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Abstract 
 
Social interactions are considered pivotal to agglomeration economies. We explore a unique 
dataset on mobile phone calls to examine how distance and population density shape the 
structure of social interactions. Exploiting an exogenous change in travel times, we show that 
distance is highly detrimental to interpersonal exchange. Despite distance-related costs, we find 
no evidence that urban residents benefit from larger networks when spatial sorting is accounted 
for. Higher density rather generates a more efficient network in terms of matching and 
clustering. These differences in network structure capitalize into land prices, corroborating the 
hypothesis that agglomeration economies operate via network efficiency. 
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1 Introduction

In the last decades the share of urban population has increased continuously. According

to the World Bank (2014), more than 50 percent of the world population lives in cities

producing an over-proportional share of global GDP. Cities are regarded as engines of pro-

ductivity growth since high population density facilitates the social exchange of knowledge

and information.1 Beyond productivity gains, social interactions may directly contribute

to a person’s wellbeing. Rapid innovation in communication technologies brought forward

the hypothesis that the importance of geographical proximity for social exchange and ac-

cordingly the dividends of population density have declined. In order to understand why

we observe surging urbanization despite rapid technological innovation, we believe it is

essential to study how population density shapes the structure of social interactions. In

particular, not only the mere quantity of interactions but also the quality and efficiency

of social networks is decisive for economic outcomes (see Jackson et al., 2017). Empirical

work uncovering these mechanisms has so far been impeded by the lack of comprehensive

individual-level data which is necessary to analyze the structure of social interactions.

Using anonymized mobile phone calls allows us to gain insights into this question.

We study the relation between population density and social interactions in order to test

fundamental assumptions underlying agglomeration dynamics discussed in the literature

(c.f. Duranton and Puga, 2004). Our rich dataset covers about 15 million phone calls and

text messages per day, collected over a period of 12 months. This allows us to examine

the interplay between local characteristics and social interactions as we not only observe

communication patterns but also location information derived from transmitting antennas

and billing data. Based on this information and concepts from the network literature

(c.f. Jackson, 2008), we investigate three main questions: First, how does geographical

distance impact social interactions? Second, what is the relation between population

density and the size of an individual’s social network? Third, does population density

affect the quality / efficiency of social interactions in terms of matching quality, clustering

and network perimeter?

To answer these questions we evaluate the the role of distance in link formation models

and complement this analysis with estimates about the causal impact of population density

on micro-level network measures. The sorting of individuals with specific characteristics

can distort the results of both approaches. We therefore analyze how link formation is

affected by an exogenous change in travel time, triggered by a substantial revision of public

transport schedules. In addition, we use individuals who permanently relocate (movers)

1This notion reflects one of the classic agglomeration forces described by Alfred Marshall (1890). Knowl-
edge spillovers and innovation in cities feature prominently in seminal work by Jacobs (1969), Lucas (1988),
and Glaeser et al. (1992).
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to back out time-constant unobservables and identify density-related externalities. The

latter identification strategy relates to approaches quantifying the earning advantages of

cities (see Combes et al., 2008; De la Roca and Puga, 2017).

We show that distance is highly detrimental to social interactions, despite epoch-

making progress in communication technologies. Contrary to the conventional assumption,

this does not translate into larger networks in cities compared to the periphery. Density-

related externalities rather arise in terms of network efficiency, namely better matching

quality, lower clustering, and smaller distance costs. These findings are in line with a search

strategic perspective and with the biological/anthropological literature on social groups

size. By relating the quality of social networks to land prices we provide an assessment

of the monetary value of efficient social networks. We demonstrate that differences in the

structure of social networks can explain a significant share of the difference in land prices

between cities and peripheral regions.

In recent years, significant progress was made in quantifying the magnitude of ag-

glomeration advantages while there is relatively little evidence about their causes (for an

overview see Combes and Gobillon, 2015). We focus on the mechanisms behind and un-

cover the causal effects of distance and population density on social interactions. These

findings are derived from a novel source of information about local economic processes –

mobile phone data – which we show to be very useful for further questions in urban and

regional economics.2 Below, we discuss our main findings with reference to the related

literature.

Related Literature. Models that incorporate knowledge and learning spillovers as an

agglomeration force typically assume that distance is costly for social interactions. The

widespread adoption of information and telecommunication technologies popularized the

“death-of-distance” argument (e.g. Cairncross, 2001), which raises the intriguing question

of whether these technologies will fundamentally change the structure of cities (see Ioan-

nides et al., 2008) or even make them obsolete. As argued by Gaspar and Glaeser (1998),

the crucial question is whether face-to-face meetings and phone calls are substitutes or

complements. We demonstrate that the social interactions recorded by mobile phones are

surprisingly localized, with more than 60 percent of ties occurring between individuals

that reside within less than 10 km distance of each other. Our causal estimates provide

evidence that face-to-face meetings and telecommunication are complements and thus con-

tradict the death-of-distance hypothesis. This relates to research about local adoption of

Internet technologies (Forman et al., 2005) and the regional consequences of the spread

of the Internet. Blum and Goldfarb (2006) show that physical distance may even impact

2Analyzing data from Rwanda, Blumenstock et al. (2015) show that information about mobile phone
usage provides a good proxy for wealth and income.
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consumption of online goods due to the formation of local tastes.3 Forman et al. (2012)

establish that the Internet benefits high-income and high-population places rather than

reducing regional disparities.

Micro-founded models of urban agglomeration have focused on the assumption that

the quantity of social interactions increases with local population density.4 For instance,

Glaeser (1999) formalizes the theory that individuals acquire skills by interacting with

each other. As cities are more densely populated than the hinterland, they facilitate more

meetings and thus accelerate the social learning process. Sato and Zenou (2015) model

social interactions and their impact on employment outcomes. They propose that city

residents maintain larger networks than rural residents, enabling them to acquire more

information on the labor market, which reduces job search frictions and unemployment.

We show that the positive effect of cities compared to the hinterland vanishes once targeted

sorting of individuals is accounted for.5

Another strand of literature argues that cities do not necessarily increase the quantity

of social interactions but rather improve their quality / efficiency. In the model of Berliant

et al. (2006), agents possess differentiated types of knowledge. The effect of cities on the

number of social interactions then becomes twofold, as densely populated areas increase

the number of random meetings but also make agents more selective regarding matching

quality. Hence, while cities do not necessarily affect the number of social interactions, their

quality in terms of knowledge complementarity should improve with increasing population

density. Abel and Deitz (2015) study data on job searching of college graduates and find

that larger and thicker labor markets indeed improve the matching between job adver-

tisements and applicants’ qualifications. To the best of our knowledge, no study to date

has assessed the matching hypothesis with respect to social interactions. We formulate

two tests, one relying on a network formation model, and the other analyzing the social

adjustment process among movers. Both approaches show that urban residents indeed

benefit from higher quality matches compared to people living in the hinterland.

Borrowing from the network literature, the level of clustering / triangular relations

is an additional dimension of efficiency that is sometimes assumed to vary regionally.

Granovetter (1973) famously argues that weak ties are often more valuable in terms of

information provision than strong ties. He formally defines a weak tie as a social relation

3A recent study by Levy and Goldenberg (2014) uncovers similar patterns for email traffic and online
social media contacts.

4Empirical studies by Charlot and Duranton (2004) and Schläpfer et al. (2014) support this hypothesis.
However, neither can isolate the causal impact of density from non-random sorting.

5Burley (2015) shows for the German Socio-Economic Panel that population density is only positively
correlated with an index of social interactions if person specific characteristics are ignored. Based on US
survey data, Brueckner and Largey (2008) obtains negative correlations between density and social inter-
actions. Other factors that have been shown to impact the level of social interactions are homeownership
(Hilber, 2010) and racial fragmentation (Alesina and La Ferrara, 2000; Brueckner and Largey, 2008).
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between two agents who have no overlap in their personal networks. In contrast, strong ties

involve triangular relations that bring about redundancies in the process of information

diffusion. Sato and Zenou (2015) claim that cities not only increase the number of social

interactions – as discussed above – but also give rise to a disproportionally high number of

weak tie relations that are more valuable in the job market. We find that personal networks

in cities indeed tend to be characterized by lower levels of clustering and thus have a

higher fraction of weak ties. This finding suggests that cities may facilitate the diffusion

of information, although the average number of social interactions is not necessarily larger

than in more sparsely populated areas.

The following section elaborates on the main concepts. Section 3 introduces the data

while Section 4 explains the empirical identification strategy. Section 5 discusses the main

results. Section 6 provides an assessment of the value of social interactions and Section 7

concludes.

2 Cities and Social Interactions: Main Concepts

We consider a directed network with N nodes each representing a unique phone customer

which we denote by i ∈ N = {1, ..., N}. Each customer has a place of residence, r, which

is assigned either on the municipality or postcode level. The number of nodes at location r

is Nr, and so with R denoting the total number of different residences, N =
∑

rNr holds.

Finally, Nr is the set of individuals living in location r.

A link between nodes i and j is denoted by gij = 1, while the absence of a link is marked

as gij = 0. The network can then be characterized by a pair (N ,G) where G = [gij ] is a

N × N adjacency matrix. We assume that rational agents i and j establish a link if the

net surplus from doing so is positive (c.f. Graham, 2014). This yields a random utility

model of the form

gij = 1
(
X ′ijη + νi + νj + Uij ≥ 0

)
, (1)

where Xij is a vector of dyad attributes (i.e. pair specific characteristics), νi and νj

denote agent specific characteristics, and Uij is a randomly distributed component of link

surplus. We are particularly interested in the role of dyad attributes, which we divide into

three groups: geographical distance or travel time (Tij), the number of friends i and j

share (Fij =
∑N

k=1 gikgjk), and matching (m(νi, νj , δ)). Higher levels of m(·) increase link

surplus, which is why we refer to it as matching quality. In particular m(·) absorbs the

spread between Q individual characteristics of agent i and j, |νi − νj |, which – depending

on the specific attribute q ∈ Q – may be positively (i.e. δq > 0) or negatively correlated
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(i.e. δq < 0) with matching quality. Based on these considerations we define the vector

Xij as

X ′ijη = η1 · Tij + η2 · Fij(G) + η3 ·m(νi, νj , δ). (2)

If link-surplus is indeed a function of these three dyad-specific factors, this may have

important consequences for the network topography across rural and urban areas. Pro-

vided that distance is costly for social interactions, regional differences in population

density may determine the size of an agent’s social network. This is of interest, because

social contacts can foster the diffusion of information, promote trust and thereby lower

transaction costs, and facilitate learning from peers (Granovetter, 2005; Gui and Sugden,

2005; Jackson, 2014) in addition to having intrinsic value for a person’s well-being (Burt,

1987). We further focus on matching and common friends (or clustering), as they have

implications for a network’s efficiency : Matching reflects the quality of a specific contact,

which incorporates various dimensions such as productivity enhancing skill complemen-

tarity, or shared interests (e.g. Berliant et al., 2006). Clustering governs the informational

value of a link, since contacts who share a common friend introduce redundancies and

are therefore less valuable in the information diffusion process (Granovetter, 1973). In

return, sharing mutual contacts fosters cooperative and pro-social behaviour, because the

triangular relation can act as a reputational control and retaliation device (Jackson, 2014).

Network Size and Degree Centrality. The size of an individuals social network,

which we measure based on degree centrality, is formally defined as

Di(G) = #{j : gij = 1}. (3)

Degree centrality reflects the number of distinct peers with whom agent i interacts so-

cially and therefore the number of sources that potentially forward valuable information.

Typically, urban economic theory presumes that cities provide a favourable environment

for social interactions and support larger network sizes than rural communities. The un-

derlying argument hinges on the assumption that the costs of social interactions increases

with distance. Let us abstract from the matching spread, m(νi, νj , δ), as well as triangu-

lar ties, Fij(G), and focus on the relationship between distance and population density.

A stylized argument is as follows: On weekdays an agent i needs to keep her travelling

costs low, and she therefore has random encounters only with people in her municipality,

j ∈ Nr. At the weekend, however, the radius of the agent’s actions is unbounded, so that

she might form ties with people living outside her place of residence, k /∈ Nr. Since people

spend more time in their residence’s vicinity, the probability to acquire social contacts

among neighbors, Pr = P (gi,j∈Nr = 1), is larger than for the rest of the population, that
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is Pr > P−r = P (gi,k/∈Nr
= 1). In the outlined example, the size of a person’s social net-

work positively depends on the population living in the neighborhood, Nr, so that cities

support a larger degree than rural municipalities, i.e.

Di = Nr · Pr + (N −Nr) · P−r with
∂Di

∂Nr
> 0. (4)

While this intuitive rationale is appealing, it may be challenged from two angles,

namely from biological/anthropological and search strategic points of view.

In evolutionary biology, Dunbar (1992) has famously advocated and popularized the

social brain hypothesis.6 According to this hypothesis there is an upper limit to group

size that is set purely by cognitive constraints. For humans, Dunbar (1993) calculates the

upper limit to lie between 100 and 230 social contacts, citing anthropological studies on

modern hunter-gatherer societies as evidence that support his prediction.7 In consideration

of the manifold results corroborating the social brain hypothesis, one may note that the

size of a person’s network is fundamentally restricted by congenital factors. Because the

population of practically all Swiss municipalities exceeds the range for the limit of network

size as calculated in the literature, the number of social interactions may be independent

of regional differences in population density.

In equation (4) a random encounter between two persons is equivalent to establishing

a link. We now add another layer: After meeting a potential contact, agents can either

accept or reject to form a link based on the other person’s characteristics. Since forming

a link consumes time and cognitive capacity, this introduces a quality-quantity trade-off.

Consequently, it may be optimal to reject some potential contacts to wait for a better

match. Hence, from a search strategic perspective, higher population density may impact

network size only marginally, but it may allow for higher selectivity along dyad-specific

characteristics. This has important consequences for the analysis of social networks across

different regions. Even if densely populated areas improve social networks, the advantages

may not be in terms of size but in terms of efficiency. In this respect, matching quality

between agents i and j, m(νi, νj , δ), is of key interest, as it determines how well their

interests correspond or how fruitful the intellectual exchange between them is. Once

we add the strategic component of weighing between quality and quantity to the above

mechanics, we would expect a positive effect of population density on matching quality,

or network size, or both.

6The hypothesis challenges the field’s traditionally dominant view that brains evolved to address eco-
logical problem-solving tasks, such as foraging. Instead the social brain hypothesis attributes the growth
in primates’ brain sizes to the computational demands of their increasingly complex social systems.

7Recent studies explore this hypothesis by analyzing patterns among adults’ brains, cognitive ability,
and the size of their social networks (Powell et al., 2012; Stiller and Dunbar, 2007) or by exploiting social
media user statistics (Dunbar, 2015).
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Perimeter of Social Interactions and Within-Degree. The previous line of reason-

ing also has implications for the perimeter of a person’s network. If distance is costly when

maintaining a link, one would rather form a tie with a neighbor than with an identical

person living far away. This implies that cities allow people to be more selective regarding

the travel distance to their contacts. Put differently, one may expect that urban residents

can recruit their contacts within a relatively narrow perimeter whereas rural residents

prefer to widen the search radius with the objective of improving their network’s quality.

To analyze these claims, we examine the degree within an individual’s neighborhood or

within-degree, formally defined as

DW r
i (G) = #{i, j ∈ Nr : gij = 1}. (5)

Of course, negligible distance costs would wipe out any differences between cities and

rural areas. Costs related to distance may indeed be of secondary importance for a person

with naturally few social interactions, whereas highly sociable persons may benefit more

from densely populated areas, as recently formalized in a paper by Helsley and Zenou

(2014). Consequently, differences in network size may simply be observable due to the

sorting of highly sociable types into cities, because they gain disproportionally from low

distance costs per contact.

Clustering. Clustering is an important network characteristic as it can provide insights

into reciprocity and information diffusion. On the one hand, high clustering strengthens

reputational concerns and with it the enforcement of social norms and cooperation (e.g.

Ali and Miller, 2009), or risk-sharing (e.g. Ambrus et al., 2014). On the other hand,

Granovetter (1973) highlights the importance of local bridges for passing on information.

An individual with high clustering introduces redundancies in the network, which are

inefficient in terms of information diffusion. The clustering coefficient for node i is given

by

Ci =

∑
j,k j 6=k gjk∑

j,k,j 6=k gijgik
, (6)

and measures whether an individual’s contacts form a tightly knit group (Ci → 1)

or are completely separate from each other (Ci → 0). How does population density

relate to clustering? There are two potential channels, one mechanical and the other as a

consequence of differing preferences. Figure 1 illustrates the mechanical rationale: Panel

(a) shows a city with 16 agents, eight white and eight grey. All agents socially interact

with three other agents, preferably of the same type. Panel (b) represents a peripheral

region with lower population density, therefore the 16 agents are equally split between

two municipalities. As in the city, all individuals have a degree of three. Importantly,
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(a) City: Average Degree=3, Match-
ing Rate=0.833, Average Clustering=0,
Average Path Length=2.73

(b) Periphery: Average Degree=3, Match-
ing Rate=0.833, Average Clustering=0.5,
Average Path Length=3.2

Figure 1: Clustering in Cities and the Periphery – An Illustrative Example

travelling between the two municipalities is costly, therefore agents prefer to form links

with their neighbors. Since every person has only three neighbors of the same type, the

network ends up tightly clustered. In contrast, the city makes clustering less likely, because

each urbanite can choose among seven agents of the same colour.8 Thus, low density

locations should tend to display higher clustering, simply because residents of these areas

face a substantially smaller set of suitable contacts in their direct vicinity compared to

urban residents. In addition to this purely probabilistic relation between density and

clustering, incentives for forming links with friends of friends, Fij(G), could be different

in cities than in rural areas. Agents face a trade-off in terms of efficient information

exchange (i.e. low clustering) and benefits due to stronger reciprocity (i.e. high clustering).

The optimal balance may vary regionally due to factors that assign a higher weight to

reciprocity or information diffusion. For instance, high quality local institutions may

substitute for reciprocity or a dynamic labor market environment may support the value

of information diffusion. In addition, clusters may facilitate simultaneous interactions with

multiple persons, allowing for larger networks given a certain time constraint. If people

living in rural neighborhoods have more geographically dispersed social networks, clusters

of friends could be a strategy to mitigate travel costs.9

8In the way the example is drawn, the average clustering in the city equals 0, while it amounts to 0.5 in
the periphery. As a consequence, the average path length in the city (=2.73) is lower than in the periphery
(=3.2), which accelerates the diffusion of information.

9For instance, Fischer (1982) documents that people living in peripheral areas have a higher proportion
of kin ties than urban residents, which is likely to increases the clustering in an individual’s network.
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3 Data

The main dataset used in this paper is provided by Switzerland’s largest telecommunica-

tions operator, Swisscom AG, whose market share is about 55% for mobile phones and

about 60% for landlines (ComCom, 2015). The data comprises comprehensive call detail

records (CDR) of all calls made and received by the operator’s customers between June

2015 and May 2016. The CDRs include the anonymized phone number of caller and callee,

a date and time stamp, a binary indicator for private and business customers, a code for the

type of interaction recorded (e.g. call, SMS, MMS), the duration of calls in seconds, and

the x-y-coordinates of the caller’s main transmitting antenna. We observe finely grained

information on about 15 million calls and text messages per day, covering about 9.1 million

phones, of which 4.1 million are mobile phones and 2.7 million are private mobile phones.10

Along with the anonymized CDRs, the operator also provided monthly updated customer

information including billing address, language of correspondence (German, French, Ital-

ian, English), age, and gender. Table 1 summarizes the socio-demographic characteristics

of mobile phone customers in our sample, while Table A.3 shows correlations between cen-

sus data and our customer statistics for various subpopulations. This comparison suggests

that the data at hand is highly representative of the Swiss population even at very local

level.

The phone data are complemented by various municipal statistics provided by the Fed-

eral Statistical Office (FSO), including population figures and the degree of urbanisation

as classified by EUROSTAT.11 Figure 2 shows the regional variation in urbanisation based

on the aforementioned measure. We also compute geographical distances between pairs of

municipalities and pairs of postcodes using GIS software and shape files for administrative

boundaries published by the Federal Office of Topography. Car driving distances (between

centroids of municipalities/postcodes) and public transport travel times (for all existing

pairs of stops) were obtained from search.ch. Descriptive statistics for all 2, 322 Swiss

municipalities and 3, 201 postcodes are shown in Table A.1 in the appendix.

The anonymity of Swisscom customers was guaranteed at all steps of the analysis. We

never dealt with or had access to uncensored data. A data security specialist retrieved

the CDRs from the operator’s database and anonymized the telephone numbers using a

64-bit hash algorithm that preserved the international and local area codes. He further

removed columns with information on the transmitting antenna before making the data

available. Once the anonymized data were copied to a fully sealed and encrypted Swiss-

com workstation, we ran the analysis on site. To utilize information on the transmitting

10More specifically, the data set covers 2.7 million private mobile phones, 2.1 million private land lines,
1.4 million corporate mobile phones, and 2.9 million corporate landlines.

11See http://ec.europa.eu/eurostat/ramon/miscellaneous/index.cfm?TargetUrl=DSP_DEGURBA

(last access: 01.06.2016) for more information on the EUROSTAT DEGURBA measure.
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Figure 2: Degree of Urbanisation – Cities, Hinterland and Periphery

antenna we passed location scripts to Swisscom personnel who executed them for us.

Our primary aim is to observe social networks, but not every instance of phone activity

reflects a social interaction in the narrower sense so that the dataset needs to be cleaned

beforehand.12 In our benchmark analysis, we filter the data as follows: First, we restrict

the analysis to calls between mobile phones. Mobile phones are personal objects and

are thus representative of the social network of a single person, while calls from landlines

possibly resemble overlapping social networks as they are usually shared by multiple users.

For the same reason, all results are based on customers who have registered only one active

mobile phone number. Customers with multiple active numbers typically include corporate

customers, as well as parents acting as invoice recipients for their children. Second, we

limit the analysis to outgoing calls in order to cover intra-operator and inter-operator

activity equally well and to filter out promotional calls by call centres. Third, calls with a

duration of less than 10 seconds are considered accidental and are therefore excluded from

the analysis. Fourth, we drop mobile phone numbers that display implausibly low or high

monthly usage statistics, with a minimum threshold of 1 minute and a maximum threshold

of 56 hours per month, respectively. This removes practically inactive numbers as well

as phones used for commercial purposes. Fifth, the analysis is limited to private mobile

phones, so that daily business calls between corporate customers do not create noise in our

measures. Sixth, some measures require address information for both caller and callee such

that inter-operator calls cannot be used in all steps of the analysis. Measures requiring

12For a discussion see Blondel et al. (2015).
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Table 1: Descriptive Statistics, Private Mobile Phone Customers

Mean SD N Min Max

Monthly Phone Usage, June 2015 – May 2016 (pooled)
Number of Calls 111.781 109.599 10 399 549 1 10 113
Duration (Minutes) 254.970 295.609 10 399 549 2 3359

Monthly Network Characteristics, June 2015 – May 2016 (pooled)
Degree Centrality 9.202 7.910 10 399 549 1 470
Within-Degree (15 Min. Radius) 7.067 7.231 10 399 549 0 221
Clustering Coefficient 0.092 0.132 10 248 923 0 1

Sociodemographics
Age 34.964 13.561 866 646 20 60
Female 0.522 – 866 646 0 1
Language: German 0.681 – 866 646 0 1
Language: French 0.270 – 866 646 0 1
Language: Italian 0.043 – 866 646 0 1
Language: English 0.006 – 866 646 0 1
Notes: The table is based on the subsample of customers with phone activity in all 12 months, which we also use
in the main analysis. Further filters as described in Section 3. Phone usage statistics include in- and outgoing calls.
The within-degree measures network size within a radius of 15 minutes around an agent’s residence.

location information for the callee are therefore based on intra-operator calls only, which

we weight according to the operator’s market share at the callee’s billing address. Finally,

we only use the first 28 days of each month to make the data easily comparable across

different time periods.

These steps eliminate approximately 60 percent of the total number of calls recorded,

leaving us with around 60 million calls per month that amount to a total duration of 200

million minutes (for details see Table A.2 in the appendix).

3.1 Descriptive Statistics on Phone Usage and the Social Network

Table 1 shows summary statistics on the mobile phone usage of customers aged 15 to 64

for the filtered data set.13 The average private mobile-phone users makes about four calls

per day with a cumulative duration of nine minutes. Figures 3a and 3b further show that

the distributions are markedly right-skewed.

The network of private mobile phone interactions uncovered by the data exhibits char-

acteristic features of other socially generated networks documented in the literature (Jack-

son and Rogers, 2007; Watts, 1999): Small diameter and short average path length between

pairs, “fat tails” in the degree distribution, and substantial clustering.

To gain insights into the diameter and the average path length, we randomly select 100

13Due to privacy concerns, we worked with decimal age-brackets. This means that a customer aged 24
was assigned to the 20-bracket, while a customer aged 25 belongs to the 30-bracket.
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Figure 3: Histograms of Phone Usage Statistics & Network Characteristics for June 2015

individuals and calculate the length of the shortest paths connecting every other private

mobile phone user in the data. The mean path length in the sample is 5.6, with the longest

path having a length of 12; the histogram plotted in Figure 3f reveals that 88 percent of

dyads are separated by 6 or fewer links. This fits strikingly well with the “small-world”-

hypothesis first formulated by Milgram (1967) and the early empirical evidence based on

a chain letter experiment conducted by Travers and Milgram (1969).

As Figure 3c illustrates, the degree centrality distribution in our social network exhibits

“fat tails”, so that there are more nodes with relatively high and low degrees, and fewer
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nodes with medium degrees, than one would find in a network where links are formed

uniformly. The average degree centrality in our monthly data is approximately 9, with the

vast majority having a degree below 20 and some hub-agents reaching network sizes of 100

links or more. As reported in other studies on social networks, the probability distribution

of degree centrality is well fitted (R2 = 0.92) by a power-distribution, P (D) = cD−ϕ, with

parameter estimates of ϕ̂ = 3.86 and ĉ = 5.96.

The clustering coefficient, which measures the tendency of linked nodes to have com-

mon neighbors, is, on average, 0.092, with more than 75 percent of the individuals in the

dataset having a non-zero clustering coefficient (see Figure 3e). Considering the low net-

work density in our data (≈ 0.00001), the observed clustering is evidently larger than in

a benchmark network where links would have been generated by an independent random

process.14

4 Identification

In order to analyze the impact of geography and location characteristics on the structure of

social interactions we conduct two complementary identification strategies. The first aims

to identify factors that predict the likelihood of individuals i and j forming a link and is

referred to as network formation. In particular, this approach allows us to study the effects

of distance between i’s and j’s place of residence on the probability that they form a link.

It further enables inference on the preference for triadic relations. The presence of network

overlap may influence the likelihood that i and j establish a link as the returns may be

higher or lower if it involves mutual contacts. Moreover, we study whether homophily

– the process of matching on common characteristics – is prevalent in the data.

The second approach, to which we refer as network topography, estimates the effect of

local characteristics on individual-level network measures. This relates to the equilibrium

outcome of network formation at different places and allows us to examine the impact of

location specific attributes on the structure of social networks.

Sorting of individuals with specific characteristics can affect the results of both ap-

proaches. We address this issue by exploiting changes in the federal railway timetable to

infer the causal impact of travel time on link formation and by analysing social network

adjustments of movers. Studying movers allows us to obtain causal estimates of geography

and population density on network topography and network formation.

14Note that network density is defined as the ratio of actually formed links and potential links, which is
equivalent to dividing the mean degree (9.2) by the number of potential contacts of an individual (866,645).
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4.1 Network Formation

We observe the social network’s adjacency matrix Gt = [gij,t] in each month t ∈ {1, ..., 12}.
Based on equations (1) and (2), we specify the probability that two nodes i and j form a

link as

gij,t = 1(βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj +m(ξi, ξj , δ) + Uij,t ≥ 0) (7)

where vector Tij,t measures the distance between agent i and j based on their residence

and workplace, Fij,t−1 is a vector reflecting the number of contacts agents i and j share

in common, Zij is a vector of dyad-specific time invariant covariates, Di and Dj capture

static differences in sociability based on both parties’ logarithmized long-term degree, and

m(ξi, ξj , δ) is a symmetric matching function of unobserved node specific heterogeneity.15

We assume that Uij,t is independent and identically distributed and has mean zero such

that we can estimate a linear probability model of the form:

gij,t = βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj +m(ξi, ξj , δ) + Uij,t. (8)

In particular, the distance measures represented by vector Tij,t comprise the log travel

time between agents i’s and j’s residence as well as a dummy for same workplace.16 The

latter equals one if they predominantly use antennas within the same 5km radius during

business hours. We discretize the number of common friends, such that we obtain two

dummy variables contained in Fij,t−1: The first indicator equals one, if agents i and j

share at least one common social contact, while the second indicators equals one if agents

i and j share at least two common contacts.17 The dyad-specific covariates in vector Zij

include three dummy variables indicating same age, same gender and same language.

The model in (8) also accounts for matching based on unobservables as reflected by

m(ξi, ξj , δ). Those that favourably match in terms of unobservable characteristics ξ feature

a higher likelihood to form a link. These unobservables may bias our estimates of the cross-

sectional model. If individuals with common unobservable attributes are more likely to

cluster regionally and thus live closer together, our distance measure will be negatively

correlated with the error term. A within-transformation will take out time invariant factors

15Note that the number of mutual contacts, Fij,t−1, enters with a lag. This implies that agents
form/maintain/dissolve links myopically, as if all features of the previous period’s network remain fixed.
Assuming this structure, eliminates contemporaneous feedback, which can be problematic for inference
(see Graham, 2014).

16We have estimated the models also with geographical distance instead of travel time which does not
qualitatively affect our results. However, due to the rugged environment in Switzerland we consider travel
time as the more relevant measure.

17We discretize the number of mutual friends, because the continuous measure yields imprecise (yet
significant) estimates. Sensitivity checks showed diminishing effects of mutual friends as mutual friends
beyond two did not significantly add to the link likelihood.
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that affect the matching quality, i.e.

g̈ij,t = βg̈ij,t−1 + T̈ij,tη1 + F̈ ′ij,t−1η2 + Üij,t, (9)

where we define the within transformation for generic variable x by ẍt = xt − x̄. The

transformed residual, Üij,t, is necessarily correlated with the lagged dependent variable,

g̈ij,t−1, because both are a function of Ūij . Thus, OLS estimates of equation (9) are not

consistent for the parameters of interest. We therefore follow Angrist and Pischke (2009)

and estimate models including the lagged dependent variable but not the fixed effects, as

in equation (10a.), and then compare the results to estimates obtained from a fixed effect

regression without the dynamic component, as in equation (10b.):

a. gij,t =βgij,t−1 + T ′ij,tη1 + F ′ij,t−1η2 + Z ′ijρ+ φ1Di + φ2Dj + Uij,t

b. g̈ij,t =T̈ij,tη1 + F̈ ′ij,t−1η2 + Üij,t.
(10)

These two models have a useful bracketing property, that bounds the causal effect of

interest. With respect to the geographical distance between two agents, we expect that

the fixed effect estimates are upwardly biased, while the lagged dependent model yields

a downwardly biased estimate (see Guryan, 2001; Angrist and Pischke, 2009). We also

estimate equation (10a.) within a Logit framework in order to account for the dichotomous

nature of the data.

A practical issue that arises with estimating the outlined network formation models is

the size of the adjacency matrix that potentially includes (2 · 106)2 unique pairs of agents.

It is neither computationally feasible to estimate the models based on all these pairs nor

necessary for obtaining consistent estimates of the parameters of interest as is shown by

Manski and Lerman (1977), and Cosslett (1981). Since we have complete information on

the network we can use a stratified sample and adjust the estimates with the respective

sampling weights. Our choice-based sample results from an endogenous stratified sampling

scheme where each stratum is defined according to the individual responses, that is the

binary values taken by the response variable gij,t.
18 This sampling structure requires the

availability of prior information on the marginal response probabilities which is in our

setting available due to the full observation of Gt.
18The main motivation behind this approach is usually the possibility of oversampling rare alternatives,

which can improve the accuracy of the econometric analysis but also reduce survey costs. However, in our
case we undersample those dyads with gij,t = 0 in order to enhance computational efficiency.
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4.2 Network Topography

We estimate the effect of location characteristics on the individual-level network measures

formally defined in Section 2: degree, within-degree, and clustering coefficient. Below, we

lay out the estimation strategy for degree centrality noting that specifications for all other

network measures follow analogously.

Following the earlier notation, the econometric models involve measures of degree cen-

trality, Dit, as dependent variable and location specific covariates at the place of residence

denoted by Lr. Hence, we specify the benchmark model as

Dir,t = α+ L′r,tβ +X ′ir,tγ + λt + λlr + εir,t, (11)

where Xir,t is a vector of individual characteristics (i.e. commuting distance, language,

dummy for belonging to language minority, gender, and age), λt stands for month fixed

effects, and λlr denotes language region fixed effects. The location vector Lr,t includes indi-

cators for EUROSTAT’s harmonized definition of functional urban areas which distinguish

between the urban core, the hinterland and peripheral regions. Alternatively, we measure

local density using the number of private mobile phone customers within 15 minutes travel

time from the respective place. Unlike municipal population statistics this measure has

the advantage that it is independent from administrative boundaries. Yet, all results are

robust to using municipal population density.

In a next step, we address the issue of individual sorting on unobservables across

locations. If the most sociable individuals systematically sort into high-density places,

equation (11) would yield upwardly biased estimates of the density externality. Compared

to the pooled OLS specification, we add an individual fixed effect in order to disentangle

the density externality and the sorting effect, i.e.

Dir,t = µi + L′r,tβ +X ′ir,tγ + λt + λlr + εir,t. (12)

Note that this model identifies the effects on the basis of movers i.e. those who changed

their place of residence between July 2015 and April 2016. These are about 147’000

individuals in the unfiltered data or 6% of the operator’s private customers (see Table A.4).

One concern in introducing fixed effects is that movers may differ systematically from the

population. Like reported in other studies that adopt a similar identification strategy (e.g.

D’Costa and Overman, 2014), movers in our data are on average younger than non-movers.

Apart from age, Table A.5 shows that differences in both individual characteristics as well

as phone usage behaviour and network properties are sufficiently small between both

groups. Apart from sorting there may be unobserved location factors that affect network

characteristics as well as population density and thereby potentially bias our estimates.
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We address this concern by instrumenting population density using historical population

counts and measures of soil quality (see Ciccone and Hall, 1996; Combes et al., 2010). All

our results remain valid when using the instrumental variable approach which we relegate

to Appendix B.8.

5 Results

In the following we present the main results for the network formation model. Our focus

is on the question of whether distance is costly to social interactions. In a second step,

we analyze differences in network size across regions, to test the hypothesis that cities

promote social interactions. We then proceed to investigate, whether population density

affects the efficiency of networks in terms of perimeter, matching quality, and clustering.

5.1 Death of Distance? The Role of Proximity in Network Formation

It is instructive to begin by looking at plain descriptives. Figure 4 plots the share of

ties along the share of potential contacts by radius. Considering that almost 50 percent of

bilateral ties are formed within a 5km perimeter that covers on average less than 1 percent

of the population, this illustrates the rapid decline of social interactions across space.

Notes: The share of ties reflect mobile phone calls made in June 2015. The radius is calculated
based on the distance between the caller’s and callee’s place of residence. Population statistics
comprise number of mobile phone customer’s by postcode.

Figure 4: Share of Social Ties and Population by Radius

Of course, this approach does not account for biases due to spatial sorting of similar

types. We therefore proceed to the network formation models, outlined in the previous

section. Table 2 presents the result for the linear probability model (LPM) specified in
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equations (10a.) and (10b.). All coefficients were multiplied by 10’000 and therefore can

be interpreted as basis points. This means that a coefficient equalling one translates to a

marginal increase in P (gij,t = 1) of a hundredth percentage point. The first two columns

display pooled OLS estimations, the middle columns report pair fixed effects models,

and the last two columns show lagged dependent variable specifications. In all models

estimated, the travel time between two agents enters negatively, implying that distance

is indeed costly when forming and maintaining a link. Columns (2), (4) and (6) reveal

that tie formation is actually a convex function in distance; the log of travel time enters

strongly negative, while the squared term is positive. Their relative magnitudes suggest

that the negative effect of distance completely fades at approximately 90 minutes driving

distance.

In addition to being neighbors, working in the same area also increases the likelihood

that two persons form a link. The coefficient for the dummy variable “Same Workplace”,

which equals one if agents i and j predominantly use antennas within the same 5 km radius

during business hours, ranges between 0.07 and 0.1. Hence, working in close proximity

increases the probability of forming a tie by about 0.1 basis point, which is roughly ten

times the estimated effect of speaking the same principal language. Thus, distance in

terms of both residence and workplace are very costly to social interactions.

In order to analyze preferences for triadic closure or clustering, we discretize the number

of common friends, such that we obtain two dummy variables: one indicating that agents

i and j share at least one common social contact, and the other indicating that they share

at least two common contacts. The coefficients for both “Common Contact” variables

are highly significant. Column (2) shows that the probability of forming a link with

another person increases by up to 22 percentage points, if one shares at least two common

contacts. As one would expect, the estimates are considerably smaller in column (4), which

controls for matching quality by employing dyad-specific fixed effects. Nonetheless, the

additional link-surplus of 1.5 percentage points due to triangular relations – as obtained

in the most conservative specification – is quantitatively substantial. Agents clearly value

triadic relations, which explains the evidently non-random clustering in this network, as

discussed in Section 3.1.

Overall matching quality between two agents is not directly observable, but the re-

gressions in column (2) and column (6) account for socio-demographic (dis)similarities

that are incorporated in the matching concept, namely dummies for same language, same

gender and same age, as well as the absolute age difference between customers i and j. If

we assume that m(·) is a linear and additive function, the interpretation of the estimated

coefficients in terms of matching is as follows: By definition
∂E[gij |m(·)]

∂m(·) > 0, therefore

sign(ρ̂q) = sign(δq) holds. Accordingly, a positive (negative) sign not only implies an

increase in the probability that two agents socially interact, but also a positive (negative)
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Table 2: Network Formation

Pooled OLS Panel FE Lagged Dependent Var.

(1) (2) (3) (4) (5) (6)

Ln(Travel Timeij,t) -0.112∗∗∗ -0.942∗∗∗ -0.024∗∗∗ -0.094∗∗∗ -0.053∗∗∗ -0.479∗∗∗

(0.000) (0.053) (0.000) (0.019) (0.000) (0.024)
Ln(Travel Timeij,t)

2 0.104∗∗∗ 0.010∗∗∗ 0.053∗∗∗

(0.006) (0.002) (0.003)
Same Workplaceij,t 0.166∗∗∗ 0.071∗∗∗ 0.100∗∗∗

(0.030) (0.002) (0.014)
Same Languageij,t 0.017∗∗∗ 0.009∗∗∗

(0.001) (0.001)
> 0 Common Contactsij,t−1 213.822∗∗∗ 11.840∗∗∗ 100.943∗∗∗

(10.101) (0.928) (4.866)
> 1 Common Contactsij,t−1 2257.176∗∗∗ 145.633∗∗∗ 1024.429∗∗∗

(331.296) (35.656) (159.448)
gij,t−1 5231.433∗∗∗ 4973.641∗∗∗

(2.929) (34.689)
Const. 0.545∗∗∗ 2.079∗∗∗ 0.135∗∗∗ 0.224∗∗∗ 0.256∗∗∗ 1.060∗∗∗

(0.001) (0.114) (0.002) (0.038) (0.000) (0.052)

R2 0.001 0.054 0.115 0.115 0.275 0.288
Further Controls No Yes No No No Yes
Pair FE No No Yes Yes No No
Month FE Yes Yes Yes Yes Yes Yes
Groups – – 2,584,869 2,582,702 – –
Observations 30,996,082 27,238,673 30,996,082 27,238,673 28,411,817 27,238,673

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every
month at least once. All coefficients of the linear probability models are multiplied by 10000, and therefore can be
interpreted as basis points. Further controls include the degree for both agents (log), dummies for same gender
and same age, as well as the absolute age difference between agents i and j. Standard errors in parentheses.
+ p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

relation in terms of matching quality. Our results unambiguously point toward homophily,

which is the well documented tendency of individuals to bond with similar others (e.g.

Currarini et al., 2009; McPherson et al., 2001). For instance, individuals who share the

same principal language are on average more likely to form a tie than individuals with

different language preferences. The same holds true for age and gender (results not shown).

The LPM results suggest that spatial proximity, the presence of common friends, and

demographic similarity increase the likelihood that two individuals interact. We also es-

timate Logit models to accommodate for the binary dependent variable and check the

robustness of these results. The non-linear estimates are presented in Table B.1 in the

appendix and are qualitatively almost identical to the LPM results (see Figures 5a, 5b).

In order to allow proximity to enter more flexibly we replace the linear/quadratic dis-

tance functions by a series of dummies for distances within 5min, 10min,...,60min. The

corresponding results support the convex relationship (see Table B.2 in the appendix).

Until now, identification of the causal impact of distance on link formation rested on

the assumption that matching quality is time constant, so that the issue of non-random

sorting can be eliminated by analyzing movers. In a next step, we exploit a natural ex-
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Table 3: Changes in Public Transport & Network Formation

Switzerland Canton Zurich

(1) (2) (3) (4) (5) (6)

Ln(Travel Time PTij,t) -0.405∗∗∗ -0.008∗∗ -0.055 -0.382∗∗∗ -0.022∗ -0.328∗∗

(0.001) (0.003) (0.074) (0.001) (0.009) (0.121)
Ln(Travel Time PTij,t)

2 0.004 0.035∗∗

(0.007) (0.013)
Constant 2.157∗∗∗ 0.099∗∗∗ 0.222 1.753∗∗∗ 0.178∗∗∗ 0.836∗∗∗

(0.016) (0.198) (0.006) (0.039) (0.273)

R2 0.001 0.523 0.523 0.001 0.554 0.554
Pair FE No Yes Yes No Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Postcode Pairs 5,384,294 5,384,294 5,384,294 203,227 203,227 203,227
Observations 83,183,964 83,183,964 83,183,964 18,149,188 18,149,188 18,149,188

Notes: We use data from three-months windows prior and after the change in the public transport timetable on
December 13th 2015, i.e. June 2015–August 2015 and March 2016–May 2016. The sample covers only non-movers
(both caller and callee) who used their phone every month at least once. In column (1)–(3), we drop observations
in the canton of Ticino as these were affected by an infrastructure change not recorded in our travel time data.
All coefficients of the linear probability models are multiplied by 10000, and therefore can be interpreted as basis
points. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

periment that allows us to relax the assumption about time constant matching quality.

After the completion of a central tunnel and several new railway connections, the Swiss

Federal Railways company (SBB) issued a new timetable on 13 December 2015. It was the

most substantial change of the SBB’s timetable since 2004, affecting both the frequency of

connections and journey times across Switzerland (for additional information see Section

A.4 in the appendix). Notably, the planning of Switzerland’s public transport schedules is

highly centralized; the SBB holds a market share of around 80% in rail traffic so that local

providers coordinate their services with the SBB. This centralisation brings about nation-

wide changes in public transport connections triggered by newly established connections

of the federal railway. Moreover, it facilitates reliable timetable queries from webservices

such as search.ch (our data source).

We re-estimate equation (10b.), but instead of using movers, we use public transport

travel times as a measure for distance, and hence identify η1 based on changes in the public

transport timetable.19 To reduce noise, we employ data from three-months windows prior

and after the change in the public transport timetable, namely June 2015–August 2015

and March 2016–May 2016. Furthermore, we restrict the sample to individuals who keep

the same billing address, so that the estimates of η1 are not affected by the potentially

endogenous moving decision. Table 3 shows the results for Switzerland (columns 1–3)

and a subsample of individuals living in the canton of Zurich (columns 4–6), where the

largest changes were implemented. As in the previous models, distance, now measured

by public transport travel times, is negatively correlated with the probability that two

19Note that public transportation is frequently used in Switzerland; e.g. public transportation covers
about 60 percent of the commutes in the Zurich area.
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Figure 5: Predicted Probability to Form a Tie

agents form and maintain a link. Although the estimates’ precision drops somewhat, the

negative effect of distance remains when introducing pair fixed effects, while the square

term again enters positive pointing to a convexly decreasing relation.

We now inspect the magnitude and the functional relation between distance and tie

formation in more detail. Figure 5a displays the predicted probability for gij = 1 based

on various specifications. Figure 5b plots the relative probability for gij = 1 compared

to the base probability at a distance of 15 minutes travel time. Although the models

differ regarding the level prediction, they consistently reveal a convexly decreasing relation

between link formation and distance. Overall, the graphs illustrate that the effect of

distance on social interactions is highly localized; the probability of forming a link is

about twice as large for neighbors than for people living 10 minutes apart. This probability

continues to fall quickly up to a distance of 30 minutes, beyond which the negative effect

of travel time flattens out.

In summary, the evidence shows that distance is highly detrimental to social interac-

tions. This suggests that face-to-face interactions and phone communication are comple-

mentary. If distance between two individuals did not impose costs on their social exchange,

it would be difficult to argue that regional differences in population density should impact

the topography of social networks. In what follows, we examine whether distance costs

indeed lead to significant differences in the topography of social networks across urban
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and rural areas. First, we examine the consequences regarding network size, and then we

turn our attention to network efficiency.

5.2 Cities and Network Size

In order to directly test whether cities are favourable to network size, we estimate a series

of pooled OLS models, which are reported in Table 4. We use two sets of key explanatory

variables, including the trichotomous classification for urbanisation by EUROSTAT (i.e.

urban core, hinterland, periphery) as well as a continuous measure for population density.

The latter is defined as the log of the population living within a 15-minute radius of

an individual’s postcode area. Network size is measured on a monthly basis as degree

centrality, i.e. the number of unique contacts an individual calls during one month.

Columns (1) and (2) contain the results for the discretized measure of urbanisation,

the former excluding and the latter accounting for individual controls in the regression.

Agents who live in the hinterland or periphery have on average a smaller network than city

residents. The correlations are statistically highly significant, with an average difference

of -1.1 to -1.7 percent when comparing the periphery to the urban core, and -2.4 to -2.5

percent when comparing the hinterland to the urban core.

The continuous population density measure in column (3) is negatively correlated with

network size. This unexpected result is due to non-linearities, as the results in columns

(1) and (2) already indicate; although the hinterland has a higher population density

than peripheral municipalities, the hinterland coefficient is significantly smaller than the

periphery coefficient. When a squared-term is included (column (4)), the results indeed

reveal a convex relation between population density and network size, with the marginal

effect of population density turning positive around its mean value.

Overall, these findings lend support to the hypothesis that dense urban areas facil-

itate social interactions. So far it is unclear, however, whether the effect has a causal

interpretation or is driven by the sorting of high sociability types to urban centres.

In a next step, the regressions include individual fixed effects to back out any person

specific characteristics and thereby eliminate the sorting channel. Consequently, inference

is now based on customers who changed their billing address during the 12 months period

covered. Columns (5) to (7) of Table 4 display results for the baseline fixed effects regres-

sion, while columns (8) to (10) show a robustness check based on people who changed their

residence by at least 30 minutes driving time. The results stand in stark contrast to the

pooled OLS regressions and clearly reject the hypothesis that cities have a causal impact

on network size. All coefficients related to regional differences in population density are

practically zero and statistically insignificant.
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Table 4: Regional Differences in Network Size

Pooled OLS FE: Full Sample FE: Moving Distance > 30min.

Dependent Variable: Dir,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Hinterland (vs. Cities) -0.024∗∗∗ -0.025∗∗∗ 0.000 -0.006
(0.001) (0.001) (0.003) (0.006)

Periphery (vs. Cities) -0.011∗∗∗ -0.017∗∗∗ 0.000 -0.001
(0.001) (0.001) (0.004) (0.007)

Ln(Pop. Density) -0.008∗∗∗ -0.222∗∗∗ -0.002 -0.001 -0.002 -0.006
(0.000) (0.002) (0.001) (0.012) (0.002) (0.017)

Ln(Pop. Density)2 0.012∗∗∗ -0.000 0.000
(0.000) (0.001) (0.001)

R2 0.011 0.067 0.067 0.068 0.011 0.011 0.011 0.011 0.011 0.011
Further Controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Groups - - - - 60,514 60,514 60,514 16,874 16,874 16,874
Observations 10,117,645 9,353,794 9,353,679 9,353,679 669,825 669,825 669,825 185,676 185,663 185,663

Notes: We use monthly data for June 2015–May 2016. The sample in columns (1)-(4) covers customers who used their phone every month at least once. The
sample in columns (5)-(10) covers movers who used their phone every month at least once. Further controls include commuting distance, language (pooled OLS),
dummy for belonging to language minority, gender (pooled OLS), and age (pooled OLS). Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.
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Figure B.2 in the appendix plots the degree of movers over time. It shows that agents

expand their social network in the three months prior to moving, and then revert to their

initial level within two months. To test the robustness of our results with respect to this

dynamic, we re-estimate the fixed effects models for movers who changed their residence

by at least 30 minutes driving time and successively exclude periods around the moving

month (see Table B.3 in the appendix). These additional results support the conclusions

drawn from benchmark analysis in Table 4.

One further concern may be that urban residents use messenger apps more frequently

than people in rural areas, which could lead to a downward bias in population density.

Such concerns seem unsubstantiated for three reasons. First, at least two thirds of the cus-

tomers have zero marginal costs for domestic calls as they subscribe to flatrate contracts

which price discriminate via data usage. Hence, most customers have little incentive to

substitute from phone calls to data intensive messenger apps or voice over IP communi-

cation. Second, messenger apps and mobile phone calls are most likely complements not

substitutes. We decompose messenger usage along gender and language region, based on

a survey conducted by comparis.ch in 2014. It shows that messenger apps are more often

used among men than women and are more widespread in French-speaking than German-

speaking regions. The same ranking unfolds for network size in terms of mobile phone

calls. This indicates that the two media are complements not substitutes.20 Third, we

conduct a series of robustness checks, in which we control for an individual’s technology

preferences. Table B.8 adds two proxies for technology usage to our benchmark model:

the ratio of outgoing SMS versus outgoing calls, as traditional text messages are the most

likely technology to be substituted by messenger apps. We further include the ratio of

outgoing landline calls versus the total number of calls, because apps may be used to call

another mobile phone but not landlines. This robustness check does not alter the results in

Table 4, as density remains uncorrelated with network size. Note that we report analogous

robustness checks for all other network measures in Appendix B.7.

It remains, then, that the correlation between population density / urbanisation and

network size is driven by the sorting of above-average sociable people to the urban core

and cannot be attributed to a positive externalities of people living close together. A

variance decomposition, which computes the contributions of individual fixed effects, local

fixed effects, and time specific factors to the total variance of Di,t, also supports the

conclusion that regional differences play a small role in explaining differences in network

size. Individual components contribute 73.0 percent to the overall variance of degree

centrality, while local factors only explain 2.3 percent. The remaining variation can be

attributed to time specific factors (0.3%) and to the residual (24.4%), i.e. individual and

20Charlot and Duranton (2006) also show that telephone usage is complementary to all other modes of
communication.
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time variant components.

This raises the question of why people with an above-average sociable predisposition

move to cities. Sociability may thereby refer to the mental capability of maintaining ties,

as suggested by the social brain hypothesis, and/or to personality traits, as advocated by

Asendorpf and Wilpers (1998). One evident explanation could be that cities provide a

favourable environment for social interactions, which does not manifest itself in terms of

network size but rather with respect to network efficiency. If this were the case, individuals

with a preference for and capability of maintaining large networks would disproportionally

benefit from moving to cities, which could explain the sorting pattern uncovered in the

above analysis.

5.3 Cities and the Perimeter of Social Networks

We begin the discussion of network efficiency by examining variations in network perime-

ters across regions. Everything else being equal, an agent is better off the less distant her

social contacts live, simply because she will incur lower travel costs. Since people residing

in cities have a larger pool of potential contacts within close proximity, one would expect

them to recruit their social contacts within a narrower perimeter to minimize travel costs.

Notes: The density plot starts at 1 km; links spanning shorter distances (mostly
links within the same postcode) were assigned a value of 1 km.

Figure 6: City versus Hinterland / Periphery – Density Plot
for Social Ties by Radius.

Figure 6 plots the density of social ties by radius and location type (i.e. cities versus

hinterland & periphery). In comparison to individuals living in the hinterland or periphery,
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urban residents evidently have a larger mass of social contacts within a 7 km radius, and

fewer contacts beyond. This supports the hypothesis that living in a city can lower the

costs incurred from social interactions with distant contacts.

In order to examine this claim further we use the network formation model to test

whether urban residents value distance differently than people living in less densely pop-

ulated areas. To this end we interact the log of distance with either population density or

the city dummy. The top panel of Table 5 reports the output of the augmented network

formation model, with columns (1) and (2) displaying the pooled OLS results and columns

(3) and (4) showing the pair fixed effect estimates. All specifications suggest that urban

residents incorporate distance costs more strongly in their valuation than people living in

peripheral areas. The interaction terms yield statistically significant negative effects, but

are quantitatively relatively small.

Next, we resort to our network topography specification using the within-degree, DW r
i ,

as dependent variable. The bottom panel of Table 5 reports the outputs of this approach,

with columns (1) and (2) displaying the pooled OLS results and columns (3) and (4)

showing the fixed effect estimates that account for the sorting of highly sociable individuals

to urban areas. As hypothesized, within-degree is largest in urban areas and positively

correlated with population density. This holds true for both the pooled OLS estimates,

as well as the fixed effects results. According to our causal estimates from the fixed

effects specification, urban residents have on average a 10 percent higher within-degree

than individuals residing in the hinterland, and a 23 percent higher within-degree than

people living in peripheral areas. The results also show that doubling population density

leads, on average, to a 6.8 percent higher within-degree.21 While population density is

hardly relevant for overall network size, it has considerable explanatory power regarding

the number of close-range contacts. The variance decomposition also reveals that regional

factors explain more than twice as much of the within-degree variance than the variance

in network size.

Considering that distant social contacts are costly, these results suggest that urban

residents bear fewer costs from social interactions than people living in sparsely populated

areas. This could – at least partly – explain why sociable people sort into cities, as they

disproportionally benefit from this channel and therefore have a higher willingness to pay

for housing in cities than less sociable types. This result may also be interpreted as better

matching in cities, because geographical distance is essentially one dimension of matching

quality. We further explore matching quality in the following section.

21As for the degree, we re-estimate the fixed effects models for movers with a minimum moving distance
of 30 minutes and successively exclude periods around the moving month. Table B.4 in the appendix
shows that this does not alter the main conclusion. We further include proxies for technology preferences
in columns (3) and (4) of Table B.8, which also leaves the results unaffected.
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Table 5: Regional Differences in the Perimeter of Social Networks

a. Network Formation Pooled OLS Panel FE

Dependent Variable: gij,t (1) (2) (3) (4)

Ln(Travel Timeij,t) -0.068∗∗∗ -0.069∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.003) (0.003) (0.001) (0.001)
Ln(Travel Timeij,t) × Cityi,t -0.001∗∗∗ -0.001∗∗

(0.000) (0.000)
Ln(Travel Timeij,t) × Ln(Pop. Densityi,t) -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)

R2 0.054 0.054 0.088 0.088
Further Controls Yes Yes Yes Yes
Pair FE No No Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 2,582,702 2,582,702
Observations 27,238,673 27,238,673 27,238,673 27,238,673

b. Network Topography Pooled OLS Panel FE

Dependent Variable: DW r
i,t (1) (2) (3) (4)

Hinterland (vs. Cities) -0.111∗∗∗ -0.123∗∗∗

(0.001) (0.010)
Periphery (vs. Cities) -0.208∗∗∗ -0.231∗∗∗

(0.001) (0.012)
Ln(Population Density) 0.086∗∗∗ 0.143∗∗∗

(0.000) (0.004)

R2 0.049 0.056 0.018 0.033
Further Controls Yes Yes Yes Yes
Individual FE No No Yes Yes
Language Region FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 60,514 60,514
Observations 9,353,794 9,353679 669,825 669,812

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every
month at least once. DW r

i,t is computed using a 15 min. travel distance. a. Controls in network formation

models: Dummies for same workplace, same language, common contacts, degree of both agents (pooled OLS),
same gender (pooled OLS), same age (pooled OLS), and the absolute age difference between agents i and
j (pooled OLS). b. Controls in network topography models: Commuting distance, language minority dummy,
gender (pooled OLS) and age (pooled OLS). Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

5.4 Cities and Matching

Since matching quality cannot be directly observed, we propose two indirect tests for the

hypothesis that matching quality improves with population density. In one test we resort

to the network formation model, while the second test is based on the network topography

approach.

We begin with the network formation model, or more specifically with the fixed effect

specification given in equation (10b.): The pair fixed effect absorbs any dyad-specific

constant factors that either raise or lower the surplus of interaction for the involved agents.

Hence, it primarily captures matching quality, mij(·), which governs the value obtained

from forming a link with another person. If agents living in cities indeed benefit from better
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matching quality, we would expect that fixed effects associated with their actually formed

links are higher than the equivalent fixed effects calculated for agents living in rural areas.

To test this claim, we first estimate equation (10b.), and then regress the predicted pair

fixed effects m̂ij(·) for the subsample of active links (i.e. gij = 1) on population density

at agent i’s place of residence. Because we focus on movers to back out any distance-

related effects, the estimates yield the impact of population density weighted by duration

of stay.22 The results are reported in panel (a.) of Table 6. We obtain strong positive and

significant effects for population density in column (2), and negative effects for residents

of peripheral municipalities in column (1). Comparing the coefficients of interest with

the constant suggests that matching quality in cities is about 6 percent higher than in

peripheral areas, and 2 percent higher than in the hinterland.23 Restricting the sample

to customers with a minimum driving distance of 30 minutes between their old and new

addresses does not affect the results. This backs the claim that densely populated areas

lead to favourable matching outcomes.

We reassess the hypothesis by returning to the network topography approach. If people

change their residence, we would expect them to keep up with some of their previous con-

tacts and replace others with individuals living in their new neighborhood. Since distance

makes social interactions costly, only highly valuable contacts at the old place of residence

are worthwhile to maintain. Furthermore, if one encounters very good matches at the new

place of residence, the replacement of pre-existing ties with new contacts should advance

more quickly. We therefore examine whether this social adjustment process systematically

varies with population density at the pre- and post-move residence. Consider an individual

i moving in t from place pre to place post. We are interested in the ratio DW post
i,t+1/DW

pre
i,t+1

which reflects the number of t + 1 contacts at the post-move place of residence over the

number of t+1 contacts at the pre-move place of residence. Put differently we estimate the

speed of replacement of contacts at the pre-move place by new contacts at the post-move

place:

DW post
i,t+1

DW pre
i,t+1

= α+ βpost · Lposti,t+1 + βpre · Lprei,t+1 +X ′iγ + %DW post
i,t−1 + εi,t+1, (13)

The main explanatory variables are population density and the trichotomous clas-

sification for urbanisation at mover i’s new address (Lposti,t+1) and old address (Lprei,t+1),

complemented with a measure for the number of pre-move contacts at the new address

22As a robustness check, we also restrict the sample to movers who change their residence but stay within
the same class of municipalities, i.e. moving from city to city or from hinterland to hinterland. As Table
B.6 in the appendix reveals, this does not alter the results.

23The mean of our matching measure drops by about 56/2493 ' 0.02 and 145/2493 ' 0.06 when
comparing the hinterland and the periphery to cities.
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Table 6: Regional Differences in the Matching Quality

a. Network Formation Full Sample Moving Distance > 30min.

Dependent Variable: m̂(ξi, ξj , δ) (1) (2) (3) (4)

Hinterlandi,t -55.595∗∗∗ -59.265∗∗∗

(5.928) (11.127)
Peripheryi,t -145.315∗∗∗ -117.816∗∗∗

(6.451) (11.832)
Ln(Pop. Densityi,t) 34.954∗∗∗ 17.834∗∗∗

(1.856) (2.815)
Constant 2492.994∗∗∗ 2085.201∗∗∗ 2466.674∗∗∗ 2232.319∗∗∗

(492.036) (115.281) (250.231) (84.219)

R2 0.001 0.001 0.001 0.001
Observations 11,616,147 11,692,984 3,089,595 3,116,907

b. Network Topography Full Sample Moving Distance > 30min.

Dependent Variable: DW post
i,t+1/DW

pre
i,t+1 (1) (2) (3) (4)

Citypost 0.327∗∗∗ 0.090
(0.046) (0.056)

Citypre -0.449∗∗∗ -0.275∗∗∗

(0.033) (0.044)
Ln(Pop. Densitypost) 0.227∗∗∗ 0.076∗∗∗

(0.011) (0.013)
Ln(Pop. Densitypre) -0.326∗∗∗ -0.138∗∗∗

(0.014) (0.020)
Constant 1.009∗∗∗ 1.801∗∗∗ 0.685∗∗∗ 1.256∗∗∗

(0.097) (0.176) (0.037) (0.194)

R2 0.047 0.078 0.259 0.263
Further Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes
Observations 28,871 28,871 7,887 7,801

Notes: Dependent Variable in Panel a.: Predicted dyad specific fixed effect from network formation model outlined
in equation (10b). Dependent Variable in Panel b.: The number of post-move contacts at the post-move place of
residence over the number of post-move contacts at the pre-move place of residence. Controls in Panel b.: Number
of contacts at new address prior to moving, commuting distance, dummy for belonging to language minority,
gender and age . Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

(DW post
i,t−1), and individual level characteristics Xi.

24 The results reported in the bottom

panel of Table 6 are based on address changes between October 2015 and January 2016

(period t), a pre-move window covering June 2015 to August 2015 (period t − 1), and a

post-move window covering March 2016 to May 2016 (period t+ 1). As hypothesized, the

fastest social adjustment process is observed for people who move from the periphery to

the city, while movers who lived in urban areas before changing their address keep compar-

atively large shares of their pre-move contacts. Quantitatively the difference is substantial:

While the ratio of new versus old contacts half a year after changing address is on average

24Instead of controlling for the pre-move contacts at the new address, we estimated the model for a
subsample of customers that move to a location where they have no prior contacts, i.e. DW post

i,t−1 = 0. This
does not alter the conclusion, as Table B.6 (Panel b.) in the appendix shows. We further include proxies
for technology preferences in columns (7) and (8) of Table B.8, which also leaves the results unaffected.
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1.3 for people that move into a city, it is only 0.6 for people that move out of the city.25

Since maintaining spatially distant contacts is costly, this suggests that contacts formed in

cities generate on average a higher surplus and are therefore more likely to be maintained.

Hence, this test supports the hypothesis that densely populated areas improve matching

quality. In Appendix B.6 we document that the superior matching in cities can be further

substantiated by a number of sensitivity checks which focus on subgroups of movers and

exploit bilateral network adjustment.

5.5 Cities and Clustering

The final network property that we examine is clustering. Agents face a trade-off in terms

of efficient information exchange (i.e. low clustering) and benefits related to reciprocity

(i.e. high clustering). The optimal balance may vary regionally due to factors that alter

this trade-off. Additionally, one would expect that more populous neighborhoods display

lower average clustering, simply because randomly established links are less likely to form

triadic structures when the pool of potential contacts grows larger. To test the first claim,

we resort to the network formation model. Even if there is no evidence that urban residents

value triadic relations differently than people living in rural areas, the mechanical relation

between population density and clustering may lead to measurable regional differences. If

this is the case, the network topography approach should uncover them.

In the network formation model we interact the dummy for common contacts with

either population density or the city dummy. In order to back out spurious clustering

due to the grouping of similar types, we focus on the pair fixed effects specification. The

top panel of Table 7 reports the results for these regressions. In both specifications, the

interaction terms are negative and statistically significant at the 10 percent level. Hence,

this analysis suggests that sharing a common link is valued less by urban residents than by

residents of peripheral areas. Magnitude wise the impact is fairly substantial, as it amounts

to approximately 20 percent of the effect attributed to the common contact dummy. While

sharing a common contact increases the probability of forming and maintaining a link by

17.3 basis points, the effect is only 13.7 basis points among city residents.

Given the results of the network formation analysis, we expect lower clustering in cities

than in peripheral areas. The bottom panel of Table 7 displays the results of the network

topography analysis with clustering as the dependent variable. Both the pooled OLS

regressions in columns (1) and (2), as well as the fixed effects specifications in columns (3)

and (4) suggest that cities attenuate network clustering. The effect ranges between -0.010

and -0.014 in the pooled OLS regressions, which is roughly 11 to 15 percent of the sample

25According to columns (1) the average ratio is about 1.009 which increases to 1.336 for individuals
moving to the city, i.e. Citypost = 1 and reduces to 0.56 for those moving out of the city, i.e. Citypre = 1.

31



Table 7: Regional Differences in the Transitivity of Social Networks

a. Network Formation Panel FE

Dependent Variable: gij,t (3) (4)

> 0 Common Contactsij,t−1 17.337∗∗∗ 16.477∗∗∗

(1.268) (1.058)
> 0 Common Contactsij,t−1 × Cityi,t -3.681+

(2.009)
> 0 Common Contactsij,t−1 × Ln(Pop. Densityi,t) -1.745+

(0.957)

R2 0.124 0.124
Further Controls Yes Yes
Pair FE Yes Yes
Month FE Yes Yes
Groups 2,582,702 2,582,702
Observations 27,238,673 27,238,138

b. Network Topography Pooled OLS Panel FE

Dependent Variable: Cir,t (1) (2) (3) (4)

Hinterland (vs. Cities) 0.010∗∗∗ 0.002∗

(0.001) (0.001)
Periphery (vs. Cities) 0.014∗∗∗ 0.002∗∗

(0.001) (0.001)
Ln(Population Density) -0.004∗∗∗ -0.001∗∗

(0.001) (0.000)

R2 0.022 0.022 0.001 0.001
Further Controls Yes Yes Yes Yes
Individual FE No No Yes Yes
Language Region FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Groups – – 60,507 60,507
Observations 9,252,183 9,252,183 664,343 664,330

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every
month at least once. a. Controls in network formation models: Dummies for same workplace, same language,
common contacts, degree of both agents (pooled OLS), same gender (pooled OLS), same age (pooled OLS), and
the absolute age difference between agents i and j (pooled OLS). b. Controls in network topography models:
Commuting distance, dummy for belonging to language minority, gender (pooled OLS) and age (pooled OLS).
Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

mean. The difference between city and hinterland / periphery drops in the fixed effects

specifications, but remains significant at the 5 percent level or higher.26

Despite the evidence that population density has no impact on the number of social

interactions, cities are shown to facilitate the diffusion of information due to below-average

clustering. This can have important consequences for local labor markets, as discussed in

Sato and Zenou (2015), for example. In conjunction with the findings on network size,

matching quality and distance costs, this suggests that cities may encourage not a larger

number but rather more valuable social interactions.

26Periods around the moving month are excluded in Table B.5. We also include proxies for technology
preferences in columns (5) and (6) of Table B.8, which leaves the results unaffected.
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6 Assesing the Value of Social Interactions

Combining land prices with the estimates from above we can perform a simple back-of-

the-envelope calculation to asses the monetary value of superior networks in cities. In

a standard model of spatial equilibrium, migration of households equalizes utility across

space such that higher nominal wages or superior consumption amenities are offset by

higher housing costs (see Rosen, 1979; Roback, 1982). In the following, we refrain from

disentangling the effect of networks on local productivity – and thus nominal wages –

versus utility benefits in form of consumption amenities. Instead, we examine to what

extent superior social networks reflect in higher land prices which may be a consequence

of either increased productivity, or additional amenities, or both.

In order to quantify the link between network measures introduced above and land

prices we resort to micro-level information about rental prices and house characteristics. In

particular, we employ a dataset covering all rental offers posted on the most popular search

engines in Switzerland.27 Using rental prices instead of house prices has the advantage that

our results are not affected by expected house price changes. Moreover, the rental share

amounts to 59 percent in Switzerland. We estimate a standard hedonic regression where

we regress the logarithm of the rent per square meter on a comprehensive set of residence

specific covariates and absorb all location specific factors by postcode fixed effects. The

covariates include information about the number of rooms, living area, building age, floor,

the availability of a garden, balcony, attic, elevator, parking and parking garage as well

an indicator on whether the residence has a view (to a lake or to the mountains). As

postcodes are small regional entities with a median population of about 950 inhabitants

(median size 7.3 square kilometers) we capture location specific determinants of rents

reasonably well and explain almost 70 percent of the total variation in the log of rents per

square meter. Hence, assuming that our detailed covariates capture relevant variation of

the quality of structures, the fixed effects obtained from the hedonic regression serve as a

suitable measure for the local value of land.

These data are used as a dependent variable to study the elasticity of land values with

respect to social network measures. Among others, the local value of land is determined

by local amenities and agglomeration economies. Following the argument that efficient

social networks represent a channel through which agglomeration economies operate we

expect that the quality of social networks exerts a positive effect on land prices even

27The information is provided by Meta-Sys.ch. The data provide a good coverage of rural and urban
areas which we test by comparing the data with the universe of houses and apartments listed in the official
building registry. In total we observe information for 546,456 residences across 2,790 postcodes offered
for rent in the years 2015–2016. Due to potential measurement error that might arise from the difference
between offer and transaction prices, we focus on rental data because rents are almost never negotiated in
Switzerland.
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Notes: Binned scatterplots between logarithmized network measures (degree, matching, clustering) and logarithmized land prices at the
postcode-level conditioned on population density.

Figure 7: Capitalization of Network Measures

when controlling for population density. Figure 7 plots the partial correlation between

the logarithmized network measures and logarithmized land prices. Consistent with our

hypothesis, we find that higher average network degree and matching quality are associated

with higher land prices while less efficient networks characterized by high clustering feature

lower land prices.

If efficient social networks represent a channel through which agglomeration economies

operate we not only expect that the quality of social networks exerts a positive effect on

land prices but also that the positive effect of population density on local land prices is

reduced when measures of social networks are included. Table 8 reports the corresponding

results. The first column reports a positive correlation between land prices and population

density as typically observed in the literature and attributed to agglomeration economies

(e.g. Albouy and Ehrlich, 2012). We further included the trichotomous classification for

urbanisation with the urban core as the reference category. Overall we find that the

periphery and the hinterland display 17 and 7 percent lower land prices than the city.

Moreover, all three measures of social networks enter significantly and with the expected

signs. Higher average network degree and matching quality are associated with higher

land prices while less efficient networks characterized by high clustering feature lower land

prices (see columns (2)–(4)).28 As is evident from columns (1) and (6) in Table 8 the

effect of population density is reduced by about 30 percent when controlling for network

measures. The same holds true for the indicators of hinterland and periphery which drop

by 27–28 percent when accounting for social networks. Hence, these results indicate that

a significant part of agglomeration economies observed in land prices can be attributed to

superior social networks.

The magnitudes suggest elasticities of land prices with respect to network measures

28Note that common friends are valued for individual links while a high aggregate share of triadic
closure/clustering lowers the value of the local network. We interpret this discrepancy as a negative
externality.
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Table 8: Capitalization of Network Measures

Dependent Variable: Ln(Land Price per m2)

(1) (2) (3) (4) (5) (6)

Pop. Density 0.040∗∗∗ 0.073∗∗∗ 0.040∗∗∗ 0.065∗∗∗ 0.044∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Degree 0.257∗∗∗ 0.205∗∗∗ 0.171∗∗∗

(0.050) (0.050) (0.049)
Clustering -0.442∗∗∗ -0.424∗∗∗ -0.358∗∗∗

(0.044) (0.044) (0.043)
Matching Quality 0.115∗∗∗ 0.113∗∗ 0.072∗

(0.034) (0.034) (0.032)
Hinterland -0.169∗∗∗ -0.124∗∗∗

(0.014) (0.013)
Periphery -0.236∗∗∗ -0.169∗∗∗

(0.015) (0.015)

R2 0.351 0.286 0.363 0.275 0.378 0.418
Language Region FE Yes Yes Yes Yes Yes Yes
Observations 2,155 2,194 2,194 2,189 2,189 2,150

Notes: Standard errors are clustered on the postcode level and reported in parentheses. + p<0.10, * p<0.05, **
p<0.01 *** p<0.001.

between 0.07 to 0.36 (column(6) of Table 8). These findings are robust to the inclusion of

various proxies for local geography and (dis-)amenities (e.g. ruggedness, altitude, taxes)

as well as proxies for the local composition of structures such as the local share of second-

homes and the local share of single-homes. However, the estimates have to be interpreted

carefully as the quality of local networks may still be correlated with unobservable factors

that determine land prices. A conservative back-of-the envelope calculation suggests that

superior network quality leads to a difference of land prices in the periphery relative to

the city of about 6 percent.29 Recalling that land prices are generally 17 percent lower

in the periphery than in the city this is well in line with the 30 percent reduction of the

elasticity of land prices with respect to population density when accounting for network

quality in Tables 8.

7 Conclusion

The results of this study show that cities provide a superior environment for social in-

teractions, which is fundamentally important to the mechanics of agglomeration forces.

Contrary to many theoretical models, the advantages of densely populated areas do not

translate into larger social networks but rather into improvements in terms of matching

29According to Tables 4, 7, and 6 network size is 1.7 percent lower, clustering is 15.2 percent higher, and
matching quality is 4.8 percent lower in the periphery than in the cities. This yields a price difference of
1.7%× 0.171 + 4.8%× 0.072 + 15.2%× 0.358 = 6.1%. Note that this price difference includes the sorting
of high sociability types into the cities which reinforces the network externalities. The corresponding price
difference is considerably lower and amounts to between 1.1 and 2.7 percent once we adjust for sorting.
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quality, smaller distance costs, and a favourable structure for information diffusion (i.e.

lower clustering).

Evidently, modern communication technologies do not render cities obsolete. Our anal-

ysis has demonstrated that they remain important as catalyst of valuable social exchange

and, consequently, as potential engines of growth. As a significant part of agglomera-

tion economies observed in land prices can be attributed to superior social networks we

conclude that these effects are also quantitatively important: About 30 percent of the

difference in land prices between the periphery and cities can be explained by measures

of quality of networks. From a policy perspective, this result provides micro-level evi-

dence for the positive externalities of densely populated areas, which should be taken into

account, for example, in the design of zoning policies, or the pricing of mobility.

There are many potential extensions of the work described in this paper. First, we

focused exclusively on private social interactions, thus it would be fruitful to examine

whether the same conclusions apply to networks from business communication. Second,

it would be interesting to distinguish the role of social networks for productivity versus

consumption amenities. Third, we barely scratched the surface of the information available

in the mobility data recorded from transmitting antennas. Such data would allow, for

instance, to evaluate the costs of commuting in terms of social capital.
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A Appendix: Data

A.1 Descriptive Statistics – Municipalities and Postcode Areas

Table A.1: Main Descriptives for Municipalities and Postcode Areas

Mean SD Min Max

Municipal Level (N=2322)
Area in km2 17.412 31.434 0.327 438.562
Population (from 2010 Census) 2396 3397.175 50 384786
Market Share of Swisscom 0.577 0.096 0.090 0.997
Degree of Urbanization

Core 0.035 – 0 1
Periphery 0.336 – 0 1
Hinterland 0.629 – 0 1

Main Language
German 0.628 – 0 1
French 0.295 – 0 1
Italian 0.065 – 0 1
Rhaeto-Romanic 0.012 – 0 1

Distance: Municipality i to j
Euclidean Distance (km) 107.611 58.955 0.581 348.644
Travel Time by Car (min.) 134.004 66.897 0.692 433.696
Travel Time by Public Trans. (min.) 253.447 93.206 1.061 712.070

Postcode Level (N=3201)
Area in km2 12.927 19.215 0.014 242.904
# Customers within 15 min. Radius 14683 16818.31 50 107549

Distance: Postcode i to j
Euclidean Distance (km) 111.931 59.501 0.336 353.852
Travel Time by Car (min.) 142.804 69.033 0.283 453.508
Travel Time by Public Trans. (min.) 269.904 100.181 1.008 713.000

Sources: Municipal and postcode areas from Swisstopo; municipal population, language shares, and degree of
urbanisation from Federal Statistical Office; car travel times from search.ch; number of private mobile phone
customers from Swisscom. Data from postcodes and municipalities with less than 50 customers were deleted
due to privacy concerns.

Table A.1 summarizes the variables used on municipality and postcode level. In total

there are 2, 322 municipalities and 3, 201 postcodes in Switzerland. Population by lan-

guage stems from the most recent census carried out in 2010. Municipality and postcode

shapefiles were provided by Swisstopo and used to assign residences of individuals to post-

codes and municipalities. Travel time between postcodes and municipalities is computed

in terms of public transport and car travels on the basis of data from search.ch. De-

gree of urbanization is provided by the Federal Statistical Office and refers to the OECD

classification of functional areas (also used by EUROSTAT).
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A.2 Phone Usage Statstics

Table A.2 displays monthly phone activity and call duration statistics of private customers

subdivided into device and message type, i.e. mobile phone calls, text messages sent from

mobile phones and landline calls. We restrict our analysis to mobile phones and then

filter the data as motivated in Section 3. In particular we restrict the analysis to the first

28 days of a month, keeping (i.a.) calls between mobile phones, (i.b.) customers that

registered only one mobile phone, (ii.) outgoing calls, (iii.) calls with a duration of more

than 10 seconds, (iv.) mobile phones with a monthly call duration between 1 minute and

56 hours. The filtered data comprises about 40% of private mobile phones calls in the

data representing 60% of the total call duration; the filtering skews the sample towards

relatively long-lasting calls as very short calls are deleted from the data set in step (iii.).

Table A.2: Call Duration (in Mio. Minutes) between June 2015 to May 2016

Phone Activity (in Mio.) Call Duration (in Mio. Minutes)

MP-Calls SMS Landline Total Filtered MP-Calls Landline Total Filtered

Jun. 2015 166.3 90.9 64.3 321.6 66.0 351.2 296.2 647.4 222.4
Jul. 2015 157.3 91.9 57.8 307.0 62.0 324.8 271.1 595.9 202.2
Aug. 2015 153.6 89.0 59.7 302.3 60.3 337.0 283.6 620.6 211.3
Sep. 2015 153.8 85.2 61.9 300.9 61.6 343.0 294.2 637.2 216.9
Oct. 2015 133.6 76.3 59.9 269.8 53.7 307.5 284.8 592.3 192.6
Nov. 2015 138.1 77.7 62.1 277.9 56.5 333.1 298.5 631.6 208.7
Dec. 2015 154.1 79.1 61.6 294.8 62.0 347.4 298.1 645.5 218.5
Jan. 2016 155.7 78.5 62.0 296.2 61.0 376.0 312.4 688.4 235.5
Feb. 2016 167.6 77.5 60.6 305.7 66.3 393.3 299.6 692.9 246.7
Mar. 2016 163.3 74.9 58.6 296.8 65.4 378.1 286.8 664.9 240.3
Apr. 2016 164.2 70.7 59.9 294.8 65.7 378.8 286.1 664.9 241.1
Mai 2016 161.1 68.6 55.9 285.7 64.9 353.5 264.6 618.1 228.3

Notes: These figures base on phone usage statistics of private customers.

A.3 Descriptive Statistics – Individual Level

Table A.3 displays the correlation coefficients of population figures from the census data

and the customers numbers from our data by age group, language group, and gender. It

is evident that our data is highly representative for the Swiss population at the local level.

This holds even true when we study specific subgroups of the population as the correla-

tion coefficients are always well above 0.9 except for Italian speaking part of Switzerland

(Ticino). In Ticino, which represents only about 5 percent of Swiss municipalities, we

still observe a correlation coefficient of about 0.9 but other phone providers seem to be

relatively strong for the age group 30 where the correlation coefficients is only 0.765.

Table A.4 lists the monthly number of movers as identified from the billing address
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Table A.3: Correlation between Census Population and Number of Customers at the
Municipality Level

All Male Female German French Italian

Age All 0.987 0.984 0.988 0.992 0.990 0.893
Age 20 0.945 0.946 0.944 0.960 0.946 0.916
Age 30 0.953 0.955 0.951 0.953 0.973 0.765
Age 40 0.968 0.963 0.971 0.983 0.993 0.875
Age 50 0.985 0.982 0.984 0.993 0.988 0.914
Age 60 0.990 0.988 0.987 0.994 0.984 0.922

Notes: These figures base on customer information of active phones during June 2015 and the most recent census
conducted by the Federal Statistical Office in 2010.

Table A.4: Number of Private Mobile Phone Customers with a Change in Residence

DEGURBA Classification of Movers
Distance City to Hint./Peri. Within

Month All > 30min Hint./Peri. to City Hint./Peri. No Change

July 13880 4461 1468 1858 2864 7690
August 14212 4572 1431 1930 2923 7928
September 15636 4842 1584 2044 3160 8848
October 15673 4795 1572 2052 3229 8820
November 14820 4612 1537 1977 3070 8236
December 14053 4202 1396 1836 3229 7592
January 13292 4432 1194 2207 2708 7183
February 13705 4333 1275 2033 2807 7590
March 15171 4671 1501 2060 3181 8429
April 15838 4873 1529 2111 3234 8964

Notes: Movers are identified based on address changes in the customer database. Columns 3 to 6 document the
moving pattern along the DEGURBA classification.

recorded in the provider’s customer database. Between 13,292 to 15,838 mobile phone

users reported a change of their billing address each month; this amounts to about 6.5

percent of all customers within the 12 months period covered. For one-third of movers the

moving distance is larger than 30 minutes driving time; we use this subsample to check

the robustness of our benchmark estimations, which are based on all movers irrespective

of distance between the old and new place of residence. Table A.4 further documents the

moving pattern along the DEGURBA classification. In particular, it shows that about 10%

of movers change their residence from an urban municipality to the hinterland/periphery

while about 15% move from the hinterland/periphery to the city. About 20% of residence

changes cover moves from the periphery to the hinterland, or vice versa. For the majority,

the post- and pre-move residence do not change in terms of DEGURBA-classification.

One concern maybe that movers are systematically different from non-movers. Ta-

ble A.5 compares phone usage statistics, network characteristics, and sociodemographics

between movers and non-movers. While movers are considerably younger than non-movers
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Table A.5: Comparing Non-movers to Movers, Main Descriptive Statistics

Non-Movers Movers
Mean SD N Mean SD N Difference

Monthly Phone Usage Statistics, June 2015 – May 2016 (pooled)
Number of Calls 110.525 109.039 9 564 636 126.170 114.840 834 913 -15.646
Duration (Minutes) 250.840 293.322 9 564 636 302.285 316.835 834 913 -51.445

Monthly Network Characteristics, June 2015 – May 2016 (pooled)
Degree Centrality 9.164 7.912 9 564 636 9.633 7.875 834 913 -0.468
Within-Degree 7.163 7.266 9 564 636 5.971 6.721 834 913 1.192
Clustering Coefficient 0.092 0.134 9 423 136 0.081 0.114 825 787 0.011

Sociodemographics - Private Mobile Phones
Age 35.307 13.734 797 053 31.038 10.624 69 593 4.269
Female 0.522 – 797 053 0.527 – 69 593 -0.005
Language: German 0.680 – 797 053 0.703 – 69 593 -0.023
Language: French 0.271 – 797 053 0.251 – 69 593 0.020
Language: Italian 0.043 – 797 053 0.039 – 69 593 0.004
Language: English 0.006 – 797 053 0.007 – 69 593 -0.001

Notes: The table is based on the subsample of customers with phone activity in all 12 months, which we also use
in the main analysis. Further filters as described in Section 3. Phone usage statistics include in- and outgoing calls.
The within-degree measures network size within a radius of 15 minutes around an agent’s residence.

(∼4.2 years, ∼1/3 SD), they only marginally differ along the other dimensions: Movers

call slightly more (∼15 calls, ∼1/7 SD) and longer (∼50 min., ∼1/6 SD), have a marginally

higher degree (∼0.5, ∼1/17 SD), lower within degree (∼1.2, ∼1/6 SD), and lower cluster-

ing (∼0.01, ∼1/11 SD). In terms of gender and language, movers are practically identical

to non-movers.

A.4 Public Transport: Change of the Federal Railway Timetable

In Section 5.1 we exploit changes in the federal railway timetable to infer the causal impact

of distance on link formation. The new timetable was put into effect on 13 December 2015,

splitting our sample of phone data – that spans from June 2015 to May 2016 – into 6.5 and

5.5 months periods. Notably, the planning of Switzerland’s public transport schedules is

considerably centralised; the Swiss Federal Railways company (SBB) holds a market share

of around 80% in rail traffic so that local providers typically coordinate their services

with the SBB timetable. For instance, Switzerland’s largest city transport network in

Zürich – the Zürcher Verkehrsverbund (ZVV) – also revised its timetables on 13 December

2015 in order to synchronize their connections with SBB. This centralisation facilitates

reliable timetable queries from websites such as search.ch, and also brings about nationwide

changes in public transport connections triggered by revisions in SBB’s scheduling.

The change of timetable in December 2015 was the largest of its kind since 2004. It
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Notes: Illustrates the LN-differences for travel times before and after the change in the federal railway timetable on
13 December 2015; Mean: -0.012, Std. Dev.: 0.084, Share of Zeros: 0.256.

Figure A.1: The Impact of the Revised Timetable on Travel Times
between Postcode Pairs

aimed at incorporating new regional and interregional connections affecting travel times

both through longer/shorter journey times and through longer/shorter waiting times.30 To

calculate the changes in travel time between two places, we proceed as follows: search.ch

kindly provided data on the quickest connections between all pairs of serviced public

transport stops, i.e. about 26,000×26,000 different routes, including the frequency of

available connections for a two hour window between 6am and 8am. The data covers four

randomly chosen weekdays in 2015 (before the change of the timetable) and four randomly

chosen weekdays in 2017 (after the change of the timetable). We build a cleaned and

integrated file for 2015 and 2017, where we select the day with the shortest journey time;

typically journey times do not vary across different days of the week unless construction

or maintenance work causes temporary delays. As the data includes x-y-coordinates of

each public transport stop, we can reliably assign them to a postcode/municipality; we

then extract the quickest transport link for every postcode/municipality pair in 2015,

including the stop-ids, journey time in minutes, and the number of available connections

between 6am and 8am. Our final measure of public transport travel times incorporates

both journey and waiting time, and is defined as

Public Transport Travel T ime =
120 min.

#Available Connections
+ Journey T ime. (A.1)

30Detailed summaries of all changes made in December 2015 can be found on the SBB’s website, e.g.
https://stories.sbb.ch/fahrplanwechsel-dezember-2015/2015/11/10/ or https://company.sbb.ch/

de/medien/medienstelle/medienmitteilungen/detail.html/2015/11/1111-1.
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To obtain a comparable travel time matrix for 2017, we use the same selection of

stops as in the 2015 matrix. Any changes between travel times in 2015 and 2017 can

then be attributed to the change of timetable on 13 December 2015. Figure A.1 plots

the distribution of percentage changes in the travel time between 2015 and 2017, while

summary statistics for public transport travel times in 2015 are shown in Table A.1.

The largest changes occured around Zurich, which is why we estimate the models for

Switzerland as well as a subsample consisting of Zurich and its neighboring cantons, namely

Schaffhausen, Thurgau, St. Gallen, Schwyz, Zug, and Aargau.

The change in the federal railway timetable affected travel times for three quarters of

postcode pairs; on average the modifications lowered travel times by 1.2% ranging from

reductions of 15% up to increases of 10%.

A.5 Data about Housing Rents

Our data on houses offered for rent is provided by MetaSys.ch and includes the location

as well as detailed information about characteristics of the residences. Comparing the

dataset to official statistics about monthly rents (Volkszaehlung und Strukturerhebung,

2014 published by the Federal Statistical Office) shows that our data is highly representa-

tive even at the local level. We merge the data with a shapefile about postcodes to obtain

the postcode fixed effects. Table A.6 shows the benchmark hedonic regression which we

use to predict the postcode fixed effects.

Table A.6: Housing Rents.

Dependent Variable: Ln(Rent per m2) Point Estimate Std. Error

No. Rooms 0.039∗∗∗ (0.001)
Ln(Living Area) -0.388∗∗∗ (0.001)
Age -0.001∗∗∗ (0.000)
Age2 0.000∗∗∗ (0.000)
Single House -0.001 (0.003)
Garden 0.037∗∗∗ (0.001)
Balcony 0.061∗∗∗ (0.001)
Parking or Garage 0.033∗∗∗ (0.009)
Elevator 0.049∗∗∗ (0.001)
Elevator × Floor -0.002∗∗∗ (0.000)
View 0.066 (0.048)
Chimney 0.018∗∗∗ (0.001)
Conservatory 0.032∗∗∗ (0.003)
Low Energy 0.097∗∗∗ (0.001)
Observations 293,777
Adj. R2 .681

Time FE Yes
Floor FE Yes
Postcode FE Yes

Notes: The sample covers all rental offers published in the years 2015–2016.
Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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B Appendix: Robustness

B.1 Robustness: Nonlinear Model of Network Formation

We also estimated Logit models of network formation to accommodate for the binary de-

pendent variable and check the robustness of these results. Since the incidental parameter

problem can induce severe bias in the logit fixed effects estimates (e.g Lancaster, 2000),

we only show results for the pooled logit model and the lagged dependent variable model.

Table B.1 summarized the results of the logit model. We compare the logit estimates to

the alternative specifications in Figures 5a and 5b in the main text.

Table B.1: Logit Models of Network Formation

Pooled Logit Lagged Dependent Var.

(1) (2) (3) (4)

Ln(Travel Timeij,t) -1.410∗∗∗ -0.877∗∗∗ -1.131∗∗∗ -0.976∗∗∗

(0.002) (0.049) (0.001) (0.005)
Same Workplaceij,t 0.893∗∗∗ 1.085∗∗∗

(0.161) (0.013)
Same Languageij,t 1.813∗∗∗ 1.685∗∗∗

(0.057) (0.005)
> 0 Common Contactsij,t−1 7.363∗∗∗ 4.786∗∗∗

(0.122) (0.070)
> 1 Common Contactsij,t−1 2.323∗∗∗ -0.018

(0.352) (0.071)
gij,t−1 12.218∗∗∗ 9.868∗∗∗

(0.003) (0.029)
Const. -7.357∗∗∗ -12.951∗∗∗ -8.958∗∗∗ -11.170∗∗∗

(0.010) (0.249) (0.007) (0.026)

Pseudo R2 0.138 0.376 0.492 0.527
Further Controls No Yes No Yes
Pair FE No No No No
Month FE Yes Yes Yes Yes
Observations 30,996,082 27,238,673 28,411,817 28,411,817

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every
month at least once. Further controls include the degree of both agents (log), dummies for same gender and same
age, as well as the absolute age difference between agents i and j. Standard errors in parentheses.
+ p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

B.2 Robustness: Network Formation with Nonlinear Distance Function

In Table B.2 we report the results for specifications with distance bin dummies instead

of parametric distance control functions. We assign units to distance bins in the range

of 5min to 60min with the reference group being at a distance of above 60min travel

time. The coefficients confirm that tie formation is a convex function in distance. The

base probability for forming a tie at a distance above 60min travel time amounts to 0.005

basis points in the linear probability model (without lagged dependent variable and fixed

effects, column (1)). This probability increases to 0.26 basis points for agents residing in
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a distance of 20min and reaches 0.035 percent for individuals living within a 5min radius.

We illustrates these results in the figure below.

Table B.2: Network Formation with Nonlinear Distance

LPM LPM-LDV LPM-FE

(1) (2) (3)

< 5min 3.474 ∗∗∗ 1.628 ∗∗∗ 0.241 ∗∗∗

(0.023) (0.011) (0.006)
5− 10min 0.683 ∗∗∗ 0.322 ∗∗∗ 0.055 ∗∗∗

(0.003) (0.002) (0.002)
10− 15min 0.420 ∗∗∗ 0.198 ∗∗∗ 0.029 ∗∗∗

(0.001) (0.008) (0.001)
15− 20min 0.255 ∗∗∗ 0.120 ∗∗∗ 0.019 ∗∗∗

(0.001) (0.001) (0.001)
20− 30min 0.127 ∗∗∗ 0.060 ∗∗∗ 0.010 ∗∗∗

(0.000) (0.000) (0.000)
30− 40min 0.057 ∗∗∗ 0.027 ∗∗∗ 0.005 ∗∗∗

(0.000) (0.000) (0.000)
40− 50min 0.027 ∗∗∗ 0.013 ∗∗∗ 0.002 ∗∗∗

(0.000) (0.000) (0.000)
50− 60min 0.013 ∗∗∗ 0.006 ∗∗∗ 0.001 ∗∗∗

(0.000) (0.000) (0.000)
Const. 0.005 ∗∗∗ 0.002 ∗∗∗ 0.024 ∗∗∗

(0.000) (0.000) (0.000)

Adj. R2 0.001 0.275 0.071
Pair FE No No Yes
Month FE Yes Yes Yes
Observations 30’996’082 28’411’817 30’996’082

Notes: LPM refers to the linear probability model, LDV refers to the lagged-dependent variable model, and FE
refers to pair fixed effects. All coefficients of the are multiplied by 10000, and therefore can be interpreted as basis
points. We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every
month at least once. Standard errors in parentheses.
+ p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

B.3 Robustness: Moving Dynamic and Degree Centrality

Figure B.2 plots the degree dynamic for movers (minimum distance of 30 min. driving

time) around the moving month. The y-axis depicts the deviation in degree relative to

the first month at the new address, while the x-axis reflects the timeline in terms of

relocation. This event-study type of graph reveals that the average degree of movers

gradually increases three months prior to relocation, and then converges back to the pre-

moving period within two months. To test the robustness of our benchmark results with

respect to this particular adjustment process, we step-by-step exclude periods around the

moving date (t = 0), which we define as the first month at the new residence. In particular,

the following tables contrast the benchmark results for movers with a minimum moving

distance of 30 minutes (All Months, Column 0) to estimates obtained from regressions

excluding the moving month (t 6= 0, Column 1), excluding the moving month plus the two

adjacent months (t ≤ −2 ∨ t ≥ 2, Column 2), and so forth.
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Figure B.1: Ratio, Base Distance = 15 min.

Notes: FE-LPM (fixed-effects, linear probability model); LDV-LPM (lagged dependent variable, linear probability
model). Models including controls are evaluated at the following values: Same Workplace=0, Common Contacts=0,
Degree=mean, Same Gender=1, Same Age=1, Age Diff=0, gij,t−1=0, FE=0.

Table B.3 compares the benchmark model (Column 0) relating population density

and degree to estimates obtained from panel FE regressions that exclude periods around

the moving months (Column 1 to 5). The main insight from our benchmark analysis,

i.e. population density does not affect the size of a person’s network, is unaltered by

this robustness exercise. Although there is a tendency towards larger point-estimates

once observations around the moving month are excluded, 16 out of 18 coefficients are

statistically insignificant as in the benchmark model, and the remaining two coefficients

(in Column 3) are only significant at the 10% level and enter negatively. Hence, there is

very little evidence corroborating the hypothesis that population density affects the size

of a person’s network.

B.4 Robustness: Moving Dynamic and Within-Degree

Table B.4 compares the benchmark model (Column 0) relating population density and

within-degree to estimates obtained from panel FE regressions that exclude periods around

the moving months (Column 1 to 5). For instance, Column (1) shows estimates obtained

from regressions excluding the moving month (t 6= 0), while in Column (2) the moving

month plus the two adjacent months (t ≤ −2 ∨ t ≥ 2) are excluded. The results of our

benchmark analysis in Table 5 remain valid: population density enlarges a person’s local

network. 14 out of 15 coefficients are statistically significant as in the benchmark model.

Magnitude-wise the estimates from the benchmark model in Column (0) are very similar
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Figure B.2: The Degree prior and after Moving

to the one obtained in these additional regressions.

B.5 Robustness: Moving Dynamic and Clustering

Table B.5 compares the benchmark model (Column 0) relating population density and

clustering to estimates obtained from panel FE regressions that exclude periods around

the moving months (Column 1 to 5). It turns out that the negative effect of population

density on a person’s clustering coefficient is very robust. 12 out of 15 coefficients are

statistically significant as in the benchmark model (see Table 7). Magnitude-wise the esti-

mates from the benchmark model are not significantly different from most of the estimates

obtained in these additional regressions. However, we observe a tendency towards larger

effects once observations around the moving month are excluded.

B.6 Robustness: Matching

The robustness exercise in Table B.6 concerns the inferred impact of population density

on matching quality. We performed additional analyses both in the network formation

framework (panel a.) and the network topography framework (panel b.).
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Table B.3: Robustness – Cities and Network Size

Excluding Months around Change of Residence

Dependent Variable: Dir,t All Months t 6= 0 t≤-2 ∨ t≥2 t≤-3 ∨ t≥3 t≤-4 ∨ t≥4 t≤-5 ∨ t≥5
(0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) -0.006 -0.007 -0.008 -0.017+ -0.012 -0.015
(0.006) (0.006) (0.007) (0.009) (0.012) (0.020)

Periphery (vs. Cities) -0.001 0.001 0.002 -0.001 -0.005 -0.027
(0.007) (0.007) (0.009) (0.011) (0.015) (0.024)

R2 0.011 0.011 0.011 0.010 0.009 0.011
Groups 16,874 16,868 16,808 16,743 16,681 16,535
Observations 185,644 167,761 138,883 113,106 90,018 69,675

Ln(Population Density) -0.006 -0.008 -0.011 -0.048+ -0.030 -0.094
(0.017) (0.019) (0.023) (0.027) (0.038) (0.061)

Ln(Population Density)2 0.000 0.000 0.000 0.002 0.002 0.005
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)

R2 0.011 0.011 0.011 0.010 0.009 0.008
Groups 16,874 16,868 16,808 16,743 16,680 16,534
Observations 185,644 167,749 138,872 113,097 90,011 69,670

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

Table B.4: Robustness – Cities and the Within-Degree

Excluding Months around Change of Residence

Dependent Variable: DW r
i,t All Months t 6= 0 t≤-2 ∨ t≥2 t≤-3 ∨ t≥3 t≤-4 ∨ t≥4 t≤-5 ∨ t≥5

(0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) -0.038∗ -0.039∗ -0.049∗ -0.058∗ -0.049 -0.084+

(0.018) (0.018) (0.021) (0.025) (0.032) (0.046)
Periphery (vs. Cities) -0.132∗∗∗ -0.133∗∗∗ -0.149∗∗∗ -0.148∗∗∗ -0.148∗∗∗ -0.194∗∗∗

(0.020) (0.021) (0.024) (0.028) (0.036) (0.053)
R2 0.012 0.015 0.017 0.016 0.015 0.012
Groups 16,874 16,868 16,808 16,743 16,681 16,535
Observations 185,676 167,761 138,883 113,106 90,018 69,675

Ln(Population Density) 0.076∗∗∗ 0.077∗∗∗ 0.082∗∗∗ 0.085∗∗∗ 0.087∗∗∗ 0.087∗∗∗

(0.006) (0.006) (0.007) (0.008) (0.010) (0.015)
R2 0.016 0.019 0.021 0.020 0.018 0.013
Groups 16,874 16,868 16,808 16,743 16,680 16,534
Observations 185,663 167,749 138,872 113,097 90,011 69,670

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

The top panel of Table B.6 re-estimates these benchmark model according to (10b.)

but for a sample of movers that stay within the same DEGURBA-class, i.e. people who

move from city to another city, from hinterland to hinterland, or from peripheral munic-
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Table B.5: Robustness – Cities and Clustering

Excluding Months around Change of Residence

Dependent Variable: Ci,t All Months t 6= 0 t≤-2 ∨ t≥2 t≤-3 ∨ t≥3 t≤-4 ∨ t≥4 t≤-5 ∨ t≥5
(0) (1) (2) (3) (4) (5)

Hinterland (vs. Cities) 0.002+ 0.002+ 0.002 0.004∗ 0.003 0.002
(0.001) (0.001) (0.001) (0.002) (0.003) (0.004)

Periphery (vs. Cities) 0.002+ 0.003∗ 0.003∗ 0.006∗∗ 0.006∗ 0.008+

(0.001) (0.001) (0.002) (0.002) (0.003) (0.004)
R2 0.001 0.001 0.001 0.001 0.001 0.01
Groups 16,870 16,863 16,802 16,735 16,670 16,518
Observations 183,896 166,130 137,489 111,965 89,099 68,953

Ln(Population Density) -0.001+ -0.001+ -0.001+ -0.001+ -0.001+ -0.003∗

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
R2 0.001 0.001 0.001 0.001 0.001 0.001
Groups 16,870 16,863 16,802 16,735 16,669 16,517
Observations 183,896 166,118 137,478 111,956 89,092 68,948

Further Controls Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes

Notes: The sample covers movers (minimum moving distance 30min) who used their phone every month at least
once. Column (1) excludes the moving month; column (2) excludes the moving month and the first month prior
and after moving; and so on. Further controls include commuting distance and a dummy for belonging to language
minority. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

ipality to another peripheral municipality. Then, we use the predicted matching quality

m̂(ξi, ξj , δ) again and regress it on measures of population density. As in the main analy-

sis, we estimate the model for both the full sample of movers and those with a minimum

moving distance of 30min. Qualitatively, this does not affect the results: The fixed-effect

component is larger among urban residents, which suggests that matching quality increases

with population density. Magnitude-wise the coefficients of interest and the constants get

substantially larger than in the benchmark specifications reported in Table 6, while the

ratio remains very similar: Comparing urban residents to people living in the periphery,

column (1) of Table B.6 suggests that the matching quality is 7% higher in the city than

in the periphery, while column (3) suggests that the difference amounts to 4.7%.31 In the

benchmark model in Table 6 this coefficient-constant ratio adds up to about 5.8%.

In the bottom panel of Table B.6 we show robustness results on the social adjustment

process of movers. In the benchmark models we controlled for the number of existing links

at the new address, while the results in Table B.6 are based on a sample of movers without

any contacts at the post-move residence prior to moving. Put differently, in this robustness

check we exclude all movers that had any pre-move contact with people living within a 15

minutes radius of their new place of residence. Qualitatively, we obtain the same pattern

as in the benchmark estimations: Agents that move from the periphery/hinterland to the

31The avg. measure for matching quality drops by about 382/5447 ' 0.07 and 252/5347 ' 0.047 when
comparing the periphery to cities in columns (1) and (3).
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city replace pre-move contacts substantially faster than people moving from the city to the

periphery/hinterland. Since maintaining spatially distant contacts is costly, this suggests

that contacts formed in cities generate on average a higher surplus and are therefore

more likely to be maintained. Hence, this test also supports the hypothesis that densely

populated areas improve matching quality

Table B.6: Robustness – Regional Differences in the Matching Quality

a. Network Formation Full Sample Moving Distance > 30min.

Dependent Variable: m̂(ξi, ξj , δ) (1) (2) (3) (4)

Hinterlandi,t -101.581∗∗∗ -44.090
(16.083) (48.718)

Peripheryi,t -381.461∗∗∗ -252.426∗∗∗

(18.874) (50.975)
Ln(Pop. Densityi,t) 88.509∗∗∗ 56.085∗∗∗

(5.083) (9.318)
Constant 5447.207∗∗∗ 4439.930∗∗∗ 5346.683∗∗∗ 4718.905∗∗∗

(13.150) (50.016) (44.029) (86.166)

R2 0.002 0.001 0.001 0.001
Observations 1,631,708 1,646,566 306,798 313,072

b. Network Topography Full Sample Moving Distance > 30min.

Dependent Variable: DW post
i,t+1/DW

pre
i,t+1 (1) (2) (3) (4)

Citypost 0.308∗∗∗ 0.202∗∗∗

(0.046) (0.056)
Citypre -0.231∗∗∗ -0.275∗∗∗

(0.033) (0.045)
Ln(Pop. Densitypost) 0.184∗∗∗ 0.099∗∗∗

(0.013) (0.013)
Ln(Pop. Densitypre) -0.145∗∗∗ -0.103∗∗

(0.016) (0.031)
Constant 0.738∗∗∗ 0.304+ 0.754∗∗ 0.670∗∗∗

(0.124) (0.176) (0.282) (0.033)

R2 0.017 0.041 0.018 0.005
Further Controls Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Language Region FE Yes Yes Yes Yes
Observations 5,718 5,718 3,108 3,194

Notes: Dependent Variable in Panel a.: Predicted dyad specific fixed effect from network formation model outlined
in equation (10b). Dependent Variable in Panel b.: The number of post-move contacts at the post-move place of
residence over the number of post-move contacts at the pre-move place of residence. Controls in Panel b.: Number
of contacts at new address prior to moving, commuting distance, dummy for belonging to language minority, and
Romansh region), gender and age . Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

An alternative way to identify asymmetries across cities and urban areas in the network

adjustment following a relocation builds on dyad specific information gij,t. We expect that

high quality matches remain after a relocation while low quality matches drop out relatively

quickly. In the following we study whether the network of stayers adjusts differently to

the relocation of a contact who moves from the periphery to the city compared to one

that moves from the city to the periphery. In the former case the set of potential high-

quality links in close neighborhood expands for the mover such that we expect the stayer
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to drop out of the network with a relatively high likelihood. In the latter case the mover

has established the link among a large set of alternatives such that gij,t−1 = 1 should

represent a relatively high-quality link and should remain relatively stable. Hence, we

estimate a network formation model limited to the sample of movers i and stayers j:

gij,t+1 = βgij,t−1 + β2gij,t−1L
pre
i,t−1Tij,t+1 + Uij,t+1 ∀ i : movers, j : stayers, (B.1)

where we define again t− 1 as the pre-move period, t as the moving period, and t+ 1 as

the post-move period. Lprei,t−1 captures information about the movers place of origin which

is either a dummy variable on whether the place is a city or the places’ population den-

sity. Note that all unobservable information about individual characteristics determining

link formation in the pre-move period, i.e. νi,t−1 and νj,t−1 are absorbed by the lagged

dependent variable. Table B.7 shows that links of movers relocating from a city are in fact

significantly more stable. The persistence of links formed in cities is about 5.3 percent

higher than those formed in the hinterland or the periphery supporting the hypothesis that

links established at high density places are characterized by a higher quality of matching

and thus persistence.32 This finding is robust to using population density instead of a city

dummy and to focusing on movers who changed their residence by at least 30 minutes

driving time.

Table B.7: Robustness – Bilateral Network Adjustment

Network Formation Full Sample Moving Distance > 30min.

Dependent Variable: gij,t+n ∀ i : movers, j : stayers (1) (2) (3) (4)

Ln(Travel Timeij,t+1) -0.047∗∗∗ -0.047∗∗∗ -0.041∗∗∗ -0.041∗∗∗

(0.000) (0.000) (0.000) (0.000)
gij,t−1 2851.853∗∗∗ 2323.578∗∗∗ 2825.895∗∗∗ 2511.691∗∗∗

(2.709) (18.475) (5.079) (28.578)
gij,t−1 × Cityprej 149.639∗∗∗ 101.198∗∗∗

(5.750) (12.394)
gij,t−1×Ln(Pop. Densitypre

j ) 58.037∗∗∗ 35.932∗∗∗

(1.895) (3.650)
Constant 0.237∗∗∗ 0.237∗∗∗ 0.208∗∗∗ 0.208∗∗∗

(0.000) (0.000) (0.001) (0.001)

R2 0.184 0.184 0.178 0.178
Observations 16,016,369 16,012,515 4,243,460 4,239,751

Notes: We use monthly data for June 2015–May 2016. The sample covers movers and stayers who used their phone
every month at least once. All coefficients of the linear probability models are multiplied by 10000, and therefore
can be interpreted as basis points. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.

32According to column 1 the lagged dependent variable indicates an increase of about 150/2852 ' 0.053.
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B.7 Robustness: Technology Preferences

One concern may be that urban residents use technology differently than people living

in rural areas, which may confound our population density / city dummy estimates. For

instance, it may be that messenger apps such as WhatsApp are used more frequently

in cities. In this subsection we test the sensitivity of our network topography results

with respect to technology usage by including two measures that account for changes in

technology usage of movers. First, we use the ratio of outgoing SMS versus outgoing

calls, because traditional text messages are the most likely technology to be substituted

by messenger apps. In contrast, the pricing schemes of Swiss phone contracts do not invite

to substitute calls, as phone companies primarily price discriminate based on data volume

and speed rather than cost per call. Second, we include the ratio of outgoing landline

calls versus the total number of calls, because apps may be used to call another mobile

phone but not landlines. Hence, if moving from rural areas to the city comes along with

an increase in messenger app usage, this should reflect in a decrease in the SMS-call ratio

and an increase in the share of landline calls.

Table B.8 adds the two technology proxies to our benchmark models shown in Tables 4

(columns 5 and 6), 5b (columns 3 and 4), 7b (columns 3 and 4) and 6a (columns 1 and 2).

The main results are not affected by this exercise: density remains to have not significant

effect on network size whereas it has a positive and significant effect on within-degree and

matching quality. The effect of population density on clustering remains negative and

significant.

B.8 Robustness: Endogeneity of Population Distribution

A final robustness concerns the role of unobserved location factors that may affect network

characteristics as well as population density. We follow the literature on urban wage premia

and instrument population density using historical population counts and measures of soil

quality (see Ciccone and Hall (1996) and Combes et al. (2010) for details). Hence, we

exploit only variation in population density which is determined by exogenous factors.

Neither historical population counts (year 1850) nor soil quality are likely to have a direct

effect on social network characteristics measured today. Yet, both instruments are a strong

predictor of population density today as is evident from the first-stage regressions. Soil

quality used to be an important location advantage in former times when agriculture

played an important role. Historical population differences persisted while soil quality

ceased to be an important factor for location choice in Switzerland. The corresponding

two-stage least square results for the network topography approach and the outcomes

Degree, Within-Degree, Clustering and Matching Quality are presented in Table B.8. The
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estimates confirm an insignificant effect of population density on network size; positive

and significant effects on within degree and matching quality; negative and significant

effects on clustering. The magnitude of the coefficients is in line with the corresponding

estimates in Tables 4 (column 6), 5b (column 4), 7b (column 4) and 6a (column 2).
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Table B.8: Robustness – Controlling for Technology Preferences

Degree Within Degree Clustering Matching

(1) (2) (3) (4) (5) (6) (7) (8)

Hinterland (vs. Cities) -0.001 -0.124∗∗∗ 0.002∗ -64.217∗∗∗

(0.003) (0.010) (0.001) (5.997)
Periphery (vs. Cities) -0.002 -0.232∗∗∗ 0.002∗∗ -148.797∗∗∗

(0.004) (0.011) (0.001) (6.523)
Ln(Pop. Density) -0.001 0.144∗∗∗ -0.001∗∗ 35.148∗∗∗

(0.001) (0.004) (0.000) (1.875)
SMS/Calls -0.385∗∗∗ -0.385∗∗∗ -0.234∗∗∗ -0.234∗∗∗ 0.001 0.001 -282.707∗∗∗ -279.417∗∗∗

(0.005) (0.005) (0.008) (0.008) (0.001) (0.001) (10.648) (10.620)
Calls to MP/Total Calls 0.499∗∗∗ 0.499∗∗∗ 0.266∗∗∗ 0.267∗∗∗ -0.010∗∗∗ -0.010∗∗∗ 511.954∗∗∗ 512.618∗∗∗

(0.004) (0.004) (0.006) (0.006) (0.001) (0.001) (9.671) (9.647)

R2 0.067 0.067 0.017 0.025 0.001 0.001 0.003 0.003
Further Controls Yes Yes Yes Yes Yes Yes No No
Language Region FE Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Groups 60,514 60,514 60,514 60,514 60,507 60,507 - -
Observations 669,825 669,812 669,825 669,812 664,343 664,330 11,404,385 11,479,868

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every month at least once. Further controls include
commuting distance, language (pooled OLS), dummy for belonging to language minority, gender (pooled OLS), and age (pooled OLS). Standard errors in
parentheses. + p<0.10, * p<0.05, ** p<0.01 *** p<0.001.
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Table B.9: Robustness – Endogenous Population Density

Degree Within Degree Clustering Matching

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(Pop. Density) -0.003 -0.001 0.139∗∗∗ 0.132∗∗∗ -0.002∗∗ -0.001∗ 44.705∗∗∗ 38.368∗∗∗

(0.002) (0.002) (0.004) (0.003) (0.001) (0.000) (2.829) (2.561)

R2 0.067 0.067 0.017 0.025 0.001 0.001 0.003 0.003
Instrument Pop. 1850 Soil Pop. 1850 Soil Pop. 1850 Soil Pop. 1850 Soil
Further Controls Yes Yes Yes Yes Yes Yes No No
Language Region FE Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Groups 59,356 60,477 59,356 60,477 59,348 60,468 - -
Observations 632,613 665,443 632,613 665,443 627,360 660,006 10,911,638 11,610,575

Notes: We use monthly data for June 2015–May 2016. The sample covers movers who used their phone every month at least once. Further controls include
commuting distance, language (pooled OLS), dummy for belonging to language minority, gender (pooled OLS), and age (pooled OLS). Instruments are population
density in 1850 (Pop. 1850) and soil quality (Soil) which turn out highly relevant in all first-stage regressions. Standard errors in parentheses. + p<0.10, * p<0.05,
** p<0.01 *** p<0.001.
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