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All-Pay Auctions with Extra Prize: A Partial
Exclusion Principle∗

Matthias Dahm†

January 25, 2017

Abstract

This paper studies the effects of a specific affirmative action policy in complete in-
formation all-pay auctions when players differ in ability. We call this policy an extra
prize. The contest organiser splits the prize of the competition into a main prize and an
extra prize. Extra prizes differ from second prizes, because they are targeted towards
disadvantaged (low-ability) agents. We consider a setting with one high-ability and
two low-ability contestants and fully characterise equilibrium. Assuming that the con-
test organiser aims to maximise expected total effort, we show that (i) almost any extra
prize is preferable to a standard all-pay auction without extra prize; (ii) the exclusion
principle (Baye, Kovenock and de Vries, 1993) can be implemented by a wide range of
sufficiently large extra prizes; and (iii) partial exclusion by means of an appropriately
chosen extra prize benefits the organiser more than complete exclusion.

Keywords: Asymmetric contests, multi-prize contests, equality of opportunity, affir-
mative action, discrimination, prize structure, exclusion principle

JEL: C72, D72, J78

1 Introduction

I don’t agree with opening up the Booker for the Americans, I think that’s
straightforwardly daft. The Americans have got enough prizes of their own. The
idea of [the Booker] being Britain, Ireland, the old Commonwealth countries and

∗I thank Luis Corchón for a conversation that prompted me to write this paper. I am also grateful to
Luis Corchón, Gianni De Fraja, Patricia Esteve-González, Daniel Seidmann and participants at the CBESS
Conference on ‘Contests: Theory and Evidence 2016’ in Norwich for valuable discussions and suggestions.
The usual disclaimer applies.

†University of Nottingham, School of Economics, University Park, Nottingham NG7 2RD, UK; ORCID:
orcid.org/0000-0002-3146-6802; email: Matthias.Dahm@nottingham.ac.uk
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new voices in English from around the world gave it a particular character and
meant it could bring on writers. If you also include Americans - and get a couple
of heavy hitters - then the unknown Canadian novelist hasn’t got a chance.

- Julian Barnes, Man Booker winner in 20111

The above quote refers to a change in the rules for participation of the Man Booker Prize
for Fiction. Initially, only novelists from the UK, Commonwealth, Ireland and Zimbabwe
were eligible to receive the prize. With the new rules, all fiction in English published world-
wide is eligible. This, of course, increases competition. Barnes is concerned that, as a result
of the rule change, new novelists will lose against established writers and find it more dif-
ficult to win recognition. In this sense we can think of the prize with the initial restricted
participation rule as an affirmative action instrument: the Booker prize is a targeted prize for
some competitors, in addition to the main competition in which all novelists compete with
each other for recognition. The purpose of the present paper is to investigate the incentive
effects of such a policy. We do so using an all-pay auction, which is a well established tool
for modeling competition. Our main result is that such a prize enhances competition. Con-
sequently, even a contest designer who is not interested in affirmative action per se might
decide to establish it.

The competition of novelists described above is a special case of a situation in which
players compete by investing a costly and sunk resource in order to increase their probability
of winning. In addition, some contestants have more options to receive a reward for their
investment than others. This is not unusual.2 Consider funding for research projects. All
researchers in a given country might have access to funding from a central Government
agency but only some regions might offer funding through a regional funding agency. Or
consider World Chess Championships. The main event is open to all players but in addition
some groups (women, junior or seniors) have their own competitions. Another example is
Government funding for entrepreneurs. Young entrepreneurs might have access to funding
programmes that are only open to them, in addition to funding competitions that are open
to all entrepreneurs.3 A last example is a prize for the best academic paper by a young
scientist.

1See Mark Brown, ‘Julian Barnes: letting US authors compete for Booker prize is ‘daft’ ’, The Guardian, 27,
November 2016.

2Of course, there are also other international awards complemented by a prize for national competitors.
For example, the City Council of Tarragona organises a fireworks competition that has a main (international)
prize and a prize for Catalan competitors. In 2009 both prizes were won by the same competitor. Another
example is the category of Best Film. In 2011, the Catalan film ‘Black Bread’ won both the (Spanish) Goya
Award and the (Catalan) Gaudí Award. Other film festivals establish additional prizes for example for youth,
students or female contestants.

3Currently, the Spanish Ministry of Industry has such a programme for entrepreneurs younger than 40
years.
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What distinguishes the examples above from the standard contest model of competition
is that a player’s prospects of receiving a reward for sunk investment depends not only on
the magnitude of the investment but also on the player’s identity. Players that belong to a
disadvantaged group compete for a prize that others do not have access to. This creates a
very specific prize structure. All agents compete for the main prize, but only disadvantaged
players contest the extra prize. In this sense the competition is characterized by targeted
rewards for sunk investments. This implies that even though there are two prizes, extra
prizes are different from second prizes. The reason is that second prizes, or consolation
prizes, are not targeted. They can be won by all agents and change the prize structure for
all agents in the same way. In contrast, extra prizes reinforce the incentives of disadvantaged
contestants to invest resources in the competition without affecting the prize structure for
other agents.

We investigate the effects of extra prizes in an all-pay auction under complete informa-
tion and with heterogeneous players. Our contribution is twofold. First, we fully charac-
terise equilibrium in a setting with one high-ability and two low-ability contestants, when
only the low-ability agents contest the extra prize.4 We show that the introduction of the
extra prize weakens the high-ability agent and strengthens low-ability contestants. In the
extreme, when the size of the extra prize is large, the ranking of players in terms of their
strengths is reversed; to measure strengths Siegel’s (2009) notion of the reach of a player
can be appropriately extended. In our model, the extra prize stimulates participation of
disadvantaged contestants, because it will always be contested. Moreover, since disadvan-
taged contestants are symmetric, in equilibrium they use the same strategy. We show that
the equilibrium is unique, unless the size of the extra prize is equal to the relative difference
in abilities, because then all agents are equally strong in terms of their reach.5

Our second contribution is to provide a deeper understanding of the exclusion principle
(Baye et al., 1993). This principle says that under some conditions the contest organiser
benefits from excluding the most competitive contestant. The reason is that this can level
the playing field and strengthen competition among the remaining agents. As a result to-
tal expected effort might increase. Complete exclusion of the advantaged contestant from
the competition is an extreme case of an extra prize; it is obtained when the extra prize
is as large as possible and the main prize is set to zero. We show that complete exclusion

4It is well known that the analysis of asymmetric multiple prize all-pay auctions under complete information
is very complex (see Cohen and Sela, 2008). Our restriction to three contestants allows us to show uniqueness
of equilibrium for almost all sizes of the extra prize. This enables us to compare the contest with extra prize
unambiguously to a standard contest without extra price, even though in the latter there is a multiplicity of
equilibrium. Moreover, one can show that in a model with further disadvantaged agents of lower abilities, the
equilibria studied here remain an equilibrium.

5When all contestants have the same reach there is a continuum of equilibria that arises from the possibility
that the advantaged player might abstain with different probabilities from the contest. Equilibria with very
related properties exist in the standard all-pay auction when agents have the same reach (Baye et al., 1996).
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is not necessary. Large extra prizes weaken the advantaged contestant enough so that in
equilibrium he abstains with certainty from the contest.6 Moreover, we show that complete
exclusion is not optimal. Choosing the size of the extra prize roughly equal to the relative
difference in abilities, the contest organiser can induce considerably higher expected total
effort. Competition is strengthened, because this extra prize levels the playing field com-
pletely (in terms of the reach of players). Since the advantaged contestant is only excluded
from a part of the overall prize, a partial exclusion principle holds. Our analysis also implies
that almost any extra prize is preferable to a standard all-pay auction.7

Our results complement the analysis in Dahm and Esteve-González (2016). Dahm and
Esteve-González investigate extra prizes in a model with an imperfectly discriminating Tul-
lock contest success function. In both models an extra prize levels the playing field and
increases the strength of competition. But, contrary to the present paper, in Dahm and
Esteve-González an extra prize is only beneficial for intermediate levels of heterogeneity.
In this sense the effect of an extra prize is stronger when the contest success function is
perfectly discriminatory. This helps to understand why the exclusion principle discovered
by Baye et al. (1993) holds in the all-pay auction but, as shown by Fang (2002), does not
hold in Tullock contests with economics of scale parameter equal to one.8

Since in our model there is a main prize and an extra prize, our paper contributes to
the question under which conditions a contest organiser finds it optimal to establish more
than one prize in all-pay auctions under complete information.9 Glazer and Hassin (1988)
and Cohen and Sela (2008) provide conditions under which more than one prize should be

6Complete exclusion might not be feasible, for instance, for legal reasons.
7The reason for why we do not claim that any extra prize is preferable to a standard all-pay auction is

as follows. As the extra prize goes to zero, the unique equilibrium becomes the equilibrium of the standard
all-pay auction in which symmetric players use symmetric strategies. In the standard all-pay auction there is,
however, another equilibrium in which only one of the symmetric players is active that has higher expected
total effort. Thus depending on how agents coordinate in the standard all-pay auction, in equilibrium total
expected effort might be higher in a standard all-pay auction than with a very small extra prize.

8The exclusion principle does hold when the economics of scale parameter in a Tullock contest is large, so
that the contest approaches the all-pay auction (Alcalde and Dahm, 2010). There are also other not perfectly
discriminating contest success functions, different from Tullock’s proportional form, for which the principle
holds (Alcalde and Dahm, 2007). A variation of the exclusion principle has appeared in Konrad (2006). When
firms have silent ownership shares in rivals, then a firm may be able to commit to abstain from the contest.
This might be profitable, because it reduces the level of competition. Ownership shares, however, can also
increase the level of competition, see Fu and Lu (2013). Menicucci (2006) and Bertoletti (2008) investigate
the exclusion principle when the contest organiser is not fully informed about the contestants.

9The single-prize all-pay auction under complete information has been studied by Hillman and Samet
(1987) and Hillman and Riley (1989), and its equilibrium has been completely characterised by Baye et
al. (1996). Glazer and Hassin (1988), Barut and Kovenock (1998), Clark and Riis (1998) and Cohen and
Sela (2008) analyse multiple-prize all-pay auctions under different assumptions concerning the contestants’
valuations for prizes. Recent work by Siegel (2009, 2010 and 2014) and Xiao (2016) extends this model in
many ways, including head starts. Sisak (2009) provides a review of the literature on multiple-prize contests.
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established. Barut and Kovenock (1998), however, show that in their model the organiser
is indifferent between establishing one or several prizes.10 Our model differs from these
multiple-prize all-pay auctions, because in these papers prizes are not targeted to specific
groups of contestants.

Although our model is very stylized, it allows us to draw policy implications. Fu (2006)
and Pastine and Pastine (2012) have used a closely related all-pay auction model in order
to understand affirmative action in college admissions. Two conclusions that emerge from
these papers are the following. First, even if the college only values the academic quality
of its students, it may implement affirmative action, because it strengthens competition.
Second, it matters how the affirmative action policy is implemented. In both papers the
admission test score of the disadvantaged applicants is increased, which creates a biased
version of the all-pay auction. But while in Fu (2006) this bias is multiplicative, in Pas-
tine and Pastine (2012) it is additive. As a result, effort incentives are not the same and
the resulting equilibrium student-body diversity is different. Our paper complements these
studies in important ways, because some real affirmative action policies are based on quotas.
These targeted rewards might be better described by our model. Moreover, the details of
affirmative action policies vary widely, and so it is important to know that targeted rewards
also have the potential to level the playing field and strengthen competition.11

The paper is organised as follows. The next section presents our model of extra prizes.
We provide a full characterisation of equilibrium in Section 3. Section 4 investigates ex-
pected total effort in equilibrium and establishes the partial exclusion principle. The last
section contains concluding remarks. All proofs are relegated to an Appendix.

10Moldovanu and Sela (2001) analyse a different all-pay auction model with incomplete information and
show that when cost functions are convex several prices might be optimal; see also Liu and Lu (2017) for
a related model. Clark and Riis (1998) investigate whether in a multiple-prize all-pay auction prizes should
be awarded simultaneously or sequentially. Clark and Riis also show that the exclusion principle does not
necessarily hold in multiple-prize all-pay auctions. Arbatskaya (2003), however, builds on the results by Barut
and Kovenock (1998) and shows that a contest organiser might even in a symmetric setting benefit from
excluding contestants, provided valuations depend on the number of contestants.

11A different question is whether a contest organiser prefers to establish an extra prize or to bias the selection
rule (multiplicatively). Using the analysis in Franke et al. (2014) and the proof of Proposition 3 below one
can show that the optimal bias generates higher total expected effort. The examples in Section 4, however,
suggest that this difference is very small when the ability of agents is relatively similar. Thus, when—perhaps
because of fairness concerns—it is not possible to bias the selection rule, an extra prize might be an interesting
alternative policy. Notice also that Pastine and Pastine (2012) argue that many affirmative action policies imply
additive bias, which Li and Yu (2015) and Franke et al. (2016) show generates higher total expected effort
than multiplicative bias.
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2 Model

There are three risk-neutral contestants with abilities αi. Agent 1 is advantaged and has high
ability, while agents 2 and 3 are homogeneous and have low ability, so that α1 ≥ αd > 0
with d = 2, 3. Our equilibrium characterisation in Section 3 allows for α1 = αd but for
simplicity of the exposition in Section 4 we exclude the case in which all agents have the
same ability. Contestants compete exerting effort ei ∈ R+ and different abilities are reflected
in heterogeneous effort costs ci(ei) = ei/αi. Effort is not recovered.

Contestants compete simultaneously for a budget B, which without loss of generality
is normalized to one. The budget is split into two prizes (1 − β) and β with β ∈ [0, 1].
Contestant 1 competes only for the main prize (1−β), while the disadvantaged contestants
2 and 3 compete for both prizes. In other words, the set of contestants N = {1,2, 3} compete
for the main prize (MP) of size (1 − β) and the set of agents D = {2,3} contest the extra
prize (EP) of size β . Notice that this implies that, although contestants 2 and 3 exert effort
only once, they might win both prizes. This structure of targeted rewards distinguishes
our model from other contests with multiple prizes, including second prizes. The contest
designer chooses β in order to maximise total effort.

We consider an all-pay auction setting in which prizes are assigned as follows. Given a
set of agents A ∈ {N , D} competing for prize k ∈ {M P, EP}, and given effort choices by the
contestants, the win probability of agent i ∈ A follows

pk
i (e1, e2, e3) =







1 if ei > e j,∀ j ∈ A with j 6= i
1
h if i ties with h− 1 others and > j ∈ A such that ei < e j

0 if ∃ j ∈ A such that ei < e j

. (1)

Thus, given a vector of efforts (e1, e2, e3), player i’s expected payoff is

Ui(e) = pM P
i (1− β) + pEP

i βzi −
ei

αi
, (2)

where zi ∈ {0,1} takes value 1 if i ∈ D, and value 0 otherwise. Note that this model includes
two special cases. When β = 0 or β = 1 we obtain a standard all-pay auction without extra
prize in which the set of contestants is N or D, respectively.12

12In these situations the value of β is such that there is only one prize. Consequently, the contestants eligible
for this prize compete as in a standard all-pay auction. A similar situation arises if one disadvantaged agent
does not contest the extra prize. For instance, if agent 2 exerts zero effort with probability one, then players
1 and 3 compete (for the main prize) as in a standard all-pay auction. The extra prize is not contested and by
exerting some positive effort contestant 3 receives it with certainty. We will also use the term standard all-pay
auction to refer to such a situation.
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3 Equilibrium characterization

3.1 Preliminaries

It is useful to start by extending Siegel’s (2009) notion of the “reach” to our model. In
Siegel’s model a contestant can win at most one prize and the reach of a contestant is the
effort level at which the valuation for winning is zero. Since in our model a contestant can
win more than one prize, we define contestant i’s reach ri to be the effort level for which
his valuation for winning all prizes that he contests is zero. More precisely,

ri =max
§

ei ∈ R
�

�

�

�

(1− β) + βzi −
ei

αi
= 0

ª

, (3)

with zi ∈ {0,1} taking value 1 if i ∈ D, and value 0 otherwise. Since rewards are targeted
and the advantaged player does not compete for the extra prize, (3) becomes

r1 = α1(1− β) and rd = αd , (4)

for d = 2, 3. It follows that the order of contestants by their reach depends on β . We have
that r1 ≥ rd if and only if the size of the extra prize is at most equal to the relative difference
in abilities, that is,

β ≤
α1 −αd

α1
≡ β̂ . (5)

We will see that, as in other all-pay auctions, the second highest reach plays an important
role in our analysis. In our simple three contestant model the second highest reach is rd for
any size of the extra prize β .

It is well known that in the standard all-pay auction without extra prize there is no Nash
equilibrium in pure strategies. This remains true when an extra prize is introduced (formally
this follows from Lemma 2 below). Consequently, we consider Nash equilibria in mixed-
strategies. We represent the equilibrium mixed-strategy of contestant i by the cumulative
distribution function (cdf) Gi(ei). Agent i randomises continuously on an interval S if his
mixed-strategy contains no mass points and has a strictly increasing cdf almost everywhere
on S. We denote by γi(ei) the mass placed at ei by contestant i’s mixed strategy. We say that
a contestant i is active if γi(0) < 1. When γi(0) = 1 we say that contestant i abstains from
the contest. Lastly, when γi(0) = 0 we say that contestant i never abstains from the contest.

We are now in a position to describe some basic properties of the equilibrium.

Lemma 1 For any β > 0, in any equilibrium both disadvantaged contestants are active.

The previous lemma shows that an extra prize is a powerful tool to make sure disadvan-
taged agents compete. The extra prize will always be contested. The next lemma shows that
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disadvantaged are not only active but never abstain. In addition, the next lemma establishes
further important equilibrium properties.

Lemma 2 For any β > 0, in any equilibrium the following holds:

1. Both disadvantaged contestants employ the same mixed-strategy G2 = G3 and obtain an
expected equilibrium payoff of zero.

2. For all i, there is no contestant i who places mass on (rd ,∞), Gi contains no atoms in
the half open interval (0, rd] and the disadvantaged contestants do not place an atom at
zero.

As in other all-pay auctions, no contestant exerts more effort than the second high-
est reach rd . Disadvantaged contestants use the same strategy, randomise continuously on
[0, rd], place no atom anywhere, and dissipate all rents from the competition. The advan-
taged agent, however, might place an atom at zero. As in the standard all-pay auction with-
out extra prize, equilibrium implies that there are no atoms at points different from zero.
Importantly, since Lemma 2 rules out that at equilibrium disadvantaged contestants use dif-
ferent strategies, it must hold that the set of active agents is either D or N . It also allows
us to use the notation G1(e1) and Gd(ed) for the cdfs of the advantaged and disadvantaged
agents’ efforts e1 ≥ 0 and ed ≥ 0, respectively, with d = 2,3.

3.2 Large extra prizes

It is reasonable to expect that the size of the extra prize determines the characteristics of
the equilibrium. On one hand, if the extra prize is very small, one might expect it not to
affect behaviour much, so that the equilibrium is similar to the standard three agent all-pay
auction. On the other hand, if the extra prize is very large, the advantaged contestant is
excluded from a large part of the prize and one might expect the equilibrium to be similar
to the standard two player all-pay auction among disadvantaged agents. In the present and
the following subsection we show that this intuition is indeed true. We start with a large
extra prize.

Proposition 1 For any configuration of abilities α1 ≥ αd the following holds:

(i) If and only if β ≥ β̂ , there is a mixed-strategy equilibrium in which the advantaged
agent abstains and disadvantaged agents play the same strategy characterized by the
probability distribution function Gd(ed) for efforts ed ≥ 0 with

Gd(ed) =

� ed
αd

if ed ∈ [0, rd]
1 if ed ≥ rd

. (6)

The equilibrium payoff of all contestants is zero.
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(ii) If β > β̂ , then the equilibrium described in part (i) is unique.

Notice that the previous proposition covers the case in which β = 1, so that there is only
the extra prize and no main prize. In this case the contest reduces to a standard all-pay auc-
tion in which only the disadvantaged agents compete, as the advantaged agent is completely
excluded. Theorem 1 in Baye et al. (1996) states that in this case the unique equilibrium is
as described in the statement.13 Proposition 1 shows that this unique equilibrium remains
unchanged, provided the extra prize is strictly larger than the relative difference in abilities.
This implies that if there is not much difference in abilities even a small extra prize can
already be sufficient to discourage the advantaged agent from participating. The intuition
for this is that, although in such a case the advantaged contestant is formally only excluded
from a small part of the overall prize, this weakens him enough to convert the disadvan-
taged agents in the strong contestants (as measured by the reach of agents). As in Theorem
1 of Baye et al. (1996) a contestant exerts zero effort with probability one, if he competes
against two strictly stronger players.

3.3 Small extra prizes

We turn now to small extra prizes. Since Lemma 2 implies that disadvantaged agents em-
ploy the same strategy, one might expect the equilibrium to be related to the symmetric
equilibrium in the standard three agent all-pay auction. This intuition turns out to be cor-
rect. Stating this result formally requires to define the following real number Φ.

Lemma 3 For any α1, αd and β > 0, there exists a unique Φ> 0 such that

Φ

αd

√

√ α1

(1− β)(α1(1− β)−αd +Φ)
−

β

1− β
= 0. (7)

We are now in a position to state the following result.

Proposition 2 For any configuration of abilities α1 ≥ αd the following holds:

(i) If and only if β ≤ β̂ , there is a mixed-strategy equilibrium which is characterized by prob-
ability distribution functions G1(e1) and Gd(ed) for the advantaged and disadvantaged
agents’ efforts e1 ≥ 0 and ed ≥ 0, respectively, with

G1(e1) =







0 if e1 ∈ [0,Φ]
e1
αd

q

α1
(1−β)(α1(1−β)−αd+e1)

− β

1−β if e1 ∈ [Φ, rd]
1 if e1 ≥ rd

(8)

13For completeness we mention that in Baye et al. (1996) contestants differ in their valuations for the
prize, while in our model agents differ in ability. Starting with an equilibrium in Baye et al.’s model, it is,
however, straightforward to modify the cdfs and obtain an equilibrium in the standard all-pay auction with
heterogeneity in abilities.

9



and

Gd(ed) =











ed
αdβ

if ed ∈ [0,Φ]
Ç

α1−αd
α1(1−β)

+ ed
α1(1−β)

− β

1−β if ed ∈ [Φ, rd]
1 if ed ≥ rd

. (9)

The equilibrium payoff of contestant 1 is β̂ − β , while the disadvantaged agents earn
zero.

(ii) If 0< β < β̂ , then the equilibrium described in part (i) is unique.

In the equilibrium described in the previous proposition, the advantaged contestant is
aggressive, in the sense that he exerts a minimum effort of Φ.14 This allows him to obtain a
positive equilibrium payoff. Disadvantaged agents compete with the advantaged contestant
for high effort levels and compete with each other for the extra prize for low effort efforts
(lower than Φ). In fact, for low effort levels the disadvantaged agents compete as in (6)
with the distributions rescaled by 1/β , the size of the extra prize. As a result, the rent of
disadvantaged agents is completely dissipated.

Notice that Proposition 2 covers the case in which β = 0. In this case the contest reduces
to a standard all-pay auction for the main prize and there is no extra prize. Baye et al.
(1996) have shown that there is a continuum of equilibria, including one in which the two
disadvantaged agents play the same strategy. Indeed, for β = 0 we have that Φ = 0 and
(8) and (9) coincide with cdfs described in Theorem 2 in Baye et al. (1996) when the two
disadvantaged agents play the same strategy. Proposition 2 indicates how this equilibrium
changes as the extra prize is introduced. In particular, it is straightforward to show that as β
increases, the disadvantaged contestants become more aggressive (in the sense of first-order
stochastic dominance). In addition, when β is small enough compared to β̂ , the advantaged
contestant also seems to become more aggressive.15 We will discuss these issues further in
Section 4.

3.4 Intermediate extra prizes

We consider now the special case of an intermediate extra prize, which is equal to the relative
difference in abilities. The analysis so far has already established that there exist at least
two equilibria – one in which the advantaged contestant abstains (γ1(0) = 1) and one in
which he never abstains (γ1(0) = 0). The next result shows that there is a continuum of
equilibria and that the two aforementioned equilibria are extreme cases of this continuum.

14A similar feature appears in a standard all-pay auction with additive bias in the function assigning the win
probabilities, see Li and Yu (2012).

15When β is close to β̂ , one can find configurations of abilities for which an increase in β makes the advan-
taged contestant less aggressive.
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To state this result formally, it is convenient to introduce the following notation. Given a
parameter γ1(0) ∈ [0, 1], we define the real number

λ≡ ((1− β)γ1(0) + β)
2αd . (10)

Notice that, since λ is strictly increasing in γ1(0), we have that λ ∈ [β2αd ,αd].16

Proposition 3 Let β = β̂ . For any configuration of abilities α1 > αd there is a continuum
of mixed-strategy equilibria in which disadvantaged agents play the same strategy and the
advantaged contestant abstains with probability γ1(0) ∈ [0,1], where γ1(0) is a free parameter,
and randomises continuously over the interval [λ, rd], where G1(λ) = γ1(0). More precisely,
the equilibrium is characterized by probability distribution functions G1(e1) and Gd(ed) for the
advantaged and disadvantaged agents’ efforts e1 ≥ 0 and ed ≥ 0, respectively, with

G1(e1) =







γ1(0) if e1 ∈ [0,λ]
α1
αd

q

e1
αd
− α1−αd

αd
if e1 ∈ [λ, rd]

1 if e1 ≥ rd

(11)

and

Gd(ed) =







ed
((1−β)γ1(0)+β)αd

if ed ∈ [0,λ]
q

ed
αd

if ed ∈ [λ, rd]
1 if ed ≥ rd

. (12)

In any equilibrium the equilibrium payoffs of all contestants are zero.

The previous proposition bridges the equilibria in Propositions 1 and 2. When γ1(0) = 1,
then λ equals rd and (11) prescribes that the advantaged contestant abstains, while (12)
becomes (6). As γ1(0) decreases, λ decreases and the equilibrium has a similar structure to
the one in Proposition 2: there is an interval of high effort levels on which all contestants
are active and an interval of low effort levels on which only the disadvantaged agents are
active contesting only the extra prize. Again, for low effort levels the disadvantaged agents
compete as in (6) with the distributions rescaled by 1/ ((1− β)γ1(0) + β), which represents
the part of the overall prize that is uncontested by the advantaged agent. In the extreme,
when γ1(0) = 0, then λ is largest and Proposition 3 becomes the special case of Proposition
2 in which β = β̂ .

Moreover, since in Proposition 3 the size of the extra prize β̂ is equal to the relative differ-
ence in abilities, all contestants have the same reach. This has two implications that parallel
the standard all-pay auction. First, all rents are completely dissipated and all equilibrium
payoffs are zero. Second, the possibility that one contestant places mass at zero creates the

16For simplicity we write λ instead of λ(γ1(0)).
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possibility of equilibrium multiplicity. But while in Baye et al. (1996) the identity of the
agent placing mass at zero is arbitrary, in our model the existence of the extra prize implies
that disadvantaged contestants never abstain from the contest.17

4 A partial exclusion principle

In this subsection we use the equilibrium characterizations of the previous section to com-
pare partial exclusion of the advantaged agent by means of an extra prize to two bench-
marks. These benchmarks are, on one hand, a standard all-pay auction without extra prize
and, on the other hand, complete exclusion of the advantaged agent. As mentioned before,
our model reduces to these benchmarks by setting β = 0 and β = 1, respectively. Since
complete exclusion is only an interesting option for a contest organiser when abilities differ,
we assume in this section that α1 > αd .

Consider first the benchmark of β = 0, which has been analysed in Baye et al. (1996).
There is a continuum of equilibria that are not revenue equivalent. Revenue is maximized
in the equilibria in which one disadvantaged agent abstains. For later reference we call this
“best case” equilibrium the “asymmetric standard all-pay auction” equilibrium and state that
it generates an expected sum of effort of αd (αd +α1)/ (2α1). Revenue is minimized in the
equilibrium in which the disadvantaged contestants use the same strategy. As we have seen
the symmetric equilibrium is closely related to the equilibrium in Proposition 2.

Consider now the case β = 1, which also has been analysed in Baye et al. (1996).
Complete exclusion of the advantaged contestant from the competition is a special case of
our Proposition 1 and yields an expected sum of effort equal to αd . Our setting is a special
case of Baye et al.’s (1993) exclusion principle. Consequently, our assumption α1 > αd

implies that the organiser of the competition benefits from complete exclusion, as total
expected effort in the “asymmetric standard all-pay auction” equilibrium is lower than αd .
Since we know from Proposition 1 that the unique equilibrium under complete exclusion
does not change for smaller but sufficiently large extra prizes, we immediately have the
following variation of the exclusion principle.

Corollary 1 Compared to a standard all-pay auction, the contest organiser benefits strictly
from any extra prize of size β > β̂ , because it implements the exclusion principle.

17The case of three contestants with equal valuations (and therefore the same reach) is a special case of
Theorem 1 in Baye et al. (1996). Proposition 3 covers this case by setting α1 = αd , implying that the size of
the extra prize β̂ is equal to zero. In this case (11) and (12) coincide with the mixed-strategies in Baye et al.’s
symmetric three player example. Baye et al. have shown that there is a unique symmetric equilibrium and that
there is a continuum of asymmetric equilibria in which one contestant places mass at 0. The only difference
between (11) and (12) for α1 = αd and Baye et al. is that in our setting the identity of the contestant placing
mass at 0 is not arbitrary.
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This result is interesting, because it implies that complete exclusion of the advantaged
contestant is straightforward to implement. It is not necessary to formally exclude the ad-
vantaged agent from the competition, which might not be feasible for legal or ethical rea-
sons. Such an explicit entry barrier can be avoided, because it suffices to establish an extra
prize that is larger than the relative difference in abilities. Interestingly, if this relative dif-
ference is small, say 1/6, then the extra prize can be quite small, for example 1/5.

Given Corollary 1, an important question is whether the contest organiser can do better
than implementing the exclusion principle. Our main result reveals that this is the case.

Proposition 4 Compared to complete exclusion of the advantaged agent, the contest organiser
benefits strictly from partial exclusion by means of a sufficiently large extra prize of size β < β̂ .

The intuition for this result is simple. When the size of extra prize is equal to the relative
difference in abilities, there is a continuum of equilibria (Proposition 3). Broadly speaking
these equilibria differ in the size of the atom that the advantaged contestant places at the
origin. The smaller the size of the atom, the more aggressive the advantaged contestant be-
comes (in the sense of first-order stochastic dominance) and even though the disadvantaged
agents become less aggressive, the first effect is stronger than the second. This implies that
an extra prize equal to the relative difference in abilities improves almost always strictly
over complete exclusion. The only exception is the equilibrium in which the advantaged
contestant places an atom of mass one at the origin, in which case the same result as un-
der complete exclusion is obtained.18 Consider now an extra prize of a size a little smaller
than the relative difference in abilities. Because of the continuity of the cdfs and because
for smaller extra prizes the equilibrium is unique (Proposition 2), it follows that the contest
organiser can be certain that partial exclusion by means of an appropriately chosen extra
prize improves strictly upon complete exclusion.19

We summarise the discussion of this section with the help of Figure 1. The figure displays
five examples. In each example we fix α1 = 1, while αd takes values 1/10, 1/4, 1/2, 3/4
and 9/10. To distinguish these cases we denote the threshold β̂ by β̂αd . Given the values
for αd , the thresholds β̂αd are equal to 9/10, 3/4, 1/2, 1/4 and 1/10. The horizontal axis

18In the Appendix in the proof of Proposition 4 we provide expressions for individual and total expected
effort as a function of the atom that the advantaged contestant places at the origin.

19Because of the mathematical complexity of the expression for total expected effort when β < β̂ , we
have not been successful to prove that total expected effort is strictly increasing in β for all β < β̂ . We
conjecture, however, that this is true. It is straightforward to show that as β increases the disadvantaged
contestants become more aggressive (in the sense of first-order stochastic dominance). The examples that we
have calculated suggest that the same is true for the advantaged contestant unless β is very close to β̂ . But
even when β is very close to β̂ and the aggressiveness of the advantaged contestant is reduced, our examples
suggest that this is overwhelmed by the increased aggressiveness of the disadvantaged contestants so that
total expected effort continues to increase.
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Figure 1: The size of the extra prize and the sum of expected effort

indicates the size of the extra prize β , while the vertical axis measures the expected sum of
effort. Each curve represents a different value for αd and includes for β = 0 the equilibrium
in which the disadvantaged contestants employ the same strategy. The isolated point higher
but very close to each curve at β = 0 indicates for each example total expected effort in the
asymmetric standard all-pay auction equilibrium. In line with the exclusion principle, we
see that β = 1 generates strictly higher total expected effort than β = 0. We also see that
complete exclusion can be implemented by a wide range of sufficiently large extra prizes.
The vertical parts of the curves correspond to the continuum of equilibria when β = β̂αd .
Choosing an extra prize equal to the relative difference in abilities, the contest organiser
cannot be worse-off than under complete exclusion. Total expected effort is maximized
when the extra prize is approximately equal to the relative difference in abilities.20 Notice
also that a wide range of sizes for the extra prize allow the contest organiser to strictly
improve over complete exclusion and that almost any extra prize improves over a standard
all-pay auction.

20If the contest organiser is certain that the equilibrium is played in which the advantaged agent does not
place mass at zero, then it is optimal to set the extra prize equal to β̂ . If this is not the case, then he can
avoid coordination on an unfavourable equilibrium by reducing the extra prize a little bit. A technical issue
concerns the existence of the optimal extra prize. That may be solved by making the realistic assumption that
a smallest monetary unit exists.
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5 Concluding remarks

This paper analysed the effects of establishing an extra prize for disadvantaged agents in
an all-pay auction under complete information. The overall prize value is split in a main
prize and an extra prize. All types of contestants compete for the main prize, but only low-
ability agents can win the extra prize. We fully characterise equilibrium in a setting with
one high-ability and two low-ability contestants. Assuming that the contest organiser aims
to maximize expected total effort, our main result establishes a partial exclusion principle.
Partial exclusion of the advantaged agent from part of the overall prize value by means of
an appropriately chosen extra prize benefits the organiser more than complete exclusion.

We have also shown that almost any extra prize is preferable to a standard all-pay
auction. This result is robust to a variation of our informational assumptions. Following
Menicucci (2006) and Bertoletti (2008) assume that the contest organiser is not fully in-
formed about the contestants but that contestants still know each others’ abilities. In such
a situation, given a size of the extra prize, the equilibria we have characterised will remain
unchanged. Without further information, however, the organiser will not be able to choose
the size of the extra prize that maximises total expected effort. But as we have seen he
will still be very likely to be able to improve upon a standard all-pay auction. And if the
organiser has some idea about relative abilities, then he might even do considerably better
than with complete exclusion.

An interesting avenue for future research is to generalise the prize structure of our model
of extra prizes to a more general model of targeted rewards for sunk investments. For
instance, our model is a special case of a multiple-prize all-pay auction in which the set
of agents competing for each of the prizes is (potentially) different. Such a model might
capture interesting features of real contests and allow to ask novel questions regarding
contest design. Concerning design, one could ask which agents should compete for which
prizes in order, say, to maximise total effort. Concerning the task to build more realistic
contest models, consider lobbying. Interest groups are usually affected by many different
policies, but not all groups care about all issues. Our analysis of extra prizes suggests that
interest groups affected by multiple issues compete harder. Lastly, consider the contests
for funding of research projects mentioned in the Introduction.21 Say there are two regions.
Each of the regions offers a funding competition, in addition to the competition organised by
the central Government agency. What is the optimal degree of decentralization of research
funds?

21Beviá and Corchón (2015) compare centralized and decentralized contests for example for research funds
but do not allow that a contestant competes at the same time in both contests.
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A Appendix

In this Appendix we provide a proof for the results stated in the main text. We use the
notation ui(ei, G−i) to indicate contestant i’s payoff from bidding ei when the other two
agents employ strategies G−i. We indicate by si and si the lower and upper bounds of the
supports of player i’s mixed-strategy, respectively. Contestant i’s expected equilibrium payoff
is indicated by u∗i .

A.1 Proof of Lemma 1

Without loss of generality suppose that contestant 2 abstains. In such a case agent 3 receives
the extra prize and competes with contestant 1 in a standard all-pay auction for the main
prize of size (1− β). It is well known that in the unique equilibrium of this all-pay auction
the upper bound of the mixed-strategies of contestants 1 and 3 is (1− β)α3. Suppose now
contestant 2 deviates and bids (1− β)α3. This yields 1− (1− β)α3/α2 = β > 0, which is
better than abstaining. Q.E.D.

A.2 Proof of Lemma 2

We prove Lemma 2 through a series of claims.

Claim 1 si ≤ rd for all i.

Proof: Notice that there is no contestant i who employs a strategy that places mass on
(ri,∞). The reason is that it implies strictly negative payoffs, while setting ei = 0 avoids
losses. Thus, we have si ≤ ri for all i. Suppose β ≥ β̂ . In this case we have that r1 ≤ rd ,
implying the statement. Suppose now β < β̂ , in which case we have that r1 > rd . But since
disadvantaged agents do not put mass on (rd , r1], contestant 1 has no incentive to use a
strategy with s1 > rd . Q.E.D.

Claim 2 sd = 0, γd(0) = 0 and u∗d = 0, for d = 2,3.

Proof: Suppose the first statement is not true and without loss of generality let s2 ≥ s3 with
s2 > 0. There are three cases to consider.

1. s2 = s3 > 0. On one hand, if there does not exist d with d = 2,3 such that γd(sd)> 0,
then u2(s2, G−2) = −s2/α2 < 0. On the other, if such a d exists, say d = 2, then the
other disadvantaged contestant 3 could profitably increase s3 slightly (unless s3 = α3

or s1 ≥ s3 = βα3, in which case contestant 3 could profitably reduce s3 to zero).

2. s2 > s3 > 0. In this case we have that u3(s3, G−3) = −s3/α3 < 0 and contestant 3 could
profitably reduce s3 to zero.
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3. s2 > s3 = 0. There are again three cases.

(a) s2 = s1. On one hand, if γ2(s2) = 0, then u1(s1, G−1) = −s1/α1 < 0. On the
other, if γ2(s2)> 0, then contestant 1 could profitably increase s1 slightly (unless
s1 = α1(1− β), in which case contestant 1 could profitably reduce s1 to zero).

(b) s2 > s1. It follows that s1 must be equal to zero, because otherwise u1(s1, G−1) =
−s1/α1 < 0. Similarly, for any i = 1, 3 bidding ei such that s2 > ei > 0 is
unprofitable and bidding ei = s2 can only be profitable if γ2(s2)> 0. In the latter
case, however, contestant i could, as in cases 1 and 3(a), profitably increase ei

slightly. Thus Gi(s2) = Gi(0) must hold for i = 1,3. This implies that contestant
2 could profitably decrease s2.

(c) s2 < s1. Again, any bid e3 with s2 > e3 > 0 is unprofitable and e3 with e3 = s2 can
only be profitable if γ2(s2) > 0. In the latter case, however, contestant 3 could
(similarly to case 1) profitably increase e3 slightly. Thus G3(s2) = G3(0) must
hold, in which case contestant 2 could profitably decrease s2.

This proves that sd = 0.
Consider now the second statement. Without loss of generality let γ2(0)> 0. Contestant

3 has an incentive to raise s3 by ε > 0 but very small.
Lastly, consider the third statement. Without loss of generality consider contestant 2 and

notice that γ3(0) = 0 implies u∗2 = u2(0, G−2) = 0. Q.E.D.

Claim 3 For all i, Gi contains no atoms in the half open interval (0, rd].

Proof: Suppose the cdf of one of the disadvantaged agents, say G2, has an atom at ẽ2 ∈
(0,αd]. Suppose s1 ≥ ẽ2. In such a case contestant 3’s win probability for the extra prize
of size β has an upward jump at ẽ2. Suppose s1 < ẽ2. In such a case contestant 1’s win
probability for the main prize and contestant’s 3 win probability for both prizes have an
upward jump at ẽ2. In both cases adapting the argument in the proof of Lemma 5 in Baye
et al. (1996) allows to conclude that there must be an ε-neighborhood below ẽ2 in which
neither contestant 1 nor 3 put mass, implying that it is not an equilibrium strategy for agent
2 to put mass at ẽ2. Suppose now G1 has an atom at ẽ1 ∈ (0,αd]. The fact that the win
probability of contestants 2 and 3 for the main prize has an upward jump at ẽ1 allows to
reach a similar contradiction. Q.E.D.

Claim 4 Suppose e ∈ (0, rd] is a point of increase in Gi for i ∈ D. Then e is also a point of
increase in G j for all j ∈ D.
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Proof: We start with an observation. Consider the disadvantaged contestants and denote
them i and j. If e ∈ (0,αd] is a point of increase in Gi, then contestant i must receive his
equilibrium payoff at e.22 Using claim 2 we see that

ui(e, G−i) = G j(e) (G1(e)(1− β) + β)−
e
αd
= 0. (13)

Since e might or might not be a point of increase in G j it follows from claim 2 that

u j(e, G− j) = Gi(e) (G1(e)(1− β) + β)−
e
αd
≤ 0. (14)

Expressions (13) and (14) imply that

�

Gi(e)− G j(e)
�

(G1(e)(1− β) + β)≤ 0. (15)

Since G1(e)(1− β) + β > 0, we conclude that

Gi(e)≤ G j(e). (16)

Without loss of generality suppose that y ∈ (0,αd] is a point of increase in G2 but not
in G3. Since by Claims 2 and 3 there are no mass points in [0,αd] and using the definition
of a cdf, there must exist z 6= y with z ∈ (0,αd] such that G3(z) = G2(y) and z is a point of
increase in G3. There are two cases to consider.

1. z < y . Since z is a point of increase in G3, we can apply (16) and establish that
G3(z)≤ G2(z). By the properties of a cdf we have that G2(z)≤ G2(y). Thus we obtain
G3(z)≤ G2(z)≤ G2(y). Our initial assumption that G3(z) = G2(y) allows to establish
that

G3(z) = G2(z) = G2(y) (17)

must hold. Therefore each w ∈ (z, y) cannot be a point of increase in G2 and, since
each point must be a point of increase for at least two contestants (Lemma 7 in Baye
et al., 1996, applies), w must be a point of increase in G3. Applying (16) allows then
to establish that G3(w)≤ G2(w). By the properties of a cdf we obtain G3(z)≤ G3(w)≤
G2(w)≤ G2(y). But from (17) we see that for each w ∈ (z, y) these weak inequalities
must hold with strict equality, contradicting that z is a point of increase in G3.

2. z > y . Since y is a point of increase in G2, we can apply (16) and establish that
G2(y) ≤ G3(y). By the properties of a cdf we have that G3(y) ≤ G3(z). Thus we

22We use the following definition of a point of increase. Consider a function f : A→ R, defined on a convex
set A ⊂ R. The point e0 is a point of increase in f if for all ε > 0, there exists e ∈ (e0, e0 + ε) such that
f (e)> f (e0).
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obtain G2(y) ≤ G3(y) ≤ G3(z). Our initial assumption that G3(z) = G2(y) allows to
establish that

G2(y) = G3(y) = G3(z) (18)

must hold. Therefore each w ∈ (y, z) cannot be a point of increase in G3 and w must be
a point of increase in G2. Applying (16) allows then to establish that G2(w) ≤ G3(w).
By the properties of a cdf we obtain G2(y) ≤ G2(w) ≤ G3(w) ≤ G3(z). But from (18)
we see that for each w ∈ (y, z) these weak inequalities must hold with strict equality,
contradicting that y is a point of increase in G2.

Q.E.D.

Claim 5 Suppose e ∈ (0, rd] is a point of increase in G2 and G3. Then G2 = G3 at e.

Proof: Claim 2 implies that (13) and (14) must both hold with equality. Thus (16) must
hold with equality too. Q.E.D.

Claim 6 sd = rd , for d = 2, 3.

Proof: Claims 4 and 5 imply s2 = s3. Let s2 = s3 < αd . Since s2 = s3 holds, contestant 1 has
no incentive to use a strategy with s1 > s2. Consider the payoff to contestant 2 from bidding
s2. This yields u2(s2, G−2) = 1− s2/αd > 0, contradicting Claim 2. Q.E.D.

Claim 7 G2(e) = G3(e), for all e ∈ [0, rd].

Proof: Since each point e ∈ (0, rd] must be a point of increase for at least two contestants
(Lemma 7 in Baye et al., 1996, applies) and using Claim 4, we conclude that each point
e ∈ (0, rd] is a point of increase for contestants 2 and 3. Applying Claim 5 we have that
G2(e) = G3(e), for all e ∈ (0, rd], implying that G2(e) = G3(e) must hold at e = 0. Q.E.D.

Lemma 2 follows directly from Claims 1–7. Q.E.D.

A.3 Proof of Proposition 1

We start with part (i). Under the assumption that disadvantaged agents employ (6), the
expected payoff of the advantaged contestant from any e1 is

u1(e1, G−1) =

¨ �

e1
αd

�2
(1− β)− e1

α1
if e1 ∈ [0,αd]

(1− β)− e1
α1

if e1 ≥ αd

. (19)
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Suppose β ≥ β̂ and that disadvantaged agents employ (6). Since β ≥ β̂ is equivalent
to rd ≥ r1 and since agent 1 only considers deviations to e1 ∈ [0, r1], we have that αd ≥
(1− β)α1 ≥ e1 must hold. Hence for each such e1 we have that U1(e1)≤ 0 if and only if

e1 ≤
(αd)2

α1(1− β)
, (20)

which under our assumptions is true. Lastly, observe that when the advantaged agent exerts
zero effort with probability one, the disadvantaged contestants compete as in a standard two
player all-pay auction. From Hillman and Riley (1989) and Baye et al. (1996), we know
that in such a situation the (unique) equilibrium is characterized by (6). Thus, the strategies
in the statement constitute an equilibrium, because for each agent, given the strategies of
the other players, there is no positive effort level that yields a strictly higher payoff.

Now let β < β̂ . Suppose that the advantaged agent 1 abstains and that disadvantaged
agents employ (6). Agent 1 can profitably deviate to e1 = αd , as

u1(e1, G−1) = (1− β)−
αd

α1
> 0⇔ αd < (1− β)α1, (21)

which is equivalent to β < β̂ .
Consider now part (ii). By Lemma 2 the set of active agents is either D or N . If it is

D, then, as already mentioned, the unique equilibrium is described in part (i). So suppose
the set of active agents is N . In such a case there must exist e ∈ (0, rd] which is a point of
increase for all three contestants. In the proof of Proposition 2 below we show that the only
compatible cdfs are described in (8) and (9) and that this implies that u1(e, G−1) = β̂−β < 0.
Under the assumption that β > β̂ , contestant 1 is strictly better-off abstaining and thus the
equilibrium is unique. Q.E.D.

A.4 Proof of Lemma 3

Notice that the left hand side of (7) is continuous. Moreover, since β > 0, (7) is strictly
negative at e1 = 0 and equal to one at e1 = αd . Applying Bolzano’s Theorem we conclude
that there exists Φ such that (7) holds. It can be shown that the left hand side of (7) is
strictly increasing in Φ. Thus there is a unique Φ such that (7) holds. Q.E.D.

A.5 Proof of Proposition 2

Notice first that G1(e1) and Gd(ed) as defined in (8) and (9) are well defined distribution
functions. In particular, since the function in the second branch of (8) is the left hand side
of (7), we have already established that its density function is strictly positive. It can also
be shown that the first and the second branch of (9) intersect for the effort level Φ.23

23Details are available upon request.
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Consider now part (i). Suppose β ≤ β̂ and that contestant 1 and one disadvantaged
agent, say contestant 2, employ (8) and (9). The expected payoff of contestant 3 for any e3

is then

u3(e3, G−3) =











e3
αdβ
β − e3

αd
if e3 ∈ [0,Φ]

Ç

α1−αd
α1(1−β)

+ e3
α1(1−β)

− β

1−β
e3
αd

Ç

α1(1−β)
α1(1−β)−αd+e3

− e3
αd

if e3 ∈ [Φ,αd]
1− e3

αd
if e3 ≥ αd

. (22)

Simplifying allows to conclude that for any e3 ≥ 0 we have u3(e3, G−3) ≤ 0, with strict
equality for e3 ∈ [0,αd].

Suppose now that agents 2 and 3 follow the strategies in the statement. Consider agent
1. We have that

u1(e1, G−1) =











�

e1
αdβ

�2
(1− β)− e1

α1
if e1 ∈ [0,Φ]

�

α1−αd
α1(1−β)

+ e1
α1(1−β)

− β

1−β

�

(1− β)− e1
α1

if e1 ∈ [Φ,αd]
1− β − e1

α1
if e1 ≥ αd

. (23)

For e1 ∈ [Φ,αd]we obtain u1(e1, G−1) = β̂−β , while u1(e1, G−1) decreases strictly with e1 for
e1 > αd . Consider u1(e1, G−1) for e1 ∈ [0,Φ]. It is straightforward to show that u1(e1, G−1) is
a strictly convex function that takes value zero at e1 = 0 and at e1 = (αd)2β2/(α1(1− β)).
Moreover, it is strictly decreasing at e1 = 0. Thus the most profitable deviation is either
e1 = 0 or e1 = Φ. From the continuity of Gd and the arguments for e1 ∈ [Φ,αd], it follows
then that the payoff for e1 ∈ [0,Φ] cannot exceed contestant 1’s equilibrium payoff. Thus,
the strategies in the statement constitute an equilibrium, because for each agent, given the
strategies of the other players, there is no positive effort level that yields a strictly higher
payoff.

Suppose now β > β̂ . Assume that contestant 1 and the disadvantaged agents employ (8)
and (9), respectively. By the same arguments as before, the expected payoff of contestant 1
is u1(e1, G−1) = β̂ −β . Under the assumption that β > β̂ , this payoff is strictly negative and
contestant 1 can profitably deviate by reducing his bid to zero.

Consider now part (ii). By Lemma 2 the set of active agents is either D or N . If it
is D, then contestant 1 abstains and the unique equilibrium is described in Proposition 1.
Consider contestant 1 and assume he bids e1 = αd . This yields u1(e1, G−1) = 1−β−αd/α1 =
β̂−β > 0. Now suppose the set of active agents is N . Then by Claim 3 and the fact that each
point must be a point of increase for at least two contestants (Lemma 7 in Baye et al., 1996,
applies), there must exist e ∈ (0, rd] which is a point of increase for all three contestants.
For each such e the only compatible cdfs are described in (8) and (9). Lastly notice that we
cannot have that s1 > Φ, as this would require that contestant 1 places an atom at zero and
hence implies zero payoffs. Thus, (8) and (9) describe the unique equilibrium. Q.E.D.
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A.6 Proof of Proposition 3

Notice first that G1(e1) and Gd(ed) as defined in (11) and (12) are well defined distribution
functions.

Suppose β = β̂ and that contestant 1 and a disadvantaged agent, say contestant 2,
employ (11) and (12). The expected payoff of contestant 3 for any e3 is

u3(e3, G−3) =











e3
((1−β)γ1(0)+β)αd

((1− β)γ1(0) + β)−
e3
αd

if e3 ∈ [0,λ]
q

e3
αd

��

α1
αd

q

e3
αd
− α1−αd

αd

�

(1− β) + β
�

− e3
αd

if e3 ∈ [λ,αd]
1− e3

αd
if e3 ≥ αd

. (24)

Using that β = β̂ and simplifying, we obtain that u3(e3, G−3)≤ 0, as

u3(e3, G−3) =







e3
αd
− e3
αd

if e3 ∈ [0,λ]
q

e3
αd

q

e3
αd
− e3
αd

if e3 ∈ [λ,αd]
1− e3

αd
if e3 ≥ αd

. (25)

Suppose now that agents 2 and 3 follow the strategies in the statement. Consider agent 1.
We have that

u1(e1, G−1) =











�

e1
((1−β)γ1(0)+β)αd

�2
(1− β)− e1

α1
if e1 ∈ [0,λ]

e1
αd
(1− β)− e1

α1
if e1 ∈ [λ,αd]

1− β − e1
α1

if e1 ≥ αd

. (26)

Again using that β = β̂ and simplifying, we obtain

u1(e1, G−1) =











�

e1
((1−β)γ1(0)+β)αd

�2 αd
α1
− e1
α1

if e1 ∈ [0,λ]
e1
α1
− e1
α1

if e1 ∈ [λ,αd]
αd
α1
− e1
α1

if e1 ≥ αd

. (27)

To conclude that u1(e1, G−1)≤ 0 it remains to show that for e1 ∈ [0,λ] it holds that

�

e1

((1− β)γ1(0) + β)αd

�2 αd

α1
−

e1

α1
≤ 0⇔ e1 ≤ ((1− β)γ1(0) + β)

2αd = λ.

This, of course, is true in the first branch of (27).
Thus, the strategies in the statement constitute an equilibrium, because for each agent,

given the strategies of the other players, there is no positive effort level that yields a strictly
higher payoff. Q.E.D.
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A.7 Proof of Proposition 4

We start with the following claim that characterises the expected sum of effort in the con-
tinuum of equilibria for β = β̂ .

Claim 8 The expected sum of effort in the continuum of equilibria for β = β̂ (described in
Proposition 3) is given by

αd +
α1 −αd

3

�

1−
��

1− β̂
�

γ1(0) + β̂
�3�

. (28)

This expression is strictly decreasing in γ1(0) and equals αd for γ1(0) = 1.

Proof: We first derive (28). The expected effort of contestant 1 is

E(e1) =

∫ αd

λ

g1(e1)e1de1 =

∫ αd

λ

α1

αd

p
e1

2
p
αd

de1 =
α1

αd

(e1)3/2

3
p
αd

�

�

�

�

αd

λ

(29)

=
α1

3

�

1−
��

1− β̂
�

γ1(0) + β̂
�3�

.

The expected effort of a disadvantaged contestant is

E(ed) =

∫ λ

0

gd(ed)ed ded +

∫ αd

λ

gd(ed)ed ded (30)

=

∫ λ

0

ed

αd

��

1− β̂
�

γ1(0) + β̂
�ded +

∫ αd

λ

p
ed

2
p
αd

ded

=
(ed)2

2αd

��

1− β̂
�

γ1(0) + β̂
�

�

�

�

�

�

λ

0

+
(ed)3/2

3
p
αd

�

�

�

�

αd

λ

=
αd

6

��

1− β̂
�

γ1(0) + β̂
�3
+
αd

3
The expected sum of effort is hence

α1

3

�

1−
��

1− β̂
�

γ1(0) + β̂
�3�

+
αd

3

��

1− β̂
�

γ1(0) + β̂
�3
+

2αd

3
, (31)

which is the same as (28). It is straightforward to verify that (28) equals αd for γ1(0) = 1
and strictly decreases with γ1(0) under our assumption that 0< αd < α1. Q.E.D.

To conclude the proof notice that for β < β̂ the unique equilibrium is described in
Proposition 2. Moreover, since the associated density functions to the cdfs in (8) and (9)
are continuous in β , it follows that the expected sum of effort is also continuous in β .
In addition, the statement of Proposition 2 includes the case of β = β̂ in which case the
expressions in (8) and (9) reduce to the equilibrium in Proposition 3 described by (11) and
(12) with γ1(0) = 0. This implies that for β < β̂ large enough, the expected sum of effort
in the unique equilibrium is strictly larger than αd , the expected sum of effort when the
advantaged agent is excluded. Q.E.D.

23



References

Alcalde, J. and M. Dahm. “Tullock and Hirshleifer: a Meeting of the Minds.” Review of Eco-
nomic Design, 11(2), 2007, 193–208.

Alcalde, J. and M. Dahm. “Rent Seeking and Rent Dissipation: A Neutrality Result.” Journal
of Public Economics, 94(1-2), 2010, 1–7.

Arbatskaya, M. “The exclusion principle for symmetric multi-prize all-pay auctions with
endogenous valuations.” Economics Letters, 80, 2003, 73–80.

Baye M.R., D. Kovenock, and C.G. de Vries. “Rigging the Lobbying Process: An Application
of the All-Pay Auction.” American Economic Review, 83(1), 1993, 289–294.

Baye M.R., D. Kovenock, and C.G. de Vries. “The all-pay auction with complete information.”
Economic Theory, 8, 1996, 291–305.

Barut, Y. and D. Kovenock. “The symmetric multiple prize all-pay auction with complete
information.” European Journal of Political Economy, 14, 1998, 627–644.

Bertoletti, P. “A note on the Exclusion Principle.” Journal of Mathematical Economics, 44,
2008, 1215–1218.

Beviá, C. and L.C. Corchón. “Centralized vs Decentralized Contests.” Economics Letters, 137,
2015, 32–35.

Clark, D. and C. Riis. “Competition over more than one prize.” American Economic Review,
88, 1998, 276–289.

Cohen, C. and A. Sela. “Allocation of prizes in asymmetric all-pay auctions.” European Jour-
nal of Political Economy, 24, 2008, 123–132.

Dahm, M. and P. Esteve-González. “Affirmative Action through Extra Prizes.” Working Paper,
University of Nottingham, 2016.

Fang, H. “Lottery Versus All-Pay Auction Models of Lobbying.” Public Choice, 112(3–4), 2002,
351–371.

Franke, J., C. Kanzow, W. Leininger, and A. Schwartz. “Lottery versus All-Pay Auction Con-
tests: A Revenue Dominance Theorem.” Games and Economic Behavior, 83, 2014, 116–
126.

Franke, J., W. Leininger, and C. Wasser. “Optimal Favoritism in All-Pay Auctions and Lottery
Contests.” Working Paper, University of Dortmund, 2016.

24



Fu, Q. “A Theory of Affirmative Action in College Admissions.” Economic Inquiry, 44(3),
2006, 420–428.

Fu, Q. and J. Lu. “Competitive effect of cross-shareholdings in all-pay auctions with complete
information.” Internation Journal of Industrial Organization, 31, 2013, 267–277.

Glazer, A. and R. Hassin. “Optimal Contests.” Economic Inquiry, 26(1), 1988, 133–143.

Hillman, A.L. and D. Samet. “Dissipation of contestable rents by a small number of con-
tenders.” Public Choice, 54, 1987, 63–82.

Hillman, A.L. and J.G. Riley. “Politically contestable rents and transfers.” Economics and
Politics, 1, 1989, 17–39.

Konrad, K.A. “Silent Interest and All-Pay Auctions.” Internation Journal of Industrial Orga-
nization, 24, 2006, 701–713.

Li, S. and J. Yu. “Contests with Endogenous Discrimination.” Economics Letters, 117, 2012,
834–836.

Liu, X. and J. Lu. “Optimal prize-rationing strategy in all-pay contests with incomplete in-
formation.” Internation Journal of Industrial Organization, 50, 2017, 57–90.

Menicucci, D. “Banning bidders from all-pay auctions.” Economic Theory, 29, 2006, 89–94.

Moldovanu, B. and A. Sela. “The optimal allocation of prizes in contests.” American Economic
Review, 91, 2001, 542–558.

Pastine, I. and T. Pastine. “Student Incentives and Preferential Treatment in College Admiss-
sions.” Economics of Education Review, 31, 2012, 123–130.

Siegel, R. “All-Pay Contests.” Econometrica, 77(1), 2009, 71–92.

Siegel, R. “Asymmetric Contests with Conditional Investments.” American Economic Review,
100(5), 2010, 2230–60.

Siegel, R. “Asymmetric Contests with Head Starts and Nonmonotonic Costs.” American Eco-
nomic Journal: Microeconomics, 6(3), 2014, 59–105.

Sisak, D. “Multiple-Prize Contests – The Optimal Allocation of Prizes.” Journal of Economic
Surveys, 23(1), 2009, 82–114.

Xiao, J. “Asymmetric all-pay contests with heterogeneous prizes.” Journal of Economic The-
ory, 163, 2016, 178–221.

25


	CeDEx Discussion Paper FRONT PAGE14-01.pdf
	DahmAllPayWithExtraPrize.pdf
	Introduction
	Model
	Equilibrium characterization
	Preliminaries
	Large extra prizes
	Small extra prizes
	Intermediate extra prizes

	A partial exclusion principle
	Concluding remarks
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	References


