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Abstract 
 
Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized 
framework to study the effects of ranking algorithms on opinion dynamics. We consider 
rankings that depend on popularity and on personalization. We find that popularity driven 
rankings can enhance asymptotic learning while personalized ones can both inhibit or enhance 
it, depending on whether individuals have common or private value preferences. We also find 
that ranking algorithms can contribute towards the diffusion of misinformation (e.g., “fake 
news”), since lower ex-ante accuracy of content of minority websites can actually increase their 
overall traffic share. 
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1 Introduction

Search engines are among the most important information gatekeepers of the Internet era. Google

alone receives over 3.5 billion search queries per day, and, according to some estimates, 80% of

these queries are informational, dwarfing navigational and transactional searches (Jansen et al.,

2008). Individuals increasingly use search engines to look for information on a vast array of topics

such as science (Horrigan, 2006), birth control and abortion (Kearney and Levine, 2014) or the

pros and cons of alternative electoral outcomes (e.g., the Brexit referendum in the UK or the

constitutional referendum in Italy; see Google Trends). The most remarkable feature of search

engines is constituted by their automated algorithm, which determines the ranking of websites

to be displayed for any given search query. Similarly, social media platforms—such as Facebook

and Twitter—rely on algorithms to rank their items (e.g., posts/tweets). In short, the algorithms

used by search engines and social media establish the order of information sources observed by any

individual, making them into de facto “algorithmic gatekeepers” (Introna and Nissenbaum, 2000;

Rieder, 2005; Granka, 2010; Napoli, 2015; Tufekci, 2015).

Despite the widespread presence and relevance of these online platforms and of their gatekeeping

algorithms, opinion dynamics via endogenous rankings is largely understudied. This paper aims to

fill this gap by developing an empirically grounded, dynamic framework, where individuals use a

search engine that ranks websites to obtain information on the state of the world (e.g., side effects

of a vaccine), and where the individuals’ choices feed back into the search engine’s rankings, thereby

affecting future searches. We then ask how the parameters describing the search environment affect

website traffic and asymptotic learning.

The model focuses on three key components of the ranking algorithm: (i) the websites’ initial

ranking (reflecting the ex-ante parameters that search engines exploit to establish the intrinsic “au-

thority” of websites); (ii) the evolution of websites’ rankings as being dependent on their popularity ;

(iii) the personalization of search results according to the individuals’ characteristics (e.g., their

geographical location or their web browsing history). At the same time, we make three assumption-

s on individuals’ online search behavior, namely: (a) they have a search cost, which captures the

tendency of individuals to give priority of attention to higher ranked results (as in De Cornière and

Taylor 2014; Taylor 2013; Burguet et al. 2015; Hagiu and Jullien 2014); (b) they have a preference

for like-minded news (as in Mullainathan and Shleifer 2005; Gentzkow and Shapiro 2010); (c) they

are näıve with respect to the search engine’s algorithm, that is, they do not make any inference

from the websites’ rankings per se.

We use the model to address basic questions on the effects of ranking algorithms on opinion

dynamics: Can they help individuals reach efficient choices? Do they contribute to the diffusion

of misinformation (e.g., “fake news”)? Can the personalization of search results hinder asymptotic

learning? We identify conditions under which the answer to all three questions is positive.
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The popularity component of the algorithm combined with the individual search costs creates a

rich-get-richer dynamic. Interacted with the individuals’ preference for like-minded news, the rich-

get-richer dynamic can foster information aggregation. The more individuals have a correct private

signal, the more likely they are to visit a website reporting correct information. Consequently,

websites with a correct signal will go up in the ranking, and other individuals will be more likely to

access a website with a correct signal. Compared to a situation where individuals observe websites

ordered randomly, the ranking algorithm enhances the probability of asymptotic learning. Though

if the confirmation bias or the preference for like-minded news is very strong, then a random ranking

might actually do better than a popularity driven one.

Nevertheless, while ranking algorithms have an overall positive effect on the efficiency of indi-

vidual choices, at the same time, they can tend to favor websites that are (ex-ante) more likely to

report wrong information. In particular, we show that fewer websites carrying a given information

may attract more traffic overall, than if there were more of them (advantage of the fewer). This

implies that, while it is always preferable to have a majority of websites reporting correct infor-

mation, a larger majority might actually decrease the probability of individuals reading correct

information. Indeed, a smaller minority of websites reporting wrong information (e.g., “conspira-

cy” or “fake news” websites) might each attract a larger share of traffic by like-minded individuals.

Remarkably, in the context of algorithmic ranking, this static effect is amplified over time by the

rich-get-richer dynamic mentioned above. Consequently, the advantage of the fewer provides a

rationale to explain why “fake news” may thrive and gain in authority in the current information

environment, dominated by algorithmic gatekeepers, such as search engines and social media.1

We also show that the preference for like-minded news combined with the personalization of

search results generate belief polarization. Most importantly, in a common value model (i.e., when

individuals use the search engine to gather information on a state of the world they all equally

care about), personalization is likely to inhibit asymptotic learning. Instead, when individuals

care differently about different attributes of the state of the world (e.g., different characteristics of

a product) an appropriately personalized search algorithm is likely to be efficiency enhancing for

individuals compared to a non-personalized one. Therefore, our results suggest that personalization

of search results may be sub-optimal in the context of individuals looking for information on

common value issues (e.g., side effects of a vaccine), while it may be a useful tool when it comes to

search queries on private value issues (e.g., attributes of a commercial product).

We conclude with one important remark. While our model focuses on search engines, our

results apply more broadly. The dynamics uncovered by our theoretical results apply to other

online platforms using ranking algorithms that act as “algorithmic gatekeepers” such as social

1Allcott and Gentzkow (2017) document that, in the run-up to the 2016 US presidential election, more than 60%
of traffic of fake news websites in the US came from referrals by algorithmic gatekeepers (i.e., search engines and
social media).
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media platforms (Napoli, 2015; Tufekci, 2015). Indeed, the rankings of items provided by social

media depend, among other things, on their popularity. At the same time, the rankings provided

are typically personalized, taking user profiles into account. Accordingly, our results suggest that

in determining “what is relevant” for their users, these algorithms will also create opinion dynamics

featuring patterns of rich get richer, advantage of the fewer and belief polarization as described

above.

Related Literature.

To our knowledge, ours is the first paper in economics to analyze opinion dynamics via endoge-

nous algorithmic rankings and the informational gate-keeping role of the search engines.2

The paper is broadly related to the economics literature on the aggregation of information

dispersed across various agents (see Acemoglu and Ozdaglar 2011 for a survey). We share with

this literature the focus on understanding the conditions under which information that is dispersed

among multiple agents might be efficiently aggregated. Our framework differs from this literature in

a simple and, yet, crucial aspect: we are interested in investigating the role played by a specific (yet

extensively used) “tool” of information diffusion/aggregation, namely, the ranking algorithm, which

is used by many online platforms. Most of the literature so far has focused on other mechanisms of

information diffusion such as social networks or, more generally, situations where individuals may

observe other individuals’ actions (Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen,

2000; Acemoglu et al., 2011; Mueller-Frank, 2013).

Formally, our model of the search engine’s ranking algorithm—and its dynamic evolution—

builds on models of individuals’ choices over ranked items used in Demange (2012, 2014). The

focus of the paper on the role of search engines as information gatekeepers is close in spirit to

the economic literature on news media (see DellaVigna and Gentzkow 2010; Prat and Strömberg

2013, for surveys). At the same time, the presence of an automated ranking algorithm makes search

engines—and other algorithmic gatekeepers—fundamentally different from news media. In the case

of news media, the choice of what information to gather and disclose is made on a discretionary,

case-by-case basis. In the case of search engines the gate-keeping is unavoidably the result of an

automated algorithm (Granka, 2010; Tufekci, 2015).3 Therefore, whatever bias might originate

from search engines, its nature is intrinsically different from the one arising from news media,

especially in traditional media. At the same time, this implies that studying the effects of search

engines on the accuracy of individuals’ beliefs requires a rather different approach with respect

2The existing economics literature on search engines has focused on the important case where search engines
have an incentive to distort sponsored and organic search results in order to gain extra profits from advertising and
product markets (Taylor, 2013; De Cornière and Taylor, 2014; Hagiu and Jullien, 2014; Burguet et al., 2015). See
also Grimmelmann (2009) and Hazan (2013) for a legal perspective on the issue.

3Put differently, “While humans are certainly responsible for editorial decisions, these [search engine] decisions are
mainly expressed in the form of software which thoroughly transforms the ways in which procedures are imagined,
discussed, implemented and managed. In a sense, we are closer to statistics than to journalism when it comes to bias
in Web search”; Rieder and Sire (2013), p. 2.
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to the one present in theoretical models of media bias, (e.g., Strömberg, 2004; Mullainathan and

Shleifer, 2005; Gentzkow and Shapiro, 2006).

Finally, the paper is also related to the literature outside economics discussing the possible

implications of the search engines’ architecture (and, more generally, of algorithmic gatekeeping)

on democratic outcomes. This literature encompasses communication scholars (Hargittai, 2004;

Granka, 2010), legal scholars (Goldman, 2006; Grimmelmann, 2009; Sunstein, 2009), media activists

(Pariser, 2011), psychologists (Epstein and Robertson, 2015), political scientists (Putnam, 2001;

Hindman, 2009; Lazer, 2015), sociologists (Tufekci, 2015) and, last but not least, computer scientists

(Cho et al., 2005; Menczer et al., 2006; Glick et al., 2011; Pan et al., 2007; Yom-Tov et al., 2013;

Flaxman et al., 2013; Bakshy et al., 2015).

The paper is structured as follows. Section 2 describes the framework. Section 3 provides a

background discussion of the main assumptions of the model. Section 4 presents the main results

concerning the effects of the search engine’s algorithm on the evolution of the website ranking and

on individuals’ opinion dynamics, for the case where there is no personalization of search results.

Section 5 discusses the effect of personalization of search results on belief polarization. Section 6

presents the implications of the model in terms of asymptotic learning, also providing a comparison

with a fully randomized ranking. Section 7 introduces some extensions which assess the robustness

of the results of the benchmark model and provide further insights, and Section 8 concludes. All

the proofs and the some formal definitions are relegated to the Appendix.

2 The Model

We present a stylized model of a search environment where individuals use a search engine to

seek information on a fixed issue. Individuals all have the same preference and perform the same

query to choose an action that matches the true state of the world. This action may have several

interpretations. For example, it may represent an individual’s choice of whether to vaccinate

her child against measles, whether to vote in favor of a referendum or electoral candidate and

so on. Individuals get their information from websites, which simply report their own private

signal, assumed to be constant throughout. At the center of the model is a search engine that

is characterized by its ranking algorithm, which ranks and thereby directs individuals to different

websites, using, among other things, the popularity of what individuals previously searched and

accessed. To simplify the analysis, we assume that individuals perform exactly one search, one after

the other. After that they choose to access one website, whose information they use to update their

beliefs and make a decision about their optimal action. We now describe the formal environment.
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2.1 Information Structure

There is a binary state of the world ω, which is a
(
1
2 ,

1
2

)
Bernoulli random variable which takes

one of two values from the set {0, 1}. There are M websites and N individuals, where, by slight

abuse of notation, we let M = {1, . . . ,M}, N = {1, . . . , N} also denote the set of websites and

individuals, respectively. Each website m ∈M receives a private random signal correlated with ω,

ym ∈ {0, 1} with P(ym = ω | ω = z) = q ∈
(
1
2 , 1
)
, for any z ∈ {0, 1}.

Similarly, each individual n ∈ N receives a private random signal,

xn ∈ {0, 1} with P(xn = ω | ω = z) = p ∈
(
1
2 , 1
)
, for any z ∈ {0, 1}.

We assume signals to be independent across individuals and websites when conditioned on ω,

and assume, moreover, q > p, reflecting the fact that, from an ex-ante perspective, the signal

received by any given website is more accurate than the one received by any given individual.

2.2 Websites

Each of the M > 1 websites is characterized by a signal ym ∈ {0, 1}. Websites are assumed to report

their signal and to keep it fixed throughout the search process. They are therefore nonstrategic

players that carry information that they provide for free to any individual accessing their website.4

For simplicity and unless otherwise noted, we assume that M is an odd number.

2.3 Individuals

Each of the N individuals must choose a binary action an ∈ {0, 1}, which gives a payoff of one, if

the action matches the true state (an = ω), and gives a payoff of zero otherwise,

un(an, ω) =

 1 if an = ω

0 else.

They do not know the true state of the world ω, and have to make their decision based on their

information, which consists of their private signal xn and the signal ym of the website they access

through the search engine. We assume individuals perform their searches once, sequentially, and

enter in a random order such that, at any point in time t, there is a unique individual n ≡ t,

who receives a random (i.i.d.) signal xn as specified above.5 As explained in Appendix A this

4Besides allowing for more tractability as it avoids modeling the strategic decisions of choosing which signal to
report, the assumption also reflects the fact that many websites can represent an article or a document that is
already posted and that contains pertinent information to the given search query. Our analysis focuses on which of
the different websites or information sources are ultimately accessed by individuals.

5For reasons of tractability, we assume that all individuals perform the same search query exactly once.
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assumption allows us to study the limit properties of opinion dynamics via search engines from

an ex-ante perspective, by approximating the stochastic search process using the mean dynamics

methodology.6

2.3.1 Ranking-free website choice

Consider an individual who has no search cost and who needs to choose which website to consult.

With a zero search cost, the websites ranking does not matter for the individual and her website

choice is what we call ranking-free. If, moreover, the individual has no preference for like-minded

news, then her best option is to simply consult a website that carries the signal that has the highest

ex ante probability of being correct. With only two possible signals, and given q > p, the signal

carried by the majority of websites, the website majority signal, denoted by yK ∈ {0, 1}, plays

this role. Let K = {m ∈ M | ym = yK}, where M
2 < K ≤ M , denote the set (and number) of

websites carrying the website-majority signal. Then, a rational individual would want to consult a

website in K regardless of her own signal. If, on the other hand, the individual has a preference for

like-minded news, then she may want to consult a website that carries the same signal as her own

even when this signal is not the website-majority one. In particular, we assume that the preference

for like-minded news is captured by a parameter γ ∈ [0, 1], which represents the probability of an

individual choosing a website that carries the same signal as her own, regardless of whether this

signal is a website-majority signal or not. The following table describes the probabilities that an

individual with signal xn will choose given website with signal ym, when K (M .

Table 1: Ranking-free choice probabilities ρ∗n,m

Website signal
ym = yK ym = yM\K

Individual
xn = yK

1
K 0

signal
xn = yM\K

1−γ
K

γ
M−K

Thus, if an individual’s private signal coincides with the website-majority signal (xn = yK), then

she clicks on any website in K with probability 1
K . If it does not coincide with the website-majority

signal (xn 6= yK), then she clicks on any website in K only with probability 1−γ
K . With this we can

define the ranking-free choice function ρ∗n : {0, 1} → ∆(M),7

ρ∗n,m(xn) =
γI{ym=xn} + (1− γ)I{ym=yK}∑

m′ I{ym=y′m}
, (1)

6Clearly, whenever individuals do not enter randomly, opinion dynamics may further depend on the specific order
of the individual searches.

7To avoid excessive notation, we omit the arguments ym and yK from the function ρ∗n.
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which, for any m ∈M , and in the absence of search costs, gives the ex-ante probability of individual

n choosing website m.

2.3.2 Search cost

When performing their search, agents obtain a list of ranked websites, which they need to process

at a cost. Thus, besides their ranking-free preferences over websites, contingent on a website

signal and on their own private signal, if individuals have a search cost, they may implicitly favor

some websites over others, depending on those websites’ position in the observed ranking. Let

rt ∈ ∆(M) be the ranking of the M websites at time t (i.e., faced by individual n ≡ t). The

ranking is provided by the search engine (as discussed in the next section). When processing the

ranked websites, we assume the individuals use the following weighting function σ : ∆(M)→ ∆(M),

σ(rn) = (σ1(rn), . . . , σM (rn)), where, for m ∈M ,

σm(rn) =
(rn,m)α∑
m′(rn,m′)

α
, for some α ≥ 0. (2)

The parameter α calibrates the individual’s search cost in the following sense: α > 1 magnifies the

difference in the entries of rt and therefore magnifies the differences present in the initial ranking

r1; α < 1 reduces the difference in the entries of rt and hence in the initial ranking r1; in the limit

as α → 0 all entries have the same weight, which represents the case with no search cost, where

all websites that provide the same signal are accessed with the same ex ante probability; finally,

α = 1 maintains the original differences present in rt.

2.3.3 Website choice

We are finally in a position to define the actual website choices of individuals. This is embodied in

the website choice function ρn : {0, 1} ×∆(M)→ ∆(M), defined by,8

ρn,m(xn, rn) =
σm(rn) · ρ∗n,m(xn)∑
m′ σm(rn) · ρ∗n,m′(xn)

=
(rn,m)α · ρ∗n,m(xn)∑
m′(rn,m′)

α · ρ∗n,m′(xn)
, (3)

which, for any m ∈ M , gives the probability that individual n accesses website m as a result of

his search at time t ≡ n. It is obtained from the ranking-free choice function ρ∗n weighted by the

function σ, normalized to give a probability distribution on the set of websites M .

Essentially, the weighting function—and the associated search cost— augments or reduces the

ranking differences between different websites contained in rt, thus affecting the way the proba-

bilities of visiting websites are distributed among all ranked websites (e.g., when α = 0, we have

ρn ≡ ρ∗n). The individual preference over websites—reflected in the ranking-free choice function—

on the other hand can act to eliminate websites that are not visited; or reduce the probability

8Fortunato et al. (2006) and Demange (2012, 2014) use related models of individuals’ choices over ranked items.

8



with which they are visited. In particular, for γ = 0, ρ∗n represents the incentive-compatible choice

of individual n: with probability one she visits one of the websites carrying the website-majority

signal. Hence, absent biases, individuals consistently use the distribution of the websites’ signals

to make their choices.9 When including a preference for like-minded news (γ > 0), a behavioral

bias is introduced such that ρ∗n may be seen as satisfying an incentive compatibility requirement

distorted by a behavioral bias, namely the preference for like-minded news (Rabin and Schrag,

1999; Mullainathan and Shleifer, 2005).10

2.4 Search Engine and Ranking Algorithm

The ranking algorithm R used by the search engine is at the center of our model. At each point in

time, t = 1, 2, . . . , N , it provides a ranking rt ∈ ∆(M) of the M websites, where an element rt,m

is the probability that the individual searching at time t is directed to website m in the absence of

any other factors. Concretely, we assume that given an initial ranking r1 ∈ ∆(M), the ranking rt

at subsequent periods, t = 2, 3, . . . , N , is defined by,

rt,m = νrt−1,m + (1− ν)ρt−1,m, (4)

where ν ∈ (0, 1). This says that the ranking at time t, rt, is determined by the ranking of the

previous period rt−1 and partly also by the individual’s choice over websites in the previous period

ρt−1,m as defined in (3).11 The weight that is put on each term depends on the parameter ν, where

for convenience we write,

(ν, 1− ν) =

(
κ

κ+ 1
,

1

κ+ 1

)
, (5)

where in turn κ ∈ N is a persistence parameter of the ranking algorithm R. The higher κ, the

more persistent and stable the search engine’s ranking is. In Section 6, when studying asymptotic

behavior (as N →∞), we will assume κ→∞.

9This can be seen to lead to limiting behavior consistent with an analogy-based expectations equilibrium along
the lines of Guarino and Jehiel (2013).

10More generally, an element ρ∗n,m of ρ∗n(xn) ∈ ∆(M) is the probability that individual n would want to visit
website m knowing her own private signal xn and the signals (ym)m∈M′ of all websites in a subset M ′ ⊂ M , and
given the preference for like-minded news γ. The idea is that besides her own signal, an individual observes the
headlines (or snippets) of a number of websites, M ′, both of which are reflected in the ranking-free website choice
function ρ∗n,m, such that when not following her own signal she chooses a website carrying the signal most represented
among websites. For simplicity, we assume that M ′ ≡ M consists of all websites and discuss the more realistic case
where the website choice is based on a smaller subset of websites M ′ ⊂M , from which individuals “perceive” which is
the website-majority signal, is discussed in Section 7. The latter can be seen as introducing an additional behavioral
bias in individual preferences (Tversky and Kahneman, 1974).

11This updating algorithm via the “popularity” of a website maybe interpreted both in a strict sense (e.g., direct
effect of the actual clicks on the website in the search result page) and in a broad sense (e.g., a website that receives
more clicks is also more likely to be more popular in other online platforms and viceversa).
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2.5 Personalized Ranking Algorithm

An important question for a ranking algorithm concerns whether it should keep track of, and use,

information it has available concerning the identity of individuals performing searches. A search

engine may want its algorithm to condition the outcomes of searches on the geographical location

of the individuals (e.g., using the individual’s IP address) or on the individual’s socio-economic

profile (e.g., using the individual’s search history). Accordingly, a personalized search algorithm

may output different search results to the same query performed by individuals living in different

locations and/or with different browsing histories.12

Suppose the set of individuals N is partitioned into two nonempty groups A,B ⊂ N , such that

A ∪ B = N and A ∩ B = ∅. In any period an individual is randomly drawn from one of the two

groups, that is, from A with probability NA
N and from B with probability NB

N , where NA = #A and

NB = #B. A personalized ranking algorithm R` then consists of two parallel rankings, namely, rAt

for individuals in A and rBt for individuals in B. Each one is updated as in the non-personalized

case, with the difference that the weight on past choices of individuals from the own group are

possibly larger than those from the other one. Set, for any t and m, and for ` = A,B,

r`t,m = ν`t rt−1,m + (1− ν`t )ρ`t−1,m , (6)

where ν`t now depends on whether or not the individual searching at time t − 1 was in the same

group, t− 1 ∈ `, and where the weight ν`t , for ` = A,B, is given by:

(ν`t , 1− ν`t ) =

(
κ

1− λt + κ
,

1− λt
1− λt + κ

)
, where λt =

 0 if t− 1 ∈ `
λ else ,

(7)

with κ ∈ N and λ ∈ [0, 1] parameters of the personalized ranking algorithm R`. This algorithm now

gives different weights to past choices over websites depending on whether these choices were taken

by individuals in the same group (weights κ
1+κ ,

1
1+κ) or in the other group (weights κ

1−λ+κ ,
1−λ

1−λ+κ).

Thus, when λ = 1, the ranking algorithm is fully personalized, whereas, when λ = 0, it coincides

with the non-personalized one previously defined. We implicitly assume that the personalized

search algorithm partially separates individuals according to some individual characteristics. In

particular, we will consider the case, where individuals are distinguished based on the accuracy of

their private signals (i.e., pA 6= pB).

2.6 Search Environments

A search environment is to be thought of as an ex ante notion that fixes the ranking algorithm,

information structure and characteristics of individuals and websites, before they receive their

12See Pariser (2011); Dean (2013); MOZ (2013); Vaughn (2014); Hannak et al. (2013); Xing et al. (2014); Kliman-
Silver et al. (2015).
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signals and before they perform their search. More formally, we define a search environment E as

a list of variables,

E = 〈(p, q); (N,α, γ);M ; (κ, λ)〉 , (8)

where (p, q) describes the information structure, (N,α, γ) describes the individuals, M describes

the websites, and (κ, λ) describes the ranking algorithm. Unless otherwise noted, we will use the

term search environment to denote the case with a non-personalized ranking algorithm (λ = 0 or

ranking described by Equation (4)) and use the term personalized search environment for the case

where the weights depend on the group (λ > 0 and the ranking described by Equation (6)). It will

be clear from the context when we are considering environments with personalized rankings. Given

a search environment E , whether personalized or not, we refer to an (interim) realization of E as

to the tuple 〈ω; (L, (ym)m∈M ); (xn)n∈N 〉, where the true state of the world and the signals of the

websites are fixed; L denotes the number of websites with the correct signal ym = ω; individuals

with signals xn enter sequentially, one at a time, in a random order.

We let r1 denote the initial ranking. Unless otherwise specified, we assume that r1 is interior,

that is, r1,m > 0 for all m ∈M . Let also rt,K and rt,M\K denote the total probabilities put by the

ranking algorithm at time t on all websites reporting the website-majority and the website-minority

signal, respectively; similarly for the clicking probabilities ρt,K and ρt,M\K . We also often talk about

the expected probability of individual n accessing website m, ρ̂t,m = E[ρt,m], where the expectation

is taken over the private signal of the agent n that enters to perform a search at time t ≡ n. These

probabilities are discussed more formally in Appendix A (see, in particular, Equation (14)).

3 Background and Interpretation of the Model

In this section we motivate and discuss the key assumptions of our model.

3.1 Individual Search Behavior.

Our objective is to study the dynamic interaction of ranking algorithm and individual informational

searches.13 The modeling strategy is to work with a tractable, parameterized and reduced form

model of näıve or boundedly rational choice on the part of the individuals and a constant strategy

on the part of the websites. In particular, the model makes three key assumptions on the search

behavior of individuals: (a) individuals incur a search cost when looking for information; (b) they

have preference for like-minded news; and (c) they are näıve with respect to the observed website

rankings. Assumption (a) does not constitute a deviation from a rational-choice framework, unlike

(b), (c), which introduce behavioral elements. However, while the näıveté of individuals with respect

13Our analysis is positive and we do not pursue a mechanism design approach here. Kremer et al. (2014) solve for
an optimal disclosure policy in the context of a dynamic recommendation system. Palacios-Huerta and Volij (2004)
and Altman and Tennenholtz (2008) study axiomatizations of static ranking systems.
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to the ranking is made to simplify the analysis, the assumption on the preference for like-minded

news allows to obtain further insights on opinion dynamics with ranking algorithms. We discuss

these assumptions in more detail.

As in the literature on search diversion (Taylor 2013; De Cornière and Taylor 2014; Hagiu and

Jullien 2014; Burguet et al. 2015), individuals have a search cost (captured by the parameter α),

which, all other things equal, increases their probability of choosing a higher ranked website. There

is plenty of evidence showing that a large majority of individuals tend to disregard search results

beyond the first page (Spink and Jansen, 2004; Guan and Cutrell, 2007; Chitika, 2013). As shown

by Pan et al. (2007), Glick et al. (2011) Yom-Tov et al. (2013) and Epstein and Robertson (2015),

this is not just a mere correlation. Keeping all other things equal (e.g., the fit of a given website

with respect to the individual’s preferences), highest ranked results tend to receive significantly

more “attention” by users than lower ranked ones.14

We also allow individuals to have a preference for like-minded news (represented by the param-

eter γ). This captures a further important behavioral aspect of how individuals choose among given

search results. Online Appendix B shows that this reduced-form parametrization is open to alterna-

tive interpretations. For example, the preference for like-minded news may result from a disutility

from reading news inconsistent with the individuals’ beliefs (as in Mullainathan and Shleifer 2005)

or, alternatively, they may be the result of a confirmation bias (as in Rabin and Schrag 1999). This

assumption is also justified on empirical grounds. Gentzkow and Shapiro (2010) document that

readers of US newspapers have an economically significant preference for like-minded news.15

Individuals are assumed to be näıve: they do not make inferences on the informativeness of a

website’s signal based on the observed ranking of that website. Accordingly, our theoretical frame-

work does not encompass a fully-fledged model of rational herding (Banerjee, 1992; Bikhchandani

et al., 1992; Smith and Sørensen, 2000). Shutting down the possibility of individuals making infer-

ences via the websites’ ranking per se is clearly a simplifying assumption in our model. While we

think that this assumption is not far-fetched, we are not aware of any empirical evidence supporting

or disproving it. In this sense, our model follows the literature that studies learning processes with

information processing biases (DeMarzo et al., 2003; Eyster and Rabin, 2010; Guarino and Jehiel,

2013).16 At the same time, even though individuals are näıve, the interaction between the individ-

14Epstein and Robertson (2015) study a related phenomenon they refer to as the “search engine manipulation
effect” (SEME). In a series of experiments on voters’ opinions and preferences, they show how changing the ranking
of websites may have a potentially very large impact on political outcomes. More generally, recent research shows
that, when faced with ordinal lists, individuals often show a disproportionate tendency to select options that are
placed at the top. See Novarese and Wilson (2013) for a discussion of the literature.

15See also Yom-Tov et al. (2013); Flaxman et al. (2013); White and Horvitz (2015) for similar evidence in the
specific context of search engines.

16Several models of social or observational learning have been proposed that depart from the original fully rational
Bayesian case. Monzón and Rapp (2014) study a model of rational Bayesian learning where individuals sample the
decisions of past individuals but have uncertainty or only partial information about their position in the sequence
of choices. Bohren (2016) studies learning by individuals with misspecified models. Eyster and Rabin (2010) study
agents who believe previous agents’ actions only reflect their signals. Guarino and Jehiel (2013) study analogy-
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ual search cost and the “popularity” component of the ranking algorithm still induces information

aggregation in the model: the more people receive a correct signal, the more likely other people are

to choose a website reporting such a signal (see Section 6). Online Appendix A briefly discusses

the case of sophisticated individuals.

Finally, we remark that, while individuals observe whether a website is reporting a “website-

majority” or a “website-minority” signal, they still need to click on a website to update their

beliefs on the issue at stake. This mechanism is in line with the literature on the demand for

slanted news (Mullainathan and Shleifer, 2005; Gentzkow and Shapiro, 2006; Chan and Suen, 2008;

Sobbrio, 2014; Alaoui and Germano, 2016) where individuals know the ideological slant of each

source of news but they need to actually watch the news report in order to update their beliefs

(e.g., individuals know that Fox News is not favorable to the Obamacare, but they will update their

beliefs on the consequences of the reform only upon actually watching the news reports).

3.2 The Search Engine’s Algorithm.

There are two main challenges in constructing a formal model providing a stylized representation

of a search engine’s algorithm. First, search algorithms are complex: Google currently uses around

200 signals in determining the ranking of search results for a given query (Dean, 2013; MOZ,

2013; Vaughn, 2014).17 Second, to prevent the possible abusive use of the algorithms, their exact

features typically represent a commercial secret. Nevertheless, while the exact details on these

ranking algorithms are kept secret, certain key features constitute “common wisdom” among folk-

tech experts. Most importantly, the main components of search algorithms are well known and

studied by computer scientists. Many of the factors used by search engines to decide the ranking of

a webpage (for a given query) are based on ex-ante parameters that the algorithm uses to establish

the initial “authority”of that webpage.18

In order to simplify and preserve tractability, we consider these parameters to be static com-

ponents of such an algorithm. Accordingly, the initial ranking is implicitly assumed to capture the

ex-ante ranking of websites for a given search query. A second set of parameters of search engines’

algorithms is instead referring to user-interaction (e.g., click-through-rate) and social signals (e.g.,

webpage likes on Facebook, tweets linking to the webpage). That is, as specified in Equation (4),

search engines update the initial ranking of a webpage according to how “popular” the webpage is.

Finally, as captured in Equation (6), search engines’ algorithms personalize search results according

based expectations equilibria, where agents make inferences from the aggregate distribution of choices made without
necessarily keeping track of all past history. We believe these are worth exploring further in a context of individuals
making choices after observing an endogenous algorithmic ranking.

17As noted by Lazer (2015) such complexity is amplified by the interaction of the algorithm itself with individual
search behavior. In particular, “the interplay of social algorithms and behaviors yields patterns that are fundamentally
emergent. These patterns cannot be gleaned from reading code.” (Lazer 2015, p. 1090). In turn, this also suggests a
theoretical model studying the interplay between users’ search behavior and the algorithm’s rules may yield insights
that may otherwise be difficult to identify simply looking at the algorithm code or at observational data.

18The PageRank algorithm (Brin and Page, 1998) is a particularly important example.
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to individual characteristics such as, for example, her geographical location (e.g., IP address) and

her past search and browsing behavior (Pariser 2011; Dean 2013; Epstein 2013; MOZ 2013; Vaughn

2014; Hannak et al. 2013; Xing et al. 2014; Kliman-Silver et al. 2015).19

4 Rich Get Richer, Concentration at the Top, Long-tail and the

Advantage of the Fewer

We here analyze the interaction of the ranking algorithm with costly search (α > 0) and preference

for like-minded news (γ > 0) in a setting where there is no personalization (λ = 0). In Section 5

we study personalized rankings (λ > 0).

4.1 Initial Ranking and the Rich Get Richer

The evolution of a website’s ranking based on its “popularity,” interacted with a sufficiently large

search cost (α > 1) of the individuals exhibits a rich-get-richer dynamic, whereby the ratio of the

expected clicking probabilities of two websites m,m′, with r1,m > r1,m′ > 0 increases over time as

more agents perform their search. The effect is further magnified, the larger α is. Importantly, the

differences in ranking and, then, in the expected probability of accessing a given website, are driven

by the initial ranking (r1) and are amplified by the search cost. We define this more formally.

Definition 1. Fix a search environment E with interim realization 〈ω; (L, (ym))〉. We say that E
exhibits the rich-get-richer dynamic if, for two websites m,m′ ∈M with the same signal, ym = ym′,

and different initial ranking, r1,m > r1,m′ > 0, we also have
ρ̂n,m
ρ̂n,m′

>
ρ̂n−1,m

ρ̂n−1,m′
, for any n > 0.

When an environment exhibits a rich-get-richer dynamic, then the ratio of the expected prob-

ability of two websites (with the same signal but different initial ranking) being visited not only

persists over time (this follows from κ > 0), but actually increases. We can state the following.

Proposition 1. Let E be a search environment with positive search cost (α ≥ 0) and with arbitrary

preference for like-minded news (γ ≥ 0) and with interim realization 〈ω; (L, (ym))〉. Then we have,

for any two websites m,m′ ∈M with ym = ym′ and r1,m > r1,m′ > 0, and n > 1,

ρ̂n,m
ρ̂n,m′


<

=

>


ρ̂n−1,m
ρ̂n−1,m′


if α < 1

if α = 1

if α > 1 .

(9)

In particular, if the search cost is large enough (α > 1), then E exhibits the rich-get-richer dynamic.

19Hannak et al. (2013) document the presence of extensive personalization of search results. In particular, while
they show that the extent of search results personalization varies across topics, they also point out that “politics” is the
most personalized query category. See also Xing et al. (2014) for empirical evidence on search results personalization
based on the Booble extension of Chrome.
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This proposition shows that the search cost plays a crucial role in the evolution of website traffic.

When 0 ≤ α < 1, initial conditions do not matter in the limit (as N →∞), in the sense that in the

limit websites with the same signal tend to be visited with the same probability. The case α = 1 is a

borderline case, where the ratios of the expected clicking probabilities remain constant for websites

with the same signal. When α > 1, initial conditions matter and the evolution of website traffic

follows a rich-get-richer dynamic. Traffic concentrates on the websites that are top ranked in the

initial ranking.20

Notice that the rich-get-richer dynamic also creates an implicit form of herding in our model.

If a website becomes more popular, it goes up in the ranking and, with a high enough search cost,

it will also be more likely to be chosen later on. In turn, this implies that if more people receive

a majority (minority) signal, other individuals will also have a higher probability of choosing a

website reporting a majority (minority) signal. As we will discuss in Section 6, this implies that

the popularity component in the ranking algorithm, together with the search cost, can generate

information aggregation in the sense that the more people receive a correct signal, the more likely

subsequent people are to choose a website reporting such a signal.

The rich-get-richer dynamic is in line with the “Googlearchy” suggested by Hindman (2009),

who argues that the dominance of popular websites via search engines is likely to be self-perpetuating.

Most importantly, the rich get richer pattern of website ranking (and traffic) via search engines is

consistent with established empirical evidence (Cho and Roy, 2004).21

4.2 Concentration at the Top and the Long Tail

The rich-get-richer dynamic implies a tendency towards concentration of website traffic at the top.

At the same time, the presence of a preference for like-minded news (γ > 0) may create a long-tail

in the pattern of website traffic. The following definition provides a formal notion of concentration

at the top and long-tail as properties of a search environment E .

Definition 2. Fix a search environment E with realization 〈ω; (L, (ym))〉 and a non-empty subset

of websites M ′ ⊂M and constant 1
2 < ζ < 1. We say that E exhibits concentration at the top with

M ′ and ζ, if
∑

n ρn,M ′ > ζ. We say E exhibits a long-tail with M ′ and ζ, if
∑

n ρn,M\M ′ < 1 − ζ
and ρn,m > 0, for any m ∈M \M ′.

Given Proposition 1, it is easy see how concentration at the top and long-tail are not only

potential properties of search environments, but can actually easily be generated with a sufficiently

large search cost (α > 1) and a positive preference for like-minded news (γ > 0), when the initial

20Online Appendix C provides a numerical and graphical illustration of this and of other results of the paper.
21Indeed, even if some scholars have argued that the overall traffic induced by search engines is less concentrated

than it might appear due to the topical content of user queries (Fortunato et al., 2006), the rich-get-richer dynamic
is still present within a specific topic.
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ranking is generic, that is, r1 is such that r1,m > 0, for any m ∈ M , and r1,m 6= r1,m′ for any two

websites m 6= m′.

Corollary 1. Fix a search environment E with realization 〈ω; (L, (ym))〉 with generic initial ranking

r1. Let 1 < k < M and 1
2 < ζ < 1 be given. Then, for N sufficiently large, α > 1 and γ > 0 there

will be concentration at the top and a long-tail for some M ′ ⊂M with M ′ = k and ζ. This is true

even for generic initial rankings that are arbitrarily close to being uniform.

Empirical studies suggest that website traffic is often characterized by a high concentration at

the top and a long-tail (Hindman 2009; Gentzkow and Shapiro 2011). Our framework identifies

two possible forces driving such a pattern of online traffic. On one hand, the interaction of the

ranking algorithm with the individuals’ search cost can lead to high concentration of traffic on few

top websites. On the other, the presence of a preference for like-minded news further contributes

towards generating a long-tail.

4.3 The Advantage of the Fewer

We now show a rather general phenomenon within our framework, whereby a set of websites with

the same signal can get a greater total clicking probability if the set contains fewer websites than

if it contains more of them (as long as it does not switch from being a set of majority to a set of

minority websites). We refer to this as advantage of the fewer.

Definition 3. Let E be a search environment with two realizations that only differ in the set of

websites carrying the majority signal K,K ′ ⊂M , where M
2 < #K ≤ #K ′ < M . Then we say that

E exhibits an advantage of the fewer if ρ̂N,K ≥ ρ̂N,K′ and ρ̂N,M\K′ ≥ ρ̂N,M\K .

The idea is that fewer websites carrying the same signal can obtain overall more traffic than if

there were more. The property holds under fairly general conditions.

Proposition 2. Let E be a search environment with N and κ large, 0 < γ < 1, and with a uniform

initial ranking r1, then E exhibits an advantage of the fewer.

This suggests that in the context of opinion dynamics via search engines, where the ranking

of websites matters (e.g., when α > 0), having fewer websites reporting a given information may

actually enhance the overall ranking and traffic of such websites. In turn, this implies that having a

limited majority (or a limited minority) of websites reporting a given signal actually increases their

overall traffic since the individual websites benefit from relatively higher rankings.22 At the same

22One might expect that allowing for free entry would tend to weaken the effect. However, while addressing free
entry of websites and even modeling the strategic choices of websites is outside the scope of this paper, we think
it is worth noting that the effect of allowing free entry on the advantage of the fewer may be limited, especially in
those cases where the “fewer websites” are minority websites carrying “dubious” information. Indeed, it may not be
in the interest of mainstream/majority websites (which are likely to also care about their reputation) to report such
information. At the same time, new minority websites would not be able to divert much traffic from the existing ones
due to their lower ranking and the rich-get-richer dynamic. Hence we believe the result may be particularly relevant
for websites carrying dubious information that “resonates” with a significant fraction of individuals.
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time, the amount of traffic that such websites can attract is limited by the fact that majority (e.g.,

mainstream) websites attract all traffic from individuals with a majority signal. Accordingly, the

results do not imply that all traffic is directed toward a single website, but rather that a significant

share of traffic can be concentrated on both majority and minority websites. Also, the fewer the

websites representing those majority or minority websites, the larger their share of traffic will be.

Given that minority websites are the ones ex-ante more likely to report incorrect information,

the advantage of the fewer suggests that ranking algorithms may indirectly favor the spread of

misinformation. This is consistent with various cases where the algorithms used by Google and

Facebook have apparently promoted websites reporting “fake news”.23 Indeed, even in queries with

a clear factual truth, such as yes-no questions within the medical domain, top-ranked results of

search engines provide a correct answer less than half of the time (White, 2013). Most importantly,

empirical evidence shows that websites reporting misinformation may acquire a large relevance in

terms of online traffic and in turn may affect individuals beliefs and behavior (Carvalho et al., 2011;

Kata, 2012; Mocanu et al., 2015; Shao et al., 2016).

5 Personalized Ranking Algorithm and Belief Polarization

By introducing personalization in our model, we allow the ranking of websites to be conditioned

on (observable) characteristics of the individuals such that searches performed by individuals in

different groups can have different weights. When λ is close to zero, there is little difference in

the choice over websites of the two groups, while as λ increases the groups may start to have an

increasingly different probability of choosing the same type of websites and, thus, to form different

opinions. In other words, increased personalization may lead to increased belief polarization.

Definition 4. Fix a search environment E with groups A and B with equal numbers of individuals.

Let K denote the set of websites carrying the website-majority signal, then we define the degree of

belief polarization of E as:

BP(E) =
∣∣ρ̂AN,K − ρ̂BN,K∣∣ .

We say environment E exhibits stronger belief polarization than E ′, if BP(E) > BP(E ′).

When individuals are separated according to the (ex ante) accuracy of their signals, a larger

personalization parameter λ will lead to more polarization as measured by BP.24

23On Google’s search algorithm prioritizing websites reporting false information, see: “Harsh truths about fake
news for Facebook, Google and Twitter”, Financial Times, November 21, 2016; “Google, democracy and the truth
about internet search”, The Observer, December 4, 2016. On Facebook showing websites reporting false information
in the top list of its trending topics, see: “Facebook fact-check: from Hillary’s health to 9/11, the latest lies we read,”
The Guardian, September 9, 2016; “Three days after removing human editors, Facebook is already trending fake
news,” The Washington Post, August 29, 2016.

24Notice that, if individuals in different groups were to face also different initial rankings, (rA1 6= rB1 ), then this
different rankings would clearly contribute to further accentuating the evolution of rankings seen by the two groups.
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Proposition 3. Let Eλ be a personalized search environment with α > 0, γ > 0, and with person-

alization parameter λ. Suppose there are two groups of individuals A and B of equal size and that

have different levels of accuracy of their private signals, pA 6= pB. Then BP(Eλ) is increasing in λ.

Therefore, non-trivial personalization (λ > 0) can lead to different information held by individ-

uals and hence to polarization of opinions. This result is in line with Flaxman et al. (2013), who

show that search engines can lead to a relatively high level of ideological segregation, due to web

search personalization embedded in the search engine’s algorithm and to individuals’ preference for

like-minded sources of news. It is also in line with existing claims and empirical evidence suggesting

that the Internet—together with the online platforms embedded in it—generally contributes to-

wards increasing ideological segregation (Putnam, 2001; Sunstein, 2009; Pariser, 2011; Halberstam

and Knight, 2014; Bessi et al., 2015; Bar-Gill and Gandal, 2017). Most importantly, consistent

with empirical evidence on the overall pattern of website traffic (Hindman, 2009; Gentzkow and

Shapiro, 2011), our results show that such ideological segregation can also coexist with patterns of

website traffic characterized by concentration at the top (Corollary 1).

In Section 6 we address the less obvious question of how personalization affects efficiency. As

we will see, when agents have common value preferences, as assumed so far, and one of the two

groups is “better informed” than the other, then personalization may decrease ex ante efficiency.

6 Efficiency and Asymptotic Learning

To assess the efficiency implications of the opinion dynamics studied in previous sections, we con-

sider the search environments from an ex-ante and from an interim perspective. In line with the

literature on social herding and social learning, we evaluate efficiency in terms of asymptotic learn-

ing (Banerjee, 1992; Bikhchandani et al., 1992, 1998; Smith and Sørensen, 2000; Acemoglu et al.,

2011; Acemoglu and Ozdaglar, 2011). As a measure of efficiency, we use the limit probability of

individual n (as n→∞) choosing the action corresponding to the true state of the world (an = ω).

At the interim stage, given the realization of true state of the world and of the signals of the web-

sites, the probability of individual n clicking on one of the L websites reporting a correct signal can

be written as:

ρn,L =


0 if L = 0

ρn,M\K if 0 < L < M
2

ρn,K if M
2 ≤ L < M

1 if L = M

(10)

where we recall that K ⊂ M denotes the set of websites reporting the website-majority signal, so

that ρn,K (ρn,M\K) denotes the probability of individual n reading a website reporting a website-

majority (website-minority) signal, with ρn,M\K = 1− ρn,K . Accordingly, we can define a measure
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of interim efficiency (PL), conditional on the number of websites reporting the correct signal (L):

PL(α, γ; p) = ρ∞,L = lim
n→∞

ρn,L. (11)

This allows us to define our measure of ex ante efficiency (P) as follows:

P(α, γ; p, q) =

M∑
L=0

(
M

L

)
qL(1− q)M−LPL(α, γ; p). (12)

As explained in Appendix A, we compute the limit ranking and clicking probabilities using the

mean dynamics approximation (Norman, 1972; Izquierdo and Izquierdo, 2013). Essentially this

involves fixing an interim search environment (essentially characterized by a number of websites L

carrying the correct signal) and estimating the random clicking probabilities ρn,m in Equation (3)

for m ∈ M by their expectations ρ̂n,m = E[ρn,m]. This leads to deterministic recursions that are

easily computed in the limit by means of ordinary differential equations. To obtain the ex ante

efficiency, we take expectations over all interim environments as specified in Equation (12).

6.1 Comparative Statics

6.1.1 Interim Efficiency

In order to analyze ex-ante efficiency, we need to first study interim efficiency. The following

proposition illustrates how interim efficiency changes as the number of websites carrying the correct

signal L varies.

Proposition 4. Let E be a search environment with a uniform initial ranking r1 and with N and

κ large. Let 〈ω; (L, (ym))〉 be an interim realization of E, where L is the number of websites with

the correct signal. Then, the interim efficiency is non-monotonic in L. Specifically:

1. PL is always higher for L ≥ M
2 than for L < M

2 .

2. PL is weakly decreasing in L for 0 < L < M−1
2 and for M

2 ≤ L < M .

Essentially, this proposition points out that: interim efficiency (PL) is greater when a majority

of websites reports the correct signal than when a minority does so; the advantage of the fewer

creates non-monotonicity in interim efficiency. Indeed, while it is always better to have a majority

of websites reporting the correct signal, fewer websites carrying the correct signal can have an overall

greater expected probability of being visited than if there are more (as suggested by Proposition 3).

A graphical illustration of this result is shown in Figure 1, which plots interim efficiency as a function

of L (for p = 0.55, a uniform initial ranking and for different values of α and γ).25

25When L = 0 (or L = M), all agents always access a website with a wrong (correct) signal. When 0 < L < M
2

, a
minority of the websites carry the correct signal. Hence, for any given L in this range, an increase in γ monotonically
increase interim efficiency. Instead, when L ≥ M

2
, a majority of the websites carry the correct signal. Hence, for any

given L in this range, an increase in γ monotonically decreases interim efficiency.

19



0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

������ �� �������� ���� ������� ������ (�)

��
��
��
�
�
��
��
��
�
��

(�
�
)

γ=0.33

γ=0.5

γ=0.67

γ=0.85

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

������ �� �������� ���� ������� ������ (�)

��
��
��
�
�
��
��
��
�
��

(�
�
)

γ=0.33
γ=0.5

γ=0.67

γ=0.85

Figure 1: Interim efficiency (PL) as a function of the number of websites with correct signal (L) for γ = 0.5 (black
line) and other values of γ (dashed lines) and for two values of the search cost, α = 0 (left) and α = 1 (right). In
both panels, p = 0.55, M = 20, and r1 is uniform.

6.1.2 Ex Ante Efficiency

The following proposition shows that while a higher level of accuracy of the individuals’ signals

(p) and a lower degree of preference for like-minded news (γ) generally improve ex ante efficiency,

this is not necessarily the case with the accuracy of the websites’ signals (q) and the search cost

(α). Depending on the degree of preference for like-minded news, q and α may have a positive or

negative effect on ex ante efficiency.

Proposition 5. Let E be a search environment with a uniform initial ranking r1 and with N and

κ large. Then, ex ante efficiency is weakly increasing in p and weakly decreasing in γ. Moreover,

there exists 0 < γ < 1
2 such that ex ante efficiency is weakly increasing in q for γ ∈ [0, γ]∪ [1− γ, 1]

and is weakly decreasing in α for γ ∈ [1 − γ, 1]. In the remaining cases, ex ante efficiency can be

decreasing in q for some γ ∈ (γ, 1− γ) and can be increasing in α for some γ ∈ [0, 1− γ).

A higher p always increases ex ante efficiency. This is not just the consequence of the direct

(and trivial) effect of a higher probability of individual n having a correct private signal. The

static effect is compounded by the dynamic one due to fact that the more individuals receive a

correct signal, the higher the ranking of websites reporting a correct signal and, in turn, the higher

the probability that other (subsequent) individuals will also choose a website reporting a correct

signal. Indeed, even though individuals are assumed to be näıve with respect to the algorithm, the

popularity component of the ranking algorithm combined with the search cost and preference for

like-minded news create a mechanism whereby the private signals received by the individuals are

implicitly aggregated and embedded in the website rankings. Corollary 2 makes this even clearer.

A higher γ decreases the probability of choosing a website reporting a correct signal when

L ≥ M
2 , and increases it when L < M

2 . Hence, in our framework with q > p > 1
2 and näıve agents

who do not learn from the ranking per se, a higher γ necessarily leads to a lower probability of

asymptotic learning.

On the other hand, somewhat remarkably, a higher level of accuracy of websites’ signals need not

increase ex ante efficiency. This is true for intermediate levels of γ and is related to the advantage
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Figure 2: Ex ante efficiency (P) as a function of the preference for like-minded news (γ) for q = 0.75 for two values
of the search cost, α = 1 (black line), α = 0 (dashed line) (left); and for α = 1 and two values of website accuracy,
q = 0.75 (black line), q = 0.85 (dashed line) (right). In both panels, p = 0.55, M = 20, and r1 is uniform.

of the fewer property discussed in Section 4. Higher values of q make it more likely that the number

of websites with incorrect minority signal is small and the ones with correct signal is large. Because

of the advantage of the fewer effect, this increases the clicking probability on such websites while

reducing it for websites with the correct majority signal, thus reducing ex ante efficiency.

Finally, a higher search cost α can increase or decrease ex ante efficiency depending on the value

of γ. When γ is small, it tends to enhance the ranking of websites carrying the website-majority

signal, which tends to increase ex ante efficiency. When γ is large, a higher α tends to enhance

the ranking of websites carrying the website-minority signal, which tends to reduce the ex ante

probability of asymptotic learning. A graphical illustration of this is shown in Figure 2 which plots

ex ante efficiency as a function of γ for α = 0 (equivalent to randomized ranking) and for α = 1

(left panel). It also shows ex ante efficiency as a function γ for q = 0.75 and q = 0.85.

It is insightful to compare the case of rankings that are endogenous to individuals’ searches

(κ < ∞ or ν < 1) to ones where the ranking is random and uniform throughout (r1 uniform and

κ = ∞). It is not difficult to see that in this case ex ante efficiency is as in a search environment

where search cost is zero, so that individuals’ website choices correspond to ranking-free ones. The

following result then follows from the proof of Proposition 5.

Corollary 2. Let E be a search environment with a uniform initial ranking r1, and let E ′ be a

search environment where the initial ranking and every subsequent ranking is uniform (κ = ∞).

Let P and P ′ denote the ex ante efficiency of E and E ′ respectively. Then there exists 0 < γ ≤ 1

such that P ≥ P ′ for γ ∈ [0, γ], while P ≤ P ′ for γ ∈ [γ, 1].

This shows that a fixed random ranking is inferior in terms of ex ante efficiency to a popularity

driven one, unless there is a sufficiently strong preference for like-minded news, in which case a

random ranking is efficiency-enhancing.
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6.2 Ex Ante Efficiency and Personalization

This section discusses the case of personalization of search results, where individuals in different

groups have different levels of accuracy (say pA and pB). Personalization here can be seen as

progressively “separating” the two groups thereby progressively uncoupling their rankings and so

switching off potential externalities from one group to the other. To the extent that the high

accuracy group exerts a positive externality on the groups’ rankings and overall ex ante efficiency,

increasing the personalization may inhibit overall ex ante efficiency.

Proposition 6. Let Eλ be a personalized search environment with personalization parameter λ, a

uniform initial ranking r1 and with N and κ large. Suppose there are two groups of individuals A and

B of equal size that have different levels of accuracy of their private signals, say 1
2 < pA < pB < p,

for some p < 1. Then, there exists 1
2 < p < 1 such that ex-ante efficiency is weakly decreasing in λ.

The proposition shows how personalization can contribute towards lower ex ante efficiency.

It suggests that individuals with higher accuracy provide an overall positive externality on the

probability of clicking on a website with the correct signal when they are mixed with individuals

of lower accuracy, as is the case when there is less personalization.

Formally, the negative effect of personalization on ex ante efficiency shows up through the

concavity of the ex ante efficiency function (Pλ) with respect to the accuracy parameter (p) for

any λ. The ex ante efficiency of a non-personalized ranking (λ = 0) corresponds to the ex ante

efficiency of a single group with a level of accuracy that is an average of pA and pB; whereas the ex

ante efficiency of a personalized ranking (λ > 0) corresponds to an average of the ex ante efficiency

of two groups, each with its own level of accuracy. Concavity of the ex ante efficiency measure with

respect to p means that the latter (Pλ, λ > 0) is below the former (Pλ, λ = 0), and this carries

over to any comparison for any given pair of λ’s. The intuition for why Pλ is concave in p has to do

with the fact that increasing p increases interim efficiency PλL, for any L, but where the marginal

effect is increasing in p when L represents a minority (L = M \ K) and is decreasing in p when

it represents a majority (L = K) of websites. Because the latter cases where the websites with a

correct signal represent a majority of websites are more likely, since q > 1
2 , when the accuracy levels

of the individuals are not too large, the negative effects can be shown to dominate the positive ones.

This makes the overall function concave.

Finally, we should emphasize, that our analysis focuses on common value preferences. As we

will see in Section 7.2, when preferences vary across individuals, then there can be more scope for

personalized ranking algorithms to be efficiency-enhancing.

7 Extensions

We briefly explore two extensions of the model.
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7.1 Domain Bias – M ′

We now revisit the assumption made in Section 2.3 that agents form their ranking-free website

choices from observing the headlines of M ′ ⊂ M websites, where it was assumed that M ′ = M .

We now relax that assumption to show that the main properties derived above not only continue

to go through in the more realistic case, where M ′ is a strict subset of M , but in some cases

they can lead to significantly more severe consequences. In particular, assuming that agents form

their ranking-free website choices from observing the headlines of M ′ 6= M websites introduces an

additional behavioral bias. Such a behavioral bias would be consistent with what Tversky and

Kahneman (1974) refer to as an availability bias due to the retrievability of instances. For the sake

of simplifying the exposition, we simply refer to such a behavioral preference as a domain bias.

Assume, for simplicity, that there is no personalization (λ = 0), no preference for like-minded

news (γ = 0), and that M ′ consists of the M ′ websites with the highest ranking probability, that

is, websites such that rn,m ≤ rn,m′ for any m ∈ M \M ′,m′ ∈ M ′ (e.g., only websites in the first

page of search results). Given M ′, let yK′ ∈ {0, 1} denote the signal that is reported by a majority

of websites in M ′, the M ′ website-majority signal (i.e., the most frequent signal reported in the

websites’ snippets provided in the first page of search results); let also K ′ ≤M ′ denote the number

of websites that report that signal, that is, K ′ = #{m ∈ M ′ | ym = yK′}. Accordingly, we define

as J ≤ N the number of individuals receiving a private signal equivalent to their website-majority

signal, that is J = #{n ∈ N | xn = yK′}.
Since q > p, agents’ preference vector ρ∗n now takes the form:

ρ∗n,m =
I{ym=yK′ ,m∈M ′}

K ′
=

 1
K′ if ym = yK′ and m ∈M ′

0 else .
(13)

In particular, agents only consult websites in M ′. As a result, all websites in M \M ′ will have

a choice probability of zero, ρn,m = 0 for any m ∈ M \M ′ and such websites will tend to also

receive zero ranking probability for N large. While all the results derived above go through in this

case, after appropriate adaptations, the main difference lies in the fact that what drives the opinion

dynamics and the choices of individuals is not the majority signal yM taken from all websites, but

a majority signal yM ′ taken from just a subsample. This means that its informational content may

be significantly weaker depending on the relative size of M ′. Moreover, for λ > 0, differences in

M ′ across individuals may lead to a different perceived website-majority signals. In turn, this may

affect the individual choice over websites and, ultimately, reinforce belief polarization.26,27

26It is worth noticing that the search cost combined with a domain bias, may provide a rationale to explain the
large size of the SEME effect found in Epstein and Robertson (2015). Future empirical research may attempt to
disentangle the impact of these two components (i.e., search cost and domain bias) on individual choice over websites.

27If one studies ranking algorithms from a mechanism design perspective, then a smaller M ′ ( M can be advan-
tageous for the principal (i.e., the designer of the ranking algorithm), as it gives more possibilities to steer traffic
towards a narrower set of websites. Notice also that the ranking algorithm can potentially learn a lot about the
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7.2 Heterogeneous Preferences and Personalization

Our basic framework focuses on the case where individuals have homogeneous preferences over

a common state of the world (e.g., side effects of a vaccine). In Section 6, we saw how search

personalization may be detrimental for efficiency in such a context. As the following example points

out, when individuals have heterogeneous preferences (e.g., they care differently about different

attributes of a good or product), and this is reflected in the personalization of search results, then

a personalized ranking algorithm may be efficiency enhancing relative to a non-personalized one.

Example 1. (Personalized ranking with private values). Consider two groups A and B, and

a two-dimensional state variable ω = (ωA, ωB) ∈ {0, 1}2, where ωA, ωB are i.i.d.
(
1
2 ,

1
2

)
Bernoulli

random variables, which take one of two values in {0, 1}. Individuals in different groups differ with

respect to their utility function:

u`n(an, ω) =

{
1 if an = ω`

0 else ,

for ` = A,B. As before, individuals and websites receive signals, however, now individuals in

different groups differ with respect to the correlation of their private signal with the state variable

ω. In particular, an agent in group ` receives a signal x`n ∈ {0, 1}, satisfying, for ` = A,B:

P(x`n = ω` |ω` = z) = p` >
1

2
, for any z ∈ {0, 1} ,

where we again assume pA = pB = p. In other words, we consider a pure private value model, where

individuals in each group care only about the state variable concerning their group and receive a

private signal only depending on such a state variable. This can be interpreted as a setting, where

the two groups care only about a specific characteristic of the product or service and, accordingly,

they only receive a private signal regarding the characteristic that they care about (e.g., ωA, ωB

may represent the atmosphere and the food quality of a restaurant, with individuals in group A

just caring about atmosphere, while the ones in group B just care about the food quality).

On the other hand, each website m receives (and reports) a coarse signal regarding the two-

dimensional state variable ω (e.g., the average quality – bad/good – of a restaurant which may be

a combination of its atmosphere and of the food taste). In particular, suppose:

P(ym = 0 |ωA + ωB < 1) = q0 and P(ym = 1 |ωA + ωB ≥ 1) = q1 ,

where, as before, we assume q0, q1 > p > 1
2 , are sufficiently large such that the coarse signals of a

website are always informative for individuals in both groups A and B. Individuals in both groups

will therefore rationally revise upwards their beliefs on ωA or ωB being equal to one whenever they

environment. Kremer et al. (2014) take such an informed principle approach in the context of recommender systems.
We leave the study of this within a context of ranking algorithms for future work.
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read a website reporting signal ym = 1, and will revise them downwards whenever they read a

website reporting signal ym = 0.28

Hence, as in the case where all individuals share the same preferences over the state of the

world, an algorithm personalizing search results may lead to polarized beliefs. However, unlike the

case of common-value preferences, since neither group has a positive information externality on the

other, personalization is more efficient when the two groups have uncorrelated preferences. 2

Together with Proposition 6, this example shows how personalization is likely to be efficient

in some contexts (e.g., with private values) and inefficienct in others (e.g., with common values).

This is consistent with the intuition expressed in Lazer (2015), p. 1090, that “Social algorithms are

often quite helpful; when searching for pizza in Peoria, it helps not to get results about Famous

Ray’s in Manhattan. However, personalization might not be so benign in other contexts, raising

questions about equity, justice, and democracy.” It is important for a ranking algorithm to be able

to decide on the “right” degree of personalization, based on just the entries of the query. This may

not always be a straightforward to accomplish (Hannak et al., 2013).

8 Conclusions

The economics literature has largely overlooked the informational role played by algorithms used,

for example, by search engines and social media to rank the information provided to their users.

To address this neglected issue, we have developed an empirically-grounded model that allows us

to study how basic features of a search engine’s algorithm interact with individual search behavior

and how this affects website traffic, opinion dynamics and asymptotic learning.

The results inform both the popular and academic debate regarding the effect of the Inter-

net’s architecture on market concentration and ideological segregation. While some scholars ar-

gue that the Internet has lead to an increased concentration of the media sector (McChesney,

2013), others suggest that the Internet may actually have “too little” concentration from favoring

self-segregation and “cyber-balkanization”(Putnam, 2001; Sunstein, 2009; Halberstam and Knight,

2014; Bessi et al., 2015). Consistent with empirical evidence on the pattern of website traffic (Hind-

man, 2009; Gentzkow and Shapiro, 2011) and on the role of algorithmic gatekeepers (Flaxman et al.,

2013), our analysis shows that these two arguments are not necessarily mutually exclusive. Patterns

of websites traffic characterized by concentration at the top may well co-exist with belief polarization

in opinion dynamics.

Most importantly, the main insights of the paper point out that—compared to a situation

where individuals observe randomly ranked websites—popularity driven rankings have an overall

28Notice that P(ωA = 0 | ym = 0) = P(ωB = 0 | ym = 0) = q0+(1−q1)
q0+3(1−q1)

, which, for q0, q1 > p, is higher than P(ωA =

0 |xAn = 0) = P(ωB = 0 |xBn = 0) = p. At the same time, P(ωA = 1 | ym = 1) = P(ωB = 1 | ym = 1) = 2q1
3q1 +(1−q0)

which, for q0, q1 > p, is higher than P(ωA = 1 |xAn = 1) = P(ωB = 1 |xBn = 1) = p.
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positive effect on the efficiency of individual choices, and enhance the aggregation of the private

information dispersed among individuals and websites. At the same time, ranking algorithms can

also contribute to the diffusion of misinformation. The lower the ex-ante quality of information of

minority websites, the higher the overall share of traffic that they attract (advantage of the fewer).

The model further provides insights on a controversial component of the ranking algorithm: the

personalization of search results. While it might be useful for search queries on private value

issues (e.g., attributes of a commercial product), personalization hinders asymptotic learning when

individuals are looking for information on common value issues (e.g., side effects of a vaccine).

So far, public authorities have worried about the possible strategic manipulation of website

rankings by search engines regarding transactional queries.29 Our results suggest that, even in the

“best scenario,” where search engines do not have any incentive to strategically manipulate their

search results to increase their advertising profits (as in De Cornière and Taylor 2014; Taylor 2013;

Burguet et al. 2015; Hagiu and Jullien 2014) or to influence election outcomes (as in Epstein and

Robertson 2015), there might still be subtler distortions in the pattern of website traffic and opinion

dynamics arising from the interaction of the ranking algorithm with individuals’ online search

behavior. Accordingly, our theoretical framework provides policy regulators with both a rationale

to request information on the architecture of the ranking algorithms as well as some guidance

on how to evaluate them in terms of website traffic and efficiency.30 In general, identifying the

key components of ranking algorithms, enhancing their transparency and promoting individuals’

awareness of such components and of the dynamics at play, might prove useful.31

29http://europa.eu/rapid/press-release_MEMO-15-4781_en.htm
30For example, the potential presence of a rich-get-richer dynamic highlighted by our model may be of interest to

competition authorities since it can lead to large asymmetries in market size (share of traffic) of otherwise identically
informative websites. As for personalization and belief polarization, a “dirigiste” approach might suggest a further role
for regulation authorities in supervising the architecture of ranking algorithms to reduce the extent of personalization
in search queries involving common-value issues (e.g., side effects of vaccines). A less paternalistic approach might
simply consist in encouraging search engines to allow each user to choose between search results based on previous
search queries of individuals with “similar characteristics” and non-personalized results. In this way, each user might
endogenously choose whether or not to personalize her search results for given queries.

31Survey evidence on a subsample of Facebook’s users reveal that above the 60% of respondents are not aware of
even the existence of the News Feed algorithm (Eslami et al., 2015).
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APPENDIX

A Mean Dynamics Approximation

In order to evaluate the actions taken by an agent in the limit as N →∞, we use some techniques

of stochastic approximation from Norman (1972) as exposed in Izquierdo and Izquierdo (2013),

which we refer to as the mean dynamics approximation. We here give a brief outline in order to

follow our calculations and proofs, but we refer to the latter two sources for more details. The

basic idea of the approach is to use the expected increments to evaluate the long run behavior of

a dynamic process with stochastic increments. Rewrite the ranking probabilities as,

rt,m = νtrt−1,m + (1− νt)ρt−1,m

=
κt

1 + κt
rt−1,m +

1

1 + κt
ρt−1,m

= rt−1,m +
1

1 + κt
(ρt−1,m − rt−1,m)

= rt−1,m +
1

1 + κt

(
(rt−1,m)α · ρ∗t−1,m∑
m′(rt−1,m′)

α · ρ∗t−1,m′
− rt−1,m

)
,

where in order to obtain sharper convergence results, we let κt and hence νt ∈ (0, 1) vary with t.

It is clear that the only stochastic term is in given by the expressions ρ∗t−1,m. Replacing these with

their expectations yields the deterministic recursion in r̂t,m

r̂t,m = r̂t−1,m +
1

1 + κt
(ρ̂t−1,m − r̂t−1,m)

where

ρ̂t−1,m = E[ρt−1,m] = p
(r̂t−1,m)α · ρ̂∗0m∑
m′(r̂t−1,m′)

α · ρ̂∗0m′
+ (1− p) (r̂t−1,m)α · ρ̂∗1m∑

m′(r̂t−1,m′)
α · ρ̂∗1m′

(14)

is the expected clicking probability of the individual entering in period t− 1, and where

ρ̂∗
0
m =


γ
L if m ∈ L, 0 < L < M

2
1
L if m ∈ L, M2 ≤ L < M
1−γ
M−L if m /∈ L, 0 < L < M

2

0 if m /∈ L, M2 ≤ L < M

, ρ̂∗
1
m =


0 if m ∈ L, 0 < L < M

2
1−γ
L if m ∈ L, M2 ≤ L < M
1

M−L if m /∈ L, 0 < L < M
2

γ
M−L if m /∈ L, M2 ≤ L < M .

Here ρ̂∗
0
m represents the expected probability of an individual choosing a website m, contingent on

having received a correct signal, absent any search cost. Analogously, ρ̂∗
1
m represents the expected

probability of an individual choosing a website m, contingent on having received an incorrect signal,

absent any search cost.32 ρ̂∗
0
m and ρ̂∗

1
m are fixed coefficients that do not vary with t. In particular,

in order to apply the basic approximation theorem we assume κt is of the order O(t) so that,
1

1+κt
→ 0, and to guarantee smoothness and avoid boundary problems, we assume there exists

ε > 0 such that, each r̂t,m ≥ ε for all t,m. Moreover, replacing r̂t−1,m with xm (and hence the

vector r̂t−1 with the vector x = (x1, . . . , xM ), this yields a function g : ∆ε(M) → RM , defined for

32Clearly, ρ̂∗
0

m = ρ̂∗
1

m = 0 if if m ∈ L,L = 0 or m /∈ L,L = M. At the same time, ρ̂∗
0

m = ρ̂∗
1

m = 1 if m ∈ L,L = M
or m /∈ L,L = 0.
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m = 1, 2, . . . ,M , by,

gm(x) = E [ρt−1,m − rt−1,m | rt−1,m = xm for m = 1, . . . ,M ] = θm(x)− xm,

where θ : ∆ε(M)→ RM is defined by,

θm(x) = p
(xm)α · ρ̂∗0m∑
m′(xm′)

α · ρ̂∗0m′
+ (1− p) (xm)α · ρ̂∗1m∑

m′(xm′)
α · ρ̂∗1m′

.

Given that the function g is smooth in x on ∆ε(M), it can be shown that the expected limit of

our stochastic process can be obtained by solving the ordinary differential equation ẋ = g(x). In

particular, for any given initial condition r0, there is a unique limit, and for large enough values of

κ the stochastic process rt tends to follow the unique solution trajectory of the differential equation

ẋ = g(x).

B Proofs

Proof of Proposition 1. We prove directly the case with γ ≥ 0. The expected ranking probabil-

ities are then given by:

r̂n,m = νr̂n−1,m + (1− ν)ρ̂n−1,m

= νr̂n−1,m + (1− ν)

(
p

(r̂n−1,m)α · ρ̂∗0m∑
m′(r̂n−1,m′)

α · ρ̂∗0m′
+ (1− p) (r̂n−1,m)α · ρ̂∗1m∑

m′(r̂n−1,m′)
α · ρ̂∗1m′

)

= νr̂n−1,m + (1− ν)

(
p · ρ̂∗0m∑

m′(r̂n−1,m′)
α · ρ̂∗0m′

+
(1− p) · ρ̂∗1m∑

m′(r̂n−1,m′)
α · ρ̂∗1m′

)
(r̂n−1,m)α ,

where ρ̂∗
0
m and ρ̂∗

1
m are defined in Appendix A. Let m,m′ ∈ K with m 6= m′ and r1,m > r1,m′ > 0.

Fix n > 1, we first show that the rich-get-richer dynamic applies to the ranking probabilities. To

simplify notation, let x ≡ r̂n−1,m and y ≡ r̂n−1,m′ . Because 0 < ν < 1 we always have x > y > 0 for

any n > 2, and because the two websites have the same signal they also have the equal coefficients

on (r̂n−1,m)α and r̂n−1,m, say, a and b respectively, where a, b > 0. Hence we can write:

r̂n,m = axα + bx and r̂n,m′ = ayα + by.

But then it follows that:

r̂n,m
r̂n,m′

>
r̂n−1,m
r̂n−1,m′

⇐⇒ axα + bx

ayα + by
>
x

y
⇐⇒ axαy + bxy > axyα + bxy ⇐⇒

(
x

y

)α
>
x

y
⇐⇒ α > 1

and similarly

r̂n,m
r̂n,m′

(=)
<

r̂n−1,m
r̂n−1,m′

⇐⇒ axα + bx

ayα + by

(=)
<

x

y
⇐⇒ axαy+bxy

(=)
< axyα+bxy ⇐⇒

(
x

y

)α (=)
<

x

y
⇐⇒ α

(=)
< 1
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Finally, to see the claim, notice that ρ̂n,m = a
1−ν (r̂n,m)α and ρ̂n,m′ = a

1−ν (r̂n,m′)
α, where again

a
1−ν > 0, so that:

ρ̂n,m
ρ̂n,m′

>
ρ̂n−1,m
ρ̂n−1,m′

⇐⇒
a

1−ν (r̂n,m)α

a
1−ν (r̂n,m′)α

>
a

1−ν (r̂n−1,m)α

a
1−ν (r̂n−1,m′)α

⇐⇒
(
r̂n,m
r̂n,m′

)α
>

(
r̂n−1,m
r̂n−1,m′

)α
⇐⇒ r̂n,m

r̂n,m′
>
r̂n−1,m
r̂n−1,m′

⇐⇒ α > 1,

and correspondingly for α < 1 and α = 1. 2

Proof of Corollary 1. This follows directly from Proposition 1. Fix a generic initial ranking

and consider the website carrying the website majority signal that is highest ranked in the initial

ranking, say `0 ∈ K, and the website carrying the website minority signal that is highest ranked in

the initial ranking, say `1. Because r1,m > 0, for all m, and γ > 0, it is easy to see from Equation (3)

that ρn,m > 0 for all n,m. From Proposition 1, we have that, for α > 1,
ρn,`0
ρn,m

>
ρ1,`0
ρ1,m

for any n > 1

and m ∈ K with m 6= `0, and also
ρn,`1
ρn,m′

>
ρ1,`1
ρ1,m′

for any n > 1 and m′ ∈ M \ K with m′ 6= `1.

In particular, for given k and ζ, by choosing N sufficiently large and `, `′ ∈ M ′ we can satisfy

M ′ = k > 133 and ρn,M ′ > ζ for all n ≥ N , and it immediately follows from ρn,M\M ′ = 1 − ρn,M ′
that ρn,M\M ′ < 1−ζ. To see how this can be done with a generic initial ranking arbitrarily close to

the uniform distribution, or given ε > 0 arbitrarily small, repeat the above argument to a generic

initial ranking r1 also satisfying
∑

n(r1,m − 1
M )2 < ε. This completes the proof. 2

Proof of Proposition 2. We need to check two cases: the websites in L carry the majority signal

and the websites in L do not carry the majority signal. In the first case, ρ̂N,K ≥ ρ̂N,K′ follows from

Proposition 4. To see ρ̂N,M\K′ ≥ ρ̂N,M\K in this case, notice that

ρ̂N,M\K′ = 1− ρ̂N,K′ ≥ 1− ρ̂N,K = ρ̂N,M\K .

Similarly, in the second case, ρ̂N,M\K′ ≥ ρ̂N,M\K follows from Proposition 4, and ρ̂N,K ≥ ρ̂N,K′

follows as just above. This concludes the proof. 2

Proof of Proposition 3. Recall the equation defining the ranking probabilities in the case of

personalization (Equations (6) and (7)) , for any t and m, and for ` = A,B:

r`t,m = ν`t rt−1,m + (1− ν`t )ρ`t−1,m ,

where:

(ν`t , 1− ν`t ) =

(
κ

1− λt + κ
,

1− λt
1− λt + κ

)
and where λt =

{
0 if t− 1 ∈ `
λ else .

We can apply the mean dynamics approximation and obtain the deterministic recursions:

r̂At,m = r̂At−1,m +
1

1 + κt

(
ρ̂At−1,m − r̂At−1,m

)
+

1− λ
1− λ+ κt

(
ρ̂Bt−1,m − r̂At−1,m

)
r̂Bt,m = r̂Bt−1,m +

1

1 + κt

(
ρ̂Bt−1,m − r̂Bt−1,m

)
+

1− λ
1− λ+ κt

(
ρ̂At−1,m − r̂Bt−1,m

)
,

33It is easy to see that by choosing γ sufficiently small, the probability of choosing websites carrying the minority
signal can be made arbitrarily small and the the probability of choosing websites in K can be made arbitrarily large,
so that, in particular, one can choose k = 1.
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where, following Equation (14), we can write, for ` = A,B:

ρ̂`t−1,m = E[ρ`t−1,m] =
p` · (r̂`t−1,m)α · ρ̂∗0m∑
m′(r̂

`
t−1,m′)

α · ρ̂∗0m′
+

(1− p`) · (r̂`t−1,m)α · ρ̂∗1m∑
m′(r̂

`
t−1,m′)

α · ρ̂∗1m′
.

Replacing r̂At−1 with x = (x1, . . . , xM ) and replacing r̂Bt−1 with y = (y1, . . . , yM ), we can study the

function g : ∆ε(M)×∆ε(M)→ R2M , defined, for ` = A,B, m = 1, . . . ,M , by:

gAm(x, y) = θAm(x, y)− xm and gBm(x, y) = θBm(x, y)− ym

where θ` : ∆ε(M)×∆ε(M)→ RM , ` = A,B, is defined by,

θAm(x, y) =
1

2− λ

(
pA · (xm)α · ρ̂∗0m∑
m′(xm′)α · ρ̂∗0m′

+
(1− pA) · (xm)α · ρ̂∗1m∑

m′(xm′)α · ρ̂∗1m′

)
+

1− λ
2− λ

(
pB · (ym)α · ρ̂∗0m∑
m′(ym′)α · ρ̂∗0m′

+
(1− pB) · (ym)α · ρ̂∗1m∑

m′(ym′)α · ρ̂∗1m′

)

θBm(x, y) =
1− λ
2− λ

(
pA · (xm)α · ρ̂∗0m∑
m′(xm′)α · ρ̂∗0m′

+
(1− pA) · (xm)α · ρ̂∗1m∑

m′(xm′)α · ρ̂∗1m′

)
+

1

2− λ

(
pB · (ym)α · ρ̂∗0m∑
m′(ym′)α · ρ̂∗0m′

+
(1− pB) · (ym)α · ρ̂∗1m∑

m′(ym′)α · ρ̂∗1m′

)
.

Given that the function g is smooth in x, y on ∆ε(M)2, it can be shown that the expected limit

of our stochastic process can be obtained by solving the system of ordinary differential equations

(ẋ, ẏ) = g(x, y) (or (ẋ, ẏ) = (gA(x, y), gB(x, y))) as done above in the case of λ = 0. We have

that when λ = 0, then it is as if there were a single group with the same (common) ranking

algorithm and where the individuals’ accuracy is p = pA+pB
2 . As λ increases, then the rankings

of the two groups drift apart and it is as if group A had accuracy 1
2−λpA + 1−λ

2−λpB and group B

had accuracy 1−λ
2−λpA + 1

2−λpB until it is as if there were two separate rankings of two groups with

accuracy pA and pB respectively. Since pA 6= pB the difference in the accuracy levels of the two

groups ( λ
2−λ(pA − pB)) is increasing in λ. Finally, since clicking and ranking probabilities coincide

in the limit, this translates to increasingly different probabilities of clicking on any given majority

website in the two groups and hence, given the definition of BP, also to a measure BP(Eλ) that is

increasing in λ. 2

Proof of Proposition 4. We begin by characterizing the limit ranking probabilities using the

differentical equation from Appendix A. Since the initial ranking is uniform, we have that the

expected ranking probabilities are equal for websites with the same signal, that is, r̂n,m = r̂n,m′ for

any two websites m,m′ with ym = ym′ . To simplify notation, let x = r̂n,L = L · r̂n,m for m ∈ L
be the total expected ranking probability for the websites in L, and let x′ = 1 − x be the total

expected ranking probability for the remaining websites in M \L. Suppose 0 < L < M−1
2 , then we

have:

ρ̂∗
0
m =

{ γ
L if m ∈ L
1−γ
M−L else

and ρ̂∗
1
m =

{
0 if m ∈ L

1
M−L else,

and the equations defining the limit probabilities can be reduced to a single equation in x:

θminorityL (x;α, γ, p) ≡
pγ
(
x
L

)α
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α = x . (15)

Suppose now M
2 ≤ L < M , then we have:

ρ̂∗
0
m =

{
1
L if m ∈ L
0 else

and ρ̂∗
1
m =

{ 1−γ
L if m ∈ L
γ

M−L else,
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and the equations defining the limit probabilities can be reduced to a single equation in x:

θmajorityL (x;α, γ, p) ≡ p+
(1− p)(1− γ)

(
x
L

)α
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α = x . (16)

To see 1., notice that

0 ≤ θminorityL (x;α, γ, p) ≤ p ≤ θmajorityL (x;α, γ, p) ≤ 1 ,

which in particular implies that, for all values of 0 < L < M
2 − 1 (when websites in L have a

minority signal; (for simplicity, we consider the case where M is even), we have x ≤ p, and that,

for all values of M
2 ≤ L < M (when websites in L have a majority signal), we have x ≥ p.

To see 2., we show that the solutions to the above two equations θminorityL (x;α, γ, p) = x and

θmajorityL (x;α, γ, p) = x are decreasing in L in the corresponding ranges. These are determined

respectively as the intersections of the functions θminorityL and θmajorityL with the function x. It

can be checked that 0 = θminorityL (0;α, γ, p) ≤ θminorityL (12 ;α, γ, p) ≤ p, for 0 < L < M−1
2 , and

p ≤ θmajorityL (12 ;α, γ, p) ≤ θmajorityL (1;α, γ, p) = 1, for M
2 ≤ L < M . In particular, it can be checked

that at the relevant solutions (xmajorityL and xminorityL ) the functions θminorityL and θmajorityL intersect

the x function with positive a slope that is less than one. Hence, to determine the sign of the effect

of L on interim efficiency it suffices to look at the derivatives of θminorityL and θmajorityL with respect

to L:

∂θminorityL

∂L
= −

αγ(1− γ)pM
(
x
L

)α ( 1−x
M−L

)α
L(M − L)

((
1−x
M−L

)α
+ γ

((
x
L

)α − ( 1−x
M−L

)α))2
∂θmajorityL

∂L
= −

αγ(1− γ)(1− p)M
(
x
L

)α ( 1−x
M−L

)α
L(M − L)

((
x
L

)α
+ γ

((
1−x
M−L

)α
−
(
x
L

)α))2 ,
which are both clearly non-positive. This further implies that the solutions will satisfy ∂x

∂L ≤ 0 and

hence
∂ρ̂N,L
∂L ≤ 0 on the relevant ranges and for N sufficiently large. The statement then follows

immediately from the definition of PL. 2

Proof of Proposition 5. Notice that from the definition of P in Equation (12), we immediately

get:

∂P
∂z

=

M∑
L=0

(
M

L

)
qL(1− q)M−L∂PL

∂z
,

for any variable z. Hence, we can evaluate the comparative statics by looking at the effects on the

interim efficiency, (∂PL∂z ). So to see that P is weakly increasing in p, since the initial ranking is

uniform, we can use the same reasoning as in the proof of Proposition 4. In particular, it suffices to

consider the following derivatives for θminorityL and θmajorityL defined respectively in Equations (15)

and (16) above:

∂θminorityL

∂p
=

γ
(
x
L

)α
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α ≥ 0 ,
∂θmajorityL

∂p
= 1−

(1− γ)
(
x
L

)α
γ
(

1−x
M−L

)α
+ (1− γ)

(
x
L

)α ≥ 0 .

This implies that ρ∞,L = PL is weakly increasing in p for all values of L and hence so is P. To see
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that, P is weakly decreasing in γ, notice that:

∂θminorityL

∂γ
=

p
(
x
L

)α ( 1−x
M−L

)α
(
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)2 ≥ 0 ,
∂θmajorityL

∂γ
= −

(1− p)
(
x
L

)α ( 1−x
M−L

)α
(

(1− γ)
(
x
L

)α
+ γ

(
1−x
M−L

)α)2 ≤ 0 .

It can be further checked that for q > 1
2 , the negative effect of when the websites in L have a

majority signal outweighs the effect of when they are a minority signal. We here show it explicitly

for the two values γ = 0 and γ = 1. Notice that the solutions to the Equations (15) and (16) of

the proof to Proposition 4 are, respectively, xminorityL = 0 and xmajorityL = 1 for γ = 0 and are,

respectively, xminorityL = p and xmajorityL = p for γ = 1. (Recall that xminorityL = ρ̂∞,L when L is

a website-minority website and xmajorityL = ρ̂∞,L when L is a website-majority website.) For the

derivatives, this implies:

∂θminorityL

∂γ

∣∣∣∣∣
γ=0

= 0 ,
∂θmajorityL

∂γ

∣∣∣∣∣
γ=0

= 0 and
∂θminorityL

∂γ

∣∣∣∣∣
γ=1

= p ,
∂θmajorityL

∂γ

∣∣∣∣∣
γ=1

= −(1− p) .

For the case γ = 0 we are done. For the case γ = 1, we have for the derivative:

M−1
2∑

L=1

(
M

L

)
qL(1− q)M−Lp−

M−1∑
L=M

2

(
M

L

)
qL(1− q)M−L(1− p) < 0,

immediately follows from 1
2 < p� q. This in turn implies that ∂P

∂γ

∣∣∣
γ=1

< 0.

We now move to q and consider first the cases γ = 0, γ = 1. As mentioned above, when γ = 0,

we have that xminorityL = 0 and xmajorityL = 1, whereas for γ = 1, we have that xminorityL = p and

xmajorityL = p for γ = 1. As a result, we have (again, we consider for simplicity the case where M

is even):

P|γ=0 =

M−1∑
L=M

2

(
M

L

)
qL(1− q)M−L + qM and P|γ=1 =

M−1∑
L=1

(
M

L

)
qL(1− q)M−Lp+ qM ,

which are strictly increasing in q, since a higher q shifts probability towards states with strictly

higher interim efficiency (either from 0 to 1 when γ = 0 or from p to 1 when γ = 1). Because the

functions θminorityL , θmajorityL are continuously differentiable in γ, and P is continuously differentiable

in γ and q this means that a constant γ > 0 can be found such that P is weakly increasing on

[0, γ]∪ [1− γ, 1]. P can be decreasing in q for intermediate values of γ due to the fact that a higher

q shifts probability towards states with higher levels of L. Hence, given the non-monotonicity of

interim efficiency in L for intermediate levels of γ, this may overall strictly decrease P. To see the

effect of α, notice that:

∂θminorityL

∂α
=
γ(1− γ)p

(
x
L

)α ( 1−x
M−L

)α (
log x

L − log 1−x
M−L

)
(
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)2
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and

∂θmajorityL

∂α
=
γ(1− γ)(1− p)

(
x
L

)α ( 1−x
M−L

)α (
log x

L − log 1−x
M−L

)
(

(1− γ)
(
x
L

)α
+ γ

(
1−x
M−L

)α)2 .

Consider first the case γ ≈ 1. We have that xminorityL ≈ p and xmajorityL ≈ p and hence we can

approximate ∂P
∂α by:

γ(1− γ)

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−Lp

( p
L

)α ( 1−p
M−L

)α (
log p

L − log 1−p
M−L

)
(
γ
(
x
L

)α
+ (1− γ)

(
1−p
M−L

)α)2
+ γ(1− γ)

M−1∑
L=M

2

(
M

L

)
qL(1− q)M−L(1− p)

( p
L

)α ( 1−p
M−L

)α (
log p

L − log 1−p
M−L

)
(

(1− γ)
( p
L

)α
+ γ

(
1−p
M−L

)α)2
= γ(1− γ)

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

p1+α(1− p)α log p
1−p log M−L

L

(L(M − L))α
(
γ
( p
L

)α
+ (1− γ)

(
1−p
M−L

)α)2
+ γ(1− γ)

M
2∑

L=1

(
M

L

)
qM−L(1− q)L

pα(1− p)1+α log p
1−p log L

M−L

(L(M − L))α
(
γ
(

p
M−L

)α
+ (1− γ)

(
1−p
L

)α)2
= γ(1− γ)

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

p1+α(1− p)α log p
1−p log M−L

L

(L(M − L))α
(
γ
( p
L

)α
+ (1− γ)

(
1−p
M−L

)α)2
− γ(1− γ)

M
2∑

L=1

(
M

L

)
qM−L(1− q)L

pα(1− p)1+α log p
1−p log M−L

L

(L(M − L))α
(
γ
(

p
M−L

)α
+ (1− γ)

(
1−p
L

)α)2
≤ γ(1− γ)

M
2
−1∑

L=1

(
M

L

)
(p(1− p))α log p

1−p log M−L
L

(L(M − L))α
×

×

 qL(1− q)M−Lp(
γ
( p
L

)α
+ (1− γ)

(
1−p
M−L

)α)2 − qM−L(1− q)L(1− p)(
γ
(

p
M−L

)α
+ (1− γ)

(
1−p
L

)α)2


< 0 .

The weak inequality follows from omitting the case L = M
2 which is ≤ 0. The last inequality follows

because qL(1− q)M−Lp < qM−L(1− q)L(1− p) since 1 > q > 1
2 and because:

γ
( p
L

)α
+ (1− γ)

(
1− p
M − L

)α
> γ

(
p

M − L

)α
+ (1− γ)

(
1− p
L

)α
,

since γ ≈ 1 and L < M
2 < M−L. Again, because the functions θminorityL , θmajorityL are continuously

differentiable in γ and α, we can find an appropriate γ and the claim follows.

Finally, to see that P can be increasing in α for small values of γ, consider, for example, a search

environment with γ = 1
2 , α = 1 and q = 0.75. Then it is can be shown that a slight increase in α

will strictly increase ex ante efficiency. 2
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Proof of Corollary 2 This follows from Proposition 5. It is sufficient to compare P at α = 0

(P|α=0
) with P at a fixed value α > 0 (P|α>0

). We know that P|α=0
= q. Since M > 1 and

q > p > 1
2 , we also know that P|α>0

> q for γ = 0 and that P|α>0
≈ p for γ = 1. Since q > p and

P|α>0
is continuous and weakly decreasing in γ, there exists γ such that P|α>0

≥ q for γ ∈ [0, γ] and

P|α>0
≤ q for γ ∈ [γ, 1], and the claim follows. 2

Proof of Proposition 6. Let Pλ and PλL denote respectively ex ante and interim efficiency as

a function of the personalization parameter λ. Because the initial ranking is uniform we can look

again at the solutions to the Equations (15) and (16) in the proof of Proposition 4, where we recall

again that xminorityL = ρ̂∞,L when websites in L have minority signal and xmajorityL = ρ̂∞,L when

they have majority signal. Hence to show that Pλ is weakly decreasing in λ we can use these

solutions to study the interim efficiency levels PλL for λ ∈ [0, 1] and 1 < L < M . We argue that

it is sufficient to show that Pλ is concave in p, essentially since it implies that the efficiency of an

average group will be below the average of the efficiency of the two groups. Since Pλ is a weighted

average of the different PλL’s, it is enough to show that these are on average sufficiently concave

in p. Fix a realization of E , say, parametrized by L. From the proof of Proposition 3, we have

that when λ = 0, it is as if there were a single group with a common ranking algorithm, with

p = pA+pB
2 . As λ increases, then the rankings of the two groups drift apart and are as if group A

had accuracy 1
2−λpA+ 1−λ

2−λpB and group B had accuracy 1−λ
2−λpA+ 1

2−λpB, until, when λ = 1, it is as

if there were two separate rankings of two groups with accuracy pA and pB, respectively. As a result

interim efficiency can be written as the average of the interim efficiency of two groups, one with

ranking accuracy 1
2−λpA+ 1−λ

2−λpB and clicking with accuracy pA and another with ranking accuracy
1−λ
2−λpA + 1

2−λpB and clicking with accuracy pB. Therefore, in the case of intermediate values of λ

interim efficiency can be seen as the average of two levels of interim efficiency corresponding to two

different signal accuracies that are increasingly apart as λ increases (that is, go from both signals

corresponding to pA+pB
2 when λ = 0 to being pA and pB respectively when λ = 1). Therefore,

it suffices to show that the basic interim efficiency function PλL is concave in p. We show this by

evaluating the first and second derivatives of ρ̂∞,L = PλL. We already know by Proposition 5 that

the first derivatives with respect to p are positive. We now study the second derivatives. Let

Hminority
L (x;α, γ, p) = θminorityL (x;α, γ, p)−x and Hmajority

L (x;α, γ, p) = θmajorityL (x;α, γ, p)−x,

then, at the solutions x = xminorityL and x = xmajorityL , we have that Hminority
L (xminorityL ;α, γ, p) = 0

and Hmajority
L (xmajorityL ;α, γ, p) = 0, respectively, and hence the first derivatives of the solutions

with respect to p can be written as:

dxminorityL

dp
= −

∂Hminority
L (xminorityL ;α, γ, p)/∂p

Hminority
L (xminorityL ;α, γ, p)/∂x

and
dxmajorityL

dp
= −

∂Hmajority
L (xminorityL ;α, γ, p)/∂p

Hminority
L (xmajorityL ;α, γ, p)/∂x

.

From this we can compute the second derivatives as:

d2xminorityL

dp2
=

αγ2(1− γ)x(1− x)
(
x
L

)2α ( 1−x
M−L

)α (
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)
(
αγ(1− γ)p

(
x
L

)α ( 1−x
M−L

)α
− x(1− x)

(
γ
(
x
L

)α
+ (1− γ)

(
1−x
M−L

)α)2)2 ≥ 0
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and

d2xmajorityL

dp2
= −

αγ2(1− γ)x(1− x)
(
x
L

)α ( 1−x
M−L

)2α (
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α)
(
αγ(1− γ)(1− p)

(
x
L

)α ( 1−x
M−L

)α
− x(1− x)

(
(1− γ)

(
x
L

)α
+ γ

(
1−x
M−L

)α)2)2 ≤ 0.

This shows that the solutions xminorityL and hence the PλL when L are minority websites are convex

in p, while the the solutions xmajorityL and hence the PλL when L are majority websites are concave

in p. However, given the linearity of the differential operator, the second derivative of the overall

ex ante efficiency function is given by the weighted sum:

d2Pλ

dp2
=

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

d2xminorityL

dp2
+

M−1∑
L=M

2

(
M

L

)
qL(1− q)M−L

d2xmajorityL

dp2

evaluated at the corresponding solutions (again, we consider for simplicity the case where M is

even). Now, since p ≤ p, for p > 1
2 not too large, it can be shown that if xminorityL is a solution to

Hminority
L (x;α, γ, p) = 0 for L ≤ M

2 − 1, then the solution xmajorityM−L to Hmajority
M−L (x;α, γ, p) = 0,34 is

arbitrarily close to 1− xminorityL for the given L. As a result, we have that, for 1 < L ≤ M
2 − 1,

d2xmajorityM−L
dp2

∣∣∣∣∣
x=xmajorityM−L

≈
d2xmajorityM−L

dp2

∣∣∣∣∣
x=1−xminorityL

≈ −
d2xminorityL

dp2

∣∣∣∣∣
x=xminorityL

and hence we can write:

d2Pλ

dp2
=

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

d2xminorityL

dp2
+

M−1∑
L=M

2

(
M

L

)
qL(1− q)M−L

d2xmajorityL

dp2

≤

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

d2xminorityL

dp2
+

M−1∑
L=M

2
+1

(
M

L

)
qL(1− q)M−L

d2xmajorityL

dp2

=

M
2
−1∑

L=1

(
M

L

)
qL(1− q)M−L

d2xminorityL

dp2
−

M
2
−1∑

L=1

(
M

L

)
qM−L(1− q)L

d2xminorityL

dp2

=

M
2
−1∑

L=1

(
M

L

)
d2xminorityL

dp2
(
qL(1− q)M−L − qM−L(1− q)L

)
≤ 0.

Again, the weak inequality follows from omitting the case L = M
2 which is anyways concave in p.

The strict inequality follows since q > pA, pB. This shows that the weighted sum that yields Pλ is

overall concave in p which completes the proof. 2

34Where by slight abuse of notation M − L here corresponds to a majority of outlets with correct signal.
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