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Abstract: Estimation of polynomial regression equations in one error-ridden variable and a number
of error-free regressors, as well as an instrument set for the former is considered. Procedures for iden-
tification, operating on moments up to a certain order, are elaborated for single- and multi-equation
models. Weak distributional assumptions are made for the error and the latent regressor. Simple order-
conditions are derived, and procedures involving recursive identification of the moments of the regressor
and its measurement errors together with the coefficients of the polynomials are considered. A Gener-
alized Method of Moments (GMM) algorithm involving the instruments and proceeding stepwise from
the identification procedures, is presented. An illustration for systems of linear, quadratic and cubic
Engel functions, with household consumption and income data is given.
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1 Introduction

Estimation of linear regression models with measurement errors (errors in variables, EIV)

by using instrumental variables (IV) is discussed in almost any econometric textbook.

However, several applications, especially in micro-econometrics, call for more flexible

functional forms. Polynomial models with additive errors is one answer. Examples are

quadratic or cubic Engel functions with error in the income measure, and quadratic

or translog factor cost functions, where output and some input prices may be error-

contaminated. Imposing, for example, linearity of Engel functions, as in Aasness et

al. (1993, 2003) and Satorra (2002), may inadequately represent the data. Polynomial

specifications can be used for testing linearity against low-order polynomials.

Polynomial, usually quadratic, EIV models, often under restrictive distributional as-

sumptions, are discussed in Wolter and Fuller (1982), Montfort et al. (1987), Hausman et

al. (1991, 1995), Carroll et al. (2006, sections 4.7.1, 4.9.2 and Appendix B.3.2), Moon and

Gunst (1995), Cheng and Schneeweiss (1998), Wansbeek and Meijer (2000, section 11.2),

and Kuha and Temple (2003). Depending on the strictness of the distributional assump-

tions, identification may be possible without access to valid IVs for the error-ridden

variable, as exemplified by Cheng and Schneeweiss (1998) and Kuha and Temple (2003).

Identification and estimation of linear EIV models exploiting moments of order higher

than two are discussed in Lewbel (1997), Dagenais and Dagenais (1997), and Erickson

and Whited (2002). Inference problems related to general non-linear specifications are

considered in Newey (2001), Schennach (2004, 2007) and Hu and Schennach (2008). Of

relevance is also the literature on non-linear (in variables) two-stage least squares; see,

e.g., Amemiya (1974; 1983, Section 5.1). For estimation of quadratic equations, moments

of the observable variables of order at least four are needed. A more general question

concerns the relationship between the polynomial order and the required moment order

of the observable variables.

In this paper we reconsider identification and estimation of polynomial EIV models

from moments of observable variables when imposing and not imposing strong distribu-

tional assumptions on the latent structural variables and the errors, but including IVs,

whose relation to the latent regressor is formalized by linear equations. This resem-

bles the setup in classical factor analysis. The structure of the identification problem

motivates procedures for moment-based estimation of the coefficients of the polynomial

and the measurement equations along with the moments of the latent regressor and the

measurement errors. It is shown how under exact identification the identifying condi-

tions can be established by recursions, from which there is a short way to estimation

procedures, while in cases of overidentification simple methods of moments estimators

can be extended to Generalized Method of Moments (GMM) procedures.

The identification conditions and the estimation procedures they motivate will involve

origo moments of the latent structural variables, the errors, and the observable variables.

High-order moments will often be involved. Since it is well known that, in particular

in the absence of further restrictions on the variables’ distribution, e.g., symmetry or

normality, such moments tend to be numerically unstable for realistic sample sizes, high-
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order polynomial models have been argued to have limited practical interest.1

The approach in this paper has similarities with that of Hausman et al. (1991, 1995).

A notable discrepancy is that the measurement equations are specified with multiple

indicators, resembling the format in classical factor analysis. We give order-conditions

that ensure identification of the coefficients together with the moments of the latent

regressor and of the measurement errors, and show how the identification status of the

polynomial’s coefficients depends on its order, the order of the moments of the observable

variables exploited, and the number of IVs for the latent regressor. An extension to

handle polynomial equation systems is considered.

The paper proceeds as follows. Section 2 formulates a one-equation polynomial model

in one latent variable and a recursive procedure for identification is described. Section 3

modifies the procedure when including error-free regressors. Section 4 further extends to

a model of a system of such equations. Estimation procedures utilizing a block-recursive

organization of the moment equations are discussed in Section 5, with reference to a

five-equation system of cubic equations. The latter is supplemented by an application

to Engel functions. Concluding remarks follow in Section 6.

2 Baseline model

2.1 Basic assumptions

Consider an Ith-order polynomial in the latent variable ξ:

Y = α +
∑I

i=1 ξ
iβi + u,(1)

X = ξ + v,(2)

where α, β1, . . . , βI are unknown constants, Y and X are observable variables, u is a

disturbance and v is the measurement error, specifying the model for one generic obser-

vation, suppressing the observation subscript. All moments of ξ up to a suitable order

are assumed to exist, all observations are independent. In addition J indicators of ξ,

Q1, . . . , QJ , exist, related to ξ by J measurement equations :

(3) Qj = aj + ξbj + wj , j = 1, . . . , J,

where aj , bj are constants and (w1, . . . , wJ) are disturbances.

This resembles the setup in factor analysis; see Harman (1976). While (1)–(3) take

ξ as a common latent factor in Y , X , Q1, . . . , QJ , treating ξ as exogenous and X ,

Y and Q1, . . . , QJ as jointly endogenous,2 Hausman et al. (1991), see their Equation

(3.3), adopt the single equation formulation, whose counterpart to (3) has the form

ξ = a∗+
∑J

j=1 b
∗

jQj + w, where a∗ and b∗j are constants, which, if v is stochastically

independent of all wj, implies a block-recursive structure from (Q1, . . . , QJ), via ξ to X

1Wansbeek and Meijer (2000, pp. 342-343) for example assert that since “the order of the moments that have to be
fitted increases with the degree of the polynomial, and huge samples are needed to obtain relatively stable estimators of
the parameters based on fitting higher-order moments. In most situations occurring in practice, it will not be possible to
obtain useful estimators of polynomials higher than second or third degree”.

2If the relationship between ξ and its IVs has unknown form, (3) may be interpreted as projections, rather than as
representing a structure with some permanence.
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and Y . To fix ideas, (1)–(2) may represent a polynomial Engel function model in latent

income ξ, X being an indicator of income and (Q1, . . . , QJ) variables related to ξ, e.g.,

taxable income, net wealth and its components, indicators of human capital, ability, etc.

We assume that u, v and ξ have moments up to a sufficiently high order and that3

(4) E(u) = E(v) = E(w1) = · · · = E(wJ) = 0, ξ ⊥ u ⊥ v ⊥ (w1, . . . , wJ),

with ⊥ denoting stochastic independence. Assumptions (2)–(4) imply

(5) Qj = aj +Xbj + wj − vbj , j = 1, . . . , J.

Utilizing (ξ+v)g≡
∑g

r=0

(
g
r

)
ξrvg−r, the following notation for moments is convenient

Cg ≡ E(ξg), λg ≡ E(vg),(6)

Fg ≡ E(Y ξg) = Cgα +
∑I

i=1Ci+gβi,(7)

Hgh ≡ E(Xgξh) =
∑g

r=0

(
g
r

)
Ch+rλg−r.(8)

In particular, C0=H00=λ0=1, λ1=0, and

F0 = E(Y )=α+
∑I

i=1Ciβi,
F1 = E(Y X) = C1α+

∑I
i=1Ci+1βi.

2.2 Moments of observable variables

We first express moments of the observable variables by the moments of ξ and v, and

the coefficients. From (1)–(4) and (6)–(8) it follows that

(9)
E(Qj) = aj + C1bj = aj + E(X)bj ,

E(Y Qj) = F0aj + F1bj = E(Y )aj + E(Y X)bj,
j = 1, . . . , J.

Hence, bj = cov(Y,Qj)/cov(Y,X), ai = E(Qj)−E(X)bj , which together with (4) imply

that Y is a valid IV for X relative to (5).4 From (1), (4), (7) and (8) we obtain

E(Y Xk) =
∑k

r=0

(
k
r

)
Frλk−r,(10)

E(QjX
g) = E(Xg)aj +Hg1bj .(11)

Let the maximal power of X considered be K when it interacts with Y , and G when

it interacts with any Qj or stands alone. From (2), (6)–(8), (10), and (11) we have the

moment equations:

E(Y Xk) =
∑k

r=0

(
k
r

)
[αCr +

∑I
i=1 βiCi+r]λk−r, k = 0, . . . , K,(12)

E(Y Qj) = (α+
∑I

i=1Ciβi)aj + (C1α+
∑I

i=1Ci+1βi)bj , j = 1, . . . , J,(13)

E(Xg) =
∑g

r=0

(
g
r

)
Crλg−r, g = 1, . . . , G,(14)

E(QjX
g) =

∑g
r=0

(
g
r

)
[Craj + Cr+1bj ]λg−r,(15)

= E(Xg)aj + [
∑g

r=0

(
g
r

)
Cr+1λg−r]bj , j=1, . . . , J ; g=0, . . . , G.

3Any functions g(ξ), h(u), k(v), and l(wj) will then be uncorrelated. Normality would have imposed strong restrictions
on the moments of these variables; see Evans et al. (1993, Chapter 29) and would therefore have had implications on the
models’ identification status.

4This exemplifies a case where an endogenous variable serves as an IV for an error-ridden exogenous variable.
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They have two convenient properties: linearity in (α, β1, . . . , βI) for given (aj , bj) &

(Cr, λk), and linearity in (aj , bj) for given (Cr, λk) & (α, β1, . . . , βI).
5

If the sample is sufficiently large and the convergence conditions for sample moments

hold, see Davidson (1994, Chapter 18), then E(Y Xk), E(Y Qj), E(X
g) and E(QjX

g) can,

under weak conditions involving central limit theorems, be estimated consistently from

their sample analogues.6 In exploring identification, we therefore proceed as if these

moments are known.

2.3 Identification

Equations (9)7 and (12)–(15) motivate the following stepwise procedure:

[1] Identify (aj , bj) from (9).

[2] Identify Cg (g=1, . . . , G+1) and λg (g=2, . . . , G) from (14)–(15).

[3] Identify α, β1, . . . , βI from (12).

It follows that:

(i) The number of restrictions imposed by (15) on the (Cg, λg)s increases with J .

(ii) To obtain from [2] a number of (Cg, λg)s sufficiently large to solve [3], the number of

Cgs must be at least K+I. This requires G+1 ≥ K+I.

(iii) To determine α, β1, . . . , βI from (12), given the (Cg, λg)s, requires K+1≥I+1.

Altogether, (i)–(iii) imply that necessary order-conditions for identification are

(16) J≥1, K≥I, G≥K+I−1 =⇒ G≥2I−1.

The boundary case J=1, K=I, G=K+I−1 =⇒ G=2I−1 gives exact identification.

To summarize: If J=1, knowledge of the origo moments E(Y Q1), E(Y X
k) (k=0, 1, . . . , I),

E(Xg) (g = 1, . . . , 2I−1) and E(Q1X
g) (g = 0, . . . , 2I−1) ensures exact identification of

(α, β1, . . . , βI) together with (a1, b1), (C1, . . . , C2I), (λ1, . . . , λ2I−1).

2.4 Examples

We will consider in some detail examples for the linear, quadratic and cubic cases, know-

ing from (16) that exact identification is ensured

for I = 1, when J = 1, G = 1, K = 1,

for I = 2, when J = 1, G = 3, K = 2,

for I = 3, when J = 1, G = 5, K = 3.

How is the moment equation system changed when J , G and K are inceased?8

5Inclusion also of powers of Y,Q1, . . . , QJ and interactions between Q1, . . . , QJ would have created more messy moment
conditions, containing φr=E(ur), µjr=E(wr

j ); r = 2, 3, . . . and second- and higher-order terms in (α, βi, aj , bj), since for

example, E(QjQk) = ajak + (ajbk + akbj)C1 + bjbkC2 + E(wjwk). Also in this respect our approach differs from the
Hausman et al. (1991) setup, which exploits moment conditions involving powers of the indicators rather than powers of
the error-ridden regressor; see their equations (2.6)–(2.8).

6For high-order moments, the speed of convergence may, however, be slow if certain higher-order moments required by
the standard central limit theorems do not exist. Then a more general central limit theorem is appropriate, see Embrechts,
Klüppelberg, and Mikosch (1997, pp. 71–81).

7Note that (9) follows by combining (13), (12) for k=1, (14) for g=1 and (15) for g=0.
8The following expressions utilize λ1 = 0 and the binomial coefficients (1, 2, 1), (1, 3, 3, 1), (1, 4, 6, 4, 1), etc.
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First, (13) in combination with (12) for k = 0 and 1, give

E(Y Qj) = ajE(Y ) + bjE(Y X).(a.0)

Next, (14) with g=1, . . . , 6 and (15) with g=0, 1, . . . , 6 give, respectively.

E(X) = C1,(b.1)
E(X2) = C2 + λ2,(b.2)
E(X3) = C3 + 3C1λ2 + λ3,(b.3)
E(X4) = C4 + 6C2λ2 + 4C1λ3 + λ4,(b.4)
E(X5) = C5 + 10C3λ2 + 10C2λ3 + 5C1λ4 + λ5,(b.5)
E(X6) = C6 + 15C4λ2 + 20C3λ3 + 15C2λ4 + 6C1λ5 + λ6,(b.6)

E(Qj) = aj + C1bj,(c.0)
E(QjX) = E(X)aj + C2bj ,(c.1)
E(QjX

2) = E(X2)aj + (C3 + C1λ2)bj ,(c.2)
E(QjX

3) = E(X3)aj + (C4 + 3C2λ2 + C1λ3)bj ,(c.3)
E(QjX

4) = E(X4)aj + (C5 + 6C3λ2 + 4C2λ3 + C1λ4)bj ,(c.4)
E(QjX

5) = E(X5)aj + (C6 + 10C4λ2 + 10C3λ3 + 5C2λ4 + C1λ5)bj ,(c.5)
E(QjX

6) = E(X6)aj + (C7 + 15C5λ2 + 20C4λ3 + 15C3λ4 + 6C2λ5 + C1λ6)bj .(c.6)

Further, from (12) with (I,K)=(1, 3), (2, 4), (3, 5), we obtain, respectively:

for I = 1; k = 0, 1, 2, 3:

E(Y ) = α+C1β1,(d1.0)
E(Y X) = C1α+C2β1,(d1.1)
E(Y X2) = (C2α+C3β1) + E(Y )λ2,(d1.2)
E(Y X3) = (C3α+C4β1) + 3E(Y X)λ2 + E(Y )λ3.(d1.3)

for I = 2; k = 0, 1, . . . , 4:
E(Y ) = α+C1β1+C2β2,(d2.0)

E(Y X) = C1α+C2β1+C3β2,(d2.1)
E(Y X2) = (C2α+C3β1+C4β2)+E(Y )λ2,(d2.2)
E(Y X3) = (C3α+C4β1+C5β2)+3E(YX)λ2+E(Y )λ3,(d2.3)
E(Y X4) = (C4α+C5β1+C6β2)+6(C2α+C3β1+C4β2)λ2 + 4E(Y X)λ3 + E(Y )λ4.(d2.4)

for I = 3; k = 0, 1, . . . , 5:
E(Y ) = α+C1β1+C2β2+C3β3,(d3.0)

E(Y X) = C1α+C2β1+C3β2+C4β3,(d3.1)
E(Y X2) = (C2α+C3β1+C4β2+C5β3) + E(Y )λ2,(d3.2)
E(Y X3) = (C3α+C4β1+C5β2+C6β3) + 3E(Y X)λ2 + E(Y )λ3,(d3.3)
E(Y X4) = (C4α+C5β1+C6β2+C7β3)(d3.4)

+6(C2α+C3β1+C4β2+C5β3)λ2 + 4E(Y X)λ3 + E(Y )λ4,

E(Y X5) = (C5α+C6β1+C7β2+C8β3)(d3.5)
+10(C3α+C4β1+C5β2+C6β3)λ2

+10(C2α+C3β1+C4β2+C5β3)λ3 + 5E(Y X)λ4 + E(Y )λ5.

We can proceed by picking moment equations sequentially: first (a.0), next equations in

the (b) and (c) sets and finally equations in the (d) sets.

One indicator (J=1): Tables 1, 2 and 3 exemplify the cases I=1, 2 and 3, respectively.

Their interpretation is explained by some examples. For the linear equation, going from

case 1.1 to case 1.2, G increases from 1 to 2, while the 6 equations, which ensure (exact)

identification of (α, β1) and four additional parameters, are supplemented with (b.2) and

(c.2). The latter involve the additional parameters (C3, λ2) and do not influence coef-

ficient identification. Going to case 1.3, G increases from 2 to 3, while (b.3) and (c.3),

which contains (C4, λ3), are added, so their inclusion does not affect the identification

status. Cases 1.4, 1.5 and 1.6, which by increasing K from 1 to 2 or 3 (=⇒ K>I=1),
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introduce more additional equations than parameters, leads to overidentification. For

example, cases 1.5 (K=2) and 1.6 (K=3), have the same parameters as case 1.3 and one

and two overidentifying equations, respectively, (d1.2) and (d1.2)–(d1.3), in the latter.

Cases 1.4, 1.5 and 1.6 concern identification of a linear equation by exploiting moments

of higher order than two, a problem also considered by Lewbel (1997) and Erickson and

Whited (2002). For the quadratic equation (Table 2), the moment equation system in

the exactly identified case 2.3 (K=I=2) has the same number of parameters as case 2.5

(K = 3) and case 2.6 (K = 4), which hence gives overidentification, the cubic equation

(Table 3) gives exact identification in case 3.2 (K = I = 3) and overidentification in

case 3.3, etc.

J indicators: The only change when the number of indicators for ξ is increased to J

is that (a.0) and (c.1)–(c.6) occur J times. The systems of moment equations, after

rearrangement and elimination of C1, in cases 1.1, 2.1 and 3.1, are:

Case 1.1: Linear model (I=1, G=1,K=1):

[1] E(Qj) = aj + E(X)bj,
E(Y Qj) = E(Y )aj + E(Y X)bj ,

[2] E(QjX) = E(X)aj + C2bj ,

[3] E(Y ) = α+E(X)β1,
E(Y X) = E(X)α+C2β1.

Case 2.1: Quadratic model (I=2, G=3,K=2):

[1] E(Qj) = aj + E(X)bj,
E(Y Qj) = E(Y )aj+E(Y X)bj,

[2] E(X2) = C2+λ2,
E(X3) = C3+3E(X)λ2+λ3,

E(QjX) = E(X)aj+C2bj,
E(QjX

2) = E(X2)aj+[C3+E(X)λ2]bj ,
E(QjX

3) = E(X3)aj+[C4+3C2λ2+E(X)λ3]bj,

[3] E(Y ) = α+E(X)β1+C2β2,
E(Y X) = E(X)α+C2β1+C3β2,
E(Y X2) = C2α+C3β1+C4β2+E(Y )λ2.

Case 3.1: Cubic model (I=3, G=5,K=3).

[1] E(Qj) = aj+E(X)bj,
E(Y Qj) = E(Y )aj+E(Y X)bj,

[2] E(X2) = C2+λ2,
E(X3) = C3+3E(X)λ2+λ3,
E(X4) = C4+6C2λ2+4E(X)λ3+λ4,
E(X5) = C5+10C3λ2+10C2λ3+5E(X)λ4+λ5,

E(QjX) = E(X)aj + C2bj ,
E(QjX

2) = E(X2)aj+[C3+E(X)λ2]bj ,
E(QjX

3) = E(X3)aj+[C4+3C2λ2+E(X)λ3]bj,
E(QjX

4) = E(X4)aj+[C5+6C3λ2+4C2λ3+E(X)λ4]bj ,
E(QjX

5) = E(X5)aj+[C6+10C4λ2+10C3λ3+5C2λ4+E(X)λ5]bj,

[3] E(Y ) = α+E(X)β1+C2β2+C3β3,
E(Y X) = E(X)α+C2β1+C3β2+C4β3,
E(Y X2) = C2α+C3β1+C4β2+C5β3+E(Y )λ2,
E(Y X3) = C3α+C4β1+C5β2+C6β3+3E(Y X)λ2+E(Y )λ3.
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In all cases, Block [1] identifies aj , bj . In case 1.1, Block [2] identifies C2 (overidentifies

for J > 1), Block [3] identifies α, β1. In case 2.1, Block [2] identifies C2, C3, C4, λ2, λ3
(overidentifies for J > 1), Block [3] identifies α, β1, β2. In case 3.1, Block [2] identifies

C2, . . . , C6, λ2, . . . , λ5 (overidentifies for J > 1), Block [3] identifies α, β1, β2, , β3. The

three cases have systems with, respectively, (3J+2) equations and (3J+2)−(2J+3)=J−1

overidentifying restrictions, (5J+5) equations and (5J+5)−(2J+8)=3(J−1) overidentifying

restrictions, and (7J+8) equations and (7J+8) − (2J+13) = 5(J−1) overidentifying

restrictions.

Table 1: Moment equations for I = 1, J = 1

Baseline G increased G and K increased
1.1: (G,K)=(1, 1) 1.2: (G,K)=(2, 1) 1.3: (G,K)=(3, 1) 1.4: (G,K)=(2, 2) 1.5: (G,K)=(3, 2) 1.6: (G,K)=(3, 3)

Eqs Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param

(a.0) C1 (b.2) C3 (b.2) C3 (b.2) C3 (b.2) C3 (b.2) C3

(b.1) C2 (c.2) λ2 (c.2) λ2 (c.2) λ2 (c.2) λ2 (c.2) λ2

(c.0) a1 (b.3) C4 (d1.2) (b.3) C4 (b.3) C4

(c.1) b1 (c.3) λ3 (c.3) λ3 (c.3) λ3

(d1.0) α (d1.2) (d1.2)
(d1.1) β1 (d1.3)

♯ 6 6 (6) 8 8 (8) 10 10 (9) 9 8 (8) 11 10 (9) 12 10 (9)

Bottom line: In parenthesis, no. of parameters undre symmetry of error distribution

Table 2: Moment equations for I = 2, J = 1

Baseline G increased G and K increased
2.1: (G,K)=(3, 2) 2.2: (G,K)=(4, 2) 2.3: (G,K)=(5, 2) 2.4: (G,K)=(4, 3) 2.5: (G,K)=(5, 3) 2.6: (G,K)=(5, 4)

Eqs Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param

(a.0) C1 (b.4) C5 (b.4) C5 (b.4) C5 (b.4) C5 (b.4) C5

(b.1) C2 (c.4) λ4 (c.4) λ4 (c.4) λ4 (c.4) λ4 (c.4) λ4

(b.2) C3 (b.5) C6 (d2.3) (b.5) C6 (b.5) C6

(b.3) C4 (c.5) λ5 (c.5) λ5 (c.5) λ5

(c.0) λ2 (d2.3) (d2.3)
(c.1) λ3 (d2.4)
(c.2) a1
(c.3) b1
(d2.0) α
(d2.1) β1

(d2.2) β2

♯ 11 11 (10) 13 13 (11) 15 15 (13) 14 13 (12) 16 15 (15) 17 15 (13)

Bottom line: In parenthesis, no. of parameters under symmetry of error distribution

Table 3: Moment equations for I = 3, J = 1

Baseline G increased G and K increased
3.1: (G,K)=(5, 3) 3.2: (G,K)=(6, 3) 3.3: (G,K)=(6, 4) 3.4: (G,K)=(6, 5)

Eqs Param ∆Eqs ∆Param ∆Eqs ∆Param ∆Eqs ∆Param

(a.0) C1 (b.6) C7 (b.6) C7 (b.6) C7

(b.1) C2 (c.6) λ6 (c.6) λ6 (c.6) λ6

(b.2) C3 (d3.4) (d3.4) C8

(b.3) C4 (d3.5)
(b.4) C5

(b.5) C6

(c.0) λ2

(c.1) λ3

(c.2) λ4

(c.3) λ5

(c.4) a1
(c.5) b1
(d3.0) α
(d3.1) β1

(d3.2) β2

(d3.3) β3

♯ 16 16 (14) 18 18 (16) 19 18 (16) 20 19 (17)

Bottom line: In parenthesis, no. of parameters under symmetry of error distribution
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Remark on the solution under exact identification, J=1: In case 2.1, the first two equa-

tions in [2] can be solved for (λ2, λ3), giving λ2 = E(X2)−C2, λ3 = E(X3)−C3−3E(X)λ2.

This gives a non-linear system in C2, C3, C4, α, β1, β2 when combined with the last three

equations in [2] and [3]. In case 3.1, the first four equations in [2] can be solved for

(λ2, λ3, λ4, λ5), giving
λ2 = E(X2)− C2,

λ3 = E(X3)− C3 − 3E(X)λ2,

λ4 = E(X4)− C4 − 6C2λ2 − 4E(X)λ3,
λ5 = E(X5)− C5 − 10C3λ2 − 10C2λ3 − 5E(X)λ4.

The result is a non-linear system in C2, C3, C4, C5, C6, α, β1, β2, β3 when combined with

the last five equations in [2] and [3].

Symmetry of the error distribution restricts all odd-numbered moments of v to be zero

(λ3=λ5= · · ·=0). The bottom parts of Tables 1–3 show the change in the identification

status. For example, cases 1.3, 2.1 and 3.1 change from being exactly identified to

becoming overidentified.9

3 Model with error-free exogenous variables

3.1 Basic assumptions

We include in the polynomial equation (1) a (1×L)-vector of error-free exogenous variables

Z, which also enter measurement equations (4). It is not difficult to demonstrate that

this extension does not affect the model’s identification status, as the added number of

parameters equal the added number of moment equations. The model is

Y = α +
∑I

i=1 ξ
iβi +Zγ + u,(17)

X = ξ + v,(18)

Qj = aj + ξbj +Zcj + wj, j = 1, . . . , J,(19)

E(u) = E(v) = E(w1) = · · · = E(wJ) = 0,

(ξ,Z) ⊥ u ⊥ v ⊥ (w1, . . . , wJ),
(20)

where γ and cj are (L×1) coefficient vectors. Boldface letters denote vectors or matrices.

In the Engel function example Z may contain demographic and household characteristics,

assumed to be relevant also for the way measured income is related to true income (some

elements of cj may well be set to zero). From (17) and (18) it follows that

(21) Qj = aj +Xbj +Zcj + wj − bjv, j = 1, . . . , J.

We accordingly extend (6) and (7) to

Cg ≡ E(ξg), Dg ≡ E(ξgZ), Σ ≡ E(Z ′Z), λg ≡ E(vg),(22)

Fg ≡ E(Y ξg) = Cgα+
∑I

i=1Ci+gβi +Dgγ.(23)

9If the stronger assumption of error normality is imposed, all even-numbered moments of v of fourth and higher order

are simple functions of its variance λ2. Then λ2k ≡ λk
2

∏k
i=1(2i−1), which implies λ2k/λ2k−2 = λ2

2(2k−1), k=2, 3, . . . ;
see Balakrishnan and Nevzorov (2003, Section 23.7). Imposing error symmetry will give overidentification, as in, e.g.,
cases 1.3 for I=1, cases 2.1, 2.2 and 2.3 for I=2, and cases 3.1 and 3.2 for I=3. On the other hand, symmetry of the
distribution of ξ will often be quite unrealistic (as in the Engel function example) and will not be considered. Although
it may further reduce the number of parameters to be estimated it may complicate identification and estimation; see
Reiersøl (1950) for discussion of the normality case.
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In particular,
F0 = E(Y )=α+

∑I
i=1Ciβi +D0γ,

F1 = E(Y X) = C1α+
∑I

i=1Ci+1βi +D1γ.

3.2 Moments of observable variables

From (18)–(20) and (22)–(23) we find, since D0 = E(Z), D1 = E(XZ), and

S ≡ E(Z ′Y ) = D′

0α +
∑I

i=1D
′

iβi +Σγ,

that (9)–(11) are generalized to

E(Qj) = aj+C1bj+D0cj = aj+E(X)bj+E(Z)cj,

E(Y Qj) = F0aj+F1bj+Scj = E(Y )aj+E(Y X)bj+E(YZ)cj ,

E(Z ′Qj) = D′

0aj+D′

1bj+Σcj = E(Z ′)aj+E(Z ′X)bj+E(Z ′Z)cj,

(24)

E(Y Xk) =
∑k

r=0

(
k
r

)
Frλk−r,(25)

E(QjX
g) = E(Xg)aj+Hg1bj+Dgcj.(26)

The system (24), together with (20), implies that (Y,Z) are valid IVs for (X,Z) in

(21).10 The generalizations of the moment equations (12)–(15) implied by (18), (22),

(23), (25), and (26) are:11

E(Y Xk) =
∑k

r=0

(
k
r

)
[Crα+

∑I
i=1Ci+rβi +Drγ]λk−r, k=0, . . . , K,(27)

E(Z ′Y ) = D′

0α+
∑I

i=1D
′

iβi +Σγ,(28)

E(Y Qj) = (α+
∑I

i=1Ciβi+D0γ)aj(29)

+ (C1α+
∑I

i=1Ci+1βi+D1γ)bj+Scj , j=1, . . . , J,

E(Xg) =
∑g

r=0

(
g
r

)
Crλg−r, g=1, . . . , G,(30)

E(XgZ) =
∑g

r=1

(
g
r

)
Drλg−r, g=1, . . . , G,(31)

E(QjX
g) =

∑g
r=0

(
g
r

)
[Craj+Cr+1bj+Drcj ]λg−r, j=1, . . . , J ; g=0, . . . , G.(32)

3.3 Identification

Equations (24) and (27)–(32) motivate the stepwise procedure:12

[1] Identify (aj , bj, cj) from (24).

[2] Identify Cg(g=1, . . . , G+1),Dg(g=1, . . . , G) and λg(g=2, . . . , G) from (30)–(32).

[3] Identify α, β1, . . . , βI ,γ from (27)–(29).

It follows that:

(i) The number of restrictions imposed by (32) on the (Cg,Dg, λg)s increases with J .

(ii) To obtain from [2] a number of (Cg,Dg, λg)s sufficiently large to solve [3], the number

of Cgs and Dgs must be at least K+I. This requires G+1 ≥ K+I.

(iii) To determine α, β1, . . . , βI ,γ from (27), given the (Cg,Dg, λg)s, requires K+1≥I+1.

Therefore, inclusion of observable regressors does not alter the order-conditions (16).

10This again exemplifies an endogenous variable serving as an IV for an error-ridden exogenous variable.
11These equations are linear in (α, β1, . . . , βI ,γ) for given (aj , bj , cj) & (Cr ,Dr , λk), and linear in (aj , bj , cj) for given

(α, β1, . . . , βI ,γ) & (Cr ,Dr, λk).
12Note that (24) follows from (29), (27) for k=1, (30) for g=1, (31) for g=1, and (32) for g=0.
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4 Multi-equation model

4.1 Basic assumptions

We further extend (17) to a system of N polynomial equations:

(33) Yn = αn +
∑I

i=1 ξ
iβni +Zγn + un, n = 1, . . . , N,

still assuming (18)–(19), and extend (20) to

(34)
E(u1)= · · ·=E(uN)=E(v)=E(w1)= · · ·=E(wJ)=0,

(ξ,Z) ⊥ (u1, . . . , uN) ⊥ v ⊥ (w1, . . . , wJ).

The model then obtained may represent an N -commodity system of I’th order polyno-

mial Engel functions with common latent income and correctly measured demographic

and household characteristics included for all commodities. The problem now is to iden-

tify {αn, βn1, . . . , βnI ,γn}
n=N
n=1 from observations on (Y1, . . . , YN , X,Z, Q1, . . . , QJ). To

explore this, we extend (23) to

(35) Fgn ≡ E(Ynξ
g) = Cgαn +

∑I
i=1Ci+gβni +Dgγn.

In particular,
F0n = E(Yn)=αn+

∑I
i=1Ciβni +D0γn,

F1n = E(YnX) = C1αn+
∑I

i=1Ci+1βni +D1γn.

4.2 Moments of observable variables

Using (18), (19), (22) and (33)–(35), we find since

Sn = E(Z ′Yn) = D′

0αn +
∑I

i=1D
′

iβni +Σγn,

that (24) and (25) are generalized to

E(Qj) = aj + C1bj +D0cj = aj + E(X)bj + E(Z)cj,
E(YnQj) = F0naj + F1nbj + Sncj = E(Yn)aj + E(YnX)bj + E(YnZ)cj ,
E(Z ′Qj) = D′

0aj +D′

1bj +Σcj = E(Z ′)aj + E(Z ′X)bj + E(Z ′Z)cj ,
(36)

E(YnX
k) =

∑k
r=0

(
k
r

)
Frnλk−r,(37)

while (26) is unchanged. The system (36), together with (34), implies that (Y1, . . . , YN ,Z)

are valid IVs for (X,Z) in (21).13 Combining (19) and (33)–(35) we obtain the following

generalization of (27)–(29):14

E(YnX
k)=

∑k
r=0

(
k
r

)
[Crαn+

∑I
i=1Ci+rβni+Drγn]λk−r, n=1, . . . , N ; k=0, . . . , K,(38)

E(Z ′Yn)=D′

0αn+
∑I

i=1D
′

iβni+Σγn, n=1, . . . , N ;(39)

E(YnQj)=(αn+
∑I

i=1Ciβni+D0γn)aj(40)

+(C1αn+
∑I

i=1Ci+1βni+D1γn)bj , n=1, . . . , N ; j=1, . . . , J,

while (30)–(32) are unchanged.

13When N > 1, there are more equations than needed, which exemplifies a case where a set of formally endogenous
variables lead to overidentification.

14These equations are linear in (αn, βn1, . . . , βnI ,γn) for given (aj , bj , cj) & (Cr ,Dr, λk), and linear in (aj , bj , cj) for
given (αn, βn1, . . . , βnI ,γn) & (Cr ,Dr, λk).
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4.3 Identification

The stepwise procedure for identification this motivates is:

[1] Identify (aj , bj, cj) from (36).

[2] Identify Cg(g=1, . . . , G+1),Dg(g=1, . . . , G),λg(g=2, . . . , G) from (30)–(32).

[3] Identify αn, βn1, . . . , βnI ,γn (n = 1, . . . , N) from (38)–(40).

Still, (16) is a necessary condition for identification. For N>1 there is overidentification.

This follows because (i) extending the number of equations from one to N increases the

number of moment equations from K+J+1 in (27)–(29) to N(K+J+1) in (38)–(40),

while (ii) the number of coefficients in the polynomials (αn, βn1, . . . , βnI ,γn) increases

from 1+I+L to N(1+I+L). We summarize the identification conditions in:

Proposition: Let for an N-equation model, each equation containing an I-th-order

polynomial, the maximal power of the error-ridden regressor X be K in moments

where X is combined with the regressand Y , and G in moments where X is alone

or is combined with the error-free regressor vector Z or the indicators Q1, . . . , QJ .

Necessary conditions for identification are then:

N ≥ 1, J ≥ 1, K ≥ I, G ≥ K+I−1.

When N = 1, J = 1, K = I, G = K+I−1 =⇒ G = 2I−1 = 2K−1 there is exact

identification. Overidentification occurs if there is at least one strict inequality.

5 Estimation

In this section, we consider procedures for estimation of an N -equation, J-indicator

cubic example model with error-free exogenous variables, corresponding to case 3.1 in

Section 2.4; see Table 3. At the end we give an empirical illustration. The example

model has, in its three blocks, NJ+7J+5N+8 moment equations.

5.1 The example

Block [1] has (N+2)J equations identifying aj, bj , cj:
E(Qj) = aj+E(X)bj+E(Z)cj ,

E(YnQj) = E(Yn)aj+E(YnX)bj+E(YnZ)cj ,

E(Z ′Qj) = E(Z′)aj+E(Z′X)bj+ E(Z ′Z)cj .

Block [2] has 5J+8 equations identifying C2, . . . , C6,D2, . . . ,D5, λ2, . . . , λ5:
E(X2) = C2+λ2,

E(X3) = C3+3E(X)λ2+λ3,

E(X4) = C4+6C2λ2+4E(X)λ3+λ4,

E(X5) = C5+10C3λ2+10C2λ3+5E(X)λ4+λ5,

E(QjX) = E(X)aj+C2bj+E(XZ)cj ,

E(QjX
2) = E(X2)aj+[C3 + E(X)λ2]bj+[D2+E(Z)λ2]cj ,

E(QjX
3) = E(X3)aj+[C4+3C2λ2+E(X)λ3]bj

+[D3+3E(XZ)λ2+E(Z)λ3]cj ,

E(QjX
4) = E(X4)aj+[C5+6C3λ2+4C2λ3+E(X)λ4]bj

+[D4+6D2λ2+4E(XZ)λ3+E(Z)λ4]cj ,

E(QjX
5) = E(X5)aj+[C6+10C4λ2+10C3λ3+5C2λ4+E(X)λ5]bj

+[D5+10D3λ2+10D2λ3+5E(XZ)λ4+E(Z)λ5]cj ,
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E(X2Z) = D2+E(Z)λ2,

E(X3Z) = D3+3E(XZ)λ2+E(Z)λ3,

E(X4Z) = D4+6D2λ2+4E(XZ)λ3+E(Z)λ4,

E(X5Z) = D5+10D3λ2+10D2λ3+5E(XZ)λ4 + E(Z)λ5.

Block [3] has 5N equations identifying αn, βn1, βn2, βn3,γn:
E(Yn) = αn+E(X)βn1+C2βn2+C3βn3+E(Z)γn,

E(YnX) = E(X)αn+C2βn1+C3βn2+C4βn3+E(XZ)γn,

E(YnX
2) = C2αn+C3βn1+C4βn2+C5βn3+D2γn+E(Yn)λ2,

E(YnX
3) = C3αn+C4βn1+C5βn2+C6βn3+D3γn+3E(YnX)λ2+E(Yn)λ3,

E(Z ′Yn) = E(Z ′)αn+E(XZ′)βn1+D′

2βn2+D′

3βn3+E(Z′Z)γn.

There are (NJ+7J+5N+8)−(3J+5N+13) = (N+4)J−5 overidentifying restrictions.

5.2 The block-structure and the GMM problem in general

Let θ1, θ2, θ3 denote the row vectors containing the elements of, respectively,

aj, bj , c
′

j, j = 1, . . . , J (in Blocks [1] and [2]),
C2, . . . , C6, λ2, . . . , λ5,D2, . . . ,D5 (in Blocks [2] and [3]),
αn, βn1, βn2, βn3,γ

′

n, n = 1, . . . , N (in Block [3]).

The observable variables be ordered in 5 column vectors: w[1],w[2],w[3], containing the

variables whose expectations occur only at the LHS of the equations:

Qj, QjZ, YnQj , j = 1, . . . , J ; n = 1, . . . , N (Block [1]),
Xg, XgZ, QjX,QjX

g, g = 2, . . . , 5 (Block [2]),
YnX

2, YnX
3 (Block [3]),

and v and q containing the variables whose expectations occur either at the LHS or the

RHS of the equations or enter more than one block, respectively,

Yn, YnX, YnZ and X,Z, XZ,Z ′Z.

Finally, let φ1(·),φ2(·),φ3(·) be matrix functions and write the equations blockwise as

E(w[1]) = E(q, v)φ1(θ1),

E(w[2]) = E(q)φ2(θ1, θ2),

E

[
w[3]

v

]
= E(q, v)φ3(θ2, θ3),

compactly,

E

[
w

v

]
= E[q v]φ(θ) ⇐⇒ E(ǫ) = 0, with ǫ ≡

[
w

v

]
− [q v]φ(θ).

The sample counterpart to E(ǫ), with M observations, indexed by m, becomes

1
M

∑M
m=1 ǫm= 1

M

∑M
m=1

[
wm

vm

]
− 1

M

∑M
m=1[qm vm]φ(θ)≡gM(w, v, q; θ),

where wm, vm, qm, ǫm denote the values ofw, v, q, ǫ for observationm. GMM estimation

of θ solves, for a positive definite weighting matrix Q(θ),15

15This description is quite general and can be applied not only to this specific model (I=3, K=3, G=5), but to any
model with a (N, I, J,K,G)-constellation that ensures identification.
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θ̂ = argminθ [gM(w, v, q; θ)′Q(θ)gM(w, v, q; θ)].

Asymptotically efficient estimation requires Q(θ) to be proportional to the inverse

asymptotic covariance matrix of ǭ = 1
M

∑
mǫm; see Davidson and MacKinnon (1993,

Theorem 17.3) and Harris and Mátyás (1999, section 1.3.3). The minimand depends on

θ in a complex way, however, which makes operationalization of this claim difficult.

5.3 A simplified, stepwise procedure

Instead of attempting to solve the GMM problem we proceed by estimating θ1, θ2, θ3

in three steps, utilizing that (i) the parameters in Block [1] enter linearly, (ii) the equa-

tions in Block [2] are linear in Ci,Di, Ciλr,Diλr, given the parameters in Block [1], and

(iii) the parameters in Block [3] enter linearly, given the parameters in Blocks [1] and [2].

Step 1: Estimation of θ1: Estimate (aj , bj, c
′

j) from the equations in Block [1] by Two-

Stage Least Squares (2SLS), using (Y1, . . . , Yn,Z) as IV set for (X,Z), i.e., regressing

(Q1, . . . , QJ) on (X̂,Z), where X̂ is the fitted value in the first-stage regression of X on

(Y1, . . . , Yn,Z). This gives (âj , b̂j, ĉ
′

j) (j = 1, . . . , J).

Step 2: Estimation of θ2: Form, from the equations in Blocks [1] and [2],

[E(Qj)−aj−D0cj ]/bj = C1,

[E(QjX)−C1aj−D1cj ]/bj = C2,

[E(QjX
2)−E(X2)aj−E(X2Z)cj ]/bj = C3 + C1λ2,

[E(QjX
3)−E(X3)aj−E(X3Z)cj ]/bj = C4+3C2λ2+C1λ3,

[E(QjX
4)−E(X4)aj−E(X4Z)cj ]/bj = C5+6C3λ2+4C2λ3+C1λ4,

[E(QjX
5)−E(X5)aj−E(X5Z)cj ]/bj = C6+10C4λ2+10C3λ3+5C2λ4+C1λ5,

and let Qj = ψj + wj , where ψj ≡ aj + ξ bj + Zcj ⇐⇒ ξ ≡ (ψj−aj−Zcj)/bj . The full

Block [2] and the first equation of Block [1] can be rearranged into


E(X i−1ξ)
E(X i)

E(X iZ ′)


 =




Ci

Ci+λi
D′

i+D′

0λi


 , i = 1, 2,



E(X i−1ξ)
E(X i)

E(X iZ ′)


 =




Ci

Ci+λi
D′

i+D′

0λi


+




∑i−1
r=1

(
i−1

i−r−1

)
Ci−rλr∑i−1

r=1

(
i

i−r

)
Ci−rλr∑i−1

r=1

(
i

i−r

)
D′

i−rλr


 , i = 3, 4, 5,

E(X i−1ξ) = Ci +
∑i

r=1

(
i−1

i−1−r

)
Ci−rλr, i = 6.

Since the transformation


Ci

λi
D′

i


 ≡




1 0 0
−1 1 0
D′

0 −D′

0 I






Ci

λi+Ci

D′

i+D′

0λi


 ,

where I is the identity matrix and 0 is the zero row-vector, has lower-triangular ‘coeffi-

cient matrix’, these equations are equivalent to:
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C1 = E(ξ) = E(X),
C2 = E(Xξ),
λ2 = E(X2)− C2,
C3 = E(X2ξ)− C1λ2,
λ3 = E(X3)− C3 − 3C1λ2,
C4 = E(X3ξ)− 3C2λ2 − C1λ3,
λ4 = E(X4)− C4 − 6C2λ2 − 4C1λ3,
C5 = E(X4ξ)− 6C3λ2 − 4C2λ3 − C1λ4,
λ5 = E(X5)− C5 − 10C3λ2 − 10C2λ3 − 5C1λ4,
C6 = E(X5ξ)− 10C4λ2 − 10C3λ3 − 5C2λ4 − C1λ5,

(41)

D0 = E(Z),
D1 = E(XZ),
D2 = E(X2Z)−D0λ2,
D3 = E(X3Z)− 3D1λ2 −D0λ3,
D4 = E(X4Z)− 6D2λ2 − 4D1λ3 −D0λ4,
D5 = E(X5Z)− 10D3λ2 − 10D2λ3 − 5D1λ4 −D0λ5.

(42)

In the empirical illustration to be given in Section 5.4, three procedures for implementing

this step will be considered:

Procedure 1: Let v̂m ≡ Xm− X̂m and estimate Ci and λi by the analogous empirical

moments,
∑
X̂ i

m/M and
∑
v̂im/M (i = 1, 2, . . .). For estimation of the Dis utilize (42)

with E(X iZ) estimated by
∑

X i
mZm/M . Equations (41) are not used.

Procedure 2: Represent ξ by ξ̂ = X̂ and estimate in (41) and (42), E(X iξ) and E(X iZ)

by, respectively,
∑

X i
mX̂m/M and

∑
X i

mZm/M to obtain Ĉ2, . . . , Ĉ6 and λ̂2, . . . , λ̂5.

For estimation of Di use (42) as in Procedure 1.

Procedure 3: Instead of representing ξ by (the j-invariant) X̂ , use X̃j = (Qj−̂aj−Zĉj)/b̂j.

Otherwise, follow Procedure 2. Letting Q̂j ≡ âj+X̂b̂j+Zĉj ⇐⇒ X̂ ≡ (Q̂j−âj−Zĉj)/b̂j
and writing Qj as Qj = Q̂j+ŵj, the representations of ξ in Procedures 2 and 3 are related

by X̃j = X̂ + ŵj/b̂j . Under the assumptions made, X̂ and X̃j are, like ξ, uncorrelated

with all u1, . . . , uN and v asymptotically.

When symmetry of the error distribution (λ3=λ5=0), is imposed, (41)–(42) imply

C1 = E(ξ) = E(X),(43.a)

C2 = E(Xξ),(43.b)

λ2 = E(X2)− C2,(43.c)

C3 = E(X2ξ)− C1λ2 = E(X3)− 3C1λ2,(43.d)

C4 = E(X3ξ)− 3C2λ2 = E(X4)− 6C2λ2,(43.e)

λ4 = E(X4)− C4 − 6C2λ2,(43.f)

C5 = E(X4ξ)− 6C3λ2 − C1λ4 = E(X5)− 10C3λ2 − 5C1λ4,(43.g)

C6 = E(X5ξ)− 10C4λ2 − 5C2λ4,(43.h)

(43.c)–(43.g) implying the restrictions

λ2 = E(X2)− C2 = [E(X3)− E(X2ξ)]/[2C1] = [E(X4)− E(X3ξ)]/[3C2],(43.i)

λ4 = E(X4)− C4 − 6C2λ2 = [E(X5)− E(X4ξ)− 4C3λ2]/[4C1],(43.j)
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and

D0 = E(Z),(44.a)

D1 = E(XZ),(44.b)

D2 = E(X2Z)−D0λ2,(44.c)

D3 = E(X3Z)− 3D1λ2,(44.d)

D4 = E(X4Z)− 6D2λ2 −D0λ4,(44.e)

D5 = E(X5Z)− 10D3λ2 − 5D1λ4.(44.f)

Step 3: Estimation of θ3: Define the estimators

[Ê(Yn),
̂E(YnX), ̂E(YnX

2), ̂E(YnX
3)] = 1

M

∑M
m=1[Ynm, YnmXm, YnmX

2
m, YnmX

3
m],

[Ê(Z), ̂E(XZ), ̂E(YnZ), ̂
E(Z ′Z)] = 1

M

∑M
m=1[Zm, XmZm, YnmZm,Z

′

mZm],

and replace C1, . . . , C6, D0, . . . ,D3, λ2 and λ3 by their estimates of from Step 2. The

system defining for estimators of the coefficients of the N polynomials then becomes:16

(45)




1 Ĉ1 Ĉ2 Ĉ3 D̂0

Ĉ1 Ĉ2 Ĉ3 Ĉ4 D̂1

Ĉ2 Ĉ3 Ĉ4 Ĉ5 D̂2

Ĉ3 Ĉ4 Ĉ5 Ĉ6 D̂3

D̂
′

0 D̂
′

1 D̂
′

2 D̂
′

3 Σ̂







α̂n

β̂n1
β̂n2
β̂n3
γ̂n



=




1 0 0 0 0
0 1 0 0 0

0 −λ̂2 1 0 0

0 −λ̂3 −3λ̂2 1 0
0 0 0 0 I







Ê(Yn)
̂E(YnX)
̂E(YnX2)
̂E(YnX3)
̂E(YnZ)



,

with solution



α̂n

β̂n1
β̂n2
β̂n3
γ̂n



=




1 Ĉ1 Ĉ2 Ĉ3 D̂0

Ĉ1 Ĉ2 Ĉ3 Ĉ4 D̂1

Ĉ2 Ĉ3 Ĉ4 Ĉ5 D̂2

Ĉ3 Ĉ4 Ĉ5 Ĉ6 D̂3

D̂
′

0 D̂
′

1 D̂
′

2 D̂
′

3 Σ̂




−1


1 0 0 0 0
0 1 0 0 0

0 −λ̂2 1 0 0

0 −λ̂3 −3λ̂2 1 0
0 0 0 0 I







Ê(Yn)
̂E(YnX)
̂E(YnX2)
̂E(YnX3)
̂E(YnZ)



,(46)

n = 1, . . . , N.

Steps 1 and 2 may be interpreted as providing the estimates of the moments of the

latent variables, (Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6), (D̂2, D̂3) and (λ̂2, λ̂3) needed in Step 3 to estimate

the coefficients of the N polynomials.

5.4 Illustration: system of Engel functions

The data set for the following empirical illustration, for J = 1, N = 5, is an extract of

consumption data from the Norwegian Surveys of Consumer Expenditures for the years

1975–1977 and income data from tax returns. This is an admittedly old data set, but

nevertheless suitable for a case study.17 It contains observations as two-year averages

from M = 408 households, observed twice, one half in 1975 and 1976 and one half in

1976 and 1977. Owing to this averaging, unobserved household-specific heterogeneity

16We here disregard disturbances/measurement errors in modelling discrepancies between E(Yn),E(YnXi), E(YnZ
′),

E(Z ′Z) and ̂E(Yn),
̂

E(YnX
i), ̂E(YnZ), ̂

E(Z′Z) and between (Ĉi, λ̂i) and (Ci, λi).
17See Aasness, Biørn, and Skjerpen (1993, Section 3, Appendix A) for detailed information.
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becomes part of the equations’ disturbances, assuming latent heterogeneity uncorrelated

with ξ.18 Specifically, Yn is the observed expenditure on commodity n, X is total ex-

penditure and Z is a (1× 2)-vector containing the number of adults and the number of

children in the household and Q1, the only indicator for total consumption used, is an

income measure recorded in the tax code from the tax returns of the households’ tax

payers.19 The five commodities, exhausting total consumption: X=
∑5

n=1 Yn, are:

1. Food, beverages and tobacco

2. Clothing and footwear

3. Housing, fuel and furniture

4. Travel and recreation

5. Other goods and services

The Step 1-result gave the following 2SLS-estimate of the measurement equation (19):

(â1, b̂1, ĉ11, ĉ12) = (−0.6041, 0.6795, −0.0023, 1.1909)

To obtain X̂ in this step, only Y1, . . . , Y4 are used as regressors, as inclusion also of Y5
would, because of the adding-up condition, have given an unsuitable IV for Step 2.

Table 4 gives, as a benchmark, OLS estimates for linear, quadratic and cubic equa-

tions with measurement errors neglected. There are weak signs of non-linearity: some

quadratic and cubic terms have coefficient estimates differing significantly from zero at

common levels. The β̂n1s add to one, the estimate of the intercepts and the other co-

efficients add to zero (see the
∑

-rows), which confirms a well-known property of OLS

applied on systems with identical regressors.20 Not surprisingly, the standard errors of

β̂n1 from the quadratic model exceed those from the linear model, and the standard

errors of β̂n1 and β̂n2 from the cubic model exceed those from the quadratic model.

Consider first the Cis, Dis and λis as free parameters, implying that non-symmetric

error distribution is allowed. Results are given in Tables 5 through 8. A primary intention

is to illustrate the sensitivity of the results to (a) the choice between Procedures 1, 2

or 3 to implement Step 2 and (b) the imposition of symmetry of the distribution of the

measurement errors. Throughout, the (conditional) standard errors reported are based

on residuals ûnm=Ynm−α̂n−
∑3

i=1 X̂
i
mβ̂ni−Zmĉn, as obtained from (46). Table 5 gives

the results for the linear equations, as estimated by Procedure 1 or 2 (which give the

same result when I=1). All β̂n1 estimates in this table exceed those in Table 4, which

concurs with the well-known ‘attenuation’ of OLS in one-regressor EIV models. The

‘child effect’ of commodity 3 Housing etc. changes sign when EIV is allowed for.

18The expenditure data are recorded by a combination of two-week bookkeeping and two interviews. Housing expenses
are measured by rent (including maintenance and repairs), other durable goods are represented by the value of last year’s
purchases. As deflators for the expenditures are used price indexes constructed from the basic data used in calculating
the official Norwegian consumer price index.

19It combines information on taxable income for the central government tax assessment (net of taxes) and the reported
income base underlying the calculation of social security premiums and pension rights in the public social security system.

20It is to be understood that similar restrictions are not imposed on the coefficients; see below.
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Table 4: Polynomial equations: no measurement error

n αn βn1 βn2 βn3 γn1 γn2

Coefficient estimates, linear

1 0.2446 0.1950 0.0485 -0.0140
2 -0.1038 0.2378 0.0059 0.1092
3 -0.2130 0.2753 -0.0180 0.0017
4 -0.0653 0.1146 -0.0081 -0.0135
5 0.1375 0.1772 -0.0283 -0.0834
Σ 0.0000 1.0000 0.0000 0.0000

Standard errors

1 0.0481 0.0099 0.0149 0.0228
2 0.0568 0.0116 0.0176 0.0269
3 0.0638 0.0131 0.0198 0.0302
4 0.0298 0.0061 0.0092 0.0141
5 0.0410 0.0084 0.0127 0.0194

Coefficient estimates, quadratic

1 0.2112 0.2153 -0.0020 0.0468 -0.0160
2 -0.1910 0.2907 -0.0053 0.0014 0.1040
3 -0.1181 0.2177 0.0057 -0.0131 0.0074
4 0.0199 0.0630 0.0052 -0.0036 -0.0085
5 0.0780 0.2132 -0.0036 -0.0314 -0.0869
Σ 0.0000 1.0000 0.0000 0.0000 0.0000

Standard errors

1 0.0664 0.0294 0.0028 0.0151 0.0230
2 0.0782 0.0347 0.0033 0.0178 0.0271
3 0.0878 0.0389 0.0037 0.0200 0.0304
4 0.0407 0.0180 0.0017 0.0093 0.0141
5 0.0565 0.0250 0.0024 0.0128 0.0195

Coefficient estimates, cubic

1 0.0823 0.3370 -0.0294 0.0017 0.0464 -0.0199
2 -0.0460 0.1538 0.0255 -0.0019 0.0018 0.1084
3 -0.1359 0.2345 0.0020 0.0002 -0.0131 0.0068
4 -0.0185 0.0992 -0.0030 0.0005 -0.0038 -0.0097
5 0.1181 0.1754 0.0049 -0.0005 -0.0313 -0.0857
Σ 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Standard errors

1 0.0961 0.0720 0.0150 0.0009 0.0151 0.0230
2 0.1131 0.0848 0.0177 0.0011 0.0177 0.0271
3 0.1275 0.0955 0.0199 0.0012 0.0200 0.0305
4 0.0591 0.0443 0.0092 0.0006 0.0093 0.0141
5 0.0820 0.0614 0.0128 0.0008 0.0129 0.0196

Table 5: Linear equations: estimates from Procedure 1

n αn βn1 γn1 γn2

Coefficient estimates

1 0.2373 0.2025 0.0446 -0.0231
2 -0.1127 0.2469 0.0012 0.0980
3 -0.2233 0.2858 -0.0235 -0.0111
4 -0.0696 0.1190 -0.0104 -0.0189
5 0.1309 0.1840 -0.0319 -0.0917
Σ -0.0375 1.0382 -0.0199 -0.0468

Standard errors

1 0.0473 0.0099 0.0147 0.0225
2 0.0557 0.0116 0.0173 0.0265
3 0.0625 0.0130 0.0194 0.0297
4 0.0293 0.0061 0.0091 0.0140
5 0.0402 0.0084 0.0125 0.0191

Table 6 gives results obtained by applying Procedure 1 on the quadratic and cubic

equations. The β̂n2s have the same signs as when measurement errors are disregarded,

and for β̂n1 we find a similar ‘attenuation’ as in the linear model. The estimates and their

cross-commodity sums differ substantially from those in the error-free case, in particular

for the cubic equations. For example,
∑

n β̂n1 obtained from linear, quadratic and cubic

equations is 1.04, 1.18, and 0.31, respectively. The β̂n3 estimates for commodities 2, 3

and 5 appear as significantly negative at common levels (according to ‘t-tests’). Again,
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unsurprisingly, the standard errors of β̂n1 obtained from the quadratic model exceed

those from the linear model, while the standard errors of β̂n1 and β̂n2 in the cubic model

exceed those for the quadratic model. The estimated moments of the latent regressor X

and the error v are all positive:

(Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6) = (21.82, 136.93, 976.71, 7694.61, 65460.64),

(λ̂2, λ̂3, λ̂4, λ̂5) = (0.12, 0.04, 0.08, 0.07),

but the estimated fourth and fifth-order moments of the error are quite small. All

eigenvalues of the design matrix, i.e., the leftmost matrix in (45), are also positive. In

the cubic case, the range is (0.02, 66383.76; for the quadratic and linear models it is

much smaller, (0.06, 1000.63) and (0.12, 28.46), respectively.

When comparing and interpreting the (sometimes substantial) differences between

the coefficient estimates (notably the coefficient sums), across polynomial order and

moment estimation procedure, it is essential to recall that adding-up of observed ex-

penditures does not imply adding-up of the equation system and its coefficients when

expressed in the latent variables. To see this, notice that (19), (34) and (35) imply
∑

nE(Yn)−E(X)=
∑

nαn+C1(
∑

nβn1−1)+
∑I

i=2Ci

∑
nβni+D0

∑
nγn,(47)

and hence
∑

nE(Yn)≡E(X) ⇐⇒
∑

nβn1=1,
∑

n αn=
∑

nβn2= · · ·
∑

nβnI=0,
∑

nγn=0.

Therefore, if the latter sum restrictions are not met, there will be a ‘trade-off’ between

the estimated coefficient sums for different models and procedures, which restricts the

comparability of their results.

Table 6: Quadratic and cubic equations: estimates from Procedure 1

n αn βn1 βn2 βn3 γn1 γn2

Coefficient estimates, quadratic

1 0.1580 0.2506 -0.0047 0.0401 -0.0288
2 -0.2562 0.3340 -0.0085 -0.0070 0.0878
3 -0.1922 0.2669 0.0019 -0.0217 -0.0089
4 -0.0106 0.0832 0.0035 -0.0070 -0.0147
5 0.0295 0.2454 -0.0060 -0.0376 -0.0989
Σ -0.2715 1.1802 -0.0139 -0.0332 -0.0634

Standard errors

1 0.0654 0.0292 0.0027 0.0149 0.0227
2 0.0767 0.0342 0.0032 0.0174 0.0266
3 0.0867 0.0387 0.0036 0.0197 0.0301
4 0.0405 0.0181 0.0017 0.0092 0.0141
5 0.0553 0.0247 0.0023 0.0126 0.0192

Coefficient estimates, cubic

1 0.2242 0.1920 0.0085 -0.0008 0.0398 -0.0288
2 0.1261 -0.0043 0.0676 -0.0047 -0.0090 0.0877
3 0.0476 0.0548 0.0496 -0.0030 -0.0230 -0.0090
4 0.0599 0.0209 0.0175 -0.0009 -0.0074 -0.0147
5 0.2573 0.0439 0.0393 -0.0028 -0.0388 -0.0990
Σ 0.7150 0.3073 0.1825 -0.0122 -0.0384 -0.0639

Standard errors

1 0.0998 0.0728 0.0152 0.0009 0.0149 0.0227
2 0.1143 0.0834 0.0175 0.0011 0.0170 0.0260
3 0.1314 0.0959 0.0201 0.0012 0.0196 0.0299
4 0.0617 0.0450 0.0094 0.0006 0.0092 0.0140
5 0.0831 0.0606 0.0127 0.0008 0.0124 0.0189

Powers of X̂i, v̂i used for moment estimation
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Table 7: Quadratic and cubic equations: estimates from Procedure 2

n αn βn1 βn2 βn3 γn1 γn2

Coefficient estimates, quadratic

1 0.1872 0.2327 -0.0030 0.0420 -0.0262
2 -0.2227 0.3133 -0.0066 -0.0047 0.0912
3 -0.1444 0.2381 0.0047 -0.0193 -0.0062
4 0.0114 0.0701 0.0049 -0.0060 -0.0138
5 0.0547 0.2299 -0.0046 -0.0359 -0.0964
Σ -0.1138 1.0842 -0.0046 -0.0240 -0.0515

Standard errors

1 0.0662 0.0296 0.0028 0.0149 0.0227
2 0.0777 0.0348 0.0033 0.0175 0.0266
3 0.0873 0.0391 0.0037 0.0196 0.0300
4 0.0407 0.0182 0.0017 0.0092 0.0140
5 0.0560 0.0251 0.0023 0.0126 0.0192

Coefficient estimates, cubic

1 0.0622 0.3482 -0.0288 0.0016 0.0416 -0.0298
2 -0.0401 0.1446 0.0311 -0.0024 -0.0042 0.0963
3 -0.1351 0.2296 0.0066 -0.0001 -0.0193 -0.0059
4 -0.0183 0.0975 -0.0013 0.0004 -0.0061 -0.0147
5 0.1153 0.1740 0.0079 -0.0008 -0.0358 -0.0947
Σ -0.0160 0.9939 0.0156 -0.0013 -0.0238 -0.0488

Standard errors

1 0.0985 0.0738 0.0153 0.0009 0.0148 0.0227
2 0.1155 0.0864 0.0180 0.0011 0.0174 0.0266
3 0.1305 0.0977 0.0203 0.0012 0.0197 0.0301
4 0.0608 0.0455 0.0095 0.0006 0.0092 0.0140
5 0.0836 0.0626 0.0130 0.0008 0.0126 0.0193

(Ci, λi)-recursions based on X̂ used for moment estimation

Corresponding estimates obtained by Procedure 2, i.e., using (Ci, λi)-recursions with

ξ represented by X̂ , are given in Table 7, and imply
∑5

n=1β̂n1 = 1.08 for the former and

= 0.99 for the latter model. Both are much closer to unity than obtained by Procedure 1.

The β̂n1-estimates from the quadratic model are smaller than obtained by Procedure 1.

The corresponding sum for the quadratic term,
∑5

n=1 β̂n2 is −0.005 in the quadratic

model and 0.016 in the cubic model, while for the latter
∑5

n=1β̂n3 = −0.001. The

estimated moments change to

(Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6) = (21.82, 136.56, 967.04, 7531.59, 63171.10),

(λ̂2, λ̂3, λ̂4, λ̂5) = (0.12, 0.04, −0.82, −3.19),

giving negative fourth- and fifth-order error moments. These values, however, do not

enter the estimation of the polynomials’ coefficients in Step 3, see (46). Again, all

eigenvalues of the design matrix are positive, with a considerable range, (0.02, 64088.02),

much larger than the range for the quadratic model, (0.06, 991.09).

Turning to Procedure 3, i.e., using (Ci, λi)-recursions with ξ represented by X̃1, we

obtain the results in Table 8. Assuming linearity the change in the estimates are modest,

for the cubic model, the change is substantial. All five functions come out as convex in

(latent) total expenditure (β̂n2>0), two commodities have negative first-order coefficients

(β̂n1< 0), while all have large positive intercept estimates. Overall, the departure from

linearity of the Engel functions appears as stronger when following Procedure 3 than

when using Procedures 1 and 2. The estimated moments of the latent regressor X and

the error v now are, respectively:

(Ĉ2, Ĉ3, Ĉ4, Ĉ5, Ĉ6) = (22.02, 135.39, 916.31, 6642.66, 50572.28),

(λ̂2, λ̂3, λ̂4, λ̂5) = (−0.08, 3.69, 16.07, 6.34).
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Still all eigenvalues of the design matrix are positive, with ranges (0.02, 51466.07),

(0.06, 941.41), and (0.12, 28.61) when assuming a cubic, quadratic and linear model,

respectively. This procedure, however, gives a negative estimate of the error variance,

λ2, while it gives a much larger estimate of λ3 than Procedures 1 and 2 and estimates of

λ4 and λ5, substantially exceeding those from Procedure 1.

The moments of the error distribution have so far been assumed unrestricted. To

implement the restrictions on the Cis, Dis and λis to concur with symmetry, we (a) for

Procedure 1, set λ3 = λ5 = 0 and estimate the Dis according to (44.a)–(44.f); (b) for

Procedures 2 and 3, set λ3 = λ5 = 0, estimate λ2 and λ4 as the average of the three,

respectively two, values obtained from (43.i) and (43.j), estimate C3, C4, C5 as the average

of the resulting two values obtained from (43.d), (43.e), and (43.g), respectively, and

finally estimate the Dis according to (44.a)–(44.f).

Table 8: Polynomial equations: estimates from Procedure 3

n αn βn1 βn2 βn3 γn1 γn2

Coefficient estimates, linear

1 0.2497 0.1899 0.0512 -0.0077
2 -0.0977 0.2316 0.0092 0.1168
3 -0.2059 0.2681 -0.0143 0.0106
4 -0.0624 0.1116 -0.0065 -0.0099
5 0.1421 0.1725 -0.0259 -0.0777
Σ 0.0258 0.9738 0.0137 0.0321

Standard errors

1 0.0487 0.0099 0.0151 0.0230
2 0.0575 0.0117 0.0178 0.0272
3 0.0646 0.0131 0.0200 0.0305
4 0.0301 0.0061 0.0093 0.0142
5 0.0416 0.0084 0.0129 0.0196

Coefficient estimates, quadratic

1 0.5350 0.0249 0.0187 0.0558 -0.0165
2 0.2005 0.0591 0.0195 0.0140 0.1076
3 0.3490 -0.0529 0.0363 -0.0052 -0.0065
4 0.2177 -0.0504 0.0183 -0.0020 -0.0185
5 0.3701 0.0406 0.0149 -0.0222 -0.0847
Σ 1.6722 0.0214 0.1078 0.0404 -0.0187

Standard errors

1 0.0639 0.0271 0.0029 0.0144 0.0220
2 0.0763 0.0323 0.0034 0.0172 0.0262
3 0.0795 0.0337 0.0036 0.0179 0.0273
4 0.0362 0.0154 0.0016 0.0082 0.0125
5 0.0548 0.0232 0.0025 0.0124 0.0189

Coefficient estimates, cubic

1 -0.1208 0.9799 -0.2381 0.0188 0.0559 -0.0969
2 -0.1640 0.5899 -0.1232 0.0105 0.0141 0.0629
3 -0.5862 1.3089 -0.3299 0.0269 -0.0051 -0.1211
4 -0.2766 0.6695 -0.1752 0.0142 -0.0019 -0.0791
5 0.0079 0.5680 -0.1269 0.0104 -0.0222 -0.1291
Σ -1.1397 4.1161 -0.9934 0.0808 0.0408 -0.3632

Standard errors

1 0.0621 0.0597 0.0152 0.0011 0.0110 0.0174
2 0.0928 0.0892 0.0227 0.0017 0.0164 0.0260
3 0.0679 0.0652 0.0166 0.0012 0.0120 0.0190
4 0.0235 0.0226 0.0058 0.0004 0.0042 0.0066
5 0.0636 0.0611 0.0156 0.0011 0.0112 0.0178

(Ci, λi)-recursions based on X̃1 used for moment estimation
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The resulting coefficient estimates are given in Table 9, from the cubic model, that

for which the differences are most notable. Imposing error symmetry, the estimates

from Procedure 1 are moderately changed (bottom half of Table 6 versus top third of

Table 9). For example
∑

n β̂n1 increases from 0.31 to 0.34. Imposition of error sym-

metry on Procedure 2 induces notable changes (bottom half of Table 7 versus middle

third of Table 9). For example for n = 1, commodity Food etc., (β̂n1, β̂n2, β̂n3) change

from (0.35, −0.03, 0.001) to (0.40, −0.04, 0.002), while (
∑

n β̂n1,
∑

n β̂n2,
∑

n β̂n3) change

from (0.99, 0.02, −0.001) to (1.12, 0.01, 0.000) and the estimated intercept sum
∑

n α̂n,

changes from −0.02 to −0.16. More sensitive to imposition of error symmetry are the

results from Procedure 3 (bottom third of Table 8 versus bottom third of Table 9). The

polynomial coefficients for Food change from (0.98,−0.24, 0.019) to (0.12,−0.02, 0.035),

the coefficient sums changes from (4.12,−0.99, 0.08) to (0.49,−0.06, 0.01), and the in-

tercept sum changes from −1.14 to 1.68. Note also the substantial reduction in the

standard errors of the (β̂n1, β̂n2, β̂n3)s when error symmetry is imposed on Procedure 3.

Table 9: Cubic equations: error symmetry imposed

n αn βn1 βn2 βn3 γn1 γn2

Coefficient estimates: Procedure 1 with symmetry

1 0.2133 0.2015 0.0063 -0.0007 0.0399 -0.0287
2 0.1161 0.0035 0.0658 -0.0046 -0.0087 0.0884
3 0.0377 0.0629 0.0477 -0.0028 -0.0228 -0.0085
4 0.0557 0.0244 0.0167 -0.0008 -0.0073 -0.0146
5 0.2478 0.0517 0.0375 -0.0027 -0.0387 -0.0985
Σ 0.6706 0.3440 0.1741 -0.0116 -0.0377 -0.0619

Standard errors

1 0.0997 0.0729 0.0152 0.0009 0.0149 0.0227
2 0.1143 0.0836 0.0175 0.0011 0.0171 0.0260
3 0.1313 0.0960 0.0201 0.0012 0.0196 0.0299
4 0.0616 0.0450 0.0094 0.0006 0.0092 0.0140
5 0.0831 0.0607 0.0127 0.0008 0.0124 0.0189

Coefficient estimates: Procedure 2 with symmetry

1 0.0039 0.3999 -0.0397 0.0023 0.0409 -0.0322
2 -0.0526 0.1564 0.0283 -0.0022 -0.0040 0.0964
3 -0.1666 0.2580 0.0005 0.0003 -0.0195 -0.0069
4 -0.0330 0.1107 -0.0041 0.0006 -0.0063 -0.0152
5 0.0918 0.1952 0.0033 -0.0005 -0.0359 -0.0954
Σ -0.1565 1.1202 -0.0118 0.0004 -0.0247 -0.0532

Standard errors

1 0.1042 0.0795 0.0165 0.0010 0.0148 0.0227
2 0.1226 0.0936 0.0194 0.0012 0.0174 0.0267
3 0.1384 0.1057 0.0219 0.0013 0.0197 0.0302
4 0.0645 0.0492 0.0102 0.0006 0.0092 0.0141
5 0.0887 0.0677 0.0141 0.0009 0.0126 0.0194

Coefficient estimates: Procedure 3 with symmetry

1 0.5994 0.1187 -0.0215 0.0035 0.0647 -0.0363
2 0.0924 0.1385 0.0037 0.0008 0.0154 0.1150
3 0.3788 0.0920 -0.0198 0.0048 0.0071 -0.0227
4 0.2698 0.0249 -0.0150 0.0030 0.0059 -0.0321
5 0.3492 0.1131 -0.0078 0.0017 -0.0183 -0.0902
Σ 1.6897 0.4872 -0.0604 0.0138 0.0748 -0.0663

Standard errors

1 0.0626 0.0195 0.0046 0.0005 0.0141 0.0219
2 0.0778 0.0243 0.0057 0.0006 0.0175 0.0272
3 0.0785 0.0245 0.0058 0.0006 0.0177 0.0275
4 0.0341 0.0107 0.0025 0.0003 0.0077 0.0119
5 0.0556 0.0173 0.0041 0.0004 0.0125 0.0195

Procedure 1: powers of X̂i, v̂i used for moment estimation.
Procedure 2: (Ci, λi)-recur., using X̂, for moment estimation.
Procedure 3: (Ci, λi)-recur., using X̃1, for moment estimation.
On the treatment of symmetry, see text
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6 Conclusion

Our primary concern in this paper has been identification and estimation of polynomial

single- and multi-equation measurement error models from moments of observable vari-

ables when (a) rather weak distributional assumptions are made for the latent regressor

and its error part while (b) linear ‘measurement equations’ represent the relationships

between the latent regressor and each of its indicators. A simple order-condition in-

volving the number of equations, the polynomial order, and the number of instruments

is presented. An essential element of the approach is that endogenous variables are

included as instruments for the error-ridden regressor.

The structure of the identification problem has been shown to motivate method of

moment procedures for uncovering the coefficients of the polynomial and of the measure-

ment equations jointly with the moments of the latent regressor and the measurement

errors. In the stepwise estimation procedure given most attention in the empirical ap-

plication, three ways of obtaining empirical counterparts to the moments of the latent

variable and the error are considered. Violation of the assumed stochastic independence

of the latent regressor and the measurement error, and the orthogonality between the

disturbances of the polynomial and the measurement equations, which are prerequisites

for this method, may impair the ‘quality’ of the coefficient estimates, which might to

some extent have been explored by simulation studies and bootstrapping of standard

errors. The empirical illustration for a five equation-system of Engel functions in the

final part shows that the procedure for estimating moments and whether or not error

symmetry is imposed may have strong effect on the coefficient estimates, and the equa-

tions’ curvature, for the quadratic and cubic Engel functions. For the cubic models,

the procedures for obtaining moments may strongly ‘interfere with’ the curvature of the

estimated functions obtained. Assuming linear equations, the impact is less strong.
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University Press.

Hausman, J.A., Newey, W.K., Ichimura, H., and Powell, J.L. (1991) : Identification and Estimation of
Polynomial Errors-in-Variables Models. Journal of Econometrics 50, 273–295.

Hausman, J.A., Newey, W.K., and Powell, J.L. (1995) : Nonlinear Errors in Variables: Estimation of
Some Engel Curves. Journal of Econometrics 65, 205–233.

Hu, Y. and Schennach, S.M. (2008) : Instrumental Variable Treatment of Nonclassical Measurement Er-
ror Models. Econometrica 76, 195–216.

Kuha, J. and Temple, J. (2003) : Covariate Measurement Error in Quadratic Regression. International
Statistical Review 71, 131–150.

Lewbel, A. (1997) : Constructing Instruments for Regressions with Measurement Error When no Addi-
tional Data are Available, with an Application to Patents and R&D. Econometrica 65, 1201–1213.

Montfort, K. van, Mooijaart, A., and Leeuw, J. de (1987) : Regression with Errors in Variables: Esti-
mates Based on Third Order Moments. Statistica Neerlandica 41, 223–239.

Moon, M.-S. and Gunst, R.F. (1995) : Polynomial Measurement Error Modeling. Computational Statis-
tics & Data Analysis 19, 1–21.

Newey, W.K. (2001) : Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models.
Review of Economics and Statistics 83, 616–627.

Reiersøl, O. (1950) : Identifiability of a Linear Relation Between Variables Which are Subject to Error.
Econometrica 18, 375–389.

Satorra, A. (2002) : Asymptotic Robustness in Multiple Group Linear-Latent Variable Models. Econo-
metric Theory 18, 297–312.

Schennach, S.M. (2004) : Estimation of Nonlinear Models with Measurement Error. Econometrica 72,
33–75.

Schennach, S.M. (2007) : Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models.
Econometrica 75, 201–239.

Wansbeek, T., and Meijer, E. (2000) : Measurement Error and Latent Variables in Econometrics. Am-
sterdam: North-Holland.

Wolter, K.M. and Fuller, W.A. (1982) : Estimation of the Quadratic Errors-in-Variables Model. Bio-
metrika 69, 175–182.

23


