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Abstract

We develop and implement a portfolio optimization method for build-

ing investment portfolios that dominate a given benchmark index in terms

of third-degree stochastic dominance. Our approach relies on the prop-

erties of the semi-variance function, a re�nement of an existing `super-

convex' dominance condition and quadratic constrained programming. To

reduce the computational burden in large-scale applications, we propose

a problem reduction method based on vertex enumeration. We apply

our method to historical stock market data using an industry momen-

tum strategy. Our enhanced portfolio generates important performance

improvements compared with alternatives based on mean-variance dom-

inance and second-degree stochastic dominance. Relative to the bench-

mark, our portfolio increases average out-of-sample return by almost seven

percentage points per annum without incurring more downside risk, using

quarterly rebalancing and without short selling.
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1 Introduction

Portfolio optimization based on stochastic dominance (SD) is theoretically

appealing, because it considers the entire probability distribution and uses

proper de�nitions of risk. This approach is analytically more demanding than

mainstream mean-variance (MV) analysis, which relies on the convenient but de-

batable assumption of a Gaussian distribution. However, modern-day computer

hardware and solver software bring SD optimization within reach of practical

application.

The original, �rst-degree stochastic dominance (FSD) criterion by Quirk and

Saposnik (1962) is overly restrictive as a maxim for investors, because it often

leads to indecision or sub-optimal solutions. FSD does not restrict the risk pref-

erences and, consequently, can not compare most portfolios. Indeed, most appli-

cations of SD to portfolio choice are based on the more powerful second-degree

stochastic dominance (SSD) criterion by Hadar and Russell (1969), Hanoch and

Levy (1969) and Rothschild and Stiglitz (1970), which assumes that investors

are risk averse.

Shalit and Yitzhaki (1994), Kuosmanen (2004), Roman, Darby-Dowman and

Mitra (2006), Scaillet and Topaloglou (2010), Kopa and Post (2015) and Lon-

garela (2015) develop various linear programming (LP) problems to construct an

enhanced portfolio that dominates a given benchmark in terms of SSD. Clark,

Jokung and Kassimatis (2011), Roman, Mitra and Zverovich (2013) and Hod-

der, Jackwerth and Kolokolova (2015) report promising results in applications

to active stock selection and asset allocation.

Many studies have shown that SSD leads to vast improvements over FSD.

Nevertheless, SSD often trails MV dominance, because it allows for unrealis-

tic preferences over higher-order moment risk. Notably, SSD accepts investors

whose risk aversion increases with wealth and who, consequently, prefer negative

skewness to positive skewness. A given pair of portfolios will be deemed incom-

parable by SSD if these hypothetical `skewness haters' disagree with `normal'

investors about the ordering of the portfolios.

This study develops an enhanced indexing method based on Whitmore's

(1970) third-degree stochastic dominance (TSD). TSD is less restrictive than

SSD, because it requires a preference ordering only for the `skewness lovers',

or those risk averters who exhibit decreasing risk aversion (Menezes, Geiss and

Tressler (1980)). This assumption is accepted by �nancial economists based on

compelling theoretical and empirical arguments.
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The relaxation of the dominance restriction improves the feasible combi-

nations of return and risk. In particular, the TSD criterion is well suited for

constructing enhanced portfolios with less downside risk and more upside po-

tential than the benchmark. The SSD criterion ignores these portfolios if they

are sub-optimal for some skewness haters.

In related work, Porter, Wart and Ferguson (1973), Bawa (1975), Bawa,

Lindenberg and Rafsky (1979) and Bawa et al. (1985) provide algorithms for

TSD comparisons between a �nite number of given portfolios. Gotoh and Konno

(2000) develop mean-risk models that are consistent with TSD. We extend these

earlier works by accounting for all (in�nitely many) feasible portfolios formed

from a discrete set of base assets and for all (in�nitely many) relevant utility

functions and risk measures.

Post (2003, Eq. (20)) develops a linearization of the Karush-Kuhn-Tucker

(KKT) conditions for portfolio optimality based on TSD. We can test whether

a given portfolio obeys these conditions by solving a small mathematical pro-

gramming problem. In portfolio management, this approach can be used for

in-sample back testing and out-of-sample performance evaluation of a given

portfolio. Our study goes one step further by also covering the active portfolio

construction phase.

Following Bawa (1975), we formulate our analysis in terms of lower partial

moments. The TSD criterion is analytically challenging because it requires the

evaluation of the semi-variance function at a continuum of threshold levels, and,

in addition, computing the semi-variance involves binary variables to indicate

whether portfolio return falls below a given threshold level in a given scenario.

We obtain a problem of �nite dimensions by assuming a discrete state-

dependent probability distribution rather than a continuous return distribution.

This assumption is not restrictive because practical applications generally use

discrete empirical distributions. In addition, many continuous distributions can

be approximated accurately using a �nite number of random draws.

In addition, we employ the `super-convex' third-degree stochastic dominance

(SCTSD) criterion of Bawa et al. (1985), which provides a tight su�cient con-

dition for TSD for discrete return distributions. We modify the original SCTSD

criterion to get an even tighter su�cient condition by exploiting the properties

of the semi-variance function.

We characterize SCTSD by means of an exact and �nite system of linear and

convex quadratic constraints. This quadratic system extends the linear formu-

lation of Conditional Value-at-Risk (CVaR) by Rockafellar and Uryasev (2000)
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to the case of semi-variance. We can construct an SCTSD enhanced portfolio

by solving a convex quadratic constrained programming (QCP) problem. To

reduce the computational burden in large-scale applications, we propose an ef-

fective method to reduce the number of model variables and model constraints

using vertex enumeration. Using this problem reduction, we are able to perform

large-scale applications in a just few minutes using a retail desktop computer

and standard solver software.

Following Hodder, Kolokolova and Jackwerth (2015), we apply our method to

active industry-based asset allocation. Since we use an intermediate formation

period and a short holding period, the investment strategy in e�ect exploits

known price momentum patterns (Jegadeesh and Titman (1993), Moskowitz and

Grinblatt (1999)). Momentum strategies typically use an heuristic approach to

portfolio formation. The explicit use of decision theory and optimization seems

an interesting addition to the momentum literature.

2 SSD and TSD

We consider K distinct base assets with investment returns x ∈ XK , X :=

[a, b], −∞ < a < b < +∞. Importantly, the base assets are not restricted

to individual securities. In general, the base assets are de�ned as the most

extreme feasible combinations of the individual securities. To allow for dynamic

intertemporal investment problems, these combinations could be periodically

rebalanced based on a conditioning information set. In our application, the base

assets are stock portfolios that are formed based on the industry classi�cation

of individual stocks.

Formulated in terms of the individual securities, the portfolio possibility set

may take the shape of an arbitrary convex polytope. This formulation allows

for general linear weight constraints, including short sales constraints, position

limits and restrictions on risk factor loadings. The base assets are the vertices

of the polytope. We can therefore formulate the portfolio possibility set as the

unit simplex Λ :=
{
λ ∈ RK : λ ≥ 0K ;λ′1K = 1

}
in the space of the weights

of the base assets. This vertex representation of the portfolio possibility set is

motivated by the Minkowski-Weyl theorem.

The returns of the base assets are treated as random variables with a state-

dependent joint probability distribution with T mutually exclusive and exhaus-

tive scenarios with realizations Xt := (X1,t · · ·XK,t)
T
, t = 1, · · · , T . For our

purposes, we can assume that the scenarios are equiprobable, that is, P[x =
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Xt] = 1
T , t = 1, · · · , T . It follows that the cumulative distribution function for

portfolio λ ∈ Λ is given by Fλ(x):= 1
T

∑T
t=1 I(X

T
t λ ≤ x). A heuristic way to

deal with unequal probabilities is to include ties, or multiple realizations of the

same scenario, in the analysis. Kopa and Post (2015) discuss the computational

aspects of this approach.

We evaluate a given and feasible benchmark portfolio τ ∈ Λ. To simplify the

notation, we use yt := XT
t τ , t = 1, · · · , T , and we assume that the scenarios

are ordered by their ranking with respect to the benchmark: y1 ≤ · · · ≤ yT .
There exist several equivalent formulations of SD criteria. Our analysis uses a

common formulation in terms of lower partial moments (Bawa (1975)). For SSD,

the �rst-degree lower partial moment or expected shortfall is the relevant risk

measure. We use the following de�nition of the expected shortfall for portfolio

λ ∈ Λ and threshold return x ∈ X :

Eλ(x) :=
1

T

T∑
t=1

(x−XT
t λ)I(XT

t λ ≤ x). (1)

In general, expected shortfall is a continuous, non-negative, non-decreasing

and convex function. In our context with a discrete distribution, Eλ(x) takes

a piecewise-linear form with discontinuous increases in its slope at XT
t λ, t =

1, · · · , T. The relation between Eλ(x) and Fλ(x) is that Eλ(x) =
´ x
a
Fλ(z)dz

and (∂Eλ(x)/∂x) = Fλ(x).

De�nition 2.1: Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by second-

degree stochastic dominance (SSD), or λ �SSD τ , if

Eλ(ys) ≤ Eτ (ys), s = 1, · · · , T. (2)

SSD is a mathematical preorder on the portfolio set Λ: it possesses re�exivity

and transitivity but not anti-symmetry, as two distinct portfolios are equivalent

if their return vectors are identical (XT
t λ = yt, t = 1, · · · , T ). The economic

meaning of the preorder can be explained using the following set of increasing

and concave utility functions:

U2:=
{
u ∈ C2 : X → R;u′(x) ≥ 0;u′′(x) ≤ 0

}
. (3)

It is known that λ �SSD τ if and only if 1
T

∑T
t=1 u

(
XT
t λ
)
≥ 1

T

∑T
t=1 u (yt)

for all u ∈ U2; see Hadar and Russell (1969), Hanoch and Levy (1969) and
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Rothschild and Stiglitz (1970).

For TSD, the second-degree lower partial moment or semi-variance is the

relevant risk measure. We use the following de�nition of the semi-variance for

portfolio λ ∈ Λ and threshold return x ∈ X :

S2λ(x):=
1

T

T∑
t=1

(x−XT
t λ)2I(XT

t λ ≤ x). (4)

In general, semi-variance is a continuously di�erentiable, non-negative, non-

decreasing and convex function of the threshold return x ∈ X (see Gotoh and

Konno (2000, Thm 3.1)). For our discrete distribution, S2λ(x) takes a piecewise-

quadratic form with jumps in its curvature at XT
t λ, t = 1, · · · , T. Also rele-

vant for our analysis is that S2λ(x) is a convex function of the portfolio weights

λ. Other useful results are S2λ(x) = 2
´ x
a
Eλ(y)dy = 2

´ x
a

´ y
a
Fλ(z)dzdy and(

∂S2λ(x)/∂x
)

= 2Eλ(x).

De�nition 2.2: Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by third-

degree stochastic dominance (TSD), or λ �TSD τ , if

S2λ(x) ≤ S2τ (x), ∀x ∈ X ; (5)

1

T

T∑
t=1

XT
t λ ≥

1

T

T∑
t=1

yt.

The economic meaning of TSD can be explained using the following set of

utility functions:

U3:=
{
u ∈ C3 : X → R;u′(x) ≥ 0;u′′(x) ≤ 0;u′′′(x) ≥ 0

}
. (6)

U3 imposes the accepted assumption of decreasing risk aversion or skewness

love (u′′′(x) ≥ 0) in addition to non-satiation and risk aversion. It is known

that λ �TSD τ if and only if 1
T

∑T
t=1 u

(
XT
t λ
)
≥ 1

T

∑T
t=1 u (yt) for all u ∈ U3;

see Whitmore's (1970).

Since TSD does not require a preference ordering for `skewness haters', it is

easier to establish a TSD relation than an SSD relation. SSD is a su�cient but

not necessary condition for TSD:(λ �SSD τ ) ⇒ (λ �TSD τ ). This entailment

can be derived from U3 ⊂ U2 or, equivalently, from S2λ(x) = 2
´ x
a
Eλ(y)dy. It

follows that the set of portfolios that dominate the benchmark by TSD is larger
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than the set of portfolios that dominate it by SSD.

To illustrate the potential improvements, consider gross benchmark returns

in three equally likely scenarios of y1 = 0.90, y2 = 1.10 and y3 = 1.30. A

hypothetical example of a TSD enhancement is XT
1 λ = 0.97, XT

2 λ = 1.00 and

XT
3 λ = z, z ≥ 1.34. Every plausible investor will chose this enhancement for its

attractive combination of downside risk and upside potential. Nevertheless, the

SSD rule does not detect dominance, because the enhanced portfolio increases

expected shortfall, without increasing semi-variance, for some threshold levels.

For example, we have Eλ(1.1) = 0.077 > 0.067 = Eτ (1.1), but S2λ(1.1) = 0.009 <

0.013 = S2τ (1.1). MV dominance also does not occur, because the enhanced

portfolio has a higher variance than the benchmark for every z ≥ 1.34.

3 Super-Convex TSD

The SSD criterion (2) is formulated using a �nite number of threshold levels,

because Eλ(ys) ≤ Eτ (ys), s = 1, · · · , T, implies Eλ(x) ≤ Eτ (x) for all x ∈ X , due
to the convex and piecewise-linear shape of expected shortfall. By contrast, the

TSD criterion (5) requires the evaluation of S2λ(x) at a continuum of threshold

levels x ∈ X .
Following Bawa et al. (1985), our analysis uses a tight su�cient condition

for TSD that is based on a discretization of the return range X . Our default

speci�cation sets the threshold values equal to the realizations of benchmark:

x = ys, s = 1, · · · , T , just as in formulation (2) of SSD. The su�cient condition

requires minimum levels of slack for the semi-variance inequalities (5) at these

threshold levels. We pay special attention to the tolerance parameters that

control the minimum slack levels.

More speci�cally, we re�ne the de�nition of Bawa et al. (1985, Section C.2)

in the following way:

De�nition 3.1: Let εs ≥ 0, s = 1, ..., T , a series of data-dependent tolerance

parameters that are de�ned as ε1 := −1, ε2 := 0 and

εs :=

(
S2τ (ys)

S2τ (ys−1) + 2Eτ (ys−1)(ys − ys−1)
− 1

)
, s = 3, · · · , T. (7)

Portfolio λ ∈ Λ dominates the benchmark τ ∈ Λ by super-convex third-degree

stochastic dominance (SCTSD), or λ �SCTSD τ , if
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(1 + εs)S2λ(ys) ≤ S2τ (ys), s = 1, · · · , T ; (8)

1

T

T∑
t=1

XT
t λ ≥

1

T

T∑
t=1

yt.

Some remarks on terminology seem in order. Bawa et al. (1985) use the

term `super-convex' to indicate that their dominance condition is stronger than

Fishburn's (1974) condition of `convex stochastic dominance'. In turn, convex

TSD is stronger than pairwise TSD, at least for the analysis of a discrete choice

set. For our analysis, which uses a convex portfolio possibility set Λ, convex TSD

is equivalent to pairwise TSD by some feasible portfolio λ ∈ Λ. Nevertheless,

super-convex TSD is stronger than pairwise TSD.

How does our de�nition di�er from the original de�nition of SCTSD? Bawa

et al. (1985, Section C.2) use the same value for all tolerance parameters, or

εs = ε, s = 1, ..., T , where the value of ε is selected to ensure (1 + ε)S2τ (ys) ≥
S2τ (ys+1), s = 1, ..., T − 1. By contrast, our re�nement uses a di�erent value for

every tolerance, depending on the expected shortfall and semi-variance for the

relevant threshold level. Our restrictions give a tighter su�cient condition for

TSD and can achieve a given level of accuracy using a rougher partition and

hence a smaller problem size. One (trivial) manifestation of the improvements

is that the semi-variance restriction for s = 1 becomes redundant and can be

dropped, as (ε1 = −1)⇒
(
(1 + ε1)S2λ(y1) = 0 ≤ S2τ (y1)

)
.

The following result tightens Theorem 7 of Bawa et al. (1985, p. 425):

Proposition 3.1: If portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by SCTSD,

then λ also dominates τ by TSD: (λ �SCTSD τ )⇒ (λ �TSD τ ) .

Proof: We need to show that the SCTSD conditions imply S2λ(x) ≤ S2τ (x)

for all threshold levels x ∈ X . We provide a separate analysis for various sub-

intervals of X .

First, consider x ∈ [a,y2]. We �nd S2τ (x) =

0 x ≤ y1

(x− y1)2 y1 < x ≤ y2

,

which has a minimal slope and curvature. If S2λ(z) > S2τ (z) for some z ∈ [a,y2),

then the slope and curvature of S2λ(x) must be at least as high as that of S2τ (x)

for all x ∈ [z,y2) and hence S2λ(y2) > S2τ (y2). Consequently, the SCTSD

restriction S2λ(y2) ≤ S2τ (y2) su�ces to ensure S2λ(x) ≤ S2τ (x) for all x ∈ [a,y2].
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Next, consider x ∈
(
ys−1,ys

]
for any s = 3, · · · , T. Consider the linear line

t(x) := S2τ (ys−1) + 2Eτ (ys−1)(x − ys−1). The crux of the proof is that, under

the SCTSD conditions, S2λ(x) ≤ t(x) ≤ S2τ (x) for all x ∈
(
ys−1,ys

]
. Since(

∂S2τ (x)/∂x
)

= 2Eτ (x), it follows that t(x) is the tangency line at ys−1. Since

S2τ (x) is convex, the tangency line supports S2τ (x) from below. Furthermore,

given εs−1 > 0, (8) implies S2λ(ys−1) ≤ S2τ (ys−1) = t(ys−1), and, given (7), (8)

also implies S2λ(ys) ≤ S2τ (ys−1) + 2Eτ (ys−1)(ys − ys−1) = t(ys). Since S2λ(x)

is convex, and t(x) is linear, the combined results that S2λ(ys−1) ≤ t(ys−1) and

S2λ(ys) ≤ t(ys) imply that t(x) envelops S2λ(x) from above on the entire interval.

Finally, consider x ∈ (yT , b]. εT > 0 and (8) imply that S2λ(yT ) ≤ S2τ (yT ).

The SCTSD condition on the means 1
T

∑T
t=1X

T
t λ ≥ 1

T

∑T
t=1 yt can be rewrit-

ten as
(
∂S2λ(x)/∂x

)
≤
(
∂S2τ (x)/∂x

)
for all x ∈ (yT , b]. Hence, S2λ(yT )−S2τ (yT )

cannot increase and must remain non-positive on x ∈ (yT , b].�

SCTSD is intended as an approximation to TSD rather than as an alternative

SD criterion. In fact, SCTSD is not a pre-order as it does not obey re�exiv-

ity, as λ �SCTSD λ for all λ ∈ Λ. SCTSD does however obey transitivity:

(λ1 �SCTSD τ )∧ (λ2 �SCTSD λ1)⇒ (λ2 �SCTSD τ ).

In empirical applications with long time-series, our default speci�cation for

the threshold values, x = ys, s = 1, · · · , T , generally yields a tight approxima-

tion. It is however possible to further tighten the SCTSD condition by re�ning

the discretization of the return range X . Such re�nements are particularly

useful if the return distribution is sparse in the tails. To reduce the computa-

tional burden, one may also consider lessening the partition, for threshold levels

x = ys, 1 � s � T, in the center of the support, where the data tend to be

dense and S2λ(ys) ≈ S2λ(ys−1) for every λ ∈ Λ.

Figure 1 illustrates our approach using the historical distribution of daily

excess returns to the benchmark index used in our application from January 1

through December 31, 2013, our most recent formation period. The solid line

gives the semi-variance of the benchmark as a function of the threshold level.

The dotted line in Panel A represents the approximation of Bawa et al.

(1985) using a partition based on the T = 252 daily observations. This ap-

proximation in e�ect multiplies the original semi-variance levels by a factor of

(1 + ε)−1 ≈ 0.40. We can establish TSD if the semi-variance of an enhanced

portfolio lies below this line for all threshold levels. The approximation is poor

due to the sparsity of data in the left tail, where the semi-variance makes rel-

atively large jumps, leading to a relatively high value of ε ≈ 1.48. In order
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to lower ε, we would have to re�ne the partition and increase the number of

constraints.

The dotted line in Panel B gives the approximation based on our tolerance

speci�cation (7). This approach in e�ect uses a piecewise-linear lower envelope

for the semi-variance function based on local linear approximation. Using this

approach, SCTSD and TSD are hardly distinguishable. A modest deviation

occurs in the right tail, where the data is sparse and the curvature of the semi-

variance function is highest. It is easy to iron out this wrinkle by adding a few

additional threshold values between 1.5 and 2.5 percentage points.

[Insert Figure 1 about here.]

4 QCP formulation

The binary variables I(XT
t λ ≤ x), t = 1, · · · , T , in the de�nition of S2λ(x)

form another complication for optimization. We can however compute S2λ(x)

for a given threshold level x ∈ X without binary variables using the following

linearly constrained convex quadratic minimization problem in the spirit of the

LP problem for CVaR of Rockafellar and Uryasev (2000):

S2λ(x) = min
θ

(
1

T

T∑
t=1

θ2t

)
(9)

θt ≥ x−XT
t λ, t = 1, · · · , T ;

θt ≥ 0, t = 1, · · · , T.

We can apply this quadratic formulation to every semi-variance level S2λ(ys),

s = 1, · · · , T , in our SCTSD conditions (8). For this purpose, we introduce the

model variables θs,t, s = 1, · · · , T ; t = 1, · · · , T . We can identify an SCTSD

enhanced portfolio (as de�ned in De�nition 3.1) as a solution to the following

system of linear and quadratic constraints:
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(1 + εs)

(
1

T

T∑
t=1

θ2s,t

)
≤ S2τ (ys), s = 1, · · · , T ; (10)

−θs,t −XT
t λ ≤ −ys, s = 1, · · · , T ; t = 1, · · · , T ;

− 1

T

T∑
t=1

XT
t λ ≤ −

1

T

T∑
t=1

yt;

1T
Kλ = 1;

θs,t ≥ 0, s = 1, · · · , T ; t = 1, · · · , T ;

λk ≥ 0, k = 1, · · · ,K.

Any feasible solution λ∗ to system (10) dominates the benchmark portfolio τ

by SCTSD (and hence by TSD).

The system involves (T 2+K) variables and (T 2+T+2) constraints, excluding

(T 2 + K) non-negativity constraints. The T quadratic inequality constraints

are convex, re�ecting that semi-variance is a convex function of the portfolio

weights. The convexity of the constraints in the weights implies that the set of

SCTSD enhanced portfolios, albeit not polyhedral, is convex, as expected.

To �nd an SCTSD enhanced solution, we can develop mathematical pro-

gramming problems that optimize an objective function given these constraints.

Examples of objective functions that are consistent with the TSD criterion are

maximizing the expected portfolio return and minimizing the portfolio semi-

variance for a given threshold level. These objective functions are convex func-

tions of the portfolio weights, and hence we end up with a convex quadratic

constrained programming (QCP) problem.

We may ask whether the enhanced portfolio is e�cient in the sense that

it is not possible to further improve any of the relevant performance criteria

without worsening other criteria. The solution will be e�cient if the objective

function assigns a strictly positive weight to the mean and a strictly negative

weight to all relevant semi-variance levels. By contrast, ine�ciency may occur

if the objective function assigns a zero weight to some of the criteria. In this

case, we may de�ne a secondary objective function that covers all criteria and

solve a second problem that optimizes the secondary objective function given

the SCTSD constraints and the optimal value of the primary objective function.

Kopa and Post (2015, Section 5) show how to specify criterion weights for an

arbitrary given utility function.
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5 Problem reduction

Practical applications may involve hundreds of (historical or simulated) sce-

narios and, in these cases, the raw QCP problem would involve tens or hundreds

of thousands of variables and constraints. To solve the problem without high-

performance computing, some sort of problem reduction seems desirable in order

to reduce the memory requirements and run time.

The problem dimensions re�ect the number of binary variables, I(XT
t λ ≤

ys), t = 1, · · · , T ; s = 1, · · · , T , used to compute all relevant semi-variance

levels S2λ(ys), s = 1, · · · , T , for a given portfolio λ ∈ Λ. The variables θs,t,

t = 1, · · · , T ; s = 1, · · · , T , and constraints −θs,t −XT
t λ ≤ −ys, t = 1, · · · , T ;

s = 1, · · · , T , endogenize the binary variables for all scenarios and thresholds.

However, using a preliminary analysis, we can establish unambiguously whether

I(XT
t λ

∗ ≤ ys) = 0 or I(XT
t λ

∗ ≤ ys) = 1 for many, if not most, scenarios and

thresholds for all solutions λ∗ to system (10). Fixing the values of the binary

variables for these scenarios and thresholds leads to a potentially large reduction

of the number of variables and constraints.

By construction, a solution λ∗ must have a higher mean and a higher min-

imum than the benchmark. Consequently, the solution is an element of the

following convex polytope:

K :=

{
λ∈Λ :

(
1

T

T∑
t=1

XT
t λ

)
≥

(
1

T

T∑
t=1

yt

)
;XT

1 λ ≥ y1

}
. (11)

We may identify the V vertices of Κ using the vertex enumeration algorithm

by Avis and Fukuda (1992), label the corresponding portfolio weights as νi, i =

1, · · · , V , and the investment returns as Zi,t := XT
t νi, t = 1, · · · , T . Clearly,

an optimal solution for θs,t is θ
∗
s,t = max

(
ys −X

T
t λ
∗, 0
)
, s = 1, · · · , T ; t =

1, · · · , T . Since λ∗ ∈ Κ, it follows that (mini Zi,t) ≤ XT
t λ
∗ ≤ (maxi Zi,t),

t = 1, · · · , T .
De�ne the following three index sets to partition T := {1, · · · , T} for any

given s = 1, · · · , T :
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T −s :=

{
t ∈ {1, · · · , T} :

(
min

i=1,··· ,V
Zi,t

)
≥ ys

}
; (12)

T 0
s :=

{
t ∈ {1, · · · , T} :

(
min

i=1,··· ,V
Zi,t

)
< ys <

(
max

i=1,··· ,V
Zi,t

)}
; (13)

T +
s :=

{
t ∈ {1, · · · , T} :

(
max

i=1,··· ,V
Zi,t

)
≤ ys

}
. (14)

Combining θ∗s,t = max
(
ys −X

T
t λ
∗, 0
)
, s = 1, · · · , T ; t = 1, · · · , T , and

(mini Zi,t) ≤XT
t λ
∗ ≤ (maxi Zi,t), t = 1, · · · , T , we �nd

θ∗s,t = 0 ∀s, t : t ∈ T −s ; (15)

θ∗s,t = ys −X
T
t λ
∗ ∀s, t : t ∈ T +

s . (16)

Importantly, T −s and T +
s , s = 1, · · · , T , do not depend on the composition

of λ∗ and these sets can therefore be determined prior to the optimization.

Substituting the optimal solutions (15)-(16) in (10), we arrive at the following

reduced system:

(1 + εs)
1

T

∑
t∈T 0

s

θ2s,t +
∑
t∈T +

s

(
ys −X

T
t λ
)2 ≤ S2τ (ys), s = 1, · · · , T ; (17)

−θs,t −XT
t λ ≤ −ys, s = 1, · · · , T ; t∈ T 0

s ;

− 1

T

T∑
t=1

XT
t λ ≤ −

1

T

T∑
t=1

yt;

1T
Kλ = 1;

θs,t ≥ 0, s = 1, · · · , T ; t∈ T 0
s ;

λk ≥ 0, k = 1, · · · ,K.

The number of model variables falls from (T 2 + K) to (
∑T
s=1 card(T 0

s ) +

K) and the number of constraints (excluding non-negativity constraints) from

(T 2 + T + 2) to (
∑T
s=1 card(T 0

s ) + T + 2). In case of a positive correlation

between the base assets, we �nd card(T 0
s ) � T for the bulk of the threshold

levels, s = 1, · · · , T , which signi�cantly reduces the problem size.

The application in the next section illustrates the magnitude of the potential
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problem reduction. We construct enhanced portfolios in a situation withK = 49

and, in a typical formation period, T ≥ 250. For T = 250, system (10) has more

than 62, 500 variables and 62, 500 constraints. By comparison, the reduced

system (17) typically has less than 15,625 variables and 15,625 constraints.

Our computations are performed on a desktop PC with a quad-core Intel i7

processor with 2.93 GHz clock speed and 16GB of RAM and using the IPOPT

3.12.3 solver in GAMS. The median run time (using the reduced system (17))

was about four minutes per formation period.

6 Industry momentum strategy

We implement an industry momentum strategy in the spirit of Moskowitz

and Grinblatt (1999) and Hodder, Kolokolova and Jackwerth (2015) and com-

pare the performance improvements from portfolio optimization based on the

decision criteria of MV dominance, SSD and SCTSD.

The benchmark is the all-share index from the Center for Research in Secu-

rity Prices (CRSP) at the Booth School of Business at the University of Chicago,

a value-weighted average of common stocks listed on the NYSE, AMEX, and

NASDAQ stock exchanges. The base assets are 49 value-weighted stock port-

folios that are formed based on the four-digit Standard Industrial Classi�cation

(SIC) code of individual stocks (K = 49). Since the base assets include only

long positions, we do not allow for short sales. Our strategy will therefore rely

on buying recent winner industries rather than selling recent loser industries.

The joint return distribution is forecast using the empirical distribution in

a moving window of historical returns. Our data set consists of daily excess

returns from January 3, 1927, through December 31, 2014. We analyze returns

in excess of the daily yield to the one-month US government bond index. The

nominal returns are from Kenneth French' online data library and the Treasury

yields from Ibbotson and Associates. At the start of every quarter from 1928Q1

through 2014Q1, we form four di�erent enhanced portfolios based on the excess

returns in a trailing 12-month window. The typical window includes more than

250 trading days (T ≥ 250).

The �rst enhanced portfolio is based on a heuristic rule. It is an equal-

weighted combination of the 15 industries with the highest average return among

the 49 industries. This portfolio captures a large part of the industry momen-

tum e�ect by simply buying recent winner industries in equal proportion. In

addition, it is well-diversi�ed and hence will show a comparable risk level as the
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benchmark and a relatively high robustness to sampling variation. The other

three enhanced portfolios are constructed through optimization. The objective

is to maximize the mean subject to the restriction that the enhanced portfolio

dominates the benchmark by a given decision criterion (MV dominance, SSD

or SCTSD).

The choice for a 12-month formation period and a three-month holding pe-

riod is motivated by earlier studies of industry momentum. Moskowitz and

Grinblatt (1999, Table III) show that buying winner industries is most pro�table

for an intermediate formation window and a short holding period. Since we do

not allow for short selling, we can ignore the fact that selling loser industries

works better for a short formation period. Furthermore, industry momentum

strategies can use shorter holding periods than stock momentum strategies, be-

cause industries, in contrast to individual stocks, do not show short-term price

reversals.

The �ip side of using an intermediate formation period is a high sensitivity

to sampling variation. We may therefore expect that out-of-sample performance

is signi�cantly worse than in-sample performance. Furthermore, using a short

holding period generates substantial portfolio turnover and, consequently, trans-

actions costs will consume away part of the outperformance (depending on the

available trading facilities). Unfortunately, signi�cant increases of the length of

the formation period and holding period reduce the strength of the momentum

signal.

We report in-sample performance and out-of-sample performance for N = 87

annual non-overlapping evaluation periods from January 1 through December 31

in every year from 1928 through 2014. For in-sample performance, the evalua-

tion period coincides with the formation period; for out-of-sample performance,

the evaluation period consists of four consecutive three-month holding periods,

each of which starts at the end of a 12-month formation period. By construc-

tion, out-of-sample analysis is not possible for the �rst year, 1927. For the sake

of comparability, our in-sample evaluation also excludes 1927.

Clearly, the in-sample results are based on hindsight and the out-of-sample

results are more relevant for portfolio managers. The in-sample results are

used here to illustrate the features of our TSD optimization method and the

di�erences between the various decision criteria.

Performance summary

Table I summarizes the performance of the market index (`Bench'), the
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heuristic portfolio (`Top15') and the three optimized portfolios (MV, SSD and

SCTSD). Also shown is a decomposition of the outperformance (SCTSD-minus-

Bench) into components of (Top15-minus-Bench), (MV-minus-Top15), (SSD-

minus-MV) and (SCTSD-minus-SSD). The �rst three columns show the average,

across all N = 87 formation periods, of the sample mean (X), standard devi-

ation (sX) and skewness (skX) of daily returns. The next two columns show

the average annual in-sample return together with the associated t-statistic

tX = X/(sX/
√
N). The �nal two columns show the average annual return in

the evaluation period and its t-statistic.

The t-statistics are reported here as measures of statistical signi�cance. We

may compute the Sharpe ratio by dividing the t-statistic of (X − XBond) by

a factor of
√
N . Similarly, we may compute the information ratio by dividing

the t-statistic of (X −XBench) by
√
N . The usual interpretation of these ratios

however does not apply here, as it is not possible to `scale' the enhanced portfolio

without violating the constraints on short sales and benchmark risk. In addition,

the ratios do not penalize negative skewness and reward positive skewness.

We measure outperformance using the spread (X−XBench) rather than the

residual of a risk factor model. The market betas of the enhanced portfolios are

substantially smaller than 1, due to the bechmark risk constraints. In addition,

the exposures to the Fama and French (1996) size factor (`SMB') and value

factor (`HML') are small, due to the dynamic nature of our strategy and the

diversi�ed nature of the industry portfolios. Indeed, the `three-factor alpha' of

the portfolios is larger than (X̄ − X̄Bench). Even the exposures to the Carhart

(1997) momentum factor (`MOM') are limited, because our strategy relies on

industry-level rather than stock-level momentum and on buying winners rather

than selling losers.

The average annual excess return to the benchmark is 8.16% in our sample

period. The negative skewness of daily returns re�ects elevated correlation

between stocks during market downswings. Skewness lovers will dislike this

unintended side-e�ect of broad diversi�cation.

The Top15 portfolio outperforms the benchmark by 21.00% per annum in the

formation period and by 4.50% in the evaluation period. Further performance

improvements can be achieved by assigning higher weights to the best perform-

ing industries. It is however not possible to form an equal-weighted combination

of a smaller number of industries without exceeding the benchmark risk levels.

The optimization methods select the weights by maximizing the mean subject

to explicit benchmark risk constraints.
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The MV approach requires that the enhanced portfolio does not exceed the

variance of the benchmark. Relative to the Top15 strategy, the optimal solu-

tion increases the annual mean by 12.37% in-sample and 1.88% out-of-sample.

Although the MV portfolio achieves the best return-to-variability ratio, its neg-

ative skewness suggests that further return enhancement is possible without

exceeding the downside risk levels of the benchmark.

The SSD approach imposes restrictions on expected shortfall rather than

variance. Although the return-to-variability deteriorates, the mean and skew-

ness of daily returns improve. These improvements are achieved by a stronger

concentration in the best-performing industries. Compared with the MV strat-

egy, the average annual return increases by 1.15% in-sample and 0.24% out-of-

sample.

The SCTSD constraints on semi-variance are less restrictive than the SSD

constraints on expected shortfall. Although the resulting portfolio is often sim-

ilar to the SSD portfolio, the di�erences systematically lead to further improve-

ments of the mean and skewness of daily returns. The average annual return

increases by an additional 1.04% in-sample and 0.19% out-of-sample. The re-

turn spread (SCTSD-MV) is almost twice as high on average and less volatile

than the spread (SSD-MV).

Not surprisingly, the incremental e�ect of the above strategy re�nements is

diminishing. The largest improvement stems from simply buying the highest-

yielding base assets using a proper formation period and holding period. Op-

timization with benchmark risk constraints further enhances return for a given

risk level. Replacing variance with decision-theoretical risk measures is the icing

on the cake. The combined e�ect of these re�nements is that the SCTSD port-

folio outperforms the benchmark by 35.56% per annum in-sample and 6.81%

out-of-sample.

[Insert Table I about here.]

Close-up of 2013

Figure 2 illustrates the di�erences between the three optimized portfolios

using the empirical distribution of daily returns in the last formation period,

January 1 through December 31, 2013. Panel A shows the achieved reduction in

expected shortfall relative to the benchmark (Eτ (x) − Eλ(x)) for every thresh-

old level x; similarly, Panel B shows the achieved reduction in semi-variance
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(S2τ (x)− S2λ(x)).

In this formation period, the MV portfolio dominates the benchmark by

SSD and TSD, as it reduces expected shortfall and semi-variance for all x. The

portfolio enhances the full-year return by 12.92%. The variance constraint is

binding, that is, the MV portfolio has the same variance level as the benchmark.

Due to the negative skewness of the benchmark, this constraint is however not

required for managing downside risk.

The SSD portfolio increases the full-year return by a further 4.20%. The

restriction on expected shortfall is binding for x ≈ −0.5. Since SSD is a su�-

cient condition for TSD, the portfolio also reduces the semi-variance for all x.

Nevertheless, further return enhancements seem possible for all skewness lovers,

because the TSD restrictions are not binding for the SSD portfolio.

Indeed, the SCTSD portfolio raises the full-year return by another 1.01%.

The portfolio does not dominate the benchmark by MV dominance, as it has a

higher standard deviation. SSD also does not occur, as the portfolio violates the

expected shortfall constraint for roughly x ∈ [−0.7, 0.2]. However, the portfolio

does reduce the semi-variance for all x and hence it dominates the benchmark

by TSD.

In the year 2014, all three portfolios, formed using 2013 data, continue to

outperform the benchmark. The realized annual return of the MV, SSD and

SCTSD portfolios exceeds that of the benchmark by 6.43%, 7.51% and 7.61%,

respectively.

[Insert Figure 2 about here.]

Cumulative performance

Figure 3 illustrates the cumulative performance of the three optimization

strategies for the entire sample period from 1928 through 2014. Shown is the

relative value of each enhanced portfolio, or the ratio of cumulative gross return

of the portfolio to the cumulative gross return of the benchmark. Not surpris-

ingly, the return enhancements of six to seven percent per annum translates into

exponential value growth over time. In 2014, after 87 years, the MV portfolio is

127.38 times more valuable than the benchmark. The SCTSD portfolio shows

the strongest value growth and exceeds the benchmark by a factor of 171.58 in

2014. The benchmark risk of these strategies manifests itself during `momen-

tum crashes', such as the prolonged period of underperformance during the late
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1980s and early 1990s. Nevertheless, the SCTSD portfolio leads the other two

portfolios during the entire 87-year period. In addition, its relative performance

improves in recent years, after the momentum crash of 1998. The maximum

drawdown of the SCTSD portfolio in this sample period is only 36.6%, which is

much lower than the maximum drawdown of 68.8% for the benchmark.

[Insert Figure 3 about here.]

7 Conclusions

Our application illustrates the potential improvements from portfolio op-

timization based on TSD instead of MV dominance or SSD. Benchmark risk

restrictions on semi-variance allow for a higher mean and skewness than restric-

tions on variance or expected shortfall. These improvements re�ect that con-

centration in recent winner industries creates positive skewness, whereas broad

diversi�cation creates negative skewness. The improvements increase the appeal

of portfolio construction based on decision theory and optimization compared

with heuristic rules.

Despite the pleasing out-of-sample performance in this application, further

improvements may come from better forecasts for the joint return distribution

during the holding period. For example, conditioning on the business cycle and

market conditions could help to mitigate crashes of the momentum strategy.

Another approach combines the historical returns in the formation period with

a prior view about the e�ciency of the benchmark index to derive a Bayesian

posterior distribution. Our method can be applied to random samples from any

given parametric probability distribution or dynamic process. Narrowing the

cross-section (K) and lengthening the formation period (T ) may also help to

reduce forecast error, but this e�ect has to be balanced against a possible loss

of portfolio breadth and signal strength.

Robust optimization methods can reduce the sensitivity to (inevitable) fore-

cast error. The tolerances εs, s = 1, ..., T , in (8) seem particularly useful for

this purpose. We have tuned these parameters for the exact de�nition of dom-

inance. Using higher tolerance values can reduce the risk of detecting spurious

dominance patterns. Reversely, lower values can reduce the risk of overlooking

dominance relations that are obscured by forecast error.
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Future research could focus on portfolio optimization based on decreasing

absolute risk aversion stochastic dominance (DARA SD; Vickson's (1975, 1977)

and Bawa (1975)), arguably the most appealing of all SD criteria. TSD is a

su�cient but not necessary condition for DARA SD, suggesting further im-

provement possibilities for investment performance. For base assets with a lim-

ited return range X and/or with comparable means, the two criteria are often

indistinguishable. However, Basso and Pianca (1997) demonstrate that the dis-

tinction is important for derivative securities and Post, Fang and Kopa (2015)

report important consequences for small-cap stocks. It seems possible to formu-

late DARA SD optimization as a large convex programming problem, but the

implementation currently seems elusive without high-performance computing.
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Table I: Performance summary

Shown are summary statistics for the investment performance of 5 portfolios.
The benchmark (`Bench') is the CRSP all-share index. The heurististic `Top15'
portfolio is an equal-weighted combination of the 15 industries with the highest
average return among the 49 industries. The remaining portfolios are formed
by maximizing the mean subject to a benchmark risk restriction. The MV
portfolio has a lower variance than the benchmark; the SSD portfolio obeys
the expected shortfall restrictions (2); the SCTSD portfolio obeys the semi-
variance restrictions (5). The enhanced portfolios are formed at the beginning
of every quarter based on a trailing 12-month window of daily excess returns.
We evaluate the 5 portfolios in N = 87 non-overlapping periods from January
1 through December 31 in every year from 1928 through 2014. The top rows
analyze returns in excess of the Treasury yield (`Bond'). The bottom row show
a decomposition of the outperformance (SCTSD-minus-Bench) into components
of (Top15-minus-Bench), (MV-minus-Top15), (SSD-minus-MV) and (SCTSD-
minus-SSD). The �rst three columns show the average, across all N periods,
of the sample mean (X), standard deviation (sX) and skewness (skX) of daily
returns. The next two columns show the average annual return in the formation
period together with the associated t-statistic tX = X/(sX/

√
N). The �nal

two columns show the average annual return in the evaluation period and its
t-statistic.

In-sample Out-of-sample

Daily Annual Annual

X
(
X̄
)

(sX) (skX) X̄ tX X̄ tX
XBench −XBond 0.028 0.943 -0.325 8.16 3.70 8.16 3.70

XTop15 −XBond 0.091 0.981 -0.434 29.17 8.41 12.66 4.84

XMV −XBond 0.128 0.923 -0.253 41.54 15.21 14.55 6.33

XSSD −XBond 0.131 0.965 -0.019 42.69 15.12 14.79 6.18

XSCTSD −XBond 0.134 0.984 0.032 43.73 15.17 14.98 6.19

XTop15 −XBench 0.063 0.352 -0.059 21.00 10.03 4.50 4.58

XMV −XTop15 0.038 0.553 0.150 12.37 7.13 1.88 1.65

XSSD −XMV 0.003 0.213 0.353 1.15 2.22 0.24 0.42

XSCTSD −XSSD 0.003 0.080 0.183 1.04 6.40 0.19 0.88

XSCTSD −XBench 0.106 0.662 0.400 35.56 18.63 6.81 4.58
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Figure 1: Re�nement of the SCTSD condition

Shown are two alternative SCTSD approximations. The solid line in both pan-
els represents the semi-variance of the benchmark index as a function of the
threshold return in percentage points (%). The �gure is based on the daily ex-
cess returns in the formation period from January 1 through December 31, 2013
(T = 252). The dotted line in Panel A represents the approximation of Bawa
et al. (1985) using a partition based on the 252 daily observations. The dotted
line in Panel B gives the approximation based on our tolerance speci�cation (7).

24



Figure 2: Risk pro�les of optimized portfolios

Shown are the risk pro�les of the three optimized portfolios (MV, SSD and
SCTSD) based on the empirical distribution of daily excess returns in the for-
mation period from January 1 through December 31, 2013. Panel A shows
the reduction in expected shortfall (Eτ (x)− Eλ(x)) for every threshold level x;
similarly, Panel B shows the reduction in semi-variance (S2τ (x) − S2λ(x)). The
returns are in percentage points (%)
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Figure 3: Cumulative performance

Shown is, for each of the three optimized portfolios (MV, SSD, SCTSD), the
development of the relative portfolio value over the entire sample period from
1928 through 2014. We measure the relative value as the ratio of cumulative
gross return of the enhanced portfolio to the cumulative gross return of the
benchmark index. For example, a ratio of 100 in a given year means that the
enhanced portfolio has become 100 times more valuable than the benchmark
since January 1, 1928. The graph uses a logarithmic scale.
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