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1 Introduction

When is it valid to use expected values in order to assess whether a project is socially 

profitable, in the sense of improving social welfare? In a well-known paper, Arrow and 

Lind (1970) prove that if a project’s net returns are independent of national income and 

distributed in lump-sum form over a sufficiently large population, then the aggregate 

cost of the risk associated with the project is negligible, so that the project should 

be accepted if its expected net return is positive and rejected otherwise. Little and 

Mirrlees (1974: 328-331) arrive at the same result by a somewhat different route, but 

without imposing the condition that the project be very small, while elucidating why 

the condition that the project’s net returns be independent of national income is vital. 

They also make a prefatory remark in connection with the assumption that there is a 

single commodity: ‘It is not so clear that this assumption is innocuous [...]’ (p. 329). 

This provides the point of departure for the present paper.

The vast literature on shadow prices for project evaluation in developing countries 

is overwhelmingly concerned with settings in which there are many goods, drawing a 

careful distinction between those that are internationally tradable and those that are 

not. The shadow wage rate and the social discount rate naturally have a prominent 

place, too. Almost invariably absent, however, is any form of uncertainty. Squire 

(1989), in a thorough and insightful survey, lists a very few exceptions of the case-

study kind, but otherwise refers the reader to such general contributions as Arrow and 

Lind (1970) and Graham (1981). In their authoritative survey of the theory of cost-

benefit analysis, Drèze and Stern (1987) also pay rather little attention to uncertainty. 

They do, however, construct an illuminating and simple example in which peasants 

supply a fixed amount of labour to cultivation and public projects combined, with 

both activities yielding risky output of an aggregate good. Since the marginal product
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of labour in cultivation will be low when the marginal utility of income is high, as 

for example in a drought, the shadow price of labour will be lower than the expected 

marginal product of labour in cultivation, thus illustrating the potential importance of 

taking covariance terms into account.

The chief object of this paper, therefore, is to derive shadow prices for goods and 

labour in a small open economy that is beset by stochastic world prices for traded 

goods and stochastic levels of productivity in domestic production. These exogenous 

sources of uncertainty result in stochastic domestic prices for all goods and labour. A 

question of central importance is whether the so-called ‘border price’ rule holds for 

traded goods: that is to say, is the vector of the shadow prices of such goods equal 

to a scalar multiple of the vector of their world prices? It will be shown that while 

this classic rule indeed holds for contingent shadow prices, it is invalid, in general, 

for the purposes of appraising projects ex ante, when the state in which the delivery 

or use of a good occurs has yet to be revealed. This finding implies, in particular, 

that it is generally invalid to use the expected values of traded goods’ world prices in 

order to estimate their relative shadow prices for certain delivery, even if households 

are risk neutral. In consequence, the use of mean values to estimate the corresponding 

shadow prices of non-tradables and labour is likewise generally invalid. For the family 

of preferences over goods whose indirect utility function has as its sole argument the 

level of income deflated by an exact price index, the only exception arises when the 

coefficient of relative risk aversion is unity: only in this borderline case is it strictly 

valid to use the mean values of world prices. A fairly general argument, supported 

by some numerical examples, serves to establish, however, that the rule is robust. 

Given the ranges of values that exogenously stochastic variables take in practice, even 

substantial departures of the coefficient of relative risk aversion from unity will result

2



in small errors when government expenditures are financed by lump-sum taxes. The 

same holds when commodity taxes are employed and preferences over goods are Cobb-

Douglas, or almost so. The corresponding error in the shadow wage rate, in contrast, 

is rather large when risk aversion is strong.

Turning to individual projects, not only are these undertaken in an uncertain general 

environment, but they are also subject to idiosyncratic risks, in the sense that they may 

not function exactly as planned, even for each given realisation of the set of variates 

describing the economy’s stochastic setting. This raises the question of whether it is 

valid to appraise a project’s profitability on the basis of the expected values of its inputs 

and outputs. If the idiosyncratic risks are independent of the systemic ones, intuition 

suggests that such a procedure is indeed valid, but this conjecture still needs formal 

investigation. If, on the contrary, the two kinds of risks are not independent, then 

neglecting the covariance terms may lead to serious errors. This consideration may 

be important in practice. To give an example, not only will an agricultural project’s 

performance almost surely be influenced by the growing conditions that affect the whole 

sector, but it may also be more susceptible to adverse conditions.

The plan of the paper is as follows. The model is set out in Section 2, followed 

by a proof of the main result concerning the validity of the border price rule. Sec-

tion 3 analyses shadow prices when the coefficient of relative risk aversion is constant 

and lump-sum taxes are available. There follow some numerical examples illustrat-

ing the magnitude of the error that results from using mean values when there are 

CES-preferences over goods. The analysis is extended to commodity taxes in Section 

4. The topic of risks specific to a project, as opposed to those in the environment, is 

taken up in Section 5, also with numerical examples. The paper concludes with a brief 

discussion.
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2 The Model

The model is essentially that in Bell and Devarajan (1983), extended here to a setting

in which the world prices of tradable goods and the levels of productivity in domestic

production activities are stochastic. The technologies in the private sector exhibit

constant returns to scale, with labour as the sole input. Households supply their

endowments of labour completely inelastically. There are three private goods: 1 and

2 are tradable at parametric world prices; good 3 is non-tradable. All markets are

perfect. Since labour is the only primary factor and there are constant returns to

scale, only one of the tradables will be produced domestically. In the stochastic setting

examined here, which of the two is imported will depend on the realised state. A

precise condition will be derived below.

The government raises revenue in order to finance the provision of a public good in

some fixed amount. It must augment any profits from public production by taxing

wages or goods, there being no private profits to tax. It should be noted that since

the entire factor endowment is supplied completely inelastically, a tax on wages or a

proportional tax on all goods at the same rate would be effectively lump-sum in nature.

Let the variate P ∗
i (i = 1, 2) denote the world price of good i and Li (i = 1, 2, 3) the

corresponding unit labour requirement in production. These variates and their associ-

ated distributions constitute the stochastic elements in the set of exogenous variables.

Denote by S(P ∗
i ) the set of all possible values of P

∗
i ; S(Li) is analogously defined. The

set of all possible realisations is then

S = S(P ∗
1 )× S(P ∗

2 )× S(L1)× S(L2)× S(L3).

Together with the behaviour of the economy’s agents, the said variates induce the wage
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rate and the price of the non-tradable, which are likewise stochastic, but endogenous;

they are denoted by the variates W and P3, respectively. The following assumption is

made for simplicity:

Assumption 1. Good 1 will be produced domestically and good 2 wholly imported for

all realisations p∗i and li, i = 1, 2.

In the absence of taxes on tradable goods, their domestic prices will be equal to their

respective world prices:

pi = qi = p∗i , i = 1, 2, (1)

where pi and qi denote the producer and consumer price of good i, respectively.

The unit cost of producing good i domestically is the variate WLi.

Assumption 2. Inputs of labour must be chosen before the state s ∈ S is revealed.

Wages are paid out of realised revenues following production.

The realised wage rate, w, therefore adjusts to the realised level li (i = 1, 2), and the

resulting price of output is such that profits in equilibrium are zero ex post. Hence, good

i will be produced domestically (and exported), and j �= i will be wholly imported, if

wli ≤ p∗i and wlj > p∗j . If i is produced domestically, then

w = p∗i /li and p∗i /li > p∗j/lj . (2)

In virtue of Assumption 1, we have

w = p∗1/l1 and p∗1/l1 > p∗2/l2 for all realisations of P ∗
i and Li (i = 1, 2).

The producer price of the non-tradable is likewise equal to the unit cost of producing
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it. For the realisations p∗1, l1 and l3, we have

p3 = wl3 = p∗1l3/li. (3)

To sum up, the vector of producer prices under the above assumptions is

(p, w) = p∗1 · (1, p∗2/p∗1, l3/l1, 1/l1), (4)

where (p∗1, p
∗
2, l1, l2, l3) is the realisation from the set S. That producer prices are inde-

pendent of quantities is a particularly convenient feature of the model. In what follows,

it will useful emphasise that all variables are, in principle, dependent on the particular

draw from the set S by introducing s ∈ S explicitly into the notation. The absence of

s in parentheses, (s), indicates that the variable in question is non-stochastic.

The next step is to establish the conditions for markets to clear in equilibrium. Let

xi(s) and yi(s), respectively, denote the private consumption and production of good

i in state s; analogously, z(s) = (z1(s), z2(s), z3(s), zl(s)) denotes the public sector’s

net supply of goods and labour; and ei(s) denotes the net exports of good i. The

market-clearing equations in state s are

y1(s) + z1(s) = x1(s) + e1(s), (5)

z2(s) = x2(s) + e2(s), (6)

y3(s) + z3(s) = x3(s), (7)

and

ωl + zl(s) − gl = l1(s)y1(s) +  l3(s)y3(s), (8)

where ωl is the economy’s aggregate endowment of labour, gl is the input thereof
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needed to produce the public good, and zl(s) is the government’s supply thereof net of

gl. It then follows from the fact that both the private and public sectors are on their

respective budget lines that the economy’s trade deficit at world prices is equal to its

endowment of foreign exchange, ωf :
1

p∗1(s) e1(s) + p∗2(s) e2(s) + ωf = 0. (9)

This statement of Walras’s law is a convenient way of deriving the shadow price of

public income.

Households’ aggregate gross income in state s is w(s)ωl = (p∗1(s)/l1(s))ωl. Let

the associated indirect utility function be denoted by v(q(s), m(s)), where m(s) =

w(s)ωl − t(s) is the corresponding level of income after tax. Faced with the set of

outcomes arising from S, let households’ preference functional over the lotteries in

question be represented by V = Es[v(q(s), m(s))] + ψ(gl), where the term ψ(gl) is a

constant, given any particular choice of gl, and E is the expectation operator.

The government can choose the tax vector (t1, t2, t3, t) only after s has been revealed.

Its decision problem is then

max
(t1,t2,t3,t|s)

v(s) s.t. (5)− (9). (10)

Writing the Lagrangian in the following form (Drèze and Stern, 1987), we then employ

1See Bell (2003: 244-5) for the details of the derivation.
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the envelope theorem to obtain all shadow prices, contingent on s:

Φ(s) = v(s) +
∑
i

λi(s)[yi(s) + zi(s)− xi(q(s), m(s))− ei(s)]

+ λl(s)[ωl + zl(s)− l1(s)y1(s)− l3(s)y3(s)− gl]

+ μ(s)[ωf + p∗1(s) e1(s) + p∗2(s) e2(s)]. (11)

The contingent shadow prices are the respective changes in v(s) resulting from marginal

changes in the government’s net supply vector in state s:

πi(s) ≡ ∂Φ0(s)

∂zi(s)
=
∂v0(s)

∂zi(s)
= λi(s), i = 1, 2, 3, l (12)

πf (s) ≡ ∂Φ0(s)

∂ωf
=
∂v0(s)

∂ωf
= μ(s), (13)

where the superscript ‘0’ refers to the optimum of problem (10) and it should be noted

that the contingent shadow wage rate is λl(s), which is the reduction in v0(s) when

labour is employed in, not produced by, the public sector. The contingent shadow price

of public income is μ(s).

The appraisal of public projects, however, must be made ex ante, before the state

s is revealed. For this purpose, the shadow prices of goods, labour and public income

relate to changes in welfare as given by the functional V . That is to say, they are

the effects on welfare of marginal deliveries made whatever be the realisation s ∈ S:

dzi(s) = dzi ∀s ∈ S, i = 1, 2, 3, l.2 The said shadow prices are therefore the expected

values of their respective contingent shadow prices. We have

πi ≡ ∂V 0

∂zi
= Es

[
∂v0(s)

∂zi(s)

]
= Es[λi(s)], i = 1, 2, 3, l (14)

2This does not rule out the possibility of idiosyncratic risks specific to individual projects. See
Section 5.
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and

πf ≡ ∂V 0

∂ωf
= Es

[
∂v0(s)

∂ωf

]
= Es[μ(s)]. (15)

At the optimum, Φ(s) must be stationary w.r.t. all endogenous variables, whether

they be chosen by the government or adjust to bring about equilibrium. The derivatives

w.r.t. e(s) and y(s) yield

∂Φ0(s)

∂ei(s)
= −λi(s) + μ(s) p∗i (s), i = 1, 2, (16)

and

∂Φ0(s)

∂yi(s)
= λi(s)− li(s)λl(s), i = 1, 3. (17)

Eq. (16) yields the celebrated border price rule, albeit expressed as contingent on

the state s: the contingent shadow prices of traded goods are proportional to their

respective world prices, the factor of proportionality being the contingent shadow price

of public income. Eq. (17) states that the contingent shadow price of a good produced

domestically is equal to the contingent marginal shadow cost of producing it. Hence, the

vector of contingent shadow prices is proportional to the vector of contingent producer

prices:

π(s) = μ(s) · p∗1(s)
(
1,
p∗2(s)
p∗1(s)

,
l3(s)

l1(s)
,

1

l1(s)

)
. (18)

From (14) and (15), the corresponding shadow prices for project appraisal ex ante

are

πi = Es[μ(s) p
∗
i (s)] = Es[μ(s)] · Es[p

∗
i (s)] + cov[μ(s), p∗i (s)], i = 1, 2, (19)

π3 = Es[μ(s) · p∗1(s) l3(s)/l1(s)]

= Es[μ(s)] ·Es[p
∗
1(s) l3(s)/l1(s)] + cov[μ(s), p∗1(s) l3(s)/l1(s)], (20)
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and

πl = Es[μ(s) · p∗1(s)/l1(s)] = Es[μ(s)] · Es[p
∗
1(s)/l1(s)] + cov[μ(s), p∗1(s)/l1(s)]. (21)

It is seen that the magnitude of the covariance of the shadow price of public income and

the exogenous stochastic variables determines the size of the error, if any, in using the

mean values of the latter to estimate shadow prices. Suppose, therefore, that the world

price of good 1 does not vary (p∗1(s) = p∗1 ∀s), so that Es[p
∗
1(s)] = p∗1, cov[μ(s), p

∗
1(s)] =

0 and π1 = Es[μ(s)] · p∗1. Then substituting into (19), we obtain

π2 = π1 · Es[p
∗
2(s)]

p∗1
+ cov[μ(s), p∗2(s)],

where the covariance term is, in general, non-zero if the world price of good 2 is

stochastic. The same applies, mutatis mutandis, if the roles of the goods are reversed.

This establishes the first result.

Proposition 1. If the world price of either traded good is stochastic and these prices are

not perfectly correlated, then the ratio of their shadow prices for ex ante appraisal is

not, in general, equal to the ratio of their mean world prices.

That is to say, the so-called border price rule is not, in general, correct when the mean

world price is employed. The same holds for the use of mean values to derive the

shadow prices of the non-tradable and labour for ex ante appraisal purposes.

One always has the choice of numéraire. The endowment ωf corresponds to foreign

exchange in the hands of the government, which is the choice in Little and Mirrlees

(1974). In what follows, it will simplify matters to set this endowment to zero and

choose a good instead. A natural choice is a tradable good. Let it be good 1, so that

p∗1(s) = 1 ∀s, which yields the (stochastic) barter terms of trade, p∗1(s)/p
∗
2(s) = 1/p∗2(s),
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as a normalisation. The Lagrange multiplier μ(s) continues to play a vital role, however, 

whereby its precise value arises from the normalisation ωf = 0.

The above assumptions about households’ preferences, as represented by V , are quite 

weak. It will be proved in the next section that even with lump-sum taxation, only 

one member of a whole family of preferences yields an exception to the generality of 

Proposition 1: in this particular case, the border-price rule indeed holds using the 

expected values of world prices. For all other members of the family, an error will 

result, whose size will be analysed in detail.

3 Expected Values and Shadow Prices

The indirect utility function v is quasi-convex in (q(s),  m(s)) and homogeneous of de-

gree zero in q(s)  and m(s). Let preferences satisfy the following assumption: 

Assumption 3. v(q(s),  m(s)) = φ [m(s)/κ(q(s))], where φ is increasing in the argument 

m(s)/κ(q(s)) and differentiable, and κ is increasing, differentiable and homogeneous 

of degree 1 in q(s).

Remark 1. The function κ can be thought of as yielding the true price level correspond-

ing to the preferences underlying v.  The quantity m(s)/κ(q(s)) is the corresponding 

level of real income at prices q(s). Put slightly differently, given some reference level 

of utility u and the price vectors q and q′,  let  c(q, u) and  c(q′,  u), respectively, denote 

the minimum cost of attaining u at the said prices. Then, taking q as the reference 

price vector, the Könus price index is defined to be c(q′,  u)/c(q, u) (Diewert, 1988). 

Inspection of (19) – (21) reveals that a potentially promising approach to establishing 

the signs of the covariance terms is to examine whether the functions involved are con-

cave or convex for all positive prices; for Jensen’s inequality will then yield the sign in
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question. To this end, the following lemma will be helpful.

Lemma 1. If g(x) is concave in x, then 1/g(x) is strictly convex.

Proof : see Appendix.

Since the true cost-of-living index κ is homogeneous of degree 1 in q(s), φ is strictly

convex in q(s). This fact turns out to exert an important influence on shadow prices

when consumer prices are stochastic.

It is well known that shadow prices depend on the government’s choice of policies to

bring about (9). In the present setting, its choice is the vector of taxes. We begin with

the simplest case, i.e., lump-sum taxes, deferring commodity taxes to Section 4.

3.1 Lump-sum taxes and constant relative risk aversion

Let wages, but not goods, be taxed, so that q(s) = p(s) and m(s) = w(s)ωl − t(s).

Suppose the government’s endowment of foreign exchange ωf were to increase. It would

then distribute this windfall by decreasing t(s) in the same amount; and under the

above assumptions, this action would leave producer prices, and hence consumer prices,

unchanged. It follows from (13) that ∂v0(s)/∂m(s) = μ(s). Recalling Assumption 3

and substituting into (19), we obtain

πi = Es

[
∂φ[m(s)/κ(q(s))]

∂m(s)
· p∗i (s)

]
, i = 1, 2. (22)

If households are risk neutral, φ is affine in m(s)/κ(q(s)) and (22) specialises to

π1 = Es

[
p∗1(s)
κ(q(s))

]
= Es

[
1

κ(1, p∗2(s)/p
∗
1(s), l3(s)/l1(s))

]
,

and

π2 = Es

[
p∗2(s)
κ(q(s))

]
= Es

[
1

κ(p∗1(s)/p
∗
2(s), 1, p

∗
1(s)l3(s)/p

∗
2(s)l1(s))

]
.
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The level of incomem(s) is not in play. Choosing good 1 as numéraire, i.e., p∗1(s) = 1 ∀s,
we have

π2 = Es

[
p∗2(s)
κ(q(s))

]
= Es[p

∗
2(s)] · π1 + cov (p∗2(s), 1/κ(q(s))) < Es[p

∗
2(s)] · π1, (23)

where the inequality follows from the fact that κ(q(s)) is increasing in p∗2(s). Hence,

the so-called border price rule is incorrect when the mean world price is employed.

Expressed more precisely, we have established

Proposition 2. If households are risk neutral and good 1 is the numéraire, then under

Assumption 3, π2/π1 < Es[p
∗
2/p

∗
1].

Fluctuations in prices matter, therefore, even under risk-neutrality. Since κ is strictly

concave in any two of its arguments, it follows from Lemma 1 and Jensen’s inequality

that πi = Es[μ(s) p
∗
i (s)] < Es[μ(s)] · Es[p

∗
i (s)] if p

∗
i (s) depends on s. With good 1 as

numéraire, π1 = Es[μ(s)]; but p
∗
2(s)/κ(q(s)) is strictly convex in p∗2(s).

An analogy provides some intuition for this finding. A well-known property of the

competitive firm’s profit function is that it is convex in prices. This implies that

expected profits with variable prices exceed the level attained when prices take their

mean values if the said function is strictly convex. Likewise, risk-neutral consumers in

the present setting also prefer variable prices to the mean, all else being equal. In a

world with but one consumer good, however, this effect is ruled out; and with lump-

sum taxes, changes in the public sector’s net supply vector result in changes in private

income m that are independent of s.

The size of the error, expressed proportionally, involved in using the mean values

of world prices is cov(p∗2(s), 1/κ(q(s))/Es[1/κ(q(s))]. This is likely to be rather small. 

For the prices of goods 1 and 3 also enter into κ(s), and if the taste for good 2 is 

not very strong, substitution possibilities will also work to restrict the deviation of
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each 1/κ(q(s)) from the mean, Es[1/κ(q(s))]. This matter will be pursued further in

Section 3.2.

Turning to the shadow price of labour, we have

πl = Es

[
1/l1(s)

[κ(1, p∗2(s)/p
∗
1(s), l3(s)/l1(s))]

]

= π1 · Es[1/l1(s)] + cov

[
1

l1(s)
,

1

κ(1, p∗2(s)/p
∗
1(s), l3(s)/l1(s))

]
. (24)

Es[1/l1(s)] is the mean level of efficiency in the export sector, and although π1 fully

reflects all the influences considered above, it is seen that the shadow wage rate is equal

to their product plus the covariance of the contingent shadow price of good 1 and the

level of productivity, 1/l1(s). It is quite plausible that the latter is independent of

world prices when producer prices are independent of quantities – recall (4); but κ also

depends on the level of domestic productivity 1/l1(s), so that the covariance term is

almost surely not equal to zero. Once again, therefore, the use of mean values, even

with the correct shadow prices of tradable goods, is very likely to result in an error.

With risk-neutrality as a benchmark, we turn to risk-averse households. By con-

tinuity, the above results also hold whenever households are only mildly risk-averse.

Risk-aversion, however, implies that φ is strictly concave, thus offsetting the advantages

of variability stemming from the strict convexity of 1/κ(q(s). Are there constellations

in which the two effects exactly cancel out? In order to address this question, let the

coefficient of relative risk aversion be constant.

Assumption 4. Let

φ = (1− ρ)−1

(
m(s)

κ(q(s))

)1−ρ

, ρ ≥ 0,

where ρ is to be interpreted as the coefficient of relative risk aversion.
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Given this additional restriction on preferences, we have

πi = Es

[
[m(s)]−ρ

κ[(q(s))]1−ρ
· p∗i (s)

]
, i = 1, 2.

Since consumer prices are equal to producer prices and κ is homogeneous of degree 1,

it follows from (4) that this may be expressed as

πi = Es

[
[m(s)]−ρ · p∗i (s)

[p∗1(s)κ(1, p
∗
2(s)/p

∗
1(s), l3(s)/l1(s))]

1−ρ

]
, i = 1, 2. (25)

From (21), the shadow value of labour is

πl = Es

[
[m(s)]−ρ · p∗1(s)/l1(s)

[p∗1(s)κ(1, p
∗
2(s)/p

∗
1(s), l3(s)/l1(s))]

1−ρ

]
. (26)

By inspection, the special case ρ = 1, i.e., φ = ln [m(s)/κ(q(s))], attracts attention.

Eq. (25) then yields the strikingly simple expression

πi = Es

[
p∗i (s)
m(s)

]
, i = 1, 2,

from which κ is absent. The level of income is m(s) = (p∗1(s)/l1(s))ωl − t(s). By

assumption, the production of the public good requires gl units of labour in all states s.

Thus, ignoring any profits from public sector enterprises and the endowment ωf , whose

sum is likely to be small, m(s) = (ωl − gl)p
∗
1(s)/l1(s). Under the plausible assumption

that productivity in sector 1, 1/l1(s), depends only on domestic conditions, we have

πi = Es[p
∗
i (s)/m(s)] = Es

[
p∗i (s)
p∗1(s)

]
· Es[l1(s)]/(ωl − gl), i = 1, 2,

and indeed the use of mean values is valid: π2/π1 = Es[p
∗
2(s)/p

∗
1(s)], a result sum-

marised as:
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Proposition 3. If, under Assumptions 3 and 4, expected utility is logarithmic (ρ = 1),

and world prices and domestic productivity are independent variates, then the ratio of

the shadow prices of tradable goods is equal to the mean ratio of their respective world

prices.

That is to say, the border-price rule is valid without further reference to the possible

dependence on states.

The intuition for this result lies in the fact that when ρ = 1, the indirect utility

function is separable in income and prices: v = lnm(s)− ln κ(q(s)). This implies, from

(13), that the marginal value of public revenue is independent of prices, so that the

covariance term vanishes and the expected border price rule indeed applies.3 The said

separability is the reason why the convexity of 1/κ(q(s)) is exactly balanced by the

concavity of φ whatever be the degree of substitutability among goods underlying κ.

As noted above, κ is absent from πi (i = 1, 2).

If ρ is not equal to 1, it is seen from (25) that both κ and m(s) will be in play. The

argument yielding Proposition 2 then reveals that ρ = 1 is a special – and perhaps

borderline – case when households are risk averse. Closer inspection of (25) in the light

of Propositions 2 and 3 suggests the following conjecture:

π2
π1

>
<Es

[
p∗2(s)
p∗1(s)

]
according as ρ >

< 1. (27)

For (25) may be written

πi = Es

[
p∗i (s)[κ(q(s))]

ρ−1[l1(s)]
ρ

[p∗1(s)]ρ

]
· 1

(ωl − gl) ρ
, i = 1, 2.

If ρ >  1, then the product [κ(q(s))]ρ−1[l1(s)]
ρ is increasing in both its terms; but if

3I am grateful to Francois Bourguignon for this insight. It should be noted that ρ = 1 requires the 

direct utility function to be homogeneous.
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ρ < 1, it is decreasing in the first, so that their covariance switches sign. In view of

Proposition 2 (wherein ρ = 0), this proves the conjecture.

Proposition 4. Let good 1 be the numéraire. Then, under Assumptions 3 and 4, the

relative shadow price of good 2 is greater or less than its mean relative world price

according as ρ is greater or less than 1.

3.2 The size of the errors

It is important to establish how large the error in using the expected values of world

prices is likely to be in practice. By continuity, it must be small when ρ is close to 1,

so consider the extreme case of risk-neutrality (ρ = 0). Recalling that good 1 is the

numéraire and (23), we have

π2
π1

= Es[p
∗
2(s)] +

cov (p∗2(s), 1/κ(q(s)))
Es [1/κ(q(s))]

.

If the distribution function of the variate P ∗
2 is strongly concentrated, the covariance

term must be small. Suppose, therefore, that the support of the said function is not very

narrow, thus allowing the dispersion to be quite large, and exploiting this possibility,

let all states be equally probable. Then, defining h(s) ≡ 1/κ(q(s)),

π2
π1

=
Es[p

∗
2(s)h(s)]

Es[h(s)]
=

∑
s p

∗
2(s)h(s)∑
s h(s)

.

With good 1 as numéraire, 1/p∗2(s) is the barter terms of trade in state s, so the

normalisation Es[p
∗
2(s)] = 1 is permissible; and with all states equally probable, we have

∑
s p

∗
2(s) = n, where n is the number of states. Denote the deviation from the mean in

state s by ξ(s) ≡ 1−p∗2(s), so that
∑

s p
∗
2(s)h(s)/

∑
s h(s) = 1−∑

s ξ(s)h(s)/
∑

s h(s).

Now suppose the distribution function of P ∗
2 is also symmetric, and without loss
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of generality, let the states be ordered such that p∗2(1) ≤ p∗2(2) ≤ . . . ≤ p∗2(n), where

p∗2(1) < p∗2(n). Then

∑
s

ξ(s)h(s) = ξ(1)(h(1)−h(n))+ξ(2)(h(2)−h(n−1))+. . . ξ(n/2)(h(n/2)−h(n/2+1)).

Let |(h(k)− h(n+ 1− k))| ≡ δ ≥ |(h(s)− h(n + 1− s))| ∀s �= k. Hence,

∑
s

ξ(s)h(s) ≤ δ

n/2∑
s=1

ξ(s),

which will hold as a strict inequality if the term h(s)− h(n+ 1− s) varies with s, and

a fortiori if not all of the terms h(s) − h(n + 1 − s) have the same sign. It follows

that the (proportional) in error using the means of world prices, π2/π1 − 1, is at most

−δ
n/2∑
s=1

ξ(s)/
n∑

s=1

h(s).

Now,
n/2∑
s=1

ξ(s) < (1− p∗2(1))n/2 ∀n > 2 is the sum of the absolute deviations of p∗2(s)

from the mean value of 1 for all states in which p∗2(s) < 1. In practice, the barter terms

of trade p∗1(s)/p
∗
2(s) are unlikely to stray outside the interval [0.75, 1.25], which implies

p∗2(1) = 0.8. Under the assumption that all states are equally probable,
n∑

s=1

h(s)/n is

the mean value of the inverse of the cost of living index κ(s) and δ is the size of the

support of its distribution function. Even allowing for a stochastic level of productivity

in the production of good 3, it is very unlikely that the ratio of δ to the mean would

exceed 0.3 in practice. Hence, not only is the error in question very unlikely to exceed

−0.2× 0.3/2 = −0.03, but also rather likely to fall some way short of it.

The corresponding error in the shadow wage rate is

πl
π1 ·Es[1/l1(s)]

− 1 =
Es[h(s)/l1(s)]

Es[h(s)] ·Es[/l1(s))]
− 1 =

n
∑

s h(s)/l1(s)∑
s h(s) ·

∑
s 1/l1(s)

− 1,
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where the expression on the far right follows from the assumption that the states are

equally probable. Since productivity in the export sector, 1/l1(s), will almost surely

lie in the interval [0.75, 1.25], it is seen that the above argument concerning the error

in the border price rule also holds for the shadow wage rate.

Having established these qualitative results for the case of risk-neutrality, it will

be useful to construct some numerical examples. For simplicity, let productivity in

sector 3 be non-stochastic, with l3(s) = 1 ∀s. As noted above, it is plausible that in a

small open economy in which output is produced by unassisted labour, productivity in

sector 1, 1/l1(s), is statistically independent of the terms of trade, 1/p∗2(s). Let each

of these variates take just two values, both with probability one-half and mean values

of unity: P ∗
2 ∈ {0.8, 1.2}, L1 ∈ {0.8, 1.2}. There are thus four states, each occurring

with probability one-quarter:

s = 1 : (p∗2 = 0.8, l1 = 0.8), s = 2 : (p∗2 = 1.2, l1 = 0.8),

s = 3 : (p∗2 = 0.8, l1 = 1.2), s = 4 : (p∗2 = 1.2, l1 = 1.2).

The associated contingent producer price vectors are

(p(1), w(1)) = (1, 0.8, 1.25, 1.25), (p(2), w(2)) = (1, 1.2, 1.25, 1.25),

(p(3), w(3)) = (1, 0.8, 5/6, 5/6), (p(4), w(4)) = (1, 1.2, 5/6, 5/6).

Hence, Es[p(s), w(s)] = (1, 1, 25/24, 25/24).

Turning to preferences, consider the symmetric, CES family of utility functions

u(x) = [xk1 + xk2 + xk3]
(1−ρ)/k, ρ ≥ 0, k ∈ (−∞, 1].
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The associated indirect utility function is

v(q, m) =

[
m

(qr1 + qr2 + qr3)
1/r

]1−ρ

,

where r = k/(k − 1). Assumption 3 is clearly satisfied. We examine two special cases,

which involve all three goods being consumed in strictly positive quantities: k = −1,

whereby the pairwise elasticity of substitution between any pair of goods is −1/2; and

k = 0, the familiar Cobb-Douglas member of the family, whereby the said elasticity is

−1. The associated indirect utility functions are, respectively,

v(q, m) =

⎡
⎢⎣ m(

q
1/2
1 + q

1/2
2 + q

1/2
3

)2

⎤
⎥⎦
1−ρ

,

and

v(q, m) =

[
m

(3 · q1 q2 q3)1/3
]1−ρ

.

Inspecting (25) and noting that consumer prices equal producer prices, we compute

κ1(s) = κ(1, p∗2(s)/p
∗
1(s), l3(s)/l1(s)) and κ2(s) = κ(p∗1(s)/p

∗
2(s), 1, p

∗
1(s)l3(s)/(p

∗
2(s)l1(s))

for goods 1 and 2, respectively.

For k = −1, we have, for goods 1 and 2, respectively,

κ1(1) = (11/2 + 0.81/2 + 1.251/2)2 = 9.075, κ1(2) = (11/2 + 1.21/2 + 1.251/2)2 = 10.326,

κ1(3) = (11/2 + 0.81/2 + (5/6)1/2)2 = 7.881, κ1(4) = (11/2 + 1.21/2 + (5/6)1/2)2 = 9.050,
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and

κ2(1) = (1.251/2 + 11/2 + 1.56251/2)2 = 11.344, κ2(2) = ((5/6)1/2 + 11/2 + (25/24)1/2)2 = 8.605,

κ2(3) = (1.251/2 + 11/2 + (25/24)1/2)2 = 9.851, κ2(4) = ((5/6)1/2 + 11/2 + (25/24)1/2)2 = 7.542.

If households are risk neutral (ρ = 0), (25) yields π1 = Es[1/κ(s)] = 0.1111 and

π2 = Es[p
∗
2(s)/κ(s)] = 0.1096. Hence,

π2
π1

= 0.9865 < Es

[
p∗2(s)
p∗1(s)

]
= 1.

The border-price rule is invalid, in keeping with Proposition 1; and with good 1 as

numéraire, the covariance of the world price of good 2 and the shadow price of public

income is negative, in keeping with Proposition 2. The expected value of κ(s) is 9.083,

so that 1/Es[κ(s)] = 0.1101 < 0.1111 = Es[1/κ(s)]. At just over 1 per cent, however,

the error resulting from the use of mean values is small indeed.

For k = 0 and risk-neutral households, similar calculations yield π1 = Es[1/κ(s)] =

0.6966 and π2 = Es[1/κ(s)] = 0.6871. Hence,

π2
π1

= 0.9864 < Es

[
p∗2(s)
p∗1(s)

]
= 1,

and the error is virtually identical.

These small errors carry over to the shadow wage rate, which is obtained from (24). 

For k = −1,

πl = Es[1/(κ(s)l1(s))] = 0.1141 < π1 · Es[1/l1(s)] = 0.1157,

so that the covariance term is negative, whereby the choice of the export good as
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numéraire contributes to keeping the proportional deviation small. By assumption,

l3(s) = 1 ∀s, so that π3 = πl = 0.1141, and the same applies to the shadow price of

good 3. For k = 0, the absolute deviation is a little larger:

πl = Es[1/(κ(s)l1(s))] = 0.7158 < π1 · Es[1/l1(s)] = 0.7256.

As noted in Section 3.1, if households are risk averse, the level of income will come

into play. In the light of Propositions 3 and 4, we examine the relatively strong risk

aversion implied by ρ = 2. Recalling (25) and noting thatm(s) = w(s)ωl−t(s), w(s) =
p∗1(s)/l1(s) and t(s) = w(s)gl, we have

πi = Es

[
p∗i (s)κ(q(s))[l1(s)]

2

[p∗1(s)]2

]
· 1

(ωl − gl)2
, i = 1, 2,

where p∗1(s) = 1 ∀s. For k = −1, we have Es[p
∗
1(s)κ(q(s)) · [l1(s)]2] = 9.1995 and

Es[p
∗
2(s)κ(q(s)) · [l1(s)]2] = 9.453 for goods 1 and 2, respectively. Hence, in keeping

with Proposition 4,

π2
π1

= 1.0276 >
Es[p

∗
2(s)]

Es[p
∗
1(s)]

= 1,

albeit still a weak departure from the ratio of mean values. For k = 0, we have, likewise,

π2
π1

=
1.5083

1.4676
= 1.0277 > Es

[
p∗2(s)
p∗1(s)

]
= 1.

Turning to the shadow wage rate, for k = −1, the key term is Es[p
∗
1(s)κ(q(s)) · l1(s)],

wherein l1(s) now enters only linearly. For k = 1, its value is 8.9595 , so that

πl
Es[p∗1(s)κ(q(s)) · [l1(s)]2] · Es[1/l1(s)]

=
8.9595

9.5831
= 0.9349.
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For k = 0, the ratio is

πl
Es[p

∗
1(s)κ(q(s)) · [l1(s)]2] · Es[1/l1(s)]

=
1.4292

1.5288
= 0.9348.

The errors are now rather large and run in the same direction. This stems from the

fact that the productivity parameter 1/l1(s) enters the numerator and denominator

in different ways, and so leads to substantial covariance between π1(s) and the said

parameter.

4 Commodity Taxes

Under the assumption that the entire endowment of labour is supplied completely

inelastically, a proportional tax on all goods at the same rate is equivalent to a lump-

sum tax. Let the tradable goods be non-taxable, leaving a tax on the non-tradable,

t3(s), to yield whatever revenue is needed to balance the government’s budget. The

consumer price of good 3 is then q3(s) = p3(s) + t3(s), and the consumer price vector

is

q(s) = (p∗1(s), p
∗
2(s), (p

∗
1(s)l3(s)/l1(s)) + t3(s)) .

Proceeding as in Section 3.1, a change in ωf now results in a change in t3(s) so as

to preserve a balanced budget. We have, using a little manipulation,

dωf = −d(t3(s) · x3(s)) = −x3(s)
(
1 +

t3(s)

q3(s)
· ε3(s)

)
dt3(s),

where ε3(s) is the own price elasticity of the uncompensated demand for good 3 in

state s. Recalling that the (contingent) producer price of good 3 is fixed, so that
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∂q3(s)/∂t3(s) = 1, the corresponding marginal change in v0(s) is

∂v0(s)

∂ωf

=
∂v0(s)

∂q3(s)
· ∂t3(s)
∂ωf

= − 1

x3(s)
(
1 + t3(s)

q3(s)
· ε3(s)

) · ∂v
0(s)

∂q3(s)
.

Using Roy’s identity, we then obtain

∂v0(s)

∂ωf
= μ(s) =

∂v0(s)/∂m(s)(
1 + t3(s)

q3(s)
· ε3(s)

) ≡ γ3(s) · ∂v0(s)/∂m(s). (28)

It is seen that, unless the demand for good 3 is completely price-inelastic, the value

of γ3(s) is greater than unity, so that the gain in welfare from an additional unit of

the endowment ωf – perhaps in the form of a gift – exceeds the value of the marginal

utility of private income in the state in question. This is a simple consequence of the

fact that the government is raising revenue through distortionary taxation.

The term γ3(s) will intrude throughout, so it will pay to examine it more closely.

Let ωf and the profits from public production be zero, so that the expenditure w(s) · gl
must be financed by the revenue t3(s) · x3(s). Then

t3(s)

q3(s)
=

gl
gl + l3(s)x3(s)

,

where the r.h.s. is the ratio of employment in the production of the public good to 

the sum of employment in such production and sector 3 combined. Observe that x3(s) 

depends not only on l3(s) itself, but also on p∗2(s)  and l1(s), variations in all of which 

induce a variety of income and substitution effects. In practice, the said ratio is likely 

to be in the range of 20 to 30 percent, and the value of ε3(s) should not be very far 

from −1. Hence, the value of the denominator is likely to fall in the interval [0.5, 0.9],
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which implies a premium on public income in the interval [0.1, 1]. In any event,

γ3(s) = 1 +
gl

gl + l3(s)x3(s)
· ε3(s), (29)

which will vary with s in a complicated way, even when ε3(s) is constant (as will hold

when preferences are Cobb-Douglas).

Turning to shadow prices, analogously to the derivation of (22), we have

πi = Es

[
γ3(s) · ∂φ[m(s)/κ(q(s))]

∂m(s)
· p∗i (s)

]
, i = 1, 2. (30)

If households are risk neutral, this specialises to, recalling that good 1 is the numéraire,

π1 = Es

[
γ3(s)

κ(q(s))

]

and

π2 = Es

[
γ3(s) · p∗2(s)

κ(q(s))

]
= π1 · Es[p

∗
2] + cov

(
γ3(s),

p∗2(s)
κ(q(s))

)
.

In general, the covariance term will not be zero, so that the border-price rule will 

almost surely not hold. Whether Proposition 2 continues to hold, in general, also 

seems doubtful, though it will do so if ε3(s) is sufficiently close to zero.

If households are risk averse, inspection of (25) reveals that the intrusion of γ3(s) 

will also invalidate the arguments yielding Propositions 3 and 4. For each particular 

constellation of the distributions of the exogenous variates and preferences, it seems 

plausible that there will exist a borderline value of ρ analogous to ρ = 1 with lump-sum  

taxation. We now investigate this matter.
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4.1 Cobb-Douglas preferences

The attraction of Cobb-Douglas preferences is that the equilibrium values of all vari-

ables can be derived in closed form. We have

v(q(s)) = (1− ρ)−1

(
m(s)

q1(s)1−α2−α3q2(s)α2q3(s)α3

)1−ρ

. (31)

Choosing good 1 as numéraire, let taxes be levied on one or the other of goods 2 and

3. Let ωf and the profits from public production be zero, so that in order to finance

gl, the tax on good i must satisfy

ti(s)xi(s) = [qi(s)− pi(s)]xi(s) = w(s)gl, i = 2, 3.

Normalising the endowment ωl to unity, we have qi(s)xi(s) = αiw(s). Hence, qi(s) =

αipi(s)/(αi − gl), i = 2, 3, where gl < max(α2, α3) if gl is to be feasible.

Suppose only the non-tradable is taxed. Then, recalling (5)-(7), noting that w(s) =

p∗1(s)/l1(s) = 1/l1(s) and assuming that l3(s) = 1 ∀s, we obtain

y1(s) = (α1 + α2)/l1(s), y2(s) = 0, y3(s) = x3(s) = α3 − gl.

Strikingly, production and consumption of the non-tradable are independent of s. The

same holds for γ3(s): from (29), we have γ3(s) = (α3 − gl)/α3.

Now let the economy receive a gift of ωf . This can be used to finance part of w(s)gl,

thereby permitting a reduction in t3(s) = gl/[(α3 − gl)l1(s)]. The change in q3(s) so

induced by a marginal change in ωf is

∂q3(s)

∂ωf
=

α3

(α3 − gl)2l1(s)
· ∂gl
∂ωf

=
α3

(α3 − gl)2l1(s)
· −1

w(s)
=

−α3

(α3 − gl)2
,
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which is independent of s.

In view of Proposition 3, the case of log-expected utility, v(s) = ln[m(s)/κ(q(s)], is

of particular interest, as a possible borderline case. We have

μ(s) =
∂v0(s)

∂ωf

=
∂v0(s)

∂q3(s)
· ∂q3(s)
∂ωf

=
α3l1(s)

α3 − gl
.

Hence, π1 = Es[p
∗
1(s)μ(s)] = α3Es[l1(s)]/(α3− gl) = Es[p

∗
2(s)μ(s)] = π2 in virtue of the

assumption that p∗2(s) is independent of l1(s). A similar argument establishes that the

same holds when good 2 is taxed instead, and hence also for any combination of taxes

on goods 2 and 3. We have therefore extended Proposition 3 to cover commodity taxes.

Proposition 5. If, under Assumptions 3 and 4, expected utility is logarithmic (ρ = 1),

preferences over goods are Cobb-Douglas, world prices and domestic productivity are

independent variates, and only commodity taxes are available, then the ratio of the

shadow prices of tradable goods is equal to the mean ratio of their respective world

prices.

This finding invites the question of whether Proposition 4 also holds under such a

tax restriction when preferences are Cobb-Douglas. If there is risk-neutrality, then

μ(s) =
w(s)

κ(q(s))
· α3l1(s)

α3 − gl
=

1

κ(q(s))
· α3

α3 − gl
.

Recalling (31), we have

π1 =

(
α3 − gl
α3

)α3

· Es

[
p∗2(s)

−α2l1(s)
α3
]
and π1 =

(
α3 − gl
α3

)α3

· Es

[
p∗2(s)

1−α2l1(s)
α3
]
,

so that

π2
π1

=
Es[p

∗
2(s)

1−α2 ]

Es[p∗2(s)−α2]
< 1
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in virtue of Jensen’s inequality and the fact that the functions p∗2(s)
1−α2 and p∗2(s)

−α2

are, respectively, strictly concave and strictly convex in p∗2(s).

If ρ = 2, similar calculations yield, in contrast,

π2
π1

> 1,

also in keeping with Proposition 4. It turns out, however, that both deviations from

unity are likely to be small in practice. Given the values of p∗2(s) and α3 = 1/3 in

Section 3.2, for example, π2/π1 = 0.9865 when ρ = 0  and  1.0069 when ρ = 2. With 

such deviations, the border-price rule using mean world prices involves negligible errors 

for all plausible values of ρ �= 1.

5 Project Uncertainty

Individual projects are undertaken in the uncertain environment described by the joint 

distribution of the system’s variates, exogenous and endogenous alike; but that is not 

the end of the matter where a particular project’s social profitability is concerned. For 

it is rare indeed that a project works exactly as laid out in the plan drawn up by its 

designers, engineers and managers.

According to the standard definition, a public sector project is a change in that sec-

tor’s net supply vector. In an uncertain environment, any such change may depend, ex 

post, on the realised state s, a complication that demands some discussion. Expressed 

formally, a project in the planning stage is the ex ante n-vector (Δz(1), . . . ,  Δz(n)): 

there is a project for each and every state. If the project always functions as planned, 

contingent on s, its expected social profitability will be Es[π(s) · Δz(s)]; for the contin-

gent shadow price vectors π(s) measure the changes in welfare that result from an extra
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unit of supply of each good in the state in question. In the very special case where the 

project is expected to function exactly as planned and in the same way regardless of 

the realised state, the expected social profit will be Es[π(s)] · Δz = π · Δz.  The ex ante 

shadow prices, which relate to delivery whatever state s is realised, should be used; for 

although, by hypothesis, Δz is non-stochastic, the social value of this outcome must 

reflect the fact that it will occur in a stochastic environment.

In practice, things are almost certainly less tidy where Δz(s) is concerned. Building 

a road may run into unforeseen difficulties with drainage; new crop varieties may not 

respond to fertilisers on farmers’ fields as they do on experimental stations; a steel plant 

may not get along well with local coal; or, on a happier note, school meals may yield 

unexpectedly large improvements in children’s physical and cognitive development. 

What all of these examples have in common is that they are outcomes that are arguably 

independent of the environmental state s: that is to say, despite the best-laid plans, 

Δz(s) is itself stochastic. For each s ∈ S, let the variate ΔZi(s) denote the change in the 

net supply of good i. If the Zi(s) are distributed independently of s, the expected social 

profit of the project planned as (Δz(1), . . . ,  Δz(n)) is Es[π(s)·Δz(s)] = π·Es[Δz(s)], so 

that using the mean value of Δz(s) is valid. If, however, the ΔZi(s) are not distributed 

independently of s, then neglecting the covariance terms may lead to significant errors.

Those charged with assessing a project’s social profitability in practice will surely 

regard the need to specify (Δz(1), . . . ,  Δz(n)) as a counsel of perfection; for getting the 

engineers, specialists and managers to agree on any definite Δz may often seem hard 

enough. Confronted with the complications just discussed, what, then, are practitioners 

to do? One tempting approach is to insist that the engineers and managers provide 

estimates of the mean values of the ΔZi(s), ideally with their ranges, but without 

mentioning s. Thus armed, the practitioner can calculate π · Es[ΔZ(s)] and then

29



perform sensitivity analysis using what seem to be plausible values of the covariance

terms arising from any suspected dependence of the ΔZi(s) on s.

5.1 An example

To illustrate what is involved in more detail, consider the following project, which is

to be undertaken in the setting described in Section 3.2:

Δz(1) = Δz(2) = (4,−1,−1,−1); Δz(3) = Δz(4) = (2.5,−1,−1,−1).

The project may be thought of as an innovation in the export sector that involves

inputs of the imported good and the non-tradable, as well as labour. Input levels are

independent of s, but output varies in response to purely domestic shocks, which affect

productivity in existing activity in that sector, as represented by fluctuations in the

parameter l1. For the first example (k = −1), the vectors of contingent shadow prices

under risk-neutrality (ρ = 0) are

(π(1), πl(1)) = (0.1102, 0.0882, 0.1378, 0.1378);

(π(2), πl(2)) = (0.0968, 0.1162, 0.1210, 0.1210);

(π(3), πl(3)) = (0.1269, 0.1015, 0.1058, 0.1058);

(π(4), πl(4)) = (0.1105, 0.1326, 0.0921, 0.0921).
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The corresponding vectors when ρ = 2 are

(π(1), πl(1)) = (5.808, 7.260, 7.260, 7.260);

(π(2), πl(2)) = (6.609, 5.507, 8.261, 8.261);

(π(3), πl(3)) = (11.349, 14.185, 9.457, 9.457);

(π(4), πl(4)) = (13.032, 10.860, 10.860, 10.860).

where the common scalar 1/(ωl − gl)2 may be normalised to 1.

As described above, the net output vector is known in each state s : that is to  

say, the project is confidently expected to function as planned, conditional on s.  We  

therefore compute Es[π(s) · Δz(s)] in order to evaluate its social profitability. When 

ρ = 0,  Es[π(s) · Δz(s)] = 0.0612; and when ρ = 2,  Es[π(s) · Δz(s)] = 0.283 is likewise 

positive, whereby the difference in their absolute magnitudes has no significance. The 

project is socially profitable under both preferences for risk-bearing. In this connection, 

it should be remarked that its input vector is independent of s, so that the expected 

social profit can be equally well computed as Es[π1(s)Δz1(s)] −π2Δz2 −π3Δz2 −πlΔzl.

There remains the important possibility that things do not necessarily turn out 

as planned, conditional on s. Suppose, for example, that in the system-wide states 

wherein productivity in sector 1 is low (s = 3, 4), output is not certain to be 2.5, but 

could also take the still lower value 2, say with probability 0.5. Since the project is 

sufficiently small, this additional source of risk will have no effect on shadow prices; 

so that in the foregoing calculations, one simply substitutes the mean value of output 

in states 3 and 4, namely 2.25, for the given contingent value of 2.5. This yields 

Es[π(s) · Δz(s)] = 0.0026 when ρ = 0 and Es[π(s) · Δz(s)] = −1.241 when ρ = 2.  

What can be termed the project’s ‘idiosyncratic’ risk makes it unprofitable when risk
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aversion is sufficiently strong.

5.2 An alternative: the distribution function of net returns

It might be argued that decision-makers are unlikely to find shadow prices, as signals of

social scarcity, especially transparent objects. Yet they may well be interested not only

in a project’s net returns, but also in the dispersion thereof, with particular reference

to the downside risks. If the states s can be sufficiently parsimoniously described, then

given the n-vector (Δz(1), . . . ,Δz(n)), deriving the cumulative distribution function

of the project’s net returns will be a practical possibility, using Monte Carlo methods.

With the project thus described – and presented – as a lottery, there appears to be a

basis for the decision of whether to accept it.

The public sector trades at producer prices and so would realise (net) profits in

the amount of ((p(s), w(s)) · Δz(s)) in state s. Suppose only lump-sum taxes are

employed, so that this amount is distributed to households as a change in t. Now

although consumer prices are then equal to producer prices, the latter depend on s, so

that the change in real net income is the (net) profit deflated by the price index in the

state in question, κ(s). Associated with each state is the probability of its occurrence,

which completes the contribution of the state to the whole distribution function of the

project’s real net returns.

To illustrate, consider once more the project analysed in Section 5.1. For the first
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example (k = −1), we have the following state-contingent net returns:

(p(1), w(1)) ·Δz(1) = 0.7, κ(1) = 9.075, Δm(1)/κ(1) = 0.7/9.075 = 0.0771;

(p(2), w(2)) ·Δz(2) = 0.3, κ(2) = 10.326, Δm(2)/κ(2) = 0.3/10.326 = 0.0291;

(p(3), w(3)) ·Δz(3) = −0.217, κ(3) = 7.881, Δm(3)/κ(3) = −0.217/7.881 = −0.0275;

(p(4), w(4)) ·Δz(4) = −0.617, κ(4) = 9.050, Δm(4)/κ(4) = −0.617/9.050 = −0.0682.

Since each state occurs with probability 0.25, the expected value of the project’s net

real returns is (0.0771 + 0.291 − 0.275 − 0.0682)/4 = 0.002625. On that criterion,

therefore, the project should be undertaken. Here, it should be remarked that the

resulting small number does not necessarily imply that the project is marginal in some

sense; for its magnitude can be increased by renormalising κ or a simple scaling up the

project’s size.

The distribution is strongly bimodal, with a heavy left-hand tail, which may well

attract a decision-maker’s attention. Is that warranted? The drawback of the whole

approach is that the lottery generated by the project should be evaluated in relation to

the much larger lottery of national income, so that the question of whether their respec-

tive outcomes are correlated arises once more. For the above project, they are positively

so by assumption. With full employment, real national income is proportional to the

wage rate deflated by κ, the vector of whose values is (0.138, 0.121, 0.106, 0.092). It is

seen that both national income and the project’s net returns are lowest in states 3 and

4. Hence, although the absolute magnitude of the net return in state 1 exceeds that in

state 4, and so ensures a positive expected value of net returns, the larger pay-off in

the former state could be outweighed in value by the loss in the latter if risk aversion

is strong enough. The fundamental advantage of the procedure using shadow prices is

that all this is taken into account when deriving them. It is established in Section 5.1
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that the project is indeed socially profitable when ρ = 2 ; but that cannot be asserted 

by inspecting the distribution function.

The conclusion to be drawn from all this is that if the distribution function of a 

project’s net returns is to be used as the basis for making decisions, due caution is in 

order. There are many decision-makers in the public sector, and left to themselves, 

each may not evaluate the lotteries that land on his or her desk in the same way. The 

use of a common set of shadow prices imposes uniformity on the process of evaluation.

6 Concluding Discussion

The rule that, under carefully specified conditions, the use of expected values to estab-

lish whether a project will improve welfare is intellectually satisfying and practically 

attractive. For a small open economy, this entails, in particular, estimating the average 

world prices of tradable goods. The following complication arises in connection with 

placing a social value on such goods. If, for example, an extra unit of an exportable 

becomes available when its world price turns out to be high, then, cet. par.,  income  

will tend to be high and hence the social value of the said unit will tend to be low: 

the exogenous stochastic world price and the social value of the available unit of the 

good will covary. Since world prices also determine the domestic prices of factors and 

nontradables, these, too, are stochastic, and the sources of covariance between events 

and valuations become yet more numerous. These effects ramify throughout the whole 

system in such a way as to make the use of average world prices and average levels 

of domestic productivity in various branches of domestic production invalid in most 

circumstances. They do not arise when there is a single commodity, though there can 

be other reasons why a project’s net returns may be correlated with national income
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in a single-commodity world.

The ensuing complications for the estimation of shadow prices of goods and labour are 

rather daunting, so it is natural to ask under what circumstances the errors involved in 

employing expected values will be small, at least in relation to all the other uncertainties 

that shroud an investment undertaking. The following result provides such a basis. If 

the coefficient of relative risk aversion is 1, preferences over goods can be represented as 

a function of real income, and public expenditures are financed by lump-sum taxes, then 

no error is involved in using means. To put it slightly loosely, if preferences over lotteries 

can be represented by something close to logarithmic expected utility, then it will be 

safe to use expected values in order to derive shadow prices and estimate the social 

profitability of projects. Both general arguments and numerical examples indicate that 

the same holds for a wide range of values of the coefficient of relative risk aversion, 

including risk-neutrality, with the caveat that the resulting error in the shadow wage 

rate may be substantial when risk aversion is strong. If the government can impose 

only (distortionary) commodity taxes and preferences over goods are Cobb-Douglas, 

the error involved in using means will also be small for all values of the coefficient 

of relative risk aversion other than 1. Since the latter restriction on preferences over 

goods is strong, whereas tax regimes are invariably distortionary in practice, there is, 

as is customary to conclude, scope for further research.
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Appendix

Proof of Lemma 1. Since g is a concave function,

g(αx+ (1− α)x′) ≥ αg(x) + (1− α)g(x′) ∀α ∈ [0, 1].

Define f(x) = 1/g(x). Then a little manipulation yields

f(αx+ (1− α)x′) ≤ f(x) · f(x′)
αf(x′) + (1− α)f(x)

∀α ∈ [0, 1].

Now,

f(x) · f(x′)
αf(x′) + (1− α)f(x)

≤ αf(x) + (1− α)f(x′) ∀α ∈ [0, 1].

For by cross-multiplying and simplifying, it is seen that this condition holds if and only

if [f(x)− f(x′)]2 ≥ 0, with equality if and only if f(x) = f(x′). Hence,

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′) ∀α ∈ [0, 1],

which holds as a strict inequality ∀α ∈ (0, 1) and ∀(x,x′) s.t. f(x) �= f(x′).

If x,x′ are s.t. f(x) = f(x′), then f(x) = f(x′) ≥ f(αx+ (1− α)x′), so that

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′) ∀α ∈ [0, 1],

which holds as a strict inequality ∀α ∈ (0, 1), unless f is affine. If f is affine, however,

g(x) will be strictly convex, which contradicts the assumption that g is concave. Q.E.D.
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