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1. Introduction

International environmental problems featuring pollution spillovers such climate change

pose a special challenge since they have special features that distinguish them from

national environmental problems. Electricity production provides a natural example of

this sort of interaction: imports of electricity into countries like England and Germany

can come from Eastern Europe countries such as Poland; likewise, electricity produced

in India can be exported to Bangladesh. In each of these examples, production of the

exported commodity contributes to a flow of emissions, such as CO2, that accumulate in

a stock that generates damages; moreover, there are likely to be differences between the

valuation of these damages by the exporting and importing countries. In this context,

feed-in tariffs or border tax adjustments can serve as a “second-best” instrument to limit

the transnational pollution, playing a role for cross-border externalities that is somewhat

similar to the role played by a Pigouvian tax.1

A handful of authors have explored to the potential use of trade instruments to

control environmental externalities (Baumol and Oates, 1988; Markusen, 1975a,b; Parry

and Oates, 2000); as a general rule, this extant literature has employed a static framework.

But by its very nature the climate change problem is dynamic: environmental damages

depend primarily on an accumulated stock, and they play out over a long time frame.

There is also an existing literature that investigates the dynamic strategic incentives in

transboundary pollution problems by using dynamic games. In these games, the players,

usually the governments of countries, care about the stock of pollution, i.e., as pollution

accumulates it affects the payoff to each country. Generally, the focus of these studies is a
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comparison between the cooperative scenario, which assumes a high degree of commit-

ment to follow the agreed-upon pollution regulations, and non-cooperative scenario, in

which each country’s environmental policy is selected to promote its own interest, given

the other country’s emission standards (Bayramoglu, 2006; Dockner et al., 2000; Dockner

and van Long, 1993; List and Mason, 2001; Maler and de Zeeuw, 1998; Mason, 1997).

This literature typically neglects the potential for a trade relationship among the coun-

tries involved in the transboundary pollution stock control. Notable exceptions include

Fernandez (2002), who explores empirically dynamic solutions to transboundary pollu-

tion through trade liberalization and environmental institutions for multilateral pollution

control, Cabo et al. (2001), who analyzed strategies that lead to a self-enforcing agreement

on transboundary pollution problem within a North-South framework, and Cabo et al.

(2006), who study a model similar to ours, but with fixed output levels, Mason et al. (2015),

who focus on the use of a feed-in tariff by the importing country, and Mason et al. (2017),

who study the potential for the upstream country to lobby the downstream government to

lower the import tariff. None of these papers explore the potential use of a climate-based

strategy by the exporting country, such as a carbon tax, to blunt the effect of the importing

country’s strategy. My goal in this paper is to evaluate such a strategic interaction.

I develop a dynamic model to investigate this problem. There are two countries,

one of whom – country 1 – produces a commodity that contributes to a transboundary ex-

ternality; this commodity is consumed in both countries. Because these damages become

important over time, the relative weighting of future effects between the two countries

is a potentially important concern. This distinction manifests itself in terms of divergent

evaluations of the future damages associated with the stock pollutant; I adopt the limiting
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view of this asymmetry wherein the importing country – country 2 – bears damages but

the exporting country does not.2 In this framework, country 2 applies a tariff (or a border

tax adjustment) against imports from country 1 as an indirect measure to control the car-

bon externality. In response, country 1 applies a tax on consumption within its borders.

The interaction thus described induces a differential game between the two countries. I

assume the strategic choices are indexed by the pollution stock, i.e., that the players use

Markov strategies, and derive the Markov-perfect equilibrium to this differential game.

The rest of the paper is organized as follows. Section 2 develops the dynamic model.

In section 3 I describe the solution to the cooperative problem. The non-cooperative game

is evaluated in section 4. I illustrate the application of this model with a linear-quadratic

example in section 5. Concluding remarks are offered in section 6.

2. Modeling preliminaries

There are two countries, 1 and 2. I will often refer to country 1 as the “upstream” country

and country 2 as the “downstream” country. A single consumption good is produced only

in 1 with a given fixed endowment of factors of production and a given technology. The

associated aggregate cost is described by the increasing and convex function C(Q), where

Q is the amount produced in country 1. Some of this output is exported to country 2; I

denote the exported amount by X. Consumers are homogeneous within each country, but

may be heterogeneous across countries. At every instant, production in 1, Q(t), results in a

flow of emissions, E(t). I assume these emissions are proportional to output, and without

loss of generality set units so that they equal output. Emissions contribute to the stock of
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pollution, Z, which evolves according to the following equation of motion:3

Ż = Q− kZ, (1)

where k represents the rate of pollution decay. The initial stock of the pollutant is Z0.

Although pollution is generated by emissions in country 1, for expositional clarity

I assume that the environmental damages from the stock of pollution are only suffered in

country 2.4 I also assume that there are no damages from the flow of emissions. Damages

suffered in 2, d(Z), are an increasing and convex function of the pollution stock.

When these pollution externalities are exported from one country to another, no

authority has the ability to intervene and enforce cooperation. Thus countries will act only

if their efforts ultimately serve their own interest (Sigman, 2002). While the downstream

country can not address the externality directly by imposing a Pigouvian tax on upstream

producers, it can indirectly tackle the externality by imposing a tariff, τ, on imports X from

1. The tariff lowers the upstream price, which induces firms to reduce their production

– and with it the flow of emissions. Because this implies lower upstream net surplus,

country 1 may be motivated to use some sort of pollution control instrument, so as to

blunt the effect of the tariff. I assume they do so by taxing upstream consumption, σ.5

Following the standard assumption of the “second-best” trade and environment

literature, I assume that country 2 is able to influence the terms of trade through its tariff,

which implies it cares about tariff revenues. To avoid any complications associated with

the impact price effects might have upon consumption in country 2, I assume that any

tariff revenues collected by 2 are redistributed in a lump-sum fashion to downstream

consumers. Likewise, any tax revenues collected by 1 are redistributed in a lump-sum
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fashion to upstream consumers. I note also that there is a tariff that maximizes country

2’s static net surplus, which I denote by τ̂.

The equilibrium price received by sellers is determined by the combination of tariff

and upstream tax, and so this price can be expressed as p(τ,σ). With a tariff in place,

producers would only be willing to sell in both countries if the price in 2 equals p(τ,σ)−τ.

Accordingly, the price received by producers in country 1 is p(τ,σ)−τ, while consumers

pay p(τ,σ)−τ+σ. Production sets marginal cost equal to price:

C ′(Q) = p(τ,σ)−τ, (2)

which implies that production is a function of both the downstream tariff and the upstream

tax. Further, production falls with either an increase in the tariff or the upstream tax –

which then implies lower emissions.

For each country i = 1,2, I denote gross consumer benefits (i.e., the area under the

inverse demand curve) by Ui. Then net benefits for 1 are given by net surplus (the sum of

consumer surplus and profit), which can be expressed as

W1 ≡U1(Q−X)−C(Q) + (p−τ)X. (3)

Net benefits for 2 are given by the sum of its consumer surplus and the tariff revenue, less

the damages from the pollution stock:

W2 ≡U2(X)− (p−τ)X−d(Z). (4)
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Given any value of the tariff and the standard in 1, the market-clearing conditions

are eq. (2) and:

U ′

1 (Q−X) = p−τ+σ, (5)

U ′

2 (X) = p. (6)

Because equilibrium exports and the upstream price are all function of the tariff and the

standard, net payoffs can be regarded as functions of τ and σ.

3. The socially optimal solution

Before analyzing the equilibrium of the non-cooperative game between the two countries,

I first briefly describe the cooperative solution. To that end, suppose there is a global

social planner whose goal is to choose the time paths of output and exports so as to

maximize the discounted flow of the two countries’ combined payoffs. These combined

payoffs equal the sum of the two countries’ utilities, less combined production costs, less

pollution damages.

It is clear that this solution requires equating marginal utilities in the two countries

must be equated; this ensures that maximal gross benefits are obtained. One may therefore

define the aggregate benefit function

U(Q) = U1(Q−X) + U2(X),
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where X is chosen to set U′1 = U′2. Accordingly, the cooperative problem can be re-cast

as the choice of a time path of output that maximizes the discounted flow of aggregate

benefits less production costs less pollution damages.

Following this reinterpretation, the current-value Hamiltonian for the cooperative

problem can be written as

Hc = U(Q)−C(Q)−d(Z) + m(Q− kZ),

where m is the (cooperative) shadow value of the pollution stock; as pollution is a bad, one

presumes that m is negative. Let Ω(Q) = U(Q)−C(Q), combined utility net of production

costs. The corresponding optimality rule for the cooperative solution is

Ω ′(Q) + m = 0. (7)

Interpreting marginal utility as price, the optimality conditions boil down to setting rents

(price less MC) equal to −m, the imputed marginal damage from a one-unit increase in

emissions. The solution also requires the evolution of the shadow value satisfy

ṁ = (r + k)m + d ′(Z), (8)

where r is the (common) discount rate.6
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The evolution of the socially optimal quantity may be derived by time-differentiating

eq. (7), which yields

Q̇Ω ′′(Q) + ṁ = 0

⇐⇒ Q̇ = (r + k)Qη−
d ′(Z)

Ω ′′(Q)
, (9)

where η =
Ω ′(Q)

QΩ ′′(Q) , the elasticity of net marginal flow payoffs with respect to the quantity

produced. The steady-state associated with this problem entails the combination (Q∗,Z∗)

that solve

Ω ′(Q∗) =
d ′(Z∗)
r + k

; (10)

Q∗ = kZ∗. (11)

In addition, I note that the long-run shadow value of the pollution stock for this problem

is m∗ = −
d ′(Z∗)

r+k . Interpreting −m∗ as the level of a pollution tax, the long run equilibrium

condition for the socially optimal level of production requires setting marginal utility

equal to the sum of marginal production cost and this tax.7

4. The non-cooperative equilibrium

I now turn to an analysis of the non-cooperative equilibrium of the strategic interaction

between the two countries. Because each country’s policy instrument is likely to depend

on the level of the pollution stock, the natural focus is on Markov strategies. The solution

concept I apply is Markov-perfect equilibrium, which requires each player’s action to
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be optimal given the other player’s strategy, for every stock level; as such, the strategy

combination is subgame-perfect. I begin by describing the two countries’ optimization

problems, starting with country 2.

4.1. Country 2’s optimization problem

The optimization problem for country 2 is to choose the time path of the tariff so as to

maximize the discounted flow of its net benefit function over time, given the strategy

that 1 employs. Letting σ(Z) denote 1’s Markov strategy, and r the discount rate, 2’s

optimization problem is:

max
τ

∫
∞

0
W2

(
X(τ,σ(Z)),Z

)
e−rtdt

subject to Ż(t) = Q(τ,σ(Z))− kZ;Z(0) = Z0.

The current-value Hamiltonian for this optimization problem is

H2 = W2
(
X(τ,σ(Z)),Z

)
+θ [Q(τ,σ(Z))− kZ] ,

where θ is 2’s shadow value of pollution and σ(Z) is country 1’s Markov strategy. The

necessary conditions for the solution to this dynamic optimization problem are give by

Pontryagin’s maximum principle; in light of eqs. (4) and (6), these conditions can be

written as:

X +τ
∂X
∂τ

+θ
∂Q
∂τ

= 0, (12)

θ̇ = (r + k)θ+ d ′(Z)−
(
X +τ

∂X
∂σ

+θ
∂Q
∂σ

)
σ ′(Z), (13)
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as well as the transversality condition lim
t→∞

θ(t)Z(t)e−rt = 0.8

Eq. (12) describes country 2’s best-reply to country 1’s tax strategy, as an implicit

funciton. Eq. (13) illustrates the rate of change in the shadow value, θ. Were the shadow

value positive, the transversality condition would be violated;9 it follows that the shadow

value is negative, and that it tends to a long-run equilibrium level.

Upon totally differentiating eq. (12) with respect to time, the evolution of the

optimal tariff can be characterized by

(
2
∂X
∂τ

+τ
∂2X
∂τ2

)
τ̇+

(
∂X
∂σ

+
∂2X
∂τσ

)
σ ′(Z)Ż +θ

[
∂2Q
∂τ2 τ̇+

∂2Q
∂τ∂σ

σ′(Z)Ż
]
+
∂Q
∂σ
θ̇ = 0. (14)

Next, eq. (13) can be used to replace θ̇ with an expression involving θ,Z, ∂X
∂σ

and

∂Q
∂σ

(the latter two of which are functions of τ and σ). Then, by applying eq. (12), θ can be

replaced by an expression involving τ and σ. Finally, by employing eq. (1) one can replace

Ż with an expression involving Z and Q(τ,σ). The end result is a (non-linear) first-order

differential equation for τ, in terms of Z and σ. As σ is described by country 1’s Markov

strategy, this end result can be boiled down to an ordinary differential equation describing

τ in terms of Z.

4.2. Country 1’s optimization problem

The optimization problem for country 1 is to choose the time path of the consumption

tax so as to maximize the discounted flow of its net benefit function over time, given the
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strategy that 2 employs:

max
σ

∫
∞

0
W1

(
X(τ(Z),σ),Q(τ(Z),σ)

)
e−rtdt

subject to Ż(t) = Q(τ(Z),σ)− kZ;Z(0) = Z0.

The current-value Hamiltonian for this optimization problem is

H1 = W1

(
X(τ(Z),σ),Q(τ(Z),σ)

)
+ξ [Q(τ(Z),σ)− kZ] ,

where ξ is 1’s shadow value of pollution and τ(Z) is country 2’s Markov strategy. The

necessary conditions for the solution to this dynamic optimization problem are give by

Pontryagin’s maximum principle; in light of eqs. (2), (3), and (6), these conditions can be

written as:

σ
∂(Q−X)
∂σ

+ X
∂(p−τ)
∂σ

+ξ
∂Q
∂σ

= 0, (15)

ξ̇ = (r + k)ξ−
[
σ
∂(Q−X)
∂τ

+ X
∂(p−τ)
∂τ

+ξ
∂Q
∂τ

]
τ ′(Z), (16)

as well as the transversality condition lim
t→∞

ξ(t)Z(t)e−rt = 0.

As with country 2’s problem, one can proceed by totally differentiating the opti-

mization condition governing 1’s optimal policy choice, which here is eq. (15), with respect

to time. Then, using eq. (1) to eliminate Ż, eq. (16) to eliminate ξ̇, and eq. (15) to eliminate

ξ, one arrives at a (non-linear) first-order differential equation for σ in terms of Z and τ.

Since τ is described by a Markov strategy, this result can be boiled down to an ordinary

differential equation describing σ in terms of Z.
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The Markov-perfect equilibrium is then determined by the solution to a pair of

differential equations, one for τ and one for σ. This pair of equations defines a system of

two (non-linear) first order differential equations in Z; existence of a solution over some

compact set of stocks follows from standard theorems (see, e.g., Boyce and DiPrima (2005,

pp.68-70)). In general, it is not possible to determine the resultant strategies in closed

form without imposing considerable structure on the problem. A particular structure that

allows one can to say more is a linear-quadratic framework, which I investigate in the

next section.

5. Linear-Quadratic Example

To further characterize the time paths of the border tax and carbon stock, I next present a

simplified variant of the model, in which demand and marginal cost are linear functions,

and damages are a quadratic function. With these assumptions, the two countries’ payoff

functions are quadratic functions. Linear-quadratic models are considered to be a good

approximation for more general games and are characterized by equations of motion

being linear in state and control variables and objective functionals being quadratic in

state and control variables.

To minimize notational clutter, I assume demand in the two countries differs only

via the intercept, i.e., the slope of inverse demands in the two countries are equal. Thus,

quantity demanded in country k = 1,2 is then Qk = (ak− pk)/b, where pk is the price paid

by consumers in country k. Utility in country k, the area under inverse demand, is the
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quadratic in Qk:

Uk = akQk−
b
2

Q2
k , k = 1,2. (17)

I also assume that supply is linear. Letting p the price received by sellers (all of whom

are located in country 1), quantity supplied is Q = p/c; this corresponds to assuming that

marginal costs are linear: C ′(Q) = cQ. Finally, I assume the damage function is d(Z) = δ
2Z2,

which implies linear marginal damage d ′(Z) = δZ.

With a consumption tax in country 1 and a tariff in country 2, firms receive the

price p−τ, where p is the price paid by consumers in 2. Accordingly, consumer in country

1 pay p−τ+σ. The supply relation is

Q =
p−τ

c
, (18)

while the demand relations are

Q1 =
a1− (p−τ+σ)

b
;

Q2 =
a2−p

b
.

At each point in time, market clearing requires that combined quantity demanded

equals combined quantity supplied: Q1 + Q2 = Q. It is straightforward to derive the

equilibrium price paid by consumers in country 2, which is a linear function of the

consumption tax in 1 and tariff in 2:

p = p̂ +ατ− (1−α)σ, (19)
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where α= b+c
b+2c and p̂ = (1−α)(a1 +a2) is the equilibrium price in the absence of any taxes or

tariffs. Based on the equilibrium price paid in country 2, the quantity produced in country

1 and the volume exported to country 2 are easily derived as

Q = Q̂−
(1−α)(τ+σ)

c
; (20)

X = X̂−
ατ− (1−α)σ

b
, (21)

where Q̂ = p̂/c is the amount produced in country 1 and X̂ = (a2 − p̂)/b is the amount

exported to country 2 in the absence of any taxes or tariffs.10

5.1. Socially optimal solution

In the globally optimal solution, quantities consumed in the two countries’ outputs are

linked by the equi-marginal principle – namely, marginal utilities are equal. (Equivalently,

consumers pay the same price irrespective of which country they consume in). Using

eq. (17), this observation implies

X =
a2− a1

2b
+

Q
2
.

The global flow of utility is U1(Q−X) + U2(X). Using eq. (17) then leads to U ′(Q) =

a1+a2−bQ
2 , so that the difference between marginal utility and marginal production cost is

Ω ′(Q) =
a1+a2

2 −
b+2c

2 Q. Then using eq. (7), the socially optimal production rate is

Q =
a1 + a2

b + 2c
+

2
b + 2c

m, (22)

where m is the global shadow value of the pollution stock.
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It is easy to see that this problem is saddle-point stable, and so there is a unique

asymptotically stable steady state. The steady state shadow value is m∗ = −δZ∗
r+k = −

δQ∗
k(r+k) ;

inserting this relation into eq. (22) yields the long-run equilibrium output:

Q∗ =
k(r + k)(a1 + a2)

k(r + k)(b + 2c) + 2δ
. (23)

This value may then be used to determine the long-run stock as

Z∗ =
k(r + k)(a1 + a2)

δk(r + k)(b + 2c) + 2δ2 ; (24)

As I noted above, the global planner can obtain this outcome by charging all firms a

pollution tax equal to the capitalized value of long-run imputed pollution stock marginal

damages in this linear-quadratic framework: τ∗ =
δφZ∗

r+k . Then using eq. (24), we obtain

τ∗ =
k(a1 + a2)

k(r + k)(b + 2c) + 2δ
. (25)

5.2. Non-cooperative equilibrium

Now suppose that the two countries make their policy choices non-cooperatively, with

each player adopting a Markov strategy. A key result here is that there exists a Markov-

perfect equilibrium in linear strategies. I proceed by incorporating the information from

eqs. (19)–(21) into the material developed in section 4.11
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If there is a Markov-perfect equilibrium in linear strategies, the two countries’

policies can be described by

τ(Z) = τ0 +τ1Z; (26)

σ(Z) = σ0 +σ1Z. (27)

With linear marginal costs, and taking note of eq. (21), the equation characterizing country

2’s optimal tariff (eq. (12)) can be re-written as

τ =
X̂
bα

+
(1−α
α

)
σ(Z)−

θ
bcα

. (28)

Similarly, because U ′′1 = U ′′2 = b, the equation characterizing country 1’s optimal tax

(eq. (15)) can be re-written as

σ =
p̂

1−α
+

c−b
1−α

−τ(Z) +
1

1−α
ξ. (29)

It is straightforward to show that the determinant of the Jacobian matrix of the

system eqs. (52)-(53) is negative and thus the steady state is a saddle point. Given the

configuration of the τ̇ = 0 and Ż = 0 isoclines, the steady state is unique. Figure 1 presents

a phase diagram for our analysis.

A comparison of eqs. (10) and (52) is instructive. In the socially optimal solution,

the difference between the marginal impact of a change in Q upon U and marginal cost

equals the capitalized value of marginal damages from the socially optimal steady state

pollution stock; because marginal utilities are equated across countries, as are marginal

costs, the difference between marginal utility and marginal cost for D equals the capitalized

16



value of marginal damages. In D’s con-cooperative solution, the ratio
W ′

d (Qd(τe))
Q ′

d (τe) equals the

capitalized value of marginal damages from D’s privately optimal steady state pollution

stock. As the global planner’s flow payoffs correspond to the sum to the two countries’

payoffs, the left-hand side of eq. (52) can be written as

W ′

d (τe)

Q ′(τe)
= U ′(Q(τe))−C ′(Q(τe))−

W ′
u (τe)

Q ′(τe)
⇐⇒

W ′

d (τe)

Q ′(τe)
>U ′(Q(τe))−C ′(Q(τe)), (30)

where the inequality follows from the observation that both Wu and Q are decreasing in τ.

Suppose, for the sake of argument, that Ze = Z∗, i.e., that the steady state pollution stocks

under the global optimal plan and D’s privately optimal plan are equal. In that case, the

equilibrium market level of output in steady state is identical under the two optimization

plans: Q(τe) = Q∗. But the relation (30) implies d ′(Ze)> (r−k)[U ′(Q(τe))−C ′(Q(τe))],which

under the maintained hypothesis must equal d ′(Z∗); accordingly, Ze > Z∗, a contradiction.

Thus, the two plans deliver different long-run outcomes, i.e., D’s privately optimal plan

is second-best; indeed, the long-run pollution stock is larger under D’s privately optimal

scheme.

The observation that D may be strictly better off in the non-cooperative regime is

reminiscent of a central theme in (List and Mason, 2001), who show that the equilibrium

payoffs under an over-arching regulatory authority may not dominate those obtained via

unilateral (non-cooperative) actions of a single policymaker (here, D). This arises in List

and Mason’s paper whenever there are sharp asymmetries between the two countries. In

our setting, the incentives facing D and U are similarly asymmetric, inasmuch as only D
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suffers damages from the pollution stock. As a result, it is unclear that the two countries

would be able to successfully negotiate a mutually beneficial treaty.

6. Concluding Remarks

Concerns about limiting carbon emissions have recently led some OECD countries to

invoke feed-in tariffs and border tax adjustments. These instruments serve two purposes:

they increase the cost of associated products in the importing country, reducing the level

of consumption; they also increase the cost of doing business in the importing country,

inducing the exporting country to adjust its behavior. Under an optimistic view of these

incentives, the exporting country will limit emissions, and perhaps invoke some sort

of climate policy; the potential for such adaptation is most intriguing for transitioning

countries such as those found in Eastern Europe.

In this paper I showed existence of Markov-Perfect equilibrium in a game between

two countries, a country (which I call “country 1”) whose production generates a flow

pollutant, such as carbon dioxide, and a country (which I call “country 2”) that suffers

harm from the stock of that pollutant. Country 1?s production trades internationally, and

so country 2 has an indirect method to influence country 1?s emissions: by imposing a

tariff, country 2 effectively taxes the source of pollution. In light of this structure, the

country 1 is motivated to impose a tax its product – even if country 1 suffers little or no

harm – as this will induce country 2 to lower its tariff. In this setting, the combination of

importing country tariff and producing country tax serves to reduce the flow of emissions
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below the level that would otherwise be observed. Even so, the resultant flow of emissions

exceeds the socially optimal level.

The essential feature of this set of results is that the importing country is able to

induce lower emissions through two channels: there is a direct effect, as the imposition

of a tariff is akin to an emissions tax. But there is also an indirect effect: by creating

a financial environment wherein the country 1 has an incentive to curtail production

(so as to lower emissions), country 2 motivates country 2 to tax its own product. This

effect arises because the two instruments are strategic substitutes. Accordingly, a policy

environment that allows the country suffering harm from the stock pollutant to tax the

associated (imported) production can be doubly beneficial.
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Appendix A: Details of Linear-quadratic Model

With linear marginal costs, and taking note of eq. (21), the equation characterizing

country 2’s optimal tariff (eq. (12)) can be re-written as

τ =
X0

bα
+

1−α
α

σ(Z)−
1

bcα
θ. (31)

Similarly, because U ′′1 = U ′′2 = b, the equation characterizing country 1’s optimal tax (eq.

(15)) can be re-written as

σ =
p0

1−α
+

c−b
1−α

−τ(Z) +
1

1−α
ξ. (32)

To work out the instantaneous equilibrium in this setting, we note that Qd = ad−bp

and Q = c(p− τ)↔ p = Q/c + τ. Hence Qu + ad− bp = c(p− τ)↔ p =
ad+Qu+cτ

b+c . Substituting

into the expressions for Qd and Q, we obtain

Qd = ωad− (1−ω)Qu−ωbτ, (33)

Q = ω[ad + Qu−bτ], (34)

where ω = c
b+c . Note that ∂Q/∂Qu = ω and ∂Qd/∂Qu = ω−1. It follows that

∂Wu/∂Qu =
au−Qu

b
−

(Q
c

)
∂Q
∂Qu

+ (p−τ)
∂Qd

∂Qu
+ Qd

∂(p−τ)
∂Qu

(35)

= au−

(
b + c
bc

)
Qu. (36)

I now turn to the derivation of the Markov Perfect equilibrium in the non-cooperative

differential game. The current-value Hamiltonian for U’s problem isHu = Wu +θ(Q−kZ),
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so that the first-order condition is ∂Wu/∂Qu +θ∂Q/∂Qu = 0; this implies

Qu = ωau + bθω2. (37)

The maximum principle also gives:

θ̇ = rθ−
∂Hu

∂Z
=

(
r + k−

∂Q
∂τ
τ′(Z)

)
θ−

∂Wu

∂τ
τ′(Z). (38)

With linear Markov strategies, τ(Z) = τ0 + τ1Z, so that τ′(Z) = τ1. Moreover, ∂Q/∂τ =

∂Qd/∂τ = −bω. It follows that ∂Wu/∂τ = (ω−1)Qd, and thus

θ̇ = (r + k +ωbτ1)θ+ (1−ω)τ1Qd. (39)

Time-differentiating eq. (37) yields:

Q̇u = bω2θ̇

= bω2 (r + k + bωτ1)θ+ bω2(1−ω)τ1Qd. (40)

Upon substituting in for Qd, one has

Q̇u = (r + k)[Qu−ωau] +ωbτ1

(
Qu−ωau + (1−ω)ω [ωad− (1−ω)Qu−ωbτ]

)
. (41)

Now, Q̇u = Q′u(Z)Ż, where Qu(Z) is the linear Markov strategy ρ0 +ρ1Z. Thus,

Q̇u = ρ1ω(ad + Qu−bτ)− kρ1Z.
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Combined with eq. (41), this yields a linear relation that must hold for all values of Z; in

turn, this imposes constraints on the intercept and slope:

ρ0 =
ω

(
bωτ1 [ω(1−ω)(ad− bτ0)− au]−ρ1(ad−bτ0)− (r + k)au

)
ωρ1− (r + k)−ωbτ1 +ω2(1−ω)2bτ1

; (42)

ωρ2
1−

(
2ωbτ1 + (r + 2k)−ω2(1−ω)2τ1)

)
φb + (1−ω)(cτ1)2 = 0. (43)

Payoffs to D in this context are consumer surplus plus tariff revenues, less damages:

Wd =
Q2

d

2b
+τQd−

sZ2

2
.

Using the expression for Qd above, we have

∂Wd

∂τ
= (1−ω) [Qd− cτ] .

The current-value Hamiltonian for D’s problem is Hu = Wd +η(Q− kZ), so that the first-

order condition implies

τ = Qd/c−η. (44)

Then using the expression for Qd above, we obtain:

τ =
ad− (b + c)η

c + 2b
−

b
c + 2b

Qu. (45)

The maximum principle also gives:

η̇ = rη−
∂Hd

∂Z
=

(
r + k−

∂Q
∂Qu

Q′u(Z)
)
θ−

∂Wu

∂Qu
Q′u(Z). (46)
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With U playing the linear Markov strategy Qu(Z) = ρ0 +ρ1Z we have Q′u(Z) = ρ1, so that

η̇ = (r + k−ωρ1)η+
(1−ω

b + c

)[cad

b
−Qu + bτ

]
ρ1 + sZ. (47)

As with the characterization of U’s strategy, I proceed by time-differentiating the

first order condition (here, eq. (44)); this yields:

τ̇ =
−(b + c)
c + 2b

η̇−
−b

c(c + 2b)
Q′uŻ.

Then using eq. (47) to substitute for η̇, and recalling that Q′u(Z) = ρ1, one has

τ̇ = −

(
b + c

c + 2b

)[
r + k−

cρ1

b + c

]
η−

(
b + c

c + 2b

)(
b

(b + c)2

[cad

b
−Qu + bτ

]
ρ1 + sZ

)
−

bρ1

c(c + 2b)
Ż. (48)

Because D is playing the linear Markov strategy τ(Z) = τ0 +τ1Z and U is playing the linear

Markov strategy Qu(Z) = ρ0 +ρ1Z, one can write

Ż = ω(ad−bτ0 +ρ0) +
[
ω(ρ1−bτ1)− k

]
Z. (49)

Then combining eqs. (48) and (49), and using eq. (44) to substitute for −(b+c)η
c+2b , we obtain a

linear relation that must hold for all values of Z. This relation imposes constraints on the

intercept and slope:

(
r + k +ω(bτ1−ρ1)

)
τ0 = ω(ad +ρ0)τ1−

(
r + k−ωρ1

)(bρo− cad

c(c + 2b)

)
+

adρ1

(c + 2b)(b + c)2 ; (50)

bωτ2
1−

(
2ωρ1− (r + 2k)

)
τ1−

b
c(c + 2b)

(
ωρ2

1− (r + 2k)ρ1 +
cs

1−ω

)
= 0. (51)
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The Markov Perfect equilibrium is given by the four parameters τ0,τ1,ρ0,ρ1 that solve the

system of four equations (42), (43), (50) and (51).

Using the time paths of pollution and tariff, the steady state can be found as the

solution of the system of two equations, τ̇ = 0 and Ż = 0:

W ′

d (τe)

Q ′(τe)
=

d ′(Ze)
r + k

, (52)

Ze = Q(τe)/k. (53)

The long-run equilibrium shadow price of carbon is negative and equal to

θe = −
d ′(Ze)
r + k

. (54)
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Notes

1 See Copeland (1994, 1996); Snape (1992). It is not clear whether border tax adjust-

ments in energy markets are compatible with World Trade Organization laws governing

international trade; feed-in tariffs might be justified by the World Trade Organization

regulations (Article XX which allows for exceptions to general GATT principles) since

production of the traded good is a direct cause of environmental damages occurring in

the importing country. Biermann and Brohm (2005) provides a detailed discussion of the

potential legal ramifications. For a model of dynamic interactions among countries that

value environmental damages identically, see Yanase (2010).

2 Alternatively, one could envision a situation where the exporting country places

little weight on future effects, while the importing country cares very much about the

future. Adopting a similar simplification, List and Mason (2001) investigate the potential

for differing national policies to produce preferable outcomes to a common pollution

control measure.

3 From now on, unless otherwise stated, we will suppress the time argument t.

4 List and Mason (2001) take a similar approach. As they note, one can think of this

scenario as characterizing a situation where one country bears the brunt of the damages;

allowing for damages in both countries greatly complicates the analysis without changing

the qualitative results. An alternative approach would be to assume the government in

country 1 does not care about the damages borne by its citizenry.

28



5 One might think it would be more natural for 1 to impose a tax on production. But

as noted by Mason et al. (2015), such a policy can be preempted by 2, in the sense that

the tariff that is optimal for country 2 will generally drive the upstream tax to zero. In

light of this result, country 1 needs to find an alternative instrument; since taxing local

consumption can influence something that country 2 can not impact, using such a policy

can generate net gains for country 1.

6 With a convex damage function, eqs. (7)-(8) are also sufficient.

7 The globally optimal path is comparable to those found in earlier papers on trans-

boundary pollution problems (e.g., Dockner and van Long (1993)).

8 The optimal tariff is also subject to the constraint that τ ≥ τ̂; in practice, this

constraint never binds.

9 If θ were positive, it would grow at least as fast as e(r+kt). As a result, θ(t)Z(t)e−rt

would grow at least as fast as Z(t)ekt, which grows without bound as t goes to∞.

10 Based on these values, the quantity consumer in country 1 is easily seem to equal

Q1 = Q̂− X̂− (ασ− (1−α)τ)/b.

11 For expositional clarity, details of the derivations are relegated to the Appendix.
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