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Abstract

This paper investigates the effects of a rise in interest rate and lapse risk of endowment
life insurance policies on the liquidity and solvency of life insurers. We model the book and
market value balance sheet of an average German life insurer, subject to both GAAP and
Solvency II regulation, featuring an existing back book of policies and an existing asset allocation
calibrated by historical data. The balance sheet is then projected forward under stochastic
financial markets. Lapse rates are modeled stochastically and depend on the granted guaranteed
rate of return and prevailing level of interest rates. Our results suggest that in the case of a
sharp increase in interest rates, policyholders sharply increase lapses and the solvency position
of the insurer deteriorates in the short-run. This result is particularly driven by the interaction
between a reduction in the market value of assets, large guarantees for existing policies, and
a very slow adjustment of asset returns to interest rates. A sharp or gradual rise in interest
rates is associated with substantial and persistent liquidity needs, that are particularly driven
by lapse rates.
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1 Introduction

Insurers provide essential services to economies by assuming, transferring and diversifying risks.

Life insurers in particular promote economic growth by efficiently allocating assets and providing

funding to other financial and non-financial companies as well as states. Thereby, the size of life

insurers is substantial even when compared to banks.1 The interconnectedness of (life) insurers

has been increasing in the last decades, resulting in (life) insurers being important nodes in the

global financial system. For example, Billio et al. (2012) find that insurance companies became

more interconnected within the financial system in general. Foley-Fisher et al. (2016) examine the

role of securities lending by life insurers for the functioning of securities markets.

Subsequent to the 2007/08 financial crisis, life insurers have been struggling with and adjusting

to exceptionally low interest rates for approximately 10 years. Now, they are facing a new challenge:

the risk of rising interest rates. At first sight, rising interest rates might stabilize the balance sheet of

life insurers by increasing fixed income returns and decreasing the present value of future liabilities.

Such a development would benefit in particular life insurers that are exposed to low interest rates

due to long term financial guarantees sold in the past, e.g. guaranteed minimum rates of return.

This is especially true in many European jurisdictions, e.g. Germany, where products embedding

a minimum guaranteed rate of return are particularly popular. Typically, life insurance policies

with a minimum guaranteed rate of return are long term contracts, in which the guaranteed rate of

return is set at inception and it cannot be changed until maturity. As a result, life insurers selling

long term guaranteed business are particularly exposed to low interest rates as the guarantees sold

in the past become expensive to get funded (Berdin and Gründl (2015), Berdin et al. (2016)).

Nonetheless, life insurers in such low interest rate environment face an additional risk: life

insurance policies issued at current market rates may become less attractive to policyholders as

soon as interest rates rise and new savings opportunities yield higher returns. This might result

in increased lapse rates (Feodoria and Förstemann (2015)). More formally, one might think of an

1In 2015 US life insurers held 6,3 billion US dollar in assets and 5 billion US dollar life insurance and annuity
liabilities, while US depository institutions held 14,2 billion US dollar in assets and 8 billion US dollar in savings
deposits Board of the Governors of the federal reserve system (2016).
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endowment life policy with minimum guaranteed rate of return2 as a put option which loses value as

soon as prevailing market rates are higher than the minimum guaranteed rate of return (Albizzati

and Geman (1994)). 90% of all life insurance contracts sold by European life insurers can be lapsed

with a penalty lower than 15% of the policy value (see European Systemic Risk Board (2015)).

Overall, this may incentivize a large fraction of policyholders to lapse their life insurance contracts

in case of a steep increase in interest rates, which in turn may pose a risk on the insurer’s liquidity

and solvency, and may even endanger financial stability, as argued by the European Systemic

Risk Board (2015) and European Central Bank (2017). Both recent reports stress the potential

risk of increasing lapse rates due to a rise in interest rates and the resulting consequences for the

liquidity and solvency situation of European insurance companies, which also carries over to other

jurisdictions. Due to their high interconnectedness and importance as intermediaries, potential

liquidity and solvency problems of life insurers may spread out to other financial institutions and,

thereby, endanger financial stability.

The contribution of this article is to shed more light on the joint impact and interrelation

between interest rates, lapse risk, as well as the liquidity and solvency situation of life insurers.

For this purpose, we model a stylized financial market and a life insurance company that sells

endowment life insurance policies. This model allows us to include potential portfolio effects be-

tween legacy business and newly sold insurance contracts as well as between existing and new asset

investments. To assess the solvency situation of this stylized life insurer, we compute risk-based

capital requirements for market risk and lapse risk based on a market-consistent valuation of assets

and liabilities. Our approach is based on the European solvency regime, Solvency II. The market

oriented and principles based view of Solvency II as well as its total balance sheet approach are

similar to capital standards of New Zealand as well as Switzerland, as Eling and Holzmüller (2008)

point out. For determining capital requirements, the US RBC standard employs a similar static

factor model, that, however, is not taking an insurer’s total balance sheet into account to the extent

as Solvency II. The model is calibrated with German data, since endowment life contracts with

annual guaranteed rates have been very popular in Germany and, thus, German life insurers are

particularly exposed to the resulting risks.

2In this study we focus on the saving phase of such contracts. In this phase, policyholders pay periodic premiums,
the insurer invests the premium payments and pays the contract value at maturity. If policyholder lapse before
maturity, they receive the current (book value) of the policy.
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The impact of rising interest rates on a life insurer’s solvency after a period of particularly low

interest rates is not immediately clear. In particular, it depends on the interplay of two major

effects: a valuation effect and a cash-flow effect. On the one hand, rising interest rates yield smaller

market-consistent values for both assets and liabilities of an insurance company. Given the longer

duration of a life insurer’s liabilities than assets, the valuation effect leads to an increase in the

value of equity (i.e. own funds in the terminology of Solvency II). On the other hand, this duration

gap does not reflect the evolution of an insurer’s cash-flows, which are heavily affected by high lapse

rates. When interest rates increase, market consistent values of contracts (i.e. liabilities) might

drop below recovery values. In such a situation, lapses decrease an insurer’s own funds. Moreover,

large lapse rates for contracts with comparably small guarantees increase the average guarantee

in-force, thereby increasing capital requirements and reducing profits.

Our study contributes in three ways to understanding the impact of interest rate changes for

life insurers. Firstly, we modify the model of a life insurance company as presented in Berdin

and Gründl (2015), Berdin (2016) and Berdin et al. (2016) to include lapse risk. In particular,

we demonstrate how to perform a balance sheet and market-consistent valuation of life insurance

liabilities in the presence of lapse risk. Secondly, we develop a model for policyholders’ individual

probability to lapse an insurance contract, i.e. the lapse rate, based on the contract’s guaranteed

rate of return and market interest rates as well as contract age. The rationale is similar to Feodoria

and Förstemann (2015), who show that it is rational for policyholders to lapse contracts when

interest rates exceed a certain threshold. Thirdly, to be able to model different interest rate

environments, we extend the Hull-White model for interest rates. In contrast to other common

interest rate models (as the CIR (Cox et al. (1985)) or Vasicek (Vasicek (1977)) model), our

approach directly specifies the evolution of average interest rates while the model still yields an

arbitrage-free yield curve, based on the model developed by Hull and White (1990). We initialize

the model with interest rates as of 2015 and calibrate it to yield either a sudden or gradual increase

in interest rates over time. The Vasicek model calibrated to low interest rates serves as a benchmark

environment.

In general, we find that a life insurer’s solvency improves with rising interest rates in the long

run. However, in the short run life insurers are particularly vulnerable towards interest rate driven

lapse risk. A sudden increase in interest rates, in particular, is related to a sharp drop in solvency
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ratios, i.e. in the ratio of own funds to the capital requirement, and substantial liquidity needs.

Although the insurer’s solvency is more stable when interest rates gradually increase, its liquidity

situation depletes over time.

Several implications can be drawn from our study. Most importantly, we show that the sen-

sitivity of lapse rates towards market rates is an important driver for the solvency of insurers.

Therefore, it is important for life insurers and regulators to support mechanisms that protect the

ability of insurers to provide recovery values resulting from increasing lapses. Life insurers can

expect free cash flows to become negative for a substantial amount of time, which also impacts the

profitability of these companies.

We focus on a life insurance company selling endowment life contracts with an annual guar-

anteed rate and surplus participation. The rationale of policyholders decreasing their investment

in life insurance endowment policies due to positive shocks on interest rates is substantiated by

numerous theoretical and empirical studies (Dar and Dodds (1989), Kim (2005), Kuo et al. (2003),

Kiesenbauer (2012), Russell et al. (2013), Russo et al. (2017)) and commonly referred to as interest

rate hypothesis. Barsotti et al. (2016) develop a model that is similar to our model for lapse rates

but additionally account for correlation and contagion effects among policyholders. In contrast, we

rely on a very basic model in order to focus on effects solely stemming from an increase in interest

rates without imposing additional assumptions on policyholder behavior.

Some intuition about the impact of lapse risk on the solvency of life insurers is provided by

Le Courtois and Nakagawa (2009) and Buchardt (2014). However, none of the mentioned studies

embed a model for lapse risk into a balance sheet model for life insurers that simultaneously models

book values and market-consistent values of the asset and liability side and evaluates the resulting

solvency situation under risk-based capital requirements from a portfolio perspective. For example

Russo et al. (2017) find that the best estimate for liabilities under Solvency II increases when taking

interest rate sensitive lapse rates into account. However, in our model this only holds in the first

years of the simulation, but due to a large negative free cash flow the aggregate best estimates

of liabilities under interest rate sensitive lapse rates decrease below the value with constant lapse

rates. We argue that it is important to take such effects into account in order to develop a complete

picture about the solvency situation of life insurers.

The article proceeds as follows: Section 2 revisits our model of a life insurer and describes how
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we simulate, calculate, and calibrate the dynamics of the insurer’s balance sheet, financial market,

and policyholders’ lapse behavior. Section 3 discusses the results and Section 4 concludes.

2 The Model

In this section we briefly describe the model of a stylized life insurer we employ. For further

details we refer to Berdin and Gründl (2015) and Berdin (2016).

2.1 Assets

The financial market model consists of a short rate model for interest rates, spreads for different

bond categories, and distributional assumptions for stock and real estate returns. The short rate

model is given by the Hull-White model (Hull and White, 1990). This model drives the evolution

of interest rates. In order to simulate rising interest rates, we model the time-dependent level of

mean reversion as an increasing function, which is given by3

θ(t) = γ + (β − γ)

(
1− 1

1 + e−b(t−h)

)
. (1)

Further details on the short-rate model and its calibration can be found in Section 3.1.1 and

Appendix B.

As in Berdin (2016) and in Berdin et al. (2016), spreads for sovereign and corporate bonds are

modeled by truncated Ornstein-Uhlenbeck processes and calibrated with historical data. Stock and

real-estate returns follow Geometric Brownian Motions that are also calibrated by historical data.

Finally, all stochastic processes are correlated through a Cholesky decomposition of the diffusion

terms.

The insurance company invests into 4 different asset classes: 1) German, French, Dutch, Italian,

Spanish sovereign bonds, 2) stocks, 3) real estate, and 4) AAA, AA, A, BBB corporate bonds. The

weights for each asset class (as in market values) are calibrated based on the results of the 2014

insurance stress tests by the European Insurance and Occupational Pensions Authority (EIOPA)

(2014a) and are reported in Table 1. For sovereign bonds we select the last bonds with 20 YTM

3β and γ are the initial and long-term level of mean reversion, respectively, b describes the skewness of mean
reversion, and h is a shift parameter.
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during the last 20 years to represent the different coupons held in the portfolio. Each coupon

has a different remaining time to maturity such that the oldest coupon in the sovereign bond

portfolio is due in 1 year and the youngest in 20 years. The weights are chosen in order to represent

the modified duration as in European Insurance and Occupational Pensions Authority (EIOPA)

(2014a). We follow the same calibration strategy as for sovereign bonds and assume that corporate

bonds portfolio are held to maturity and time to maturity at purchase is 10 years. Due to the

absence of data, we calibrate real estate and stock weights in order to yield a plausible home bias

of 60% for German real estate and stocks and distribute the remaining weights equally.

The reported initial asset allocation yields an asset duration of 8.26 years, which is in line with

reports by the German Insurance Association (GDV) and European Insurance and Occupational

Pensions Authority (EIOPA) (2014a). During the evolution of the model, we assume that the

portfolio weights remain constant relative to the market values of the respective assets. This

investment strategy is plausible for insurers to maintain a similar level of investment risk and

risk-based capital requirement for assets over time.

2.2 Liabilities

Initially, the insurance company’s back book is simulated by accumulating previously closed

contracts for the past 30 years. These contracts entail historical values of the guaranteed rate

and realized profit participation of endowment life insurance contracts in Germany. In each year,

one cohort of contracts matures, while one cohort of new contracts is sold. Thereby, the level of

the guaranteed rate of newly sold contracts is based on the evolution of the technical rate which

depends on current and past interest rates.

The lifetime of each insurance contract is assumed to equal 30 years at contract inception.

However, we assume that each year each policyholder might lapse her life insurance contract with

a certain probability λ. The lapse probability λ is assumed to either equal the average lapse rate in

2015, 2.68%, as reported by the German Insurance Association (GDV), or depend on the market’s

risk free rate as described in Section 2.4.

Suppose that policyholders can lapse a contract directly at the begin of year t and receive the

current accumulated funds less a haircut, i.e. they receive ϑVt with ϑ ∈ (0, 1]. The lapse rate

equals λ. We assume that the insurer sets λ equal to the average lapse rate in the previous year
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Asset Portfolio Weights

Sovereigns wsov 56.7%
Corporate wcorp 34.3%
Stocks wstocks 5.6%
Real Estate wreal estate 3.4%

Sovereign Portfolio

German Sovereigns/All Sovereigns wDE 88.18%
French Sovereigns/All Sovereigns wFR 2.95%
Dutch Sovereigns/All Sovereigns wNL 2.95%
Italian Sovereigns/All Sovereigns wIT 2.95%
Spanish Sovereigns/All Sovereigns wES 2.95%

Corporates Portfolio

AAA/All Corporates wAAA 23.6%
AA/All Corporates wAA 16.85%
A/All Corporates wA 33.71%
BBB/All Corporates wBBB 25.84%

Stocks and Real Estate Portfolios

German/Portfolio ws/re DE 60%

French/Portfolio ws/re FR 10%

Dutch/Portfolio ws/re NL 10%

Italian/Portfolio ws/re IT 10%

Spanish/Portfolio ws/re ES 10%

Table 1: Initial asset allocation based on European Insurance and Occupational Pensions
Authority (EIOPA) (2014a).

when calculating the market-consistent value of liabilities since it does not know the particular

dynamics of the lapse rate. The dynamics of the accumulated funds for a specific contract are

given as Vt+1 = (1+ r̃t+1)Vt, where r̃t+1 is the stochastic growth in year t+1. At contract maturity

policyholders receive the accumulated funds VT if they do not lapse before.

Under German GAAP accounting standards, the book value of liabilities is computed with

r̃t+1 ≡ rt+1 ≡ rG, where rG is the rate annually guaranteed to policyholders. Thus contracts

are valued as if future profit participation would equal the guaranteed rate. Due to competition

among life insurers, we assume that the guarantee of newly sold life insurance contracts equals the

current maximum technical interest rate for discounting policy reserve as set by the regulator.4 As

discussed in Eling and Holder (2012) and Berdin and Gründl (2015), rhG follows in 0.5% steps 60%

of the 10 year moving average of past AAA German sovereign rates (i.e. the reference rate) with

maturity 10 years.

4Eling and Holder (2012) discuss how technical rates differ in different jurisdictions in Europe and the U.S.
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Liabilities are discounted under German GAAP accounting with the maximum technical rate

at contract inception if it is smaller than the current reference rate. Then we yield the book value

of liabilities as

LBVt = Vt ϑ(1− (1− λ)T−t) + (1− λ)T−t. (2)

However, the insurer must build up an additional reserve if the reference rate for calculating the

technical rate falls below the guaranteed return. In this case, liabilities are discounted with the

reference rate.5

The present value of a contract’s future cash flows at time t is given as

PVt = VtEQ
t

T−t∑
i=1

λ(1− λ)i−1
ϑ

(1 + ri−1,t)i−1

i−1∏
j=1

(1 + r̃t+j) +
(1− λ)T−t

(1 + ri−1,t)i−1

i−1∏
j=1

(1 + r̃t+j)

 . (3)

As required under Solvency II, the market consistent value of liabilities is the sum of the best

estimate of future cash flows and a risk margin for non-headgeable risks, i.e. LMV
t = PVt(1+RM).

The discount rate under Solvency II corresponds to the risk-free rate linearly extrapolated to the

ultimate forward rate (UFR) of 4.2% as given by EIOPA for maturities of 60 years or longer.6 It is

likely that the UFR will increase following substantial interest rate rises. Therefore, the discount

rate for life insurance liabilities in our model, RL, equals the maximum of extrapolated discount

rates with an UFR of 4.2% and the actual risk-free rate.

The annual growth of accumulated funds is given as the maximum of guaranteed annual return

and profit participation, i.e. r̃ht+j = max(rhG, r
h
S,t+j), where rhG is the guaranteed annual return

for cohort h and rhS,t+j the profit participation of cohort h in year t + j. The profit participation,

rhS,t−s, usually originates from the asset return of the insurer in year t− s weighted by the insurer’s

actuarial reserves (see Berdin and Gründl (2015) for further details).7

Hence, to compute the market-consistent value of liabilities, the insurance company needs to

estimate the distribution of the future growth of accumulated funds, r̃ht+j . This estimation is

5Details are discussed in Berdin and Gründl (2015).
6In April 2017 EIOPA announced a change in the UFR from 4.2% to 4.05% to be applied from 2018 on. However,

a downward change of the UFR will not substantially impact our results since we focus an on interest rate rise, that
is likely to be accompanied by an upward adjustment of the UFR.

7For example, German life insurers are legally obliged to distribute at least 90% of their investment surplus to
policyholders. In our model, we stay with this minimum level of profit participation.
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complicated by the fact that future levels of profit participation depend on the realization of asset

returns as well as the balance sheet and portfolio dynamics of the insurance company. We assume

that the insurer does not know the distributional characteristics we impose in our model. As in

practice, the insurer needs to rely on its own estimation of the future evolution of its balance sheet.

For this purpose, we assume that the insurer extrapolates the past realizations of rhS,t+s according

to the following model:

r̂hS,t+s = βt,0 + βt,1f(s). (4)

For estimating and predicting the profit participation, the insurer relies on the past 10 years. By

changing the function f(·) the insurer is able to control the degree of conservatism in the prediction.

The larger |f ′|, the more severe are predicted changes in the profit participation. Since it seems

unreasonable to predict severe changes for years that are far ahead, we require that f ′(x)→ 0 for

x→∞ and assume that f(x) = log(x).

Solvency II requires an additional risk margin for the market consistent value of life insurance

liabilities to account for potential costs of running off the insurance business in case of defaults

(European Insurance and Occupational Pensions Authority (EIOPA) (2014b)). In the model we

assume the risk margin to be a deterministic share of best estimates equal to 1.83%. This value

corresponds to the average level of the risk margin in Europe according to the European Insurance

and Occupational Pensions Authority (EIOPA) (2011, p. 52).

2.3 Solvency Situation

The stylized insurer’s solvency situation is based on the market consistent value of assets and

liabilities. This is consistent with the European solvency regime, Solvency II. Own funds are given

as the difference between the market consistent value of assets and liabilities.

The insurer’s solvency capital requirement (SCR) is calculated by employing the Solvency II

standard formula as described by the European Insurance and Occupational Pensions Authority

(EIOPA) (2014b).8 It is calibrated in order to correspond to the capital an insurer would need to

hold to limit its default probability over the next year to 0.5%, i.e. its Value-at-Risk at the 99.5%

8Eling and Holzmüller (2008) discuss similarities and differences between Solvency II, the U.S. RBC standard as
well as insurance regulation in New Zealand and Switzerland.
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confidence level. In accordance with the bottom-up approach of Solvency II, the overall capital

requirement is calculated by aggregating the capital requirement for individual risks by

SCR =

√∑
i

SCR2
i + 2

∑
i 6=j

ρi,jSCRiSCRj , (5)

where ρi,j is the correlation between risks i and j. SCRi corresponds to the solvency capital re-

quirement in module i, that equals the solvency capital requirement of its submodules as aggregated

in the same way. In this study we include the market risk module with sub-modules for interest

rate, equity, property and spread risk, and the life risk module with the sub-module for lapse risk.

Market risk is the largest risk for European life insurers followed by life risks (European Insurance

and Occupational Pensions Authority (EIOPA) (2011)) since they are heavily exposed to invest-

ment risk. We include the lapse risk submodule in order to assess the effect of changing lapse rates

on the composition and size of the overall solvency capital requirement as well as on the insurer’s

solvency situation.

The solvency capital requirement for lapse risk is determined as the maximum of a capital re-

quirement for a downward lapse rate shock, Lapsedown, for an upward lapse rate shock, Lapseup,

and a mass lapse event, Lapsemass. A downward lapse rate shock adversely affects an insurer’s

solvency if market consistent values of liabilities exceed recovery value in case of lapses. In this case,

lapses increase the insurer’s own funds by exchanging the large market consistent value of liabilities

with the small recovery value, and thus are beneficial for its solvency. Therefore, Lapsedown is

applicable only for such contracts without a positive lapse strain (Committee of European Insur-

ance and Occupational Pensions Supervisors (CEIOPS) (2009)).9 For these contracts, the capital

requirement is given by the change in own funds if lapse rates permanently decrease to 50% of the

currently assumed lapse rate to calculate the insurance liabilities. Similarly, Lapseup is the change

in own funds if lapse rates permanently increase by 50% of the currently assumed lapse rate for

contracts with a positive lapse strain. Finally, Lapsemass is the change in own funds if lapse rates

permanently increase to 40% for contracts with a positive lapse strain.

In our model we determine the level of initial own funds such that a predetermined initial

9The lapse (or surrender) strain is defined as the difference between the recovery value and the current best
estimate of liabilities (excluding the risk margin).
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solvency ratio is fulfilled. The initial solvency ratio is set to 120%, which roughly corresponds to

the median solvency ratio without transitional measures of German life insurers on March 31, 2016

(German Federal Financial Supervisory Authority (BaFin) (2016)).10

The insurer pays out dividends only if its free cash flow is positive. If this pre-condition is

fulfilled the insurer pays out the minimum of the free cash flow and the maximum possible amount

to maintain a solvency ratio of 100%. Dividend policies that depend on the solvency ratio and free

cash flow are very common for European insurance companies.11

2.4 Lapse Risk

To illustrate the rationale for lapsing an endowment life insurance contract, consider a simple

endowment life insurance contract purchased at time t = 0 that pays the gross return eTrG at time

T , where rG is the annual guaranteed rate. The present value of this contract at time t equals

eTrG−(T−t)rf , where rf is the risk free rate. We assume that a policyholder has the opportunity

to lapse this contract, receive the recovery value ϑetrG at time t, and invest it into a risk free

asset. The present value of this investment opportunity is equal to the recovery value ϑetrG , where

1− ϑ ∈ (0, 1) is a lapse penalty.

In this setting, a risk neutral investor lapses her insurance contract if the present value upon

lapsation is larger than the present value of the contract, i.e.

ϑetrG > eTrG−(T−t)rf , (6)

which is equivalent to

− log ϑ

T − t
< rf − rG. (7)

Thus, for a sufficiently large difference between risk free and guaranteed rate (i.e. a small excess

guaranteed rate), lapsing the contract is optimal. A smaller contract age, t, increases the minimum

10The standard formula allows for several transitional measures in order to ease the transition from the previous
regulatory regime, Solvency I, to Solvency II. These measures would blur our results and the immediate risks we
identify in this study. Therefore, we do not include them in our model.

11For example, Allianz SE pays out 50% of the net income only if it can maintain a solvency ratio above 160%
(https://www.allianz.com/en/investor_relations/share/dividend).
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risk free (maximum guaranteed) rate such that lapsing is optimal. This results from the lapse

penalty that reduces the recovery value. The absolute cost of lapsing ((1 − ϑ)etrG) are larger for

older contracts, which decreases the present value of lapsation relative to the value of the contract.

To summarize, we find that policyholders have a larger incentive to lapse an endowment life

insurance contract when interest rates increase relative to guaranteed rates or contracts grow older.

The results from this simple model are in accordance with various empirical studies (for example

see Dar and Dodds (1989), Kiesenbauer (2012), or Eling and Kiesenbauer (2014)).12

We embed these stylized facts into a model for the lapse rate, that reflects a policyholder’s

individual likelihood to lapse her insurance contract. Clearly, there are numerous other factors

that influence policyholder lapse behavior.13 We account for these 1) by modeling the probability

of lapsation instead of a binary decision to lapse or not to lapse, and 2) by including a policyholder

individual fixed effect c that varies across policyholders. The policyholder fixed effect accounts for

different policyholder specific factors that influence lapse risk, as for example her financial or family

situation. Due to the absence of data about lapse penalties, we do not include it in our lapse rate

model. Instead, we assume a lapse penalty of 1− ϑ = 0.01 in our baseline calibration and conduct

a sensitivity analysis towards this parameter.14

For every cohort of contracts, we assume that lapse rates exponentially depend on the difference

between the cohort’s guaranteed rate and the current market’s risk-free spot rate for the same

maturity, given by the excess guaranteed rate ∆rht = rhG− rf (t) (Dar and Dodds (1989), Eling and

Kiesenbauer (2014)).

Note that the decision to lapse is not affected by the expected distribution of the insurer’s sur-

pluses to policyholders due to three main reasons: First, due to the long duration of the insurer’s

asset investments, the insurers return on assets adjusts very slowly to market conditions. Thus,

policyholders can profit more from rising interest rates when investing immediately into risk free

bonds instead of waiting until the profit participation adjusts. Second, the level of profit participa-

12In the example above, contract age is positively related to a lapse decision if interest rates are larger than the
guaranteed rate, rG < rf . However, the mentioned studies consistently find a negative relation between lapse rates
and contract age. Possible reasons go beyond a present value perspective and include the counseling and service
quality of insurers. A large lapse rate for relatively young contracts might result from policyholders realizing that
they actually do not need the contract or they cannot afford premium payments, inappropriate advise of a salesperson,
or liquidity needs in relatively young ages of policyholders that usually coincide with young policy ages.

13For an overview see Eling and Kochanski (2013).
14Note that the lapse penalty is a direct subsidy to the insurer’s equity, since we do not include any costs in the

model.
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tion is generally smaller than market rates when interest rates are rising, since insurers distribute

only part of their profit. Finally, due to lacking financial literary and the complexity of insurance

products and companies, policyholders might not be able to actually infer the distribution of future

surpluses. Predicting future levels of profit participation is particularly complicated as it depends

not exclusively on market conditions and investment behavior but also on the evolution of the

insurer’s full balance sheet and managerial decisions.

In line with intuition developed above, we include the current contract age, ∆T ht , as an impor-

tant factor for the lapse rate. Policyholders’ lapse behavior is also affected by age, income, financial

literary or financial advice (Kim (2005), Kiesenbauer (2012), Nolte and Schneider (2017)). To also

account for these additional factors, we include a policyholder-specific risk factor that is normally

distributed across policyholders, c ∼ N (µc, σ
2
c ).

The model the policyholder-specific lapse rate at the beginning of period t as

λht (∆rht ,∆T
h
t ) = a+ ec−e

d1∆rht +d2∆Tht . (8)

The log-log-form of the lapse rate is also used by Kim (2005). It allows us to compute a closed-

form for the distribution of average lapse rates, which simplifies its calibration (see Appendix C

and below). Moreover, it yields a natural lower and upper bound for the resulting lapse rate.

Historical lapse rates suggest that lapse rates are strictly larger than zero (Geneva Association

(2012)). Hence, we set the minimum lapse rate a to 1%. The detailed calibration of the model is

described in Appendix C. In the following we provide a brief overview.

We calibrate lapse rates based on historical average lapse rates and newly sold contracts for

endowment life policies in Germany as reported by the German Insurance Association (GDV)

(2016). In line with observations on the German market, we assume that the guaranteed rate of

each cohort equals the maximum technical rate in Germany, which is publicly observable.15

By aggregating the average lapse rate of each cohort, we yield the average lapse rate across

cohorts implied by our model. The parameters of our model are calibrated in order to match the

average lapse rate across cohorts in our model with the average lapse rate across cohorts reported

by the German Insurance Association (GDV). The resulting parameters are a = 1%, µc = −0.8199,

15The technical rate is determined by the German regulator and called Höchstrechnungszins. More details on the
technical rate are discussed in Section 2.2.
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σc = 0.5062, d1 = 0.3707, and d2 = 0.1053.

Figure 1 depicts the average lapse risk across one cohort for different differences between guar-

anteed and market rate as well as different current contract ages. In comparison with historically

observed lapse rates in Germany as well as other countries, the lapse rates implied by our model

seem very reasonable (Tsai et al. (2002), Kuo et al. (2003), Geneva Association (2012), Eling and

Kiesenbauer (2014)).
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Figure 1: Lapse rate calibration: average and 90% confidence intervals for different levels of the
difference between guaranteed and market rate and different levels of current contract age.
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3 Results

3.1 Interest Rate and Lapse Behavior

3.1.1 Interest Rate Environments

We calibrate three different interest rate environments. The first environment is calibrated to

match the yield curve of risk-free interest rates (AAA German sovereign bonds) as per end 2015.

Average interest rates fluctuate around this level according to a Vasicek model.

In the second and third interest rate environment interest rates increase. For the second envi-

ronment we model a sharp increase in interest rates. In the first two years the risk-free rate with

a maturity of 10 years (10 year risk-free rate in the following) rises from approximately 1% to 6%.

From the following years on average interest rates are constant and volatility is very small. Such a

shock is not unrealistic, considering that, for example, the key interest rate in Japan (given by the

Bank of Japan) increased from 2.5% to 6% between 1988 and 1990.

The third interest rate environment displays a gradual increase in interest rates starting with

approximately 1% in t = 0 and increasing on average by approximately 0.3 percentage points each

year. Figure 2 depicts the evolution of the 10 year risk-free rate.
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Figure 2: Median risk-free interest rate with 10 years maturity from year 0 on. Subsequent to
year 0 the German sovereign bond yield with 10 years maturity from 1999 to 2015 is shown,

where the value at time 0 corresponds to the value in 2015.
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3.1.2 Lapse Behavior

For each interest rate environment we simulate the evolution of the life insurer’s balance with

two different specifications. In the first specification lapse rates stay constant at the average lapse

rate in 2015, which was 2.86%. Thus, each policyholder lapses her policy individually with a

probability of 2.86%. In the second specification lapse rates are interest rate sensitive as described

in Section 2.4. Thus, it is more likely for each policyholder to lapse her policy if the policy duration

is shorter and if the gap between the 10 year risk-free rate and the individual guaranteed rate

increases.

Figure 3 depicts the distribution of lapse rates over time and over cohorts of contracts in the

second specification. On the left hand side, each boxplot refers to one year in the evolution of the

model and displays the distribution (in particular the lower quartile, median, and upper quartile) of

lapse rates during this year. In the first environment the guaranteed rate of different cohorts as well

as the risk-free rates stabilize over time and, thus, lapse rates depend on contract age exclusively.

The outliers in the boxplot show that cohorts that just purchased a contract lapse this contract

with up to 20% in the next few years. In contrast, half of the cohorts (with a longer contract age)

lapse with less than 2% probability.

On the right hand side, Figure 3 seems to indicate that there is an upward trend in the lapse

rates per cohort. Cohorts that purchased a contract later in time have a larger median probability

to lapse during the observed lifetime. However, this effect is mainly driven by the fact that for most

cohorts we observe different lifetimes. For example, for a contract purchased in the beginning of

t = 1 we observe the evolution of lapse rates until a contract age of 20 years at the end of t = 20, for

a contract purchased in t = 2 we observe 19 years, etc. Since policyholders a more likely to lapse in

the first years of their lifetime, later cohorts display larger observed levels of lapse rates than earlier

cohorts. Thus, the right hand side is less informative for an individual interest rate environment

but, instead, highly informative when comparing it between different interest rate environments.

In Environment (2) lapse rates per cohort are sharply increasing. The right hand side of Figure

3 shows that every cohort is more likely to lapse than in the first environment. Lapse rates increase

up to contracts purchased in t = 1, then slightly decrease and increase again. This behavior is a

result from the sudden interest rate shock in 2016. Contracts that are in place in 2016 face a sharp
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Figure 3: Distribution of lapse rates across cohorts at each point in time (left side) and across
time for each cohort (right side) for interest rate sensitive lapse rates. Each box consists of lower,

median, and upper quartile, crossed points are outliers.

increase in lapse rates since market rates suddenly increase far above the guaranteed rates of these

contracts. Since it takes time until guaranteed rates of newly sold contracts adjust to market rates,

lapse rates stay at similar levels for the following cohorts. The slight upward trend for the last

purchased cohorts can be contributed to the effect of observing just the first few years for these
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contracts, as explained above.

When comparing the left hand side of Figure 3 for Environments (1) and (2), we find a sharp

increase in the variation of lapse rates. Contracts with a large contract age are not as sensitive

towards the increase in interest rates in 2016 as contracts with a small contract age. Therefore,

lapse rates for newly purchased contracts rise up to 40% while lapse rates for very old contracts

(more than 50% of the contract portfolio) stay below 5%. In the following years the median lapse

rate of the insurer still increases, although interest rates stay constant. This results from two

effects: Firstly, guaranteed rates of newly sold contracts adjust very slowly to the new level of

interest rates. Thus, lapse rates for newly sold contracts are still very high. Secondly, old contracts

with large guaranteed rates mature and are replaced with contracts with smaller guaranteed rate,

which are more likely to lapse.

The gradual increase in interest rates in Environment (3) results in a very different evolution

of lapse rates. In this environment, the effect of the increase in market rates relative to guaranteed

rates offsets the effects of the increase in contract age with respect to lapse rates. Consequently,

the lapse rate for each cohort is relatively stable over time. However, there is a large increase in the

lapse rate across cohorts: Contracts that were sold later are associated with a larger lapse rate. A

part of this result can again be explained by different observed lifetimes, as described above. The

other part is explained by a growing difference between the risk-free rate and the guaranteed rate

of newly sold products.

3.2 Balance Sheet Variables

3.2.1 Environment (1)

Figure 4 (a) depicts the development of the free cash flow (FCF) under a constant lapse rate

and under stochastic lapses. Under a protracted period of low rates, guarantees gradually converge

to market rates and, thus, lapse rates stabilize. However, since old contracts with larger guarantees

mature, lapse rates slightly increase and, thus, cash outflows increase under interest rate sensitive

lapse rates.

Figure 4 (b) shows the evolution of both the return on assets and the return granted to pol-
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Figure 4: Environment (1) In the first specification (straight line) lapse rates are constant to
2.86%. The crossed line depicts the second specification with interest rate sensitive lapse rates.

The median and 90% confidence interval are reported.

icyholders.16 Under interest rate-sensitive lapses we can observe that the liability portfolio is

substantially more expensive due to the fact that under a protracted period of low rates lapses

tend to occur to those contracts which have a relatively low guarantee since older and higher guar-

antees offer a much better return compared to market rates.17 In turn, this increases the average

guarantee in the liability portfolio across a large number of the simulated paths and it mirrors the

much worse FCF dynamics observable in figure (a) under stochastic lapses.

Finally, figure 4 (c) and (d) depict both the evolution of the Own Funds and of the Solvency

Ratio. The insurer’s solvency ratio is the ratio of the insurer’s own funds and solvency capital

requirement (SCR). The latter aggregates the capital requirement for lapse risk as well as market

risk (including interest rate, equity, property, and spread risk). The Solvency Ratio in particular,

16Note that the Return granted to policyholders does not include recovery values.
17In other words, this is equivalent to say that the put options that policyholders hold vis-á-vis shareholders are

deeply in the money.
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clearly reflects the underlying dynamics between cash flows and lapses: in fact, with sensitive lapses

we can observe a lower solvency ratio over time as a result of a more expensive liability portfolio,

that coupled with low achievable returns on financial markets, substantially erodes the solvency

position of the insurer over time.
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Figure 5: Environment (1) Solvency capital requirement for lapse risk relative to the total
solvency capital requirement (that comprises market and lapse risk).

This increase in the solvency ratio is mainly driven by a reduction in the required solvency

capital requirement for lapse risk over time, as depicted in Figure 5. This decrease is mainly driven

by old contracts with large guarantees maturing and, thus, decreasing the exposure of the insurance

company to the sudden lapse of these policies.

3.2.2 Environment (2)

Figure 6 (a) depicts the evolution of the insurer’s free cash flow. Clearly, cash outflows exceed

cash inflows substantially if lapses are interest rate sensitive in contrast to a constant lapse rate. The

sudden rise in interest rates in this environment increases lapse rates especially for those cohorts of

contracts with relatively low guarantees and long remaining durations. These are the contracts that

lose most value due to the existence of higher return opportunities in the market. Thus, as lapses

suddenly increase, the insurer has to serve extraordinary recovery payments, and cash outflows also

increase beyond cash inflows. This jeopardizes the liquidity position of the insurer.

In Figure 6 (b) we observe that a sudden rise in interest rates is accompanied by a substantial

drop in the insurer’s return on assets18. This results from enormous depreciations on bonds in

particular, that result from rising interest rates. As we move further in time, the return on assets

18The median return on assets is -4.5% in period 1 in both specifications.
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gradually increases, particularly due to increasing coupon payments from newly bought bonds.

The sudden rise in interest rates is accompanied by an increase in lapse rates. The increase in

interest rate sensitive lapses compared to constant lapses causes the average annual return granted

to policyholders to be much higher. This results again from contracts with smaller guarantees being

more likely to lapse and contracts with larger guarantees staying in the insurer’s contract portfolio.

Consequently, this effect increases the cost of financing guarantees for the insurer.
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Figure 6: Environment (2) In the first specification (straight line) lapse rates are constant to
2.86%. The crossed line depicts the second specification with interest rate sensitive lapse rates.
The median and 90% confidence interval are reported. The median return on assets is -4.5% in

period 1 in both specifications.

Finally, Figures 6 (c) and (d) depict the evolution of the insurer’s own funds and Solvency

Ratio, respectively. As life insurer liabilities usually display a larger duration than its assets, an

increase in the risk-free rate is accompanied by valuation benefits for the insurer’s own funds,

which can be seen in the specification with constant lapse rates. Interestingly, the own funds show

a downward peak in year 10 of the simulation. This peak results from a change in the predicted
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profit participation. As described in Section 2.2, the insurer predicts the future distribution of

surplus to policyholders by extrapolating this value based on the last 10 years. In the first years of

Environment (2), interest rates experience a large upward shock but stabilize afterwards. The asset

return of the insurer only gradually adjusts to the new level of interest rates and, consequently, the

level of profit participation adjusts even slower. As a result, predicted levels of profit participation

which contribute to the market consistent value of liabilities are still very low for the first years.

They gradually adjust upwards until they change in shape from decreasing to increasing in year

10. We show this behavior in Figure 7. Consequently, liabilities increase until t = 10. This finding

highlights the enormous sensitivity of market-consistent valuation towards an insurer’s methodology

to compute market-consistent values for the profit participation of life insurance contracts.
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Figure 7: Environment (2) Observed and predicted profit participation which contribute to the
market-consistent value of life insurance liabilities.

This sensitivity is reduced by large lapse rates of contracts with small guarantees under interest

rate sensitive lapses. Such lapse behavior increases the average guaranteed rate in the insurer’s

contract portfolio and, hence, the gap between average guaranteed rate and surpluses distributed

to policyholders. Nonetheless, in the first years following an upward interest rate shock own funds

are smaller for interest rate sensitive lapse rates. The intuition is that, with larger interest rates,

lapsing contracts display larger guarantees and, thus, book values for these contracts (discounted

with the guaranteed rate) are larger than market-consistent values. In our model, recovery values

for lapsing contracts equal book values.19 Therefore, the insurer is paying part of the recovery

19This is consistent with current European legislation. In fact, insurers are able to subtract only occurred expenses
from book values when paying recovery values. Since we assume zero expenses (and no upfront loading on premiums),
our assumptions are in line with current practices.
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values by using own funds. However, guarantees adjust upwards until book values are in fact

smaller than market values. In this case, the insurer records a surplus in terms of own funds for

each lapsing contract. Consequently, own funds are larger in the long run for interest rate sensitive

lapses in comparison to those with constant lapse rate.

In contrast to increasing own funds, the Solvency Ratio (SR) is decreasing for the first years

following a positive interest rate shock. This is due to an increase in the SCR. As Figure 8

indicates, the SCR mainly increases due to an increase in the capital requirement for lapse risk

when lapse rates are constant but not for interest rate sensitive lapse rates. This results again from

market-consistent contract values dropping below recovery values (i.e. book values) when lapses

are constant. The resulting gap is accounted for by an increasing capital requirement. In contrast,

interest rate sensitive lapses increase the average guarantee of contracts and, thus, recovery values

are larger and the capital requirement for lapse risk is smaller.

As the market-consistent value of liabilities increases in the first 10 years, the market consistent

value of liabilities converges to the recovery value for potential lapses. Therefore, less capital is

needed to account for an increase in lapse rates, which is shown in Figure 8. This decreases the

solvency capital requirement and increases the solvency ratio. With increasing surpluses recovery

values drop far below market consistent life insurance liabilities from year 10 on. This increases

the risk of a sudden drop in lapse rates, that would be accompanied by a sudden rise in liabilities.

To account for this risk, Solvency II requires additional capital, which is illustrated by the increase

in capital requirements for life risks in year 11 in Figure 8.
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Figure 8: Environment (2) Solvency capital requirement for lapse risk relative to the total
solvency capital requirement (that comprises market and lapse risk).
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3.2.3 Environment (3)

Under Environment (3), the evolution of the free cash flow as depicted in Figure 9 (a) is similar

to the evolution of the free cash flow under Environment (2). Not surprisingly, rising interest rates

generate higher cash outflows if policyholders react to new market conditions by lapsing those

policies with relatively lower guaranteed interest rates. Under Environment (3) we can observe

how a slow but steady increase in interest rates drives up the probability of lapsing over time, as

depicted in Figure 3. Hence, cash outflows increase slowly over time. It is interesting to observe

in Figure 9 (a) that the (median) liquidity position of the life insurer under interest rate sensitive

lapses becomes worse than the position of the life insurer facing a constant 2.68% lapse rate when

interest rates tend toward 3% in year 5.

Different balance sheet items of the life insurer adjust with different speed to rising interest rates.

In Figure 9 (b) we can observe the insurer’s return on assets increasing above the average return

granted to policyholders beyond the ninth year of the simulation. The increasing trend in interest

rates under Environment (3) slowly increases the return of the insurer’s reinvested assets and,

thereby, pushes up the total return of the asset portfolio. The development of the return granted

to policyholders is consistent with the observations in Environment (2): When lapse rates increase

with interest rates, we tend to observe higher lapse rates for relatively smaller guarantees, which

in turn increases the average in-force guaranteed interest rate compared to the case with constant

lapses. Clearly, the absolute size of the liability portfolio changes substantially, with constant lapses

implying a liability portfolio much greater in volume. Interestingly, the return for policyholders does

neither with constant nor with interest rate lapse rates increase in this environment. In contrast,

the rising return on assets is not accompanied by a rising return for policyholders. This illustrates

the extraordinary slow speed of guarantees adjusting to changes in interest rates, that cannot be

compensated by surpluses distributed to policyholders.

Finally, in Figure 9 (c) and (d) we can observe the evolution of the insurer’s own funds and

Solvency Ratio. When lapses are interest rate sensitive, the insurer’s solvency situation is slightly

worse than with constant lapse rates. This again results from smaller own funds, that suffer from

large cash outflows, and increasing guarantees in-force.
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Figure 9: Environment (3). In the first specification (straight line) lapse rates are constant to
2.86%. The crossed line depicts the second specification with interest rate sensitive lapse rates.

The median and 90% confidence interval are reported.
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Figure 10: Environment (3) Solvency capital requirement for lapse risk relative to the total
solvency capital requirement (that comprises market and lapse risk).
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4 Sensitivity Analysis

Figures for all sensitivity analyses can be found in Appendix A.

4.1 Demand

In our baseline analysis we assume that each year a constant number of new policyholders nnew

purchases new insurance contracts. However, similar to lapse rates, demand for endowment life

contracts is likely to decrease when risk-free rates increase beyond guaranteed rates. In this case,

the liability portfolio of the insurance company changes: Less new contracts enter the portfolio

and, thus, the average guarantee is potentially larger. Nevertheless, by allowing for lapsation, our

baseline calibration already accounts for potential, although time lagged, demand adjustments.

We examine the impact of a changing demand by employing our empirically calibrated lapse

function, as λht (∆rht , 0) is the probability that a policyholder lapses her contract immediately upon

purchase. As before, we assume that nnew potentially new policyholders enter the market. For each

potential new policyholders 1, ..., nnew, we compute the individual probability of purchase, which is

1−λht (∆rht , 0). Then, the expected demand at time t (for cohort t) equals nnew
(
1− E[λtt(∆r

t
t, 0)]

)
.

Figure 11 shows the evolution of demand over time. Similar to lapse rates, in Environment (1)

median demand slightly declines and then stays at a constant level since average guarantees and

average interest rates converge. In contrast, the interest rate shock in Environment (2) substantially

reduces demand that does not recover due to the slow adjustment of guarantees to increased interest

rates. The gradual increase in interest rates in Environment (3) is accompanied by a gradual

decrease in demand since the gap between average guarantee and interest rate increases.

Although demand in this specification is substantially changing over time, Figures 12 to 14

show that a changing demand has a negligible impact on our baseline results. This is mainly due

to the implicit demand function as given by lapse rates in the baseline calibration.

4.2 Lapse Penalty

To assess the sensitivity of our results with respect to the lapse penalty, we set the recovery

value in case of lapsation to ϑ = 85% of the current accumulated funds, which corresponds to a
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lapse penalty of 15%.20 In our model, this parameter does not affect lapse rates, since the lapse

rate model is empirically based on the actual lapse penalty in the German market, that we are not

able to observe.

Penalty costs enter our model via a reduction in recovery values upon lapses. Thus we expect a

reduction in the insurer’s cash outflows and an increase in the insurer’s own funds. Moreover, a lapse

penalty also reduces the expected future cash flows to policyholders and, thereby, the book and

market value of liabilities. This effect is also likely to decrease the solvency capital requirement. In

summary, we expect an improvement in the insurer’s liquidity and solvency condition in comparison

to our baseline calibration.

Figure 15 depicts central balance sheet variables of the insurer when interest rates stay at low

levels in Environment (1). As expected, the insurer’s own funds and solvency ratio increase with

the lapse penalty. In contrast, we do not identify a noteworthy change in the insurer’s liquidity

condition. In Environment (1) the insurer’s liquidity situation is mainly driven by a deteriorating

return on assets and the gap between the return on assets and to policyholders. Thus the main

effect of a larger lapse penalty on an insurer’s balance sheet is a reduction in the value of liabilities,

that is related to a slight increase in the ratio of own funds to total assets and the solvency ratio.

With low interest rates the market-consistent value of the contracts is substantially larger than

the accumulated funds. Thus, in Environment (1) the main lapse risk is that less policyholders

than expected lapse their insurance contracts. If the lapse penalty increases, the value of liabilities

decreases. Hence, an increase in the value of liabilities due to an unexpected decrease in lapse

rates is positively related to the lapse penalty. This effect increases the sensitivity of the insurer’s

solvency situation towards the lapse rate. The relative solvency capital requirement for lapse risk

increases accordingly, as Figure 15 shows.

With a sharp rise of interest rates in Environment (2) the liquidity and solvency situation is

substantially driven by unexpectedly large recovery values accompanied by a decrease in the market

consistent value of liabilities. Therefore, the insurer’s liquidity situation improves particularly in the

first years following the interest rate shock, as Figure 16 shows. As in Environment (1) the insurer’s

own funds and value of liabilities decrease with a larger lapse penalty, and thus the solvency ratio

20The European Systemic Risk Board (2015) reports that 90% of all European life insurance contracts can be
lapsed with a penalty lower than 15%.
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substantially improves.

In the first years, market consistent values drop below recovery values and thus an increase in

lapse rates is the main driver for lapse-related solvency capital requirements. A larger lapse penalty

reduces this risk since it reduces recovery values. Thus, the relative capital requirement for lapse

risk reduces with the lapse penalty. In contrast, in the last years guaranteed rates and expected

profit participation adjust to the higher level of interest rates, and market consistent values increase

above accumulated funds. Similar to Environment (1), a decrease in lapse rates becomes the main

lapse risk and thus the lapse penalty increases the relative solvency capital requirement for lapse

risk.

Figure 17 illustrates the case of a gradual increase in interest rates in Environment (3). As

before, the liquidity and solvency situation improves with the larger lapse penalty. The solvency

ratio increases substantially and the likelihood of a critical solvency situation becomes negligible.

The improvement in the insurer’s liquidity situation is smaller. Since the market consistent value

of liabilities only gradually declines over time, the larger penalty increases the relative capital

requirement for lapse risk in the first years where a decrease in lapse rates is the main driver for

lapse-related capital requirements. With market consistent values dropping below the contract’s

accumulated funds over time, this effect reverses.

In conclusion, we find that the effect of a large lapse penalty mainly improves the insurer’s

solvency situation. In contrast, it is not able to prevent the meltdown of the insurer’s liquidity.

Moreover, when interest rates are small in comparison to the guaranteed return to policyholders,

a lapse penalty increases the insurer’s sensitivity towards lapse risk since the insurer is adversely

affected particularly by a reduction in lapse rates.

4.3 Lapse Risk

4.3.1 Excess Guaranteed Rate

Referring to the lapse rate in Section 2.4, we decrease d1 in the lapse rate in Equation (8)

to assess the impact of policyholders’ sensitivity to a difference between guaranteed and market

rate. To yield comparable levels for the initial average lapse rates, we recalibrate the remaining

parameters by setting d1 = 0.15 and the baseline lapse rate to 2.68% and running our calibration
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algorithm without adjustments of d1. The resulting parameters are a = 0.01%, µc = −1.47,

σc = 0.2132, and d2 = 0.0661. Nonetheless, the initial average lapse rate implied in the model

equals 2.23% in contrast to 2.68%.

As Figure 18 shows, lapse rates with a smaller sensitivity towards the difference of guarantee and

market rates follow a similar pattern but are substantially less volatile and smaller in Environments

1 and 2 than in our baseline calibration. Intuitively, with a smaller sensitivity d1 the policyholder

reaction to changes in interest rates is less pronounced.

Across all environments we find that the median return to policyholders is smaller. This results

from policyholders with small guarantees not lapsing as likely as in the baseline calibration. As

Environment (1) does not experience any interest shock, the smaller average guarantee granted to

policyholders slightly increases the insurer’s solvency ratio in the long run, as depicted in Figure

19, and the reduces the relative solvency capital requirement for lapse risk, as depicted in Figure

20.

Figures 21 and 22 show the evolution of the insurer’s key variables in Environments (2) and

(3), respectively. As lapse rates are substantially smaller, recovery values are smaller and thus the

free cash flow is larger. A negative free cash flow in particular is now very unlikely, which reflects a

substantially improved liquidity situation in comparison to the baseline calibration. However, the

insurer still suffers a substantial drop in the free cash flow that might result in liquidity problems.

The solvency situation slightly changes in the direction of the solvency situation with a constant

lapse rate: In the first years own funds and the solvency ratio are slightly larger and in the last

years they are smaller than under the baseline calibration. Nonetheless, the median solvency ratio

in Environment (2) still drops below the critical threshold of 100% in the second year after an

upward interest rate shock.

Figure 23 depicts the relative solvency capital requirement for lapse risk in Environments (2)

and (3). In both environments the relative capital requirement is larger with a smaller sensitivity

towards the excess guaranteed rate. This results from the small level of lapse rates: On the one

hand, a decrease in lapse rates yields a unproportionally larger increase in the value of liabilities

(see 2.2). On the other hand, the risk of a mass lapse scenario is larger.
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4.3.2 Contract Age

To isolate the impact of contract age on lapse risk, we conduct a sensitivity analysis with d2 = 0

in the lapse rate in Equation (8). To yield comparable levels of the initial average lapse rate, we

recalibrate the remaining parameters by setting d2 = 0 and the baseline lapse rate to 2.68% and

running our calibration algorithm without adjusting the level of d2. The resulting parameters are

a = 0.01%, µc = −2.8925, σc = 0.165, and d1 = 0.1958. Nonetheless, the initial average lapse rate

implied in the model is slightly smaller.21

Contract age serves as a catalyst of lapse rates for relatively young contracts. Thereby it also

amplifies policyholders’ sensitivity towards interest rate shocks. As Figure 24 shows, lapse rates

with a smaller sensitivity towards contract age follow a similar pattern but are substantially less

volatile and smaller in Environments 1 and 2 than in our baseline calibration. Thus, with a smaller

sensitivity d2, the policyholder reaction to changes in interest rates is less pronounced.

Consequently, across all environments we find that the median return to policyholders is smaller.

This results from policyholders with small guarantees not lapsing as likely as in the baseline cali-

bration. As Environment (1) does not experience any interest shock, the smaller average guarantee

granted to policyholders slightly increases the insurer’s solvency ratio in the long run as depicted

in Figure 25.

Figures 27 and 28 show that the decrease in the sensitivity towards contract age results in

similar effects as a decrease in the sensitivity towards the excess guaranteed rate when interest

rates increase in Environments (2) or (3). The liquidity position improves in comparison to the

baseline calibration. Particularly during the first years the solvency situation is slightly improved

while it is slightly worse during later years in comparison to the baseline calibration. Moreover,

the relative level of the solvency capital requirement for lapse risk in Figure 29 is larger than under

the baseline calibration due to the small level of interest rates as in Section 4.3.1.

In conclusion, we find that a smaller level of the lapse rate’s sensitivity towards contract age

or the excess guaranteed rate particularly improves the insurer’s liquidity via a reduction in lapse

rates. The sensitivity of the lapse rate influences the insurer’s solvency to a much smaller ex-

tent. This finding indicates that an increase in lapse rates due to rising interest rates affects the

21The initial average lapse rate implied in the model equals 2.23% in contrast to 2.68%.

31



insurer’s liquidity in particular while the insurer’s solvency situation mainly depends on the inter-

action between the book and market consistent value of assets and liabilities during interest rate

movements.

5 Conclusion

In this article we examine the impact of rising interest rates and accompanying lapse risk on

an insurer’s liquidity and solvency situation. Thereby we focus on endowment life contracts due

to their particular interest rate exposure. To assess the solvency situation we calculate the market

consistent value of assets and liabilities and a solvency capital requirement based on the European

regulatory framework Solvency II. This balance sheet model allows us to identify the interaction

between an insurer’s backbook of life insurance contracts, newly sold contracts and the development

of the insurer’s investment portfolio.

We calibrate our model based on the situation of an average German life insurer in 2015, since

the German market for endowment life insurance is particularly large. Lapse rates in our model

decrease with the excess guaranteed rate, i.e. the difference between the guaranteed rate and

market risk free rate, and with contract age. We calibrate the lapse rate model based on lapse rates

observed in Germany during the last decade.

We find that a sudden severe upward shock in interest rates is related to a very detrimental

effect on the liquidity position of life insurers. Our results suggest that an average insurance

company would need approximately 20 years until cash inflows compensate the enormous cash

outflows resulting from paying out recovery values and depreciations related to a sudden increase

in risk-free interest rates from 1% to 6% for 10 years time to maturity. The insurer’s solvency

situation is endangered for the first five years following the interest rate shock as expensive life

insurance contracts with large guarantees in-force stay in the insurer’s contract portfolio and those

with small guarantees lapse.

Gradually increasing interest rates, however, do not endanger an insurer’s solvency situation to

the same extent, but still have a substantial impact on its liquidity situation. Long-term investments

make it difficult for insurers to profit from gradually increasing interest rates to the same extent

as increasing lapse rates would require. Therefore, the free cash flow gradually decreases for a
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considerable amount of time.

A central driver for our results is an increase in lapse rates particularly for contracts with small

guaranteed returns. Policyholders with these contracts have a large incentive to lapse as interest

rates increase. Thereby, mostly contracts with large guarantees are left in the insurer’s contract

portfolio. These contracts, however, require a larger capital requirement and are more expensive

to fund than contracts with smaller guarantees. Moreover, due to the typically long asset duration

the insurer’s return on assets adjusts very slowly to new interest rates. Therefore, the free cash

flow as well as the insurer’s solvency ratio come under pressure.

The sensitivity analysis indicates that a lapse penalty is particularly able to improve an insurer’s

solvency situation since it reduces the value of liabilities and increases own funds via smaller recovery

values. An improvement in the liquidity situation can only be achieved by substantially smaller

lapse rates than empirically observable.

Our findings have important implications for insurance companies, policyholders, and policy-

makers. They indicate that all stakeholders need to prepare for negative shocks on the solvency

situation of life insurers in case of rising interest rates. A gradual rise in interest rates might as

well lead to a period of approximately 10 years with decreasing solvency ratios and substantial cash

outflows.

As (life) insurance companies constitute a vital part of the global financial system, rising interest

rates can have a substantial impact on financial stability. The liquidity problems insurers would

face in case of a sudden increase in lapse rates are likely to be related to massive capital outflows

that would have to be financed by selling insurers’ assets. On top on these sales it is likely that

insurers would reduce their activity in new investments. Such developments embed the potential for

loss spirals in market (particularly bond) prices and financing problems of infrastructure projects.

Similarly, insurers might reduce their financing of banks that heavily rely on debt-financing by

insurance companies.

Due to the high interconnected of life insurers in the global financial system, their possible

liquidity needs are likely to affect other financial institutions as well. For example, counterparty

credit risk of other financial institutions towards insurers might substantially increase. Such an in-

crease in credit risk might be accompanied by demands for additional collateral for security lending,

central clearing as well as other financial securities and instruments. Calls for additional collateral
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would further deteriorate life insurers’ liquidity position. Due to the recent low interest rate en-

vironment, it is not unlikely that insurers increasingly engaged in such alternative investments to

increase investment returns. Thus liquidity needs of life insurers might go along with losses in such

investments and thereby endanger financial stability.

34



Appendix

A Figures

1 5 9 13 17
50%

60%

70%

80%

90%

Year

(a) Environment (1)

1 5 9 13 17
50%

60%

70%

80%

90%

Year

(b) Environment (2)

1 5 9 13 17
50%

60%

70%

80%

90%

Year

(c) Environment (3)

Figure 11: Demand as a fraction of maximum possible demand, where 1− λ(∆rht , 0) is the
likelihood of each consumer to buy an insurance contract. Each boxplot depicts the distribution

of new policyholders in a specific year in the model.
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Figure 12: Environment (1) with demand function, where 1− λ(∆rht , 0) is the likelihood to buy
an insurance contract. The crossed line depicts the second specification with interest rate

sensitive lapse rates in the baseline model. The dotted line depicts the second specification with
interest rate sensitive lapse rates and interest rate sensitive demand. The median and 90%

confidence interval are reported.
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Figure 13: Environment (2) with demand function, where 1− λ(∆rht , 0) is the likelihood to buy
an insurance contract. The crossed line depicts the second specification with interest rate

sensitive lapse rates in the baseline model. The dotted line depicts the second specification with
interest rate sensitive lapse rates and interest rate sensitive demand. The median and 90%

confidence interval are reported.
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Figure 14: Environment (3) with demand function, where 1−λ(∆rht , 0) is the likelihood to buy an
insurance contract. The crossed line depicts the second specification with interest rate sensitive
lapse rates in the baseline model. The dotted line depicts the second specification with interest
rate sensitive lapse rates and interest rate sensitive demand. The median and 90% confidence
interval are reported. The median return on assets is -4.5% in period 1 in both specifications.
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Figure 15: Environment (1) with haircut 1− ϑ = 0.15. The crossed line depicts the second
baseline specification with interest rate sensitive lapse rates and haircut 1− ϑ = 0. The circled

line depicts the sensitivity analysis with interest rate sensitive lapse rates and haircut
1− ϑ = 0.15. The median and 90% confidence interval are reported.
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Figure 16: Environment (2) with haircut 1− ϑ = 0.15. The crossed line depicts the second
baseline specification with interest rate sensitive lapse rates and haircut 1− ϑ = 0. The circled

line depicts the sensitivity analysis with interest rate sensitive lapse rates and haircut
1− ϑ = 0.15. The median and 90% confidence interval are reported.
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Figure 17: Environment (3) with haircut 1− ϑ = 0.15. The crossed line depicts the second
baseline specification with interest rate sensitive lapse rates and haircut 1− ϑ = 0. The circled

line depicts the sensitivity analysis with interest rate sensitive lapse rates and haircut
1− ϑ = 0.15. The median and 90% confidence interval are reported.
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Figure 18: Distribution of lapse rates across cohorts at each point in time (left side) and across
time for each cohort (right side) for interest rate sensitive lapse rates with smaller sensitivity
towards the excess guaranteed rate. Each box consists of lower, median, and upper quartile,

crossed points are outliers.
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Figure 19: Environment (1) with smaller sensitivity towards the excess guaranteed rate. The
crossed line depicts the second baseline specification with interest rate sensitive lapse rates. The

circled line depicts the sensitivity analysis with interest rate sensitive lapse rates and smaller
sensitivity towards the excess guaranteed rate.The median and 90% confidence interval are

reported.
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Figure 20: Environment (1) with smaller sensitivity towards the excess guaranteed rate. Solvency
capital requirement for lapse risk relative to the total solvency capital requirement (that

comprises market and lapse risk). The crossed line depicts the second baseline specification with
interest rate sensitive lapse rates. The circled line depicts the sensitivity analysis with interest

rate sensitive lapse rates and smaller sensitivity towards the excess guaranteed rate.
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Figure 21: Environment (2) with smaller sensitivity towards the excess guaranteed rate. The
crossed line depicts the second baseline specification with interest rate sensitive lapse rates. The

circled line depicts the sensitivity analysis with interest rate sensitive lapse rates and smaller
sensitivity towards the excess guaranteed rate. The median and 90% confidence interval are

reported. The median return on assets is -4.5% in period 1 in both specifications.
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Figure 22: Environment (3) with smaller sensitivity towards the excess guaranteed rate. The
crossed line depicts the second baseline specification with interest rate sensitive lapse rates. The

circled line depicts the sensitivity analysis with interest rate sensitive lapse rates and smaller
sensitivity towards the excess guaranteed rate. The median and 90% confidence interval are

reported.
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Figure 23: Environment (2) and (3) with smaller sensitivity towards the excess guaranteed rate.
Solvency capital requirement for lapse risk relative to the total solvency capital requirement (that
comprises market and lapse risk). The crossed line depicts the second baseline specification with
interest rate sensitive lapse rates. The circled line depicts the sensitivity analysis with interest

rate sensitive lapse rates and smaller sensitivity towards the excess guaranteed rate.
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Figure 24: Distribution of lapse rates across cohorts at each point in time (left side) and across
time for each cohort (right side) for interest rate sensitive lapse rates with no sensitivity towards
contract age (d2 = 0). Each box consists of lower, median, and upper quartile, crossed points are

outliers.
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Figure 25: Environment (1) with no sensitivity towards contract age (d2 = 0). The crossed line
depicts the second baseline specification with interest rate sensitive lapse rates. The circled line
depicts the sensitivity analysis with interest rate sensitive lapse rates and no sensitivity towards

contract age. The median and 90% confidence interval are reported.
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Figure 26: Environment (1) with smaller sensitivity towards the excess guaranteed rate. Solvency
capital requirement for lapse risk relative to the total solvency capital requirement (that

comprises market and lapse risk). The crossed line depicts the second baseline specification with
interest rate sensitive lapse rates. The circled line depicts the sensitivity analysis with interest

rate sensitive lapse rates and no sensitivity towards contract age.

48



1 5 9 13 17

−0.02

0

0.02

0.04

Year

(a) Free Cash Flow relative to the initial
Book Value of Assets

1 5 9 13 17
0

1%

2%

3%

4%

5%

6%

Year

RoA
RoP

(b) Return on Assets (blue) and to Pol-
icyholders (red).

1 5 9 13 17
0

10%

20%

30%

40%

50%

60%

70%

80%

Year

(c) Own Funds relative to the Market
Value of Assets

1 5 9 13 17
0

100%

200%

300%

400%

500%

Year

(d) Solvency Ratio

Figure 27: Environment (2) with no sensitivity towards contract age (d2 = 0). The crossed line
depicts the second baseline specification with interest rate sensitive lapse rates. The circled line
depicts the sensitivity analysis with interest rate sensitive lapse rates and no sensitivity towards
contract age.The median and 90% confidence interval are reported. The median return on assets

is -4.5% in period 1 in both specifications.
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Figure 28: Environment (3) with no sensitivity towards contract age (d2 = 0). The crossed line
depicts the second baseline specification with interest rate sensitive lapse rates. The circled line
depicts the sensitivity analysis with interest rate sensitive lapse rates and no sensitivity towards

contract age. The median and 90% confidence interval are reported.

50



1 5 9 13 17
0

20%

40%

60%

80%

100%

Year

(a) Environment (2)

1 5 9 13 17
0

20%

40%

60%

80%

100%

Year

(b) Environment (3)

Figure 29: Environment (2) and (3) with smaller sensitivity towards the excess guaranteed rate.
Solvency capital requirement for lapse risk relative to the total solvency capital requirement (that
comprises market and lapse risk). The crossed line depicts the second baseline specification with
interest rate sensitive lapse rates. The circled line depicts the sensitivity analysis with interest

rate sensitive lapse rates and no sensitivity towards contract age.
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B The Short-Rate Model and its Calibration

In the Hull-White model, the short-rate dynamics are given by

dr(t) = αr(θ(t)− r(t))dt+ σrdWr(t) with r(0) = r0, (9)

where Wr(t) is a standard Brownian motion, r(t) is the instantaneous (short) interest rate at time

t, αr > 0 is the speed of reversion, σr > 0 the volatility and θ(t) the (non-constant) level of

mean reversion. The stochastic differential equation (9) can be solved, which yields (cf. Brigo and

Mercurio (2006))

r(t) = r0e
−αrt + αr

∫ t

0
e−αr(t−u)θ(u) du+ σr

∫ t

0
e−αr(t−u) dWr(u). (10)

Thus, the short-rate is normally distributed, i.e. r(t) ∼ N (µt, σ
2
t ), with parameters

µt = E[r(t)] = r(0)e−αrt + αr

∫ t

0
θ(u)e−αr(t−u) du (11)

σ2t = var(r(t)) =
σ2r
2αr

(
1− e−2αrt

)
. (12)

In this interest-rate model, the price P (t, τ) of a zero-coupon bond at time t with time to

maturity τ is given by (cf. Hull and White (1990) and Brigo and Mercurio (2006))

P (t, t+ τ) = A(t, t+ τ)e−r(t)B(τ), (13)

where

B(τ) =
1− e−αrτ

αr

and A(t, t+ τ) = exp

(
σ2r
2α2

r

(τ −B(τ))− σ2r
4αr

B2(τ)− αr
∫ t+τ

t
θ(u)B(t+ τ − u) du

)
.

Hence, the continuously compounded spot rate at time t for time to maturity τ is given by

r̂f,τ (t) = −1

τ
logP (t, t+ τ) =

B(τ)r(t)− logA(t, t+ τ)

τ
(14)
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and the equivalent annually-compounded spot rate is given by

rf,τ (t) = er̂f,τ (t) − 1 =

(
eB(τ) r(t)

A(t, t+ τ)

)1/τ

− 1. (15)

To yield rising interest rates, we choose the mean reversion level to be

θ(t) = γ + (β − γ)

(
1− 1

1 + e−b(t−h)

)
. (16)

We calibrate the initial short-rate r(0), speed of mean reversion αr, volatility σr and mean reversion

parameters γ, β, b and h by means of weighted least squares in order to match historical short rate

volatility, the yield curve implied by German government bonds in 2015 as initial risk-free yield

curve, and a target interest rate level. The resulting calibration for Environment (2) and 3 as well

as the calibration of the Vasicek model in Environment (1) are reported in Table. The calibration

of the Vasicek model is based on the adverse scenario in Berdin et al. (2016) but exhibits a smaller

long-term equilibrium and volatility in order to obtain a better to fit to interest rates in the year

2015. Since our model of the insurance firm and the financial market does not differentiate between

interest rates under risk-neutral and real world measures and a market price of risk is captured by

the mean-reversion function of the Hull-White-Model, we assume a market price of risk λ = 0 for

the Hull-White model.

Environment (1) (2) (3)

θ -1%
r(0) -0.08% -1.3559% 3.8%
αr 0.5462 2 0.0095
σr 1% 0.131% 0.3%
λ -1 0 0
β 1.4224 -0.5
γ 0.575 0.4167
b 5 10
h 0 0

Table 2: Calibration of the Short-Rate Model in Environments (1), (2), and (3).
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C Calibration of Lapse Rate Behavior

Conditional on the policyholder-specific risk factor the average lapse rate across all cohorts at

time t is given as

λt = a+ ec
1∑
h n

h
t

∑
h

nht e
−ed1∆rht +d2∆Tht , (17)

where nht is the number of contracts of cohort h in place at time t. Therefore, unconditionally the

logarithmic excess lapse rate is normally distributed,

λ̃t = log (λt − a) = c+ log

(
1∑
h n

h
t

)
+ log

(∑
h

nht e
−ed1∆rht +d2∆Tht

)
∼ N

(
µt, σ

2
t

)
(18)

where

µt = µc + log

(
1∑
h n

h
t

)
+ log

(∑
h

nht e
−ed1∆rht +d2∆Tht

)
(19)

and σ2t = σ2c . (20)

The results of earlier studies suggest that the relationship between lapse rate and current con-

tract age is negative (Eling and Kiesenbauer (2014)). In other words, policyholders are more likely

to lapse their contract shortly after purchase than shortly before maturity. Hence, we expect

d2 > 0. Moreover, we expect that d1 > 0 since a larger difference between guaranteed and market

rate ∆rht = rhG − rfc(t) is likely to decrease lapse rates since it increases the value of the policy to

the policyholder.

For given sensitivities d1 and d2, the Maximum-Likelihood estimates for µc and σc are

The Maximum-Likelihood function for λ̃t is given by

L =
T∏
t=1

1√
2πσc

e
− 1

2σ2
c
(λ̃t−µt)2

(21)

=
T∏
t=1

1√
2πσc

e
− 1

2σ2
c

(
λ̃t−µc−log

(
1∑
h n

h
t

)
−log

(∑
h n

h
t e

−ed1∆rht +d2∆Tht

))2

(22)
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and the log-Likelihood is given as

l =
T∑
t=1

− log
(√

2πσc

)
− 1

2σ2c

(
λ̃t − µc − log

(
1∑
h n

h
t

)
− log

(∑
h

nht e
−ed1∆rht +d2∆Tht

))2

. (23)

Therefore, the Maximum-Likelihood (ML) estimate for µc satisfies

dl

dµc
=

T∑
t=1

2

2σ2c

(
λ̃t − µc − log

(
1∑
h n

h
t

)
− log

(∑
h

nht e
−ed1∆rht +d2∆Tht

))
= 0, (24)

or equivalently

µc =
1

T

T∑
t=1

(
λ̃t − log

(
1∑
h n

h
t

)
− log

(∑
h

nht e
−ed1∆rht +d2∆Tht

))
. (25)

The ML estimate for σc is given as

dl

dσc
=

T∑
t=1

− 1

σc
+

1

σ3c

(
λ̃t − µc − log

(
1∑
h n

h
t

)
− log

(∑
h

nht e
−ed1∆rht +d2∆Tht

))
= 0, (26)

or equivalently

σ =

√√√√ 1

T

T∑
t=1

(
λ̃t − µc − log

(
1∑
h n

h
t

)
− log

(∑
h

nht e
−ed1∆rht +d2∆Tht

))2

. (27)

However, it is not possible to determine closed-form ML estimates for d1 or d2. Hence, we rely on

a numerical procedures. In particular, d1 is set to a least-squares estimator to minimize deviations

between historically observed and model implied average lapse rates conditionally on µc and σc.

After updating d1, µc and σc are updated with the ML estimator. This procedure is repeated until

convergence of µc and σc.

Afterwards, d2 is increased in small steps if the model implied average lapse rate across all

cohorts with the initial values of the insurer and financial market in our model differs from the

observed lapse rate in 2015, 2.86%. Upon an increase of d2 all other parameters are updated as

described above.
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