of both macroeconomic trends in the regression.

The top panel of Table 4 reports the estimation results for the full sample. We calcu-

late White’s heteroskedasticity-robust standard errors for the case of one-quarter returns and

Newey-West standard errors with six lags for the four-quarter returns (since the overlap intro-

duces serial correlations in the error term). Our results replicate CP’s main finding, namely

that inclusion of the inflation trend raises the predictive power quite substantially compared

18Prominent examples include Duffee (2002) and Diebold and Li (2006); see Duffee (2013) for a review of
this literature.

19CP focused on annual holding periods and used a weighted average that downweights longer-term bonds.
Our use of a simple average made no material difference to the results and is more common in this literature.
Our sample period is similar to the one considered in CP but ends in 2015 instead of 2011.
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to a regression that only includes yield-curve information, and that both the inflation trend

and the level of yields (PC1) appear highly significant. However, adding r∗t to the regressions

leads to further impressive gains in predictive power. For both one-quarter and four-quarter

returns, the R2 increases substantially, the coefficients and t-statistics for π∗t and PC1 rise,

and the coefficient on r∗t itself is large and highly significant. Interestingly, the coefficient on

r∗t is about as large as the coefficient on π∗t , which confirms the prediction from our theoretical

model that these two trends play similar roles in determining interest rates.

It is well known that these kinds of predictive regressions for bond returns raise some knotty

econometric issues. Bauer and Hamilton (2016) show that the small-sample inference in such

cases is particularly problematic when the predictors are highly persistent, like interest rates

and our macro trends. They propose a parametric bootstrap procedure to carry out robust

inference in such cases. It tests the null hypothesis that only the information in the yield curve

is useful for predicting excess returns, and it can accurately gauge the statistical significance

of additional proposed predictors. Following their recommendation, we calculate bootstrap

small-sample p-values for the coefficients on π∗t and r∗t . Our bootstrap simulates yields from

a simple VAR(1) factor model and the additional predictors from a separate VAR(1) model,

so that the null hypothesis—that macro trends are unimportant—holds by construction.20

The predictive regression is estimated in each bootstrap sample and the t-statistics for the

additional predictors are recorded. With this small-sample distribution of the test statistics in

hand, p-values are calculated as the fraction of simulated samples in which the t-statistic is at

least as large (in absolute value) as the t-statistic in the actual data. These p-values, reported

in squared brackets in Table 4, indicate that both of our trends are statistically significant

even when we account for small-sample econometric concerns.

In the subsample starting in 1985, the inflation trend is not statistically significant when

included on its own according to the small-sample p-values.21 Only when we add our measure

of the equilibrium real rate do both trends matter for bond risk premia; the coefficients on π∗t

and PC1 more than double, the R2 increases substantially, and the coefficients on π∗t and r∗t

are statistically significant. These results confirm our intuition from Figure 1 that the real-

rate trend has gained in importance over time relative to the trend in inflation. Therefore,

empirical analysis of long-term interest rates implies that the trend in the real interest rate is

as important as, and recently more important than, the trend in inflation.22

20Estimates of the VAR coefficients are bias-corrected to more accurately capture the high persistence of
interest rates and the trend components.

21This result is consistent with Bauer and Hamilton (2016) who also found that in a subsample starting in
1985 the inflation trend is only marginally significant.

22In additional, unreported results we have found that the predictive gains from including r∗t are particularly
large during the early 2000s when both r∗t and long-term interest rates decreased while long-run inflation
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In the presence of persistent predictors, it is generally difficult to interpret the magnitude

of R2 as a measure of predictive accuracy, because even predictors that are irrelevant in

population can substantially increase R2 in small samples (Bauer and Hamilton, 2016). By

using the bootstrap to avoid this pitfall, we generate small-sample distributions of R2 under

the null hypothesis that only yields have predictive power, and interpret the statistics obtained

in the actual data by comparing them to the quantiles of these distributions. Table 5 reports

this comparison for predictive regressions of annual excess returns for the three specifications

we have considered so far, as well as for two additional ones that will be discussed below.

Adding π∗t to the regression increases R2 by 20 percentage points, but this is only barely

higher than the upper end of the 95%-bootstrap interval, which suggests that under the null

hypothesis it would not be too uncommon to observe an increase in R2 of up to 19 percentage

points. In contrast, adding r∗t increases R2 to 54%, and the increase relative to the yields-

only specification of 31 percentage points is much higher than what is plausible under the

null hypothesis. In the post-1985 subsample, the increase in R2 from only adding π∗t is not

statistically significant, whereas the increase of 29 percentage points from adding both trends

is strongly significant.

CP defined “interest rate cycles” as the de-trended component in interest rates, which they

denoted as c
(n)
t , and showed that these cycles captured the predictive power in interest rates

and the inflation trend for future bond returns. They estimated these interest rate cycles as

the residuals of regressions of interest rates on their measure of the inflation trend. Our results

here and in the previous sections indicate that a better estimate of the cycle can be obtained

by incorporating both an inflation trend and a real rate trend. Furthermore, our evidence in

Section 4 supporting a cointegration vector between interest rates and the macro trends of

(1,−1,−1) suggests that interest cycles (c
(n)
t in CP’s notation) should be calculated simply

as y
(n)
t − π∗t − r∗t , as prescribed by our simple no-arbitrage model in Section 2. In addition we

also consider cycles that are calculated as yields detrended by only π∗t , i.e., y
(n)
t − π∗t , in order

to understand the separate importance of both trend components. Figure 3 compares these

two measures of interest rate cycles by plotting for each case the average cycle across yields

of maturities from two to 15 years (as in CP). The cycle that is calculated by detrending only

with π∗t still contains an important trend component, as evident in the substantial decline of

about four percentage points from the level prevailing in the 1990s to the end of the sample.

The cycle measure that also accounts for changes in the equilibrium real interest rate does not

exhibit this trend. Instead, it exhibits cyclical behavior with clear mean reversion.

Furthermore, in the spirit of CP, we investigate the use of interest rate cycles, i.e., detrended

expectations where anchored close to two percent.
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yields, in predictive regressions for bond returns. The first three rows of Table 5 summarize

our earlier results from the regression of excess returns on yield PCs alone, PCs jointly with π∗t ,

and PCs with both trends. The bottom two rows provide results for predictions using interest

rate cycles. In this case the predictors are the three PCs of the detrended yield curve. Table

5 shows that using PCs of yields that are detrended only by π∗t increases R2 by 10 percentage

points relative to the baseline regression with three PCs of yields that are not detrended. But

using PCs of yields that are detrended by both macro trends increases R2 by 20 percentage

points. The difference is even more striking in the later subsample that starts in 1985: R2

increases only seven percentage points when detrending with only π∗t but 28 percentage points

when detrending with both π∗t and r∗t . We again calculate small-sample distributions of these

test statistics under the null hypothesis by running the exact same regressions in bootstrapped

samples. For the later subsample, the increase in R2 is insignificant for π∗t -detrending but

strongly significant when we use the correct detrending using both macro trends as prescribed

by no-arbitrage theory.

An intriguing final issue is why the information in π∗t and r∗t is not spanned by the yield

curve. Both reduced-form and structural/equilibrium models of the term structure of interest

rates generally imply that the yield curve contains all (i.e., spans) the relevant information

for predicting future yields and bond returns (Joslin et al., 2013; Duffee, 2013). The appar-

ent conflict of this prediction with the empirical evidence of unspanned macro risks in bond

returns is an important current issue in macro-finance (Ludvigson and Ng, 2009; Joslin et al.,

2014; Cieslak and Povala, 2015). CP and Bauer and Rudebusch (2017) suggest that mea-

surement error, which breaks spanning, can reconcile the models with the data. Bauer and

Hamilton (2016) demonstrate that much of the apparent evidence for unspanned macro risks

is substantially weaker and partly spurious once small-sample problems are accounted for,

as the presence of trending, persistent predictors renders conventional tests of the spanning

hypothesis unreliable. While these econometric issues suggest that the evidence on the pre-

dictive power of macroeconomic trends should be taken with a grain of salt, there are possible

complementary explanations for this phenomenon. We use observable proxies for trends and

have the benefit of hindsight, but estimation of the trend components of time series is fraught

with a large amount of uncertainty, and it is difficult to learn about trends in real time (Clark

and Kozicki, 2005). Because forecasters and investors are bound to learn slowly about changes

in trends, and because they may disagree about the trend, bond prices may not fully incor-

porate the evolution of macroeconomic trends. A related issue is the rational expectations

assumption that underlies all hypothesis tests about bond returns using time series data. The

wedge between subjective (e.g., survey-based) and objective (statistical) expectations of in-
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terest rates and bond returns—documented by Piazzesi et al. (2015), among others—could

cause statistical findings of unspanned risks that were not in fact a feature of subjective risk

premia of investors at the time. More work is needed to better understand how these issues

relate to apparent failures of the spanning hypothesis and the incremental predictive power of

macro trend estimates for bond returns that we document here.

In sum, accounting for the persistent components of yields is important for understanding

return predictability. We find that r∗t has strong incremental predictive power for bond returns,

about on par with the importance of π∗t as a predictor. This suggests that for estimation of

bond risk premia it is crucial to account for not only the inflation trend but also for the

equilibrium real rate.

7 Calculating the term premium with r∗t and π∗t

Our evidence supports the view that for modeling the yield curve, forecasting interest rates, or

predicting bond returns, it is important to account for movements in the trend components r∗t

and π∗t . Accordingly, these trends should also be integral for estimation of the term premium

in long-term interest rates, which we denote as TP
(n)
t . This alternative measure of bond risk

is defined as the difference between holding an n-month bond to maturity or facing a sequence

of 1-period rates over the same period:

TP
(n)
t = y

(n)
t − 1

n

n−1∑
j=0

Ety
(1)
t+j.

Our earlier results show that the expected path of future short rates should not be assumed

to return to a constant mean but to a shifting endpoint i∗t = r∗t + π∗t . Here, we introduce

a methodology to incorporate information about r∗t and π∗t in the estimation of the term

premium and compare the results to a conventional estimate.

Decompositions of long-term interest rates into short-rate expectations and term premia

are commonly obtained from a variety of dynamic models ranging from simple factor models

to no-arbitrage term structure models. We employ the former in this section, by estimating

a time-series process for yield curve PCs and fitting the cross section of yields using the PC

loadings.23 Short-rate expectations are then calculated from the VAR forecasts of the yield

23The results from such a factor model will be essentially identical to those from a model that imposes
maximally-flexible no-arbitrage restrictions on the loadings of yields on risk factors (Duffee, 2011; Joslin et al.,
2013). Still, Cochrane and Piazzesi (2008) and Bauer (2017) emphasized that restricting the prices of risk can
let the cross-sectional behavior of yields help pin down the time-series specification for yields, which could be
relevant for developing no-arbitrage models that incorporate our findings.
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PCs and the PC loadings of the short rate. Our model uses three PCs calculated from 15

Treasury yields with maturities from one year to 15 years over an estimation sample from

1971:Q4 to 2007:Q4. We omit the period of near-zero short-rates beginning in 2008, since

the lower bound on nominal interest rates poses problems for linear factor models (Bauer and

Rudebusch, 2016).

To provide a conventional baseline measure of the term premium, we estimate a first-order

annual VAR(1) in quarterly observations using the first three PCs of interest rates.24 In line

with the underlying structure of the majority of no-arbitrage models, this is a stationary VAR.

For example, Cochrane and Piazzesi (2008) estimated an annual VAR(1) for five interest rates

in monthly observations, and our results closely parallel theirs. In the top-left panel of Figure

4, we plot the model-implied expectations of the one-year yield at different horizons, as well

as the observed one-year yield. As emphasized by Cochrane and Piazzesi (2008), stationary

VARs for the levels of interest rates imply forecasts that quickly revert to the unconditional

mean of the short rate (which is 6.5 percent). The top-right panel of Figure 4 shows the five-

to-ten-year forward rate with its expectations and term premium components. (Results for

the ten-year yield are qualitatively similar.) Not surprisingly, in light of the behavior of model-

implied forecasts, the expectations component is very stable, hovering around the short-rate

mean. Therefore, the term premium, as the residual component, has to account for the trend

in the long-term interest rate since the 1980s. As argued by Kim and Orphanides (2012) and

Bauer et al. (2014), such behavior of expectations and term premium components appears at

odds with observed trends in survey-based expectations (Kozicki and Tinsley, 2001) and the

cyclical behavior of risk premia in asset prices (Campbell and Cochrane, 1999).

To incorporate a trend component into forecasts of the yield curve, we instead model

detrended yields as a stationary VAR. That is, we subtract i∗t from each yield as called for by

the evidence in Sections 4–6, calculate three PCs of detrended yields, and again estimate an

annual VAR(1). We calculate the term premium by forecasting the detrended interest rates

and adding the trend back in to obtain the expected path of future short rates. The bottom two

panels of Figure 4 show the implications of this model for expectations and the term premium.

As the forecast horizon increases, short-rate expectations approach the trend component i∗t

instead of the unconditional mean of the short rate. Consequently, the expectations component

reflects the movements in i∗t and accounts for the low-frequency movements in the long-term

forward rate. The term premium, by contrast, behaves in a cyclical fashion with no discernible

trend. The drop in the forward rate from its average during 1980-1982 to its average during

24That is, the PCs are regressed on an intercept and the one-year lagged values of the PCs, a specification
motivated by the evidence of Cochrane and Piazzesi (2005) that the dynamics of risk premia are more evident
at the annual frequency (see also Cochrane and Piazzesi, 2008).
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2005-2007 was about 7.5 percentage points. In the conventional VAR of interest rates, the

estimated term premium accounts for over 80% of this decline. In contrast, the VAR with

detrended yields attributes only a quarter of this decline to the term premium. This stark

difference demonstrates how accounting for the slow-moving trend component in interest rates

fundamentally alters our understanding of the driving forces of long-term interest rates.

This model—a VAR for interest rate cycles conditional on estimates of the trend i∗t—

provides a simple but effective way to account for a common trend (i.e., shifting endpoints)

in bond yields. In addition to estimation of the term premium, it could be useful in related

applications, such as in forecasting the entire yield curve jointly, or for calculating of expected

returns for any bond and holding period. While it does not impose no-arbitrage, the represen-

tation is consistent with the key predictions of our no-arbitrage model in Section 2 regarding

the role of time-variation in i∗t for bond yields.

8 Variance contributions of r∗t and π∗t

Finally, we compare the size of fluctuations in r∗t and π∗t with those of long-term nominal bond

yields. Duffee (2016) finds that news about future inflation is generally small relative to the

innovations in nominal yields. We interpret his results in the context of our theoretical model

and extend them empirically to consider movements in both r∗t and π∗t and at horizons greater

than just one quarter.

The variance ratio used by Duffee divides the variance of quarterly innovations to average

inflation expectations over n periods by the variance of innovations to the bond yield for

maturity n:

V R
(n)
1 =

V ar ((Et − Et−1)n
−1∑n

i=1 πt+i)

V ar
(

(Et − Et−1)y
(n)
t

) .

We generalize this measure to allow for a longer time span to calculate the change in expec-

tations,

V R
(n)
h =

V ar ((Et − Et−h)n
−1∑n

i=1 πt+i)

V ar
(

(Et − Et−h)y
(n)
t

) ,

so the variances are calculated for the h-period innovation (where a period will remain a

quarter). Our theoretical model from Section 2 implies analytical expressions for these variance
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ratios. For one-period and h-period innovations, respectively, they are

V R
(n)
1 =

σ2
ξ + ac(n)σ2

u

σ2
ξ + ac(n)σ2

u + σ2
η + ag(n)σ2

v +
(
Bxn
n

)2
σ2
w

,

V R
(n)
h =

hσ2
ξ + ac(n)bc(h)σ2

u

hσ2
ξ + ac(n)bc(h)σ2

u + hσ2
η + ag(n)bg(h)σ2

v +
(
Bxn
n

)2
bx(h)σ2

w

,

ai(n) =

(
1 − φni
n(1 − φi)

)2

, bi(h) =
1 − φ2h

i

1 − φ2
i

, i = c, g, x.

These expressions help elucidate the factors determining the variance ratios.

An important result of Duffee’s analysis is that even for long-term bonds, V R
(n)
1 appears

to be surprisingly small. That is, one-period changes in expected average future inflation are

much less variable than one-period surprises in long-term bond yields. This result can be

understood by noting that through the lens of our model

lim
n→∞

V R
(n)
1 =

σ2
ξ

σ2
ξ + σ2

η +
(
λπ∗x+λr∗x

1−φx

)2
σ2
w

.

This ratio will be small if shocks to the equilibrium real rate (ηt) and to the risk-premium

factor (wt) make more important contributions to yield innovations than shocks to the inflation

trend (ξt). One plausible interpretation of Duffee’s finding is that at a quarterly frequency the

trend in inflation moves much less than the term premium component of long-term interest

rates. The term premium is a catch-all component of price movements due to a variety of

factors including changes in risk-sentiment and “animal spirits” not attributable to changes in

real-rate and inflation expectations. This interpretation is consistent with additional evidence

in Duffee’s paper on the role of the term premium and with a large body of evidence on excess

volatility of interest rates, going back to Shiller (1979).

Another way to understand the link between inflation expectations and bond yields is

to consider longer horizons h. In the limit, this generalization of the variance ratio appears

promising because

lim
h→∞

V R
(n)
h =

σ2
ξ

σ2
ξ + σ2

η

,

so asymptotically, this inflation variance ratio is only affected by changes in the trend compo-

nents. Changes in term premia become irrelevant at very low frequencies if, as in our model,

the risk premium factor xt is stationary. Of course, empirical variance ratios for large h do have

the drawback that as h increases, so does the overlap of observations; therefore, we quickly
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lose degrees of freedom and precision in our estimates. However, the profile of variance ratios

across horizons should give us additional insights about interest rate dynamics, even if the

maximum horizon is severely limited in practice by data availability.

Estimation of the these variance ratios requires expectations of inflation and interest rates.

Like Duffee we consider survey-based inflation expectations (in our measure of π∗t ) and mar-

tingale interest rate forecasts. But instead of modeling the inflation process we approximate

inflation news by the change in π∗t . This allows us to calculate the simplified variance ratio

Ṽ R
(n)

h =
V ar (∆hπ

∗
t )

V ar
(

∆hy
(n)
t

) , ∆hzt = zt − zt−h.

For any given n and h, Ṽ R
(n)

h differs from V R
(n)
h because the variances in the simplified ratio

include movements that were anticipated at t− h. However, in many cases, these differences

are likely to be small, in particular for longer time spans of the innovations/changes, since in

the limit

lim
h→∞

Ṽ R
(n)

h =
σ2
ξ

σ2
ξ + σ2

η

= lim
h→∞

V R
(n)
h .

Thus, for low-frequency movements, the two inflation variance ratios are asymptotically iden-

tical.

Figure 5 shows estimates of Ṽ R
(n)

h for changes from one quarter to h = 40 quarters in the

five-year yield, the ten-year yield, and the 5-to-10-year forward rate. This shows the relative

importance of fluctuations in long-run inflation expectations. Similarly, we also calculate these

variance ratios for the contribution of changes in the real-rate trend, r∗t , and in the overall

trend component i∗t = π∗t + r∗t , simply by replacing the variance in the numerator of Ṽ R
(n)

h .

For the inflation trend, we find that one-quarter variance ratios are around 0.1. This

result is consistent with Duffee’s findings and suggests that changes in the inflation trend play

a small role for variation in yields at the quarterly frequency. At lower frequencies, however,

the relative variability of the inflation trend increases. The point estimates of the π∗t -variance

ratio quickly rise with the horizon, and for h = 40 reach a magnitude of around 0.3. This

shows that inflation expectations are of substantial importance for movements in bond yields

once we shift the focus from month-to-month or quarter-to-quarter variation and look at lower

frequencies changes over several years, which are arguably more relevant for long-term bond

investors.

The variance ratio for changes in the real-rate trend, i.e., V ar(∆hr
∗
t )/V ar(∆hyt), is much

lower than for inflation, remaining below 0.1 even at long horizons. This is unsurprising in light

of Figure 1, which shows that over the full sample the movements in r∗t were substantially less
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pronounced than movements in long-term interest rates and the inflation trend.25 Of course,

this perspective of unconditional variances should not be taken to conclude that changes in the

equilibrium real rate are unimportant for interest rate dynamics, given the ample evidence in

Sections 4–6 of the crucial role of r∗t for modeling and forecasting interest rates. Furthermore,

in more recent subsamples, variance ratios should suggest that r∗t has become a more important

driver of changes in long-term interest rates.

To assess the overall importance of the trend components in interest rates, we consider

variance ratios for i∗t , i.e., V ar(∆hi
∗
t )/V ar(∆hyt). Confidence intervals are obtained using

the asymptotic distribution of the sample variances and the delta method. To account for

persistence in conditional variances, Newey-West estimates of long-run variances are used.26

Figure 5 shows that while the sampling uncertainty around the variance ratios for changes in

i∗t is substantial we can be reasonably confident that these variance ratios increase from below

0.15 to a range of around 0.25 to 0.4, depending on the maturity of the interest rate. The

highest levels are reached for the 5-to-10-year forward rate—the confidence interval at h = 40

extends from about 0.3 to 0.4—which is consistent with the notion that distant forward rates

are more strongly affected by the trend components.

While our theoretical model implies that the variance ratios for i∗t approach one for suf-

ficiently large h, our estimates top out around 0.4. One possible explanation is that we are

simply not capturing the trend component with sufficient accuracy. Although we have pro-

vided ample evidence that our trend proxies are closely linked to the low-frequency movements

in interest rates, the true trend components might be more (or less) variable than our mea-

sures. Additionally, we may not be able to consider large enough h given the available data

sample. Finally, it may be that the risk-premium factor itself is sufficiently persistent that it

drives interest rate variation at such low frequencies.

To shed further light on this topic, it is useful to consider not only the direct contribution

of changes in the trend to changes in interest rates, but also indirect contributions, due to

covariance terms. In Table 6, we report the variances of changes in interest rates, in the trend

component i∗t , and in the cycle components yt − i∗t . The variance of yield changes can be

decomposed as follows:

V ar(∆hyt) = V ar(∆hi
∗
t ) + V ar(∆hyt − ∆hi

∗
t ) + 2Cov(∆hi

∗
t ,∆hyt − ∆hi

∗
t ).

25This finding may partly reflect our use of an average of different estimates for r∗t —some of the individual
estimates exhibit distinctly more volatility.

26We use 12 quarterly lags for all long-run variance estimates as indicated by the automatic lag selection
procedure of Newey and West. These confidence intervals may understate the true sampling variability due to
the small number of non-overlapping observations, which decreases the reliability of the asymptotic approxi-
mations.
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The first term captures the direct contribution of trends, whereas the last term captures the

their indirect contribution to movements in yields. Table 6 reports all three components. In

the data, the contribution of the covariance is small at short horizons, but substantial at long

horizons. The two last rightmost columns of Table 6 report the same variance ratio shown

in Figure 5 along with a ratio that also includes the covariance contribution—the indirect

effects—in the numerator. This second ratio rises to over 0.7 with horizon, which suggests

that the cycle component accounts for less than 30% of the variance of interest rate changes at

low frequencies.27 These estimates confirm that after accounting for both direct and indirect

effects, changes in macro trends play an important role in low-frequency movements in interest

rates.

9 Conclusion

In this paper, we have provided new evidence that interest rates and risk pricing are sub-

stantially driven by time variation in the trend in inflation and the equilibrium real rate of

interest. Our empirical approach employed existing estimates of these macroeconomic trends

to investigate this relationship from a variety of perspectives. We showed that accounting

for these trend components can help understand, model, and forecast long-term interest rates

and bond returns. Our results confirm the predictions of no-arbitrage theory for the links

between macroeconomic trends and the yield curve, and they demonstrate that these links are

quantitatively important.

Our findings open up several avenues for future research. Most importantly, they demon-

strate the advantages of yield curve models that allow for slow-moving changes in the long-run

mean of inflation and the real rate. This applies to both reduced-form no-arbitrage models as

well as to more structural, equilibrium models of the yield curve. The purpose of specifying

and estimating such models is typically to understand bond risk premia/term premia and risk

compensation. Calculating the required long-run expectations without accounting for changes

in the underlying trends is likely to give misleading results for risk premia. To avoid this

pitfall we recommend that shifting macro trends should be incorporated in future models of

the term structure of interest rates.

Our analysis should be viewed as a first step in the integration of macroeconomic trends

into yield curve modeling. We took estimates of macroeconomic trends from surveys and

models and treated them as data. While this is a useful starting point, future research will

have to investigate the role of model and estimation uncertainty for the links between macro

27Note that our theoretical model, which assumed that shocks to trend and cycle components are uncorre-
lated, would need to be generalized to provide a model-based interpretation of these results.
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trends and the yield curve. Another important additional dimension to consider is potential

change over time in the relative importance of the macroeconomic trends in accounting for

long-run interest rates. For example, it is well known in empirical macroeconomics (e.g.,

Stock and Watson, 2007) that the trend component of inflation was much more variable in

the 1970s and 1980s than in more recent decades. This raises the question how our (mostly

unconditional) results are affected by taking a conditional perspective. Furthermore, this

suggests that incorporating not only macroeconomic trends but also stochastic volatility in

these trend components will be useful for term structure modeling.
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Appendix

A Additional details for affine term structure model

Here we provide further details and additional results for the affine term structure model of
Section 2. First, we consider prices and yields of real (i.e., inflation-indexed) bonds. Just
like prices of nominal bonds, prices of real bonds are exponentially affine in the risk factors,
log(P̂

(n)
t ) = Ân + B̂′nZt. Hats denote variables pertaining to real bonds. The loadings are

determined by the recursions

Ân+1 = Ân + B̂′n(µ− λ0) + Ĉn, Ĉn :=
1

2
B̂′nΣΣ′B̂n, B̂n+1 = −(0, 0, 1, 1, 0)′ + (φ− λ1)

′B̂n,

Ĉn captures the convexity in real bonds, and the initial conditions are Â0 = 0, B̂0 = (0, 0, 0, 0, 0)′.
Specifically,

B̂π∗

n = 0, B̂c
n = 0, B̂r∗

n+1 = B̂r∗

n − 1, B̂g
n+1 = φgB̂

g
n − 1,

B̂x
n+1 = −λr∗xB̂r∗

n − λgxB̂
g
n + φxB̂

x
n.

Real yields, ŷ
(n)
t = − log(P̂

(n)
t )/n, are affine in the risk factors. It is instructive to consider

real forward rates for inflation-indexed borrowing from n to n+ 1, for which we have

f̂
(n)
t = log(P̂

(n)
t ) − log(P̂

(n+1)
t ) = Ân − Ân+1 + (B̂n − B̂n+1)

′Zt

= −B̂′n(µ− λ0) − Ĉn + r∗t + φnggt + (B̂x
n − B̂x

n+1)xt

= −Ĉn + Et(rt+n) + ˆftp
(n)

t .

Therefore, changes in r∗t affect all real forward rates equally and hence act as a level factor.
Changes in the real-rate gap gt affect short-term real rates more strongly than long-term
rates, and therefore affect the slope. The last row clarifies that real forward rates can be
decomposed into convexity, an expectations component, Et(rt+n) = r∗t + φnggt, and a real

forward term premium, ˆftp
(n)

t = −B̂x
nµx + B̂′nλ0 + (B̂x

n − B̂x
n+1)xt.

For real yields we have

ŷ
(n)
t = − log(P̂

(n)
t )/n = −Ân/n− B̂′nZt/n

= r∗t +
1 − φng

n(1 − φg)
gt︸ ︷︷ ︸∑n−1

i=0 Etrt+i/n

−Ân/n− B̂x
nxt/n.︸ ︷︷ ︸

convexity and real yield term premium

which shows that the equilibrium real rate r∗t acts as a level factor for the real yield curve,
and that the impact of the real-rate gap gt diminishes with the yield maturity.

To understand the real term premium it is helpful to first consider the term premium in
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the one-period-ahead real forward rate, which is

ˆftp
(1)

t = Covt(m
r
t+1, rt+1) = −[λ0r∗ + λ0g + (λr∗x + λgx)xt].

If the real SDF positively correlates with the real rate, then real bonds are risky in the sense
that their payoffs are low in times of high marginal utility. In this case, the real term premium
is positive to compensate investors for this risk.28

Nominal forward rates from n to n+ 1 are:

f
(n)
t = log(P

(n)
t ) − log(P

(n+1)
t ) = An − An+1 + (Bn −Bn+1)

′Zt

= −cn︸︷︷︸
convexity

+π∗t + φnc ct︸ ︷︷ ︸
Et(πt+n+1)

+ r∗t + φnggt︸ ︷︷ ︸
Et(rt+n)

−Bx
nµx +B′nλ0 + (Bx

n −Bx
n+1)xt︸ ︷︷ ︸

forward term premium

Naturally, nominal forward rates reflect expectations of future inflation and real rates. Changes
in the trend components π∗t and r∗t parallel-shift the entire path of these expectations, and
therefore affect forward rates at all maturities equally. Distant forward rates are, on the other
hand, only minimally affected by changes in ct and gt. The loading of forward rates on xt
can be shown to approach −(λπ∗x +λr∗x)/(1−φx) for large n, meaning that xt affects distant
forward rates due to its effect on the prices of risk of π∗t and r∗t .

In our empirical analysis we will consider the five-to-ten-year forward rate, i.e.,

f
(n1,n2)
t = (n2 − n1)

−1
n2−1∑
n=n1

f
(n)
t , n1 = 20, n2 = 40.

Our model implies that this interest rate is even less affected by the cyclical components ct
and gt and should exhibit a particularly close relationship with the trend components π∗t and
r∗t .

Although our empirical analysis does not focus on term premia, it is worth noting the
intuition for term premia, which is particularly simple within our model. The term premium
in nominal forward rates, ftp

(n)
t = −Bx

nµx + B′nλ0 + (Bx
n − Bx

n+1)xt, is composed of the real

forward term premium, ˆftp
(n)

t , and a forward inflation risk premium, firp
(n)
t . The intuition is

again easiest for n = 1:

firp
(1)
t = Covt(m

r
t+1, Et+1(πt+2)) = −[λ0π∗ + λ0c + (λπ∗x + λcx)xt].

If shocks to inflation expectations are positively correlated with the real SDF, then nominal
bonds are more risky than real bonds and require a higher risk premium, i.e., a positive
inflation risk premium. Like the real term premium, the inflation risk premium in this model
is driven only by changes in xt.

28Variation in the real term premium is driven by changes in the risk-premium factor xt, which affects prices
of risk; quantities of risk are constant due to homoskedasticity of the state variables.
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Table 1: Regressions of long-term interest rates on macroeconomic trends

y
(5y)
t y

(10y)
t f

(5y,10y)
t

(1) (2) (3) (4) (5) (6)

constant -0.14 -1.69 1.03 -0.24 2.20 1.21
(0.68) (0.31) (0.57) (0.30) (0.50) (0.37)

π∗t 1.77 1.26 1.58 1.17 1.40 1.08
(0.15) (0.14) (0.14) (0.13) (0.13) (0.13)

r∗t 1.58 1.29 1.01
(0.15) (0.14) (0.17)

R2 0.79 0.91 0.80 0.90 0.78 0.85

Regressions of long-term Treasury yields and forward rates on measures of long-run inflation
expectations and the equilibrium real rate, which are described in the text. Numbers in parentheses
are Newey-West standard errors with six lags. The data are quarterly from 1971:Q4. to 2015:Q4.

Table 2: Persistence of interest rates and detrended interest rates

Series SD ρ̂ Half-life ADF PP

y
(5y)
t 3.18 0.97 23.1 -1.14 -3.27

y
(5y)
t − π∗t 1.90 0.93 9.1 -1.83 -9.56

y
(5y)
t − π∗t − r∗t 1.26 0.86 4.5 -3.66*** -23.67***

y
(5y)
t − 1.77π∗t 1.45 0.87 5.0 -2.64 -19.71*

y
(5y)
t − 1.26π∗t − 1.58r∗t 0.95 0.75 2.4 -4.54*** -44.91***

y
(10y)
t 2.84 0.97 22.5 -1.05 -3.02

y
(10y)
t − π∗t 1.58 0.92 7.9 -2.36 -10.57

y
(10y)
t − π∗t − r∗t 1.02 0.83 3.7 -4.01*** -29.05***

y
(10y)
t − 1.58π∗t 1.27 0.87 5.0 -2.66 -19.23*

y
(10y)
t − 1.17π∗t − 1.29r∗t 0.90 0.78 2.8 -4.69*** -38.45***

f
(5y,10y)
t 2.55 0.96 19.2 -1.12 -3.47

f
(5y,10y)
t − π∗t 1.37 0.90 6.4 -2.62* -13.79*

f
(5y,10y)
t − π∗t − r∗t 1.00 0.83 3.8 -4.02*** -30.02***

f
(5y,10y)
t − 1.40π∗t 1.21 0.87 5.0 -2.87 -19.68*

f
(5y,10y)
t − 1.08π∗t − 1.01r∗t 0.99 0.83 3.7 -4.09** -30.73**

Standard deviation (SD); first-order autocorrelation coefficient (ρ̂); half-life, calculated as
ln(0.5)/ ln(ρ̂); Augmented Dickey-Fuller (ADF) and Phillips-Perron unit root test statistics, for
(detrended) interest rates, with ∗,∗∗ and ∗∗∗ indicating significance at 10%, 5%, and 1% level.
Detail on the unit root tests are in the main text. The data are quarterly from 1971:Q4 to 2015:Q4.
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Table 3: Forecasting long-term interest rates

RMSE MAE

Horizon h (quarters): 4 10 20 30 40 4 10 20 30 40

Five-year yield
(1) Random walk 1.40 2.07 2.72 2.92 3.25 1.09 1.61 2.08 2.50 2.78
(2) Endpoint π∗t + µ̂t 1.51 2.18 2.72 2.82 3.05 1.19 1.74 2.31 2.54 2.78
(3) Endpoint π∗t + r∗t 1.35 1.75 2.08 2.03 2.18 1.00 1.30 1.48 1.67 1.92
DM p-value (3) vs. (1) (0.39) (0.07) (0.05) (0.04) (0.07) (0.23) (0.03) (0.04) (0.02) (0.02)
DM p-value (3) vs. (2) (0.03) (0.04) (0.04) (0.02) (0.02) (0.02) (0.03) (0.00) (0.00) (0.02)
Ten-year yield
(1) Random walk 1.26 1.77 2.44 2.59 2.91 0.97 1.27 1.87 2.22 2.54
(2) Endpoint π∗t + µ̂t 1.33 1.86 2.32 2.36 2.51 1.03 1.46 1.92 2.11 2.34
(3) Endpoint π∗t + r∗t 1.25 1.56 1.79 1.55 1.50 0.89 1.05 1.08 1.09 1.30
DM p-value (3) vs. (1) (0.49) (0.17) (0.04) (0.01) (0.01) (0.26) (0.09) (0.00) (0.00) (0.00)
DM p-value (3) vs. (2) (0.22) (0.13) (0.08) (0.03) (0.02) (0.09) (0.08) (0.01) (0.00) (0.02)
5-to-10-year forward rate
(1) Random walk 1.23 1.66 2.31 2.36 2.64 0.95 1.13 1.77 1.97 2.30
(2) Endpoint π∗t + µ̂t 1.24 1.64 2.02 1.99 2.05 0.93 1.23 1.55 1.69 1.90
(3) Endpoint π∗t + r∗t 1.30 1.64 1.80 1.43 1.11 0.99 1.23 1.19 0.90 0.88
DM p-value (3) vs. (1) (0.65) (0.48) (0.09) (0.02) (0.01) (0.65) (0.75) (0.02) (0.00) (0.00)
DM p-value (3) vs. (2) (0.74) (0.50) (0.24) (0.07) (0.01) (0.72) (0.51) (0.10) (0.00) (0.01)

Accuracy of different forecasts for long-term interest rates over horizons from 4 to 40 quarters, measured
by the root-mean-squared error (RMSE) and the mean-absolute error (MAE) in percentage points.
Method (1) is a driftless random walk. Methods (2) and (3) predict a smooth path from the current
interest rate to the endpoint, using a recursively estimated mean-reversion parameter (the first-order
autocorrelation coefficient of the detrended interest rate). For method (2) the endpoint is the sum of π∗t
and a recursively estimated mean µ̂t. For method (3) the endpoint is π∗t + r∗t . The data are quarterly
from 1971:Q4 to 2015:Q4. The first forecast is made at t = 20 (1976:Q3). The last two rows in each
panel report one-sided p-values for testing the null hypothesis of equal forecast accuracy against the
alternative that method (3) is more accurate, using the method of Diebold and Mariano (1995).
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Table 4: Predicting excess returns

Holding period: One quarter Four quarters

(1) (2) (3) (4) (5) (6)

Full sample: 1971:Q4–2015:Q4
PC1 0.02 0.25 0.48 0.00 0.71 1.29

(0.04) (0.07) (0.12) (0.10) (0.19) (0.19)
PC2 0.61 0.70 0.67 2.28 2.58 2.46

(0.25) (0.24) (0.23) (0.55) (0.42) (0.40)
PC3 -1.84 -1.21 -1.61 -2.83 -0.72 -2.03

(1.05) (1.01) (0.92) (1.60) (1.36) (1.28)
π∗t -2.01 -2.80 -6.08 -7.94

(0.45) (0.54) (1.27) (1.24)
[0.00] [0.00] [0.02] [0.00]

r∗t -2.68 -6.93
(0.88) (1.44)
[0.02] [0.01]

R2 0.09 0.16 0.21 0.24 0.44 0.54

Subsample: 1985:Q1–2015:Q4
PC1 0.08 0.18 0.55 0.15 0.55 1.65

(0.04) (0.06) (0.12) (0.11) (0.16) (0.25)
PC2 0.50 0.67 0.72 1.71 2.44 2.56

(0.20) (0.21) (0.20) (0.55) (0.49) (0.39)
PC3 -0.77 -0.41 0.46 -2.05 -0.06 2.43

(0.97) (0.96) (1.04) (1.89) (2.09) (1.71)
π∗t -1.16 -2.33 -4.59 -8.03

(0.73) (0.75) (1.48) (1.24)
[0.35] [0.05] [0.16] [0.01]

r∗t -3.17 -9.53
(0.98) (2.03)
[0.02] [0.01]

R2 0.08 0.10 0.16 0.22 0.31 0.51

Predictive regressions for quarterly and annual excess bond returns, averaged across two- to 15-year
maturities. The predictors are three principal components (PCs) of yields and measures of long-run
inflation expectations (π∗t ) and the equilibrium real rate (r∗t ), which are described in the text.
Numbers in parentheses are White standard errors for quarterly (non-overlapping) returns, and
Newey-West standard errors with 6 lags for annual (overlapping) returns. Numbers in squared
brackets are small-sample p-values obtained with the bootstrap method of Bauer and Hamilton
(2016). The data are quarterly from 1971:Q4 to 2015:Q4.
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Table 5: Goodness-of-fit of regressions for annual excess returns

Full sample: 1971–2015 Subsample: 1985–2015

Predictors R2 ∆R2 R2 ∆R2

Yields only 0.24 0.22
(0.05, 0.40) (0.08, 0.52)

Yields and π∗t 0.44 0.20 0.31 0.09
(0.10, 0.44) (0.00, 0.19) (0.14, 0.55) (0.00, 0.19)

Yields, π∗t and r∗t 0.54 0.30 0.51 0.29
(0.13, 0.47) (0.00, 0.23) (0.17, 0.58) (0.00, 0.25)

Yields detrended by π∗t 0.34 0.10 0.28 0.07
(0.05, 0.40) (-0.06, 0.07) (0.11, 0.52) (-0.12, 0.11)

Yields detrended by π∗t and r∗t 0.44 0.20 0.50 0.28
(0.06, 0.40) (-0.08, 0.11) (0.10, 0.51) (-0.18, 0.16)

Goodness-of-fit, measured by R2, of regressions for annual excess bond returns, averaged across
two- to 15-year maturities. The predictors are three principal components (PCs) of yields and
measures of long-run inflation expectations (π∗t ) and the equilibrium real rate (r∗t ), which are
described in the text. The last two specifications use three PCs of detrended yields, i.e., of interest

rate cycles, which are constructed as either y
(n)
t − π∗t or y

(n)
t − π∗t − r∗t . Increase in R2 (∆R2) is

reported relative to the first specification with only PCs of yields. Numbers in parentheses are
95%-bootstrap intervals obtained by running the same regression in 5,000 bootstrap data sets
generated under the spanning hypothesis, i.e., the null hypothesis that only yields have predictive
power for bond returns.
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Table 6: Variance ratios

Variances and covariances Variance ratios

∆hyt ∆hi
∗
t ∆h(yt − i∗t ) 2 · Cov

h (1) (2) (3) (4) (2)/(1) [(2)+(4)]/(1)

Five-year yield
1 0.49 0.05 0.45 -0.00 0.10 0.09
5 2.33 0.36 1.56 0.42 0.15 0.33
10 3.89 0.80 2.01 1.08 0.21 0.48
20 7.04 1.69 2.77 2.58 0.24 0.61
30 9.29 2.80 2.96 3.53 0.30 0.68
40 9.10 2.86 2.75 3.50 0.31 0.70

Ten-year yield
1 0.38 0.05 0.34 -0.01 0.13 0.10
5 1.85 0.36 1.23 0.26 0.19 0.33
10 2.84 0.80 1.35 0.69 0.28 0.52
20 5.84 1.69 2.09 2.05 0.29 0.64
30 8.03 2.80 2.16 3.07 0.35 0.73
40 8.19 2.86 2.16 3.17 0.35 0.74

5-to-10-year forward rate
1 0.36 0.05 0.32 -0.01 0.14 0.10
5 1.72 0.36 1.26 0.10 0.21 0.27
10 2.50 0.80 1.40 0.30 0.32 0.44
20 5.33 1.69 2.11 1.53 0.32 0.60
30 7.28 2.80 1.87 2.62 0.38 0.74
40 7.73 2.86 2.02 2.84 0.37 0.74

Variances, covariances, and variance ratios for changes in long-term interest rates and the trend
component i∗t = π∗t + r∗t . The first three columns report sample variances for h-quarter changes in
the interest rate yt, the trend component i∗t , and the cycle component yt − i∗t . The fourth column
reports twice the covariance between changes in the trend component and the cycle component.
The last two columns report two different ratios: The first is the ratio of the variance of changes in
the trend component relative to the variance of interest rate changes. The second includes the twice
the covariance between changes in the trend and cycle components in the numerator, and equals one
minus the variance ratio for the cycle component. The data are quarterly from 1971:Q4 to 2015:Q4.
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Figure 1: Ten-year yield and macroeconomic trends
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Ten-year Treasury yield and estimates of trend inflation, π∗ (the mostly survey-based PTR measure
from FRB/US), and of the equilibrium real rate, r∗ (the average of the estimates in Figure 2). The
data are quarterly from 1971:Q4 to 2015:Q4.

41



Figure 2: Measures of the equilibrium real interest rate
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Three macroeconomic estimates of r∗ from Laubach and Williams (2003), Lubik and Matthes
(2015), and Kiley (2015), as well as the average of these measures. The data are quarterly from
1971:Q4 to 2015:Q4.
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Figure 3: Measures of the interest rate cycle
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Estimates of the cycle in the level of interest rates. Here the level, ȳt, is the average yield across
one- through 15-year maturities. The black line is the demeaned difference of ȳt and the estimated
inflation trend π∗t . The blue line is the difference of ȳt and i∗t = π∗t + r∗t . The data are quarterly
from 1971:Q4 to 2015:Q4.
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Figure 4: Short-rate expectations and term premium
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Left panels: current one-year yield (black line) and expectations of the future one-year yield at
horizons from two to 14 years (colored lines) for a stationary VAR (top panel) and based on
shifting macro trends and a VAR of detrended yields (bottom panel). Right panels: five-to-ten-year
forward rate with estimated expectations and term premium components. The data are quarterly
from 1971:Q4 to 2007:Q4. 44



Figure 5: Variance ratios
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Variance of h-quarter changes in π∗t , r
∗
t , and i∗t = π∗t + r∗t relative to variance of h-quarter changes

in long-term interest rate. The dashed lines show 95%-confidence intervals for the i∗t -variance ratio,
constructed as described in the text. The data are quarterly from 1971:Q4 to 2015:Q4.
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