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LEE-PENAGOS, ALEJANDRO^Y 

MODELLING CONTRIBUTIONS IN 
PUBLIC GOOD GAMES WITH 

PUNISHMENT 

ABSTRACT 

Theoretical models have had difficulties to account, at the same time, for 
the most important stylized facts observed in experiments of the Voluntary 
Contribution Mechanism. A recent approach tackling that gap is Arifovic and 
Ledyard (2012), which implements social preferences in tandem with an 
evolutionary learning algorithm. However, the stylized facts have evolved. The 
model was not built to explain some of the most important findings in the 
public good games recent literature: that altruistic punishment can sustain 
cooperation. This paper extends their model in order to explain such recent 
findings. It focuses on fear of punishment, not punishment itself, as the key 
mechanism to sustain contributions to the public good. Results show that our 
model can replicate both qualitatively and quantitatively the main facts. Data 
generated by our model differs, on average, in less than 5% compared to 
relevant experiments with punishment in the lab. 

KEY WORDS: Public Good Games, Punishment, Agent Based Modelling, 
Learning Algorithms, Other Regarding Preferences, Bounded Rationality. 
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1 INTRODUCTION 

Experiments with the Voluntary Contribution Mechanism (VCM) 1  have 
been a workhorse of social sciences in order to foster our understanding of 
human cooperation. Data from these ‘n-players prisoner’s dilemma’ 
experiments (when played repeatedly for several rounds) have shown 
consistent patterns. Some authors (e.g. Holt and Laury (2008)) consider that 
there are five main stylized facts to focus on:  i) that average contributions start 
around 50%, declining with time but not reaching zero, ii) that individuals vary 
considerably in their contributions (heterogeneity), iii) that higher values of 
the marginal productivity of the public good lead to increases in average 
contributions, iv) that increases in the size of the group lead to an increase in 
the average rate of contribution, and v) that there’s a ‘restart effect’, so that 
when subjects are told that the game will restart, contributions increase and 
are similar as in first rounds. 

Several authors have developed alternatives to the traditional Nash 
equilibrium approach in order to explain these main stylized facts, since 
traditional profit maximization would predict contributions of exactly zero in 
all periods of the experiments. Such alternatives have included decision errors 
(Anderson et al., 1998)), decision errors with altruism (Goeree et al., 2002), 
evolutionary dynamics (Miller and Andreoni, 1991), cooperative gain seeking 
(Brandts and Schram, 1996) and forward-looking signalling (Isaac et al., 1994), 
among others. Recently, important advances have been made by Fischbacher 
and Gächter (2010), highlighting the role of social preferences, beliefs and 
behavioural heterogeneity in order to explain the decline of contributions. 
However, none of these approaches could explain the main experimental 
findings at the same time (Holt and Laury, 2008). As put forward by 
Fischbacher and Gächter (2010) themselves, “the facts are clear, but the 
explanations are not”2. 

In order to close this gap, Arifovic and Ledyard (2012) (AL from now on) 
have developed IELORP3, a model focused on explaining simultaneously the 
above mentioned patterns. Their model claims to do so by using primarily two 
building blocks. First, agents are endowed with Other Regarding Preferences 
(ORP), so that an agent’s utility depends also on the payoffs of others, 
accounting for social motives. Second, agents learn their equilibrium, long-run 
strategies over time based on an Individual Learning Algorithm (IEL), which 
sets the dynamics towards convergence. AL claim that this model is robust to 
parameter changes, and importantly, that it has been tested in different 
environments and experiments, successfully explaining the data. This makes 
IELORP a strong contender among the many models to explain the stylized 
facts. 

However, even if IELORP captures many of the most interesting earlier 
facts for repeated VCM experiments, it wasn’t built to explain some of the most 

                                                        
1 Arranging players in small groups, experimenters endow each individual with a resource, 

usually tokens representing real money, and each one of them can individually decide whether 
to contribute to a public good or to keep its own endowment. If everyone contributes, the group 
is better off, but if everyone else contributes, an individual can increase its own payoffs by not 
doing so, creating a tension between social and individual motives. 

2 pp. 541 
3 Although the acronym is not the easiest to remember, it will be kept the same in order to 

retain AL’s original convention 
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important recent observations. After the seminal papers of  Fehr and Gächter 
(2000) and Fehr and Gächter (2002), substantial work has been dedicated to 
understanding the effects of altruistic punishment on maintaining 
cooperation. Arguably, the sustainability of contribution levels when different 
types of punishment are available is one of the most important facts on the 
public goods game literature, not only for the economics literature, but for 
social sciences in general: Bowles and Gintis (2013) have most of their main 
stylized facts on human cooperation closely linked to altruistic punishment, on 
which they base several of their evolutionary models. Also, Guala (2012) 
discusses the importance of the experimental evidence on punishment for 
theories of strong reciprocity and its external validity, and Chaudhuri (2011) 
presents a recent literature survey on public goods games experiments which 
emphasizes punishment as one of the key mechanisms to sustain cooperation. 
The stylized facts have evolved. 

This paper’s objective is to model behavior in public goods games and 
account for the sustainability of cooperation when punishment is allowed. We 
test the usefulness of AL’s modelling approach by extending IELORP. Can the 
model be extended to also explain some of the most relevant stylized facts 
found in experiments with punishment? Can it be done while maintaining its 
main assumptions and core building blocks (i.e. learning and other regarding 
preferences)? Our results will give a positive answer to these questions. 

Our model includes punishment as a simple rule of thumb (Gigerenzer et 
al., 2002), based on empirical observations of how subjects assign punishment 
across several experiments4. We will show what we consider to be key stylized 
facts of punishment, including the possibility of it sustaining cooperation, but 
only when the costs of punishing are low enough relative to the impact it has 
on the punished player (Nikiforakis and Normann (2008), Egas and Riedl 
(2008)). To explain those facts, our model focuses on “fear of punishment”, 
not punishment itself, as the main mechanism to sustain contributions 
(Fudenberg and Pathak, 2010). Intuitively, what the model does is to penalise 
strategies (in terms of utility) that are expected to be punished, based on the 
difference of contributions between agents: contributions sufficiently below 
the group’s average, are expected to be punished. This allows the learning 
algorithm (IEL) to reinforce higher contributions, hence sustaining 
cooperation. 

Our methodology is as follows. After introducing formally the linear VCM 
and the IELORP model (section 2), we attempt to replicate AL’s model and test 
its previously reported results (section 3). Given the computational nature of 
IELORP, this replication is vital before extending the model. For this, we 
independently code the model and test if we can replicate the main findings by 
AL regarding how closely it tracks previous experimental data. At this point, 
we do not fit the model or calibrate any of its parameters, but rather test if we 
find the same results with the same parameter estimated by AL. Then, after 
introducing the punishment facts (section 4), we formally present our model 
and defend its methodology (section 5). Here is worth mentioning our 
calibration strategy (section 6.1). One of the main reasons for using IELORP 
as our starting point for modelling behaviour, is the previously reported 

                                                        
4 A work also using heuristics to explore punishment is Pahl-Wostl and Ebenhöh (2004). 

Although similar in terms of the relevance it gives to empirically based heuristics for modelling 
behaviour, their approach is completely different from ours, theirs not including any kind of 
preferences or learning. 
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stability and out of sample robustness of its parameters. Our model calibrates 
(i.e. fits) to relevant experimental data only new parameters introduced in the 
punishment extension, but keeps the exact same values of AL for all the 
original IELORP parameters. This is a more stringent test than fitting again all 
the parameters, testing further the robustness and out of sample capabilities 
of the model. 

Our results (section 6.2) will show that our extended model can replicate 
the main stylized facts of the punishment literature. The quantitative test of 
the model is done by running Monte Carlo simulations. The good fit of the 
model to the experimental data reflects that simulated contribution levels 
differ, on average, less than 5% compared to experiments on the lab. Overall, 
these results show not only that learning and other-regarding preferences 
reflect general behavioural insights that can explain the data on repeated VCM 
experiments, but also that they are compatible with more environment-
specific, simple rules of behaviour, explaining how punishment can prevent 
contributions decline. Our model suggests that boundedly-rational behaviour 
that ignores information and relies on heuristics, can account for the most 
relevant facts observed in the repeated public goods games experimental data. 

2 IELORP MODEL 

We will start by presenting the IELORP model, introducing first the 
notation used for the VCM, followed by the explanation of the original AL 
model’s two components: social preferences and individual evolutionary 
learning. These two components describe, respectively, the characteristics and 
behaviour of the agents. Their characteristics are given by the assumptions of 
what players care about in their utility functions, in this case, Other Regarding 
Preferences (ORP). The behavioural component is a non-strategic, Individual 
Evolutionary Learning algorithm (IEL). The latter explains how agents, given 
their characteristics and information about the environment, decide their 
contributions. This presentation follows closely that of AL and does not include 
punishment. 

2.1 Linear Voluntary Contribution Mechanism 
The VCM’ structure is now widely known in the literature, so the following 

description is only intended as a way to introduce the notation. The core setup 
is as follows. 

𝑁 agents (indexed 𝑖 = 1,2, … , 𝑁) have a linear payoff function 𝜋) = 𝑝)(𝑤) −
𝑐)) + 𝑦 , where 𝑤)  is the initial endowment of a private good, 𝑐)  is their 
contribution to the production of the public good with 𝑐) ∈ [0, 𝑤)] and 𝑦 is the 
amount of public good produced. 1/𝑝) is the agents’ willingness to pay in the 
private good for a unit of the public good. The production function of the public 
good is considered to be linear as 𝑦 = 𝑀 𝑐89

8:; with 𝑀  being the marginal 
product of the public good. The game is given by the 𝑁 players, their payoffs 𝜋) 
and their possible contribution levels 𝑐) ∈ [0, 𝑤)] . The focus will be on 
symmetric games where all players have the same 𝑝) = 1  and the same 
endowment 𝑤) = 𝑤 . In this case, if 𝑀 < 1 , notice that each agent 𝑖  has a 
dominant strategy in contributing zero (choosing 𝑐) = 0 ). If 𝑀 > (1/𝑁) , 
aggregate payoff is maximized when all agents choose 𝑐) = 𝑤 . Thus, the 
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traditional commons dilemma is the tension between the individual (private) 
and public interest that arises when (1/𝑁) < 𝑀 < 1. 

2.2 Other Regarding Preferences (ORP) 
Since the influential work of Fehr and Schmidt (1999), there has been an 

extensive literature exploring utility functions that take into account not only 
own payoffs, but also those of other agents. Substantial empirical evidence 
shows that people indeed present this kind of social preferences, and that 
disregarding them by relying only on traditional selfish motivations prevents 
adequate understanding of relevant economics issues such as laws governing 
cooperation and collective action, effects and determinants of material 
incentives, which contracts and property rights arrangements are optimal, and 
important forces shaping social norms and market failures (Fehr and 
Fischbacher, 2002). Following this route, IELORP introduces other regarding 
preferences by endowing some agents (but not all) with components of social 
preference and envy.  

For each player payoffs are given by 𝜋)(𝑐) = 𝑤 − 𝑐) + 𝑀∑𝑐8 with an average 
group payoff of 𝜋 = ∑𝜋)/𝑁 = 𝑤 − 𝑐 + 𝑀𝑁𝑐  , with 𝑐 = ∑𝑐)/𝑁 . The utility 
function for player 𝑖	is given by 

𝑢) 𝑐 = 𝜋) 𝑐 + 𝛽)𝜋 𝑐 − 𝛾)max	{0, 𝜋 𝑐 − 	𝜋) 𝑐 } (1) 

with 𝛽) ≥ 0 and 𝛾) ≥ 0. 

In equation (1) the first term of the right hand side accounts for the interest 
for personal payoffs, with the second term being the interest for a social 
component (i.e. utility for the group’s average payoffs with a weight of 𝛽)). The 
third one represents the agents receiving disutility for being taken advantage 
of (i.e. receiving a payoff below the group average, that happens when 𝜋 > 𝜋)). 

Notice that heterogeneity is introduced by allowing parameter values (𝛽, 𝛾) 
to be different for each 𝑖. In IELORP these parameters are assumed exogenous 
(i.e. subjects come to the lab endowed with given preferences that don’t change 
during the experiments). To model this, agents are given particular values 
(𝛽), 𝛾))  from a population distribution 𝐹(𝛽, 𝛾). 𝐹(𝛽, 𝛾)  is such that for each 
simulated agent, 𝛽, 𝛾 = (0,0) with probability 𝑃. With probability (1 − 𝑃), 𝛽) 
and 𝛾)  are drawn independently from 𝑈 0, 𝐵  and 𝑈( 0, 𝐺 )  respectively, 
where 𝑈(𝐷) is the uniform density on the interval D5. The specific values of the 
parameter triplet (𝑃, 𝐵, 𝐺) are discussed in section 6.1. 

It is relevant to know what the possible one-shot Nash equilibrium levels of 
contribution can be. Given the utility function with other regarding 
preferences (equation (1)), the experimental parameters (N,M) and 
heterogeneity across (𝛽, 𝛾), only three types of Nash equilibrium behaviour are 
possible: free riding (𝑐) = 0), fully contributing (𝑐) = 𝑤)), and conditionally 
cooperating (𝑐) = 𝑐 = ( 𝑐)) )/𝑁). Is worth noting that in IELORP, free riding, 
altruism or conditional cooperation are considered as ‘behavioural’ types, not 
inner traits of the agents. An agent with the same “inner” parameters (i.e.	𝛽) 

                                                        
5 Another way to put this is that under the distribution 𝐹 𝛽, 𝛾 , with probability 𝑃, 𝛽, 𝛾 =

(0,0). Otherwise (with probability (1 − 𝑃)), 𝐹 𝛽, 𝛾 = 𝑈 0, 𝐵 ×𝑈( 0, 𝐺 ). 



6 
 

and 𝛾)) can show different equilibrium behaviour for different values of N and 
M. Put differently, the equilibrium strategy of the agent can vary depending on 
the environment (i.e. experimental setup)6. 

The above description of other regarding preferences accounts for the 
characteristics of agents. But we haven’t defined exactly how they make their 
decisions. The model does not assume that decisions are made through 
traditional deductive reasoning. However, the one-shot Nash types of behavior 
are relevant because most learning algorithms would find such solutions given 
enough time. It is not a problem for most algorithms to find the dominant 
strategy of an agent. Technically, free-riding and fully-contributing can be 
defined as dominant strategies, but since conditional cooperation entails a 
strategy that is contingent on others’ contributions, it cannot be defined as 
dominant. However, the same logic applies. So IELORP models agents 
learning such equilibrium strategies inductively. Let us turn now turn to this 
second aspect of the model, specifying their behavior. 

2.3 Individual Evolutionary Learning (IEL) 

The next step is to model how the agents choose their strategy 𝑐) in each 
period. In many applications of evolutionary algorithms to economics (e.g. 
Andreoni and Miller (1995)), each agent is considered to be one strategy and 
the whole population of strategies jointly implements a behavioral algorithm 
(social learning). However, in other applications, individual learning is 
modelled with each agent having a set of strategies; evolution takes place not 
on the entire population of strategies but on the set belonging to one individual 
(Arifovic and Ledyard, 2011). As explained next, the latter is the approach 
followed by IEL. Let us first explain the learning algorithm in a general form 
for repeated games, and then use it specifically for a public goods game 
environment. 

2.3.1 General form of the learning algorithm 

The idea is that the repeated game has a stage game 𝐺 that is played for 𝑇 
rounds. In 𝐺 = {𝑁, 𝑋, 𝑉, 𝐼}, 𝑁 is the number of agents  (indexed 𝑖 = 1,2, … , 𝑁), 
𝑋)  is the action space of 𝑖, 𝑣)(𝑥;, … , 𝑥9) is the payoff of 𝑖 if the joint strategy 
choice is 𝑥, and 𝐼)(𝑥V) is the information reported to 𝑖 at the end of each round. 
In the lab, the experimenter controls all of these. In round 𝑡 each 𝑖 chooses 𝑥V) ∈
𝑋) and is told information 𝐼)(𝑥V) about what happened. Then the next round is 
played. A behavioral model must explain how the sequence of choices for 𝑖, 
(𝑥;) , 𝑥X) , … , 𝑥Y) ) is made, given what 𝑖 knows at each round 𝑡. 

IEL has two primary variables: first, a finite set of potential actions for each 
agent 𝑖 at each round 𝑡, 𝐴V) ⊂ 𝑋) . Second, a probability measure 𝜓V)  on 𝐴V) . 𝐴V)  
consists of 𝐽 alternatives: this free parameter 𝐽 can be thought (loosely) as a 
measure of the agent’s processing capacity. In each round 𝑡 the agent chooses 
randomly an alternative from 𝐴V)  using the probability density 𝜓V)  on 𝐴V) , and 
then chooses the action 𝑥V) = 𝑎V) . One way to see it is that a mixed strategy on 
𝑋) at 𝑡 is induced by (𝐴V) , 𝜓V)). At the end of each period 𝑡 the agent is informed 
of 𝐼)(𝑥V). The heart of the behavioral model is that at the beginning of next 

                                                        
6 The exact conditions for each type are presented in Appendix 8.2. 
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round 𝑡 + 1 the agent computes a new 𝐴V_;)  and a new 𝜓V_;) . The three key 
components of IEL are as follows, starting at the end of round 𝑡 knowing 𝐴V) , 𝜓V)  
and 𝐼)(𝑥V): 

1. Experimentation7: this allows agents to try new strategies that perhaps 
might never be tried otherwise. With probability 𝜌  and for each 𝑗 =
1,2, … , 𝐽, action 𝑎8,V)  is replaced by a new contribution strategy selected at 
random from 𝑋). The distribution used for this replacement is normal 
~𝑁(𝑎8,V) , 𝜎) . So not only 𝐽  but also 𝜌  and 𝜎 , constitute the free 
parameters of the learning model. 

2. Replication: a key component of the model is the concept of foregone 
utility, which refers to the payoffs that an action that was not played 
could’ve given to the agent. For example, in a public goods game, say an 
agent contributed 10 tokens to the public good in a particular round. At 
the end of that round, knowing his own contributions and those of the 
group, he can calculate his own payoffs. Those payoffs are observed 
based on the actual decision he made (his actual utility). But having 
observed a particular contribution of the group, he can make a similar 
counterfactual calculation. He may ask “How much would’ve been my 
payoffs, if instead of having contributed 10 tokens, I would’ve 
contributed, say, 15 tokens? What about 20 tokens?”. The utility that he 
would have received for playing those 15 or 20 tokens, represent the 
foregone utilities for those potential contributions (taking as a given the 
group’s contribution). The ‘replication’ part of the algorithm allows 
strategies in the set of potential actions to increase their probability of 
being chosen (by replicating, or replacing other actions with poorer 
performance), based on such foregone utility. 

Formally, let 𝑣)(𝑎8V) |𝐼) 𝑥V ) be the foregone utility of alternative 𝑗 at time 
𝑡  given the information 𝐼) 𝑥V . The key assumption here is that the 
foregone utility 𝑣)(𝑎8V) |𝐼) 𝑥V ) is a counterfactual valuation function that 
must be specified for each application of the IEL learning model 
(specified for public goods games below). So given 𝑣), replication takes 
place as follows: For 𝑗 = 1, … , 𝐽 , 𝑎8,V_;)  is chosen as follows. From a 
uniform distribution, pick randomly (with replacement) two members 
of 𝐴V) . Let such two members be 𝑎e,V)  and 𝑎f,V) . Then 

𝑎8,V_;) =
𝑎e,V) ,			𝑖𝑓				𝑣)(𝑎eV) |𝐼) 𝑥V ) ≥ 𝑣)(𝑎fV) |𝐼) 𝑥V )
𝑎f,V) ,			𝑖𝑓				𝑣)(𝑎eV) |𝐼) 𝑥V ) < 𝑣)(𝑎fV) |𝐼) 𝑥V )

 

Replication in period 𝑡 + 1 favors alternatives with many replicates in 
𝐴V)  as well as those that, if would’ve been used in 𝑡, would’ve paid well. 
Actions that would’ve provided favorable situations given the actual 
contributions of others, will replicate in 𝐴V) . 𝐴V)  will become more 
homogeneous as most alternatives become replicates of the best 
performing ones. 

3. Selection: after experimentation and replication have taken place, 
selection occurs. Simply put, the probability of an agent choosing a 

                                                        
7  This experimentation is similar in spirit to mutation in some biological models which 

randomly introduce changes. 
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particular action to play, depends on the foregone utility of that action 
relative to the foregone utilities of other potential actions. 

Formally, each action 𝑎e,V_;)  has the following probability of being 
chosen: 

𝜓e,V_;) =
𝑣) 𝑎e,V_;) 𝐼) 𝑥V − 𝜀V_;)

(𝑣) 𝑎8,V_;) 𝐼) 𝑥V − 𝜀V_;) )i
8:;

 

for all 𝑖 = {1,2, … , 𝑁} and 𝑘 = {1,2, … , 𝐽}, where  

𝜀V_;) = min
mnopqr	

s
{0, 𝑣)(𝑎|𝐼)(𝑥V))}.  

If there are negative foregone utilities, what the latter does is to 
normalize all payoffs by adding a constant equal to the lowest payoff in 
the set (in absolute value). 

All that is left to specify after describing how the agent calculates 𝐴V_;)  and  
𝜓V_;)  starting from 𝐴V)  and 𝜓V) , is to specify how the model is initialized. The 
assumption is a very naïve behavior: things begin randomly. 𝐴;)  is randomly 
populated with 𝐽 draws from a uniform distribution from 𝑋). Also 𝜓e,;) = 1/𝐽	 
for every 𝑘. 

2.3.2 Application to VCM 
Now the behavioral model is complete by having the two key elements of 

IEL, 𝐴 and 𝑣(𝑎|𝐼 𝑥 ). In order to apply it to a VCM environment, one has to 
specify both of them, which is very straightforward. Let 𝐴 = [0, 𝑤] . Since 
players receive an endowment 𝑤 in the traditional VCM, their action space is 
the interval between zero and such endowment. Their decision is how much 
contribution they give out of 𝑤 to the public good, so 𝑐)𝜖[0, 𝑤]. For specifying 
the value function, one requires to specify the information players receive, 
𝐼)(𝑥V). Without punishment, in a public goods game players are informed the 
sum of the group’s contributions, 𝑐V = 𝑐V

8
8 . Since players know 𝑐V)  (own 

contribution), they could calculate 𝜇) = vpwvs

9w;
, which is the average of the 

contribution of the other players in the group. So let 𝐼) 𝑐V = 𝜇V) . 

The functional form of the foregone utility 𝑣) is based on the utility function 
in equation (1). Knowing the profits function 𝜋) = 𝑤) − 𝑐) + 𝑀 𝑐89

8:; , 𝑣) can 
be expressed as a function of 𝑐) and  𝜇V)  as follows: 

𝑣) 𝑐) 𝜇) = 𝑐) 𝑀 − 1 + 𝛽) 𝑀 −
1
𝑁

− 𝛾∗)
𝑁 − 1
𝑁

 

																																							+	 𝑁 − 1 𝜇) 𝑀 + 𝛽) 𝑀 −
1
𝑁

+ 𝛾∗) + 𝑤(1

+ 𝛽)) 

(2) 

where 𝛾∗) = 𝛾), 𝜋 ≥ 𝜋)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

So it is this function 𝑣)(𝑎|𝐼) 𝑐V = 𝜇)) the one used for the replication and 
selection procedures. 
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2.4 IELORP and previous literature 
How is IELORP different from previous models? One can describe IELORP 

as endowing agents with an equilibrium behavior (free-riding, altruism or 
conditional cooperation) given by the Other Regarding Preferences. Such traits 
will reflect an agent’s behavior in the long-run, but it is the learning 
mechanism what will determine the dynamics for such behavior to be reached. 
Both ideas are well stablished in the literature and have been treated in 
previous models. 

Other Regarding Preferences are now quite common in the literature (Fehr 
and Schmidt (1999), Bolton and Ockenfels (2000), Charness and Rabin 
(2002)). For key VCM stylized facts (introduced in section 1), notice that no 
model that assumes completely selfish behavior could account accurately for 
contribution levels that decline over time but that remain positive. If free-
riding is the only dominant strategy, eventually agents will converge into 
contributing exactly zero to the public good, which is not what experimental 
data shows (e.g. Isaac and Walker (1988)). IELORP underpins the same 
behavioral principles as such previous work. In fact, the implemented utility 
function (equation (1)) can be expressed as linear transformations of the ones 
used by Fehr and Schmidt (1999) or Charness and Rabin (2002). However, the 
differences in the specific functional form, as claimed by AL, are in order to 
explain that behavior changes when the group size is changed (tested in section 
3). This is one aspect that differentiates IELORP with respect to previous 
literature. 

Learning mechanisms are not novel either (Roth and Erev (1995), Camerer 
and Ho (1999)). Even more, they have also been used in tandem with Other 
Regarding Preferences in order to explain public goods games (Anderson et al. 
(2004), Cooper and Stockman (2002) and Janssen and Ahn (2006)). An 
important reason to model learning is that the stylized facts for VCM show that 
agents don’t start playing right from the beginning of the game their long-run 
strategies (such as free-riding). Learning presents an explanation on why it 
takes time for people to reach equilibrium, hence making models more 
consistent with the empirical evidence. The claim by AL, however, is that their 
implemented learning algorithm is better at capturing speed of convergence 
towards equilibrium behavior, since the algorithms of the above models are 
not ideal for repeated games with strategy spaces that are a continuum. Also, 
AL claim that IEL’s free parameters don’t need to be recalibrated when tested 
in different games (Arifovic and Ledyard (2011), (2007), (2004)). The latter is 
key, because too many degrees of freedom is unlikely to be desirable for most 
models; if their values need to be calibrated only once, then IEL’s usefulness 
can go beyond fitting data and be tested out of sample. The latter is a strong 
motivation for this work and to test further the usefulness of AL’s modelling 
approach. 

Let us now turn to testing whether IELORP can be replicated, and to check 
if we can independently reproduce its main characteristics. 

3 TESTING IELORP PREVIOUS EVIDENCE 

AL’s claim is that IELORP can track several stylized facts in VCM 
experimental data (introduced in section 1). For testing the model, in their 
main results they compared their simulated data with experiments conducted 
by Isaac and Walker (1988) (IW from now on). Under the belief that 
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replicability is a critical component of the scientific method, particularly in 
computational models  (Wilensky and Rand, 2007), we use the same IW 
dataset and our own independent implementation of IELORP to verify AL’s 
results8. This implementation consists on coding the model independently 
based on the information given in AL’s paper. We also use their same 
parameter values in order to compare our simulations with IW’s data and 
check if the same qualitative and quantitative results found by AL can be 
replicated.  

3.1 Qualitative test 
The experiments conducted by IW had subjects in the lab playing a repeated 

public goods game experiment (for ten rounds) under a partners setting (i.e. 
group composition was not changed). Their main results, which are tied to the 
stylized facts on which AL focused, are related to how average contributions to 
the public good change when group size (N) and marginal productivity (M) are 
altered. Plotting average contributions across groups for each period of the 
game, one should observe (as in the stylized facts in section 1) that they start 
around 50% percent of the endowment, and start declining with time without 
reaching zero. And although such negative trend in contributions should be 
observed for different values of N and M, contribution levels should be 
different: group size and marginal productivity affect how much players 
contribute. Figure 1 presents these empirical facts in IW data with the solid 
lines (ignore the dashed-lines for now), each data point representing the 
average contribution across subjects in six groups for each period. The design 
is 2x2 (four treatments), group size taking values of N= (4,10), and marginal 
productivity of the public good values M= (0.3,0.75). Endowment is 
normalized to w=10. Figure 1 shows that higher M leads to higher 
contributions. For example, with group size equal to four players (left panel), 
contributions across all periods are higher when M=0.75 compared to M=0.3, 
even if for both treatment contributions decline over time. The same holds in 
the right panel for group size equal to ten. 

 

Figure 1: Comparison of our independent replication of IELORP (simulations) 
versus experimental data of  Isaac and Walker (1988) (IW). Includes four treatments: 
group size taking values N=4 (left panel) and N=10(right panel), and marginal 
productivity of the public good taking values M= (0.3,0.75). 

                                                        
8 Our implementation of IELORP, as well as all simulations in this paper, were conducted 

using the agent-based-modelling software NetLogo, version 5.2 (Wilensky, 1999).  
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So Figure 1 shows the above empirical evidence from subjects in the lab, but 
the main goal of this section is to observe if our implementation of IELORP 
can replicate such findings. For this, simulations were run with our 
independent implementation of the model 9 . The experimental parameters 
were kept analogous to those in IW (e.g. group size, marginal productivity). 
The model parameters were taken directly from AL’s estimations10. Notice that 
we do not fit the model here, but rather test if we can replicate the qualitative 
patterns of IW’s data by using the parameter values previously estimated by 
AL. These simulations are represented by the dashed lines in Figure 1. Each 
data point represents the average contribution per period across 100 simulated 
groups of artificial agents, with each run of the model being analogous to one 
of the 6 groups in IW data (this makes simulated data “smoother”, since it 
presents more observations). Qualitatively, it can be observed that for each 
treatment the simulated data is very similar to the experimental, presenting 
similar trends as well as having similar changes in contributions for the 
different values of N and M. This is considered as evidence that our 
implementation of IELORP replicates qualitatively the main features in IW’s 
data, in a similar fashion as presented by AL. But what about quantitatively? 

3.2 Quantitative test 
One of the main measures AL use to test IELORP quantitatively is the 

squared error of how much the simulated differs from the experimental data. 
They estimate that on average, such difference is 3.4%. Let us explain how that 
measure is calculated, showing if our replication presents similar results. 

Let 𝑐~)�;� (𝑟) denote the average contribution for all simulated agents with 
IELORP across all ten periods on treatment 𝑟, for the particular parameter 
combination used (100 simulations). Let 𝑐~)�� (𝑟) be the analogous but only for 
the average of the last three periods, and 𝑐��;� (𝑟)  and 𝑐��� (𝑟) be such averages 
from IW data (across the six group observations for each treatment). The 
squared deviations between the simulated data and the experimental data 
were computed. That way the SE (Squared Error) was calculated as 

𝑆𝐸 = [𝑐��;� 𝑟 − 𝑐~)�;� 𝑟 ]X + [𝑐��� 𝑟 − 𝑐~)�� 𝑟 ]X	
�

�:;

 
(3) 

where 𝑅 is the total number of treatments. For the present case of IW, 𝑅 =
4. In order to have results that can be compared with experiments having 
different values for 𝑅, the SE is normalized. The reported value for the NSE 
(Normalized Squared Error) is 

                                                        
9 N artificial agents are created for each simulation, endowing them with Other Regarding 

Preferences parameters as explained in section 2.2, and playing for 10 periods. A new draw of 
parameters is done for each different run. 

10 𝐽 = 100, 𝜌 = 0.033, 𝜎 = �
;�
= 1, 𝑃 = 0.48, 𝐵 = 22, 𝐺 = 8. Is worth noting that AL calibrated 

parameters P,B and G to best fit IW data. The others, however, corresponding to the learning 
algorithm, were taken directly from previous work (Arifovic and Ledyard, 2011, 2007, 2004), 
appealing to its transferability. 
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𝑁𝑆𝐸 =
𝑆𝐸
2𝑅

 

 

It can be seen that the NSE is a standard measure of the difference between 
the simulated and experimental data. It also takes into account the average of 
the last three rounds in order to take into account the model’s convergence, 
not just the average across all periods. 

In our IELORP replication, NSE=0.43. The values to calculate it such as 
𝑐��;� (𝑟), belong to the interval [0,w]. Since we normalized to w=10, they are the 
average contribution for such an endowment. That value of NSE then 
represents an average error between our simulated data and IW’s of 4.3%. The 
small difference of this value with that reported by AL (less than one 
percentage point), can reasonably be attributed to the inherent randomness of 
the simulations. With this, we consider that our implementation replicates 
IELORP’s main features at the qualitative as well as the quantitative level11. 

4 PUNISHMENT STYLIZED FACTS 

Since  Fehr and Gächter (2000) and Fehr and Gächter (2002), the public 
goods game literature has highlighted the relevance of punishment as a 
fundamental mechanism to sustain cooperation. Our model is intended to 
capture relevant features of punishment experimental data beyond what was 
initially modeled by AL: the stylized facts have evolved to include punishment. 
This section’s objective is to present four main stylized facts on punishment 
found in lab experiments. This presentation is not intended to survey the 
punishment literature, since other authors have already done so elsewhere 
(see, for example, Chaudhuri (2011)). The stylized facts presented below were 
chosen given what we considered, a priori, were the most relevant ones12. Some 
other important experimental results will be referred to indirectly, but such 
discussion if left for section 5.3. 

Before presenting the facts, let us briefly present the traditional punishment 
setup and notation. 

4.1 The punishment experimental setup 
A traditional public goods game experiment with punishment works in the 

following way 13. After players have decided on their contributions as they 
would if punishment is not allowed (i.e. in the VCM environment presented in 
section 2.1), a second stage is added.  In this stage they are informed about how 
much the other individuals in the group contributed. Then, if they want, they 
can decide to buy punishment points (reducing their own income) to reduce 

                                                        
11 AL highlight other features of the model as well as other experimental setups where it was 

tested. Although we didn’t formally explore those, they are worth mentioning since they further 
motivate our interest in IELORP as the base for our punishment model. They are summarised  
in Appendix 8.1. 

12 Thanks to Simon Gächter for discussions on this regard. 
13 This notation follows that of Nikiforakis and Normann (2008), since their data set is the 

one used later for testing the model (section 6). 
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the income of one or more of the other players. Let 𝑝)8 denote the amount of 
punishment points that player 𝑖  assigns to reduce the income of player 𝑗 
(where 𝑖, 𝑗 = 1, … , 𝑁	𝑓𝑜𝑟	𝑗 ≠ 𝑖 ), and 𝑒  denote the effectiveness of each 
punishment point: that is, how much the income of 𝑗 is reduced for each 𝑝)8 
assigned to him. Then the payoffs for 𝑖 are described by 

𝜋) = 𝑤 − 𝑐) + 𝑀 𝑐8
9

8:;

− 𝑝)8
8�)

− 𝑒 𝑝8)
8�)

 

The last two terms on the equation reflect how an agent’s payoffs are 
affected when punishment is introduced: the agent takes the cost of punishing 
others in the group, as well as the cost of being punished by others, the latter 
multiplied by the effectiveness level set by the experimenter. 

4.2 Stylized facts 

4.2.1 Punishment can sustain cooperation 
This is the most important of the facts. It has been shown that the 

contribution levels in public good games increase significantly compared to 
setups without punishment. Punishment can reverse the decline of 
cooperation. 

The experiment pioneering this fact was Fehr and Gächter (2000). Their 
main treatments consisted on having both partners (group composition never 
changes) and strangers (groups are randomly reshuffled after each round) 
setups, as well as allowing and not allowing punishment. Some groups played 
10 rounds of the public goods game with punishment followed by 10 round of 
no punishment (sequence 1), and others vice-versa (sequence 2). Figure 1 
presents average period contributions in their data for the partners setup (data 
is similar for strangers, not presented). The stylized fact of punishment being 
able to sustain cooperation is captured by the slope of contributions: without 
punishment, the slope is negative, meaning that contributions decline over 
time. When punishment is allowed, the slope is positive, meaning that 
contributions don’t decline and cooperation is sustained. Such results have 
been replicated several times in different labs across the world (Chaudhuri, 
2011). 
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Figure 2: Average contributions over time (partners setup). Sequence 1 had 
subjects play 10 rounds with punishment allowed, followed by 10 rounds without 

punishment. Sequence 2 reversed that order. Source: Fehr and Gächter (2000) 

4.2.2 The levels of contribution depend on the “effectiveness” of punishment 
“Effectiveness” is defined as the experimental parameter that determines 

how many tokens (experimental points) are deducted from a punished player 
for each punishment point allocated by a punishing player. For example, if 
player A spends one point punishing player B in a given round, and the 
experimenter deducts two points from player B’s payoffs due to such 
punishment, then the effectiveness is equal to two (ratio two to one). 

Bowles and Gintis (2013) (p. 32) refer to this fact as “social preferences are 
not irrational”. It means that even if people have preferences for social 
outcomes and care about others, as with any other good how much of it is 
consumed is affected by its “price” (i.e. effectiveness). When punishing is 
cheaper, levels of cooperation increase. Egas and Riedl (2008) and Nikiforakis 
and Normann (2008) are two studies showing clearly this fact in public good 
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games. Figure 3 shows data from the former, under a strangers setup. 
Treatments here consisted of changing both punishment cost (how many 
tokens is the punisher player deducted in order to assign one token of 
punishment to the punished player) and impact (how much are payoffs of the 
punished player deducted for each token of punishment assigned to him). In 
this case, effectiveness can be defined as the ratio of cost to impact. The data 
shows that contributions declined in all treatments except in the one with 
highest effectiveness, where it actually increased with time. However, notice 
that in all the treatments with a negative slope, higher effectiveness was still 
associated with higher contributions, even if they declined over time. 

 

Figure 3: Average contributions in a public goods game. Each treatment T 
changes how much it costs one player to buy one token of punishment as well as 

how much that token deducts the payoffs of the punished player. For example, T31 
means that one has to pay three tokens (cost) in order to deduct one point (impact) 
from another player. In this case, “effectiveness” would be the ratio of 1 to 3 (cost to 

impact ratio). Source: Egas and Riedl (2008) 

Similar patterns can be observed in the data of Nikiforakis and Normann 
(2008), presented in Figure 4. Under a partners setup, their treatments 
changed the effectiveness level. The main difference with Egas and Riedl 
(2008) is that punishment cost is always constant at one token. Each treatment 
is labelled from “0” to “4”. For example, in treatment “3”, a player can deduct 
his own payoffs by one token in order to deduct three tokens from another 
player. Data shows clearly that the higher the levels of effectiveness, the higher 
the contribution levels to the public good. 
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Figure 4: Average contributions in a public goods game with punishment. Each 
line presents a treatment with different effectiveness levels. For example, treatment 
“3” means that for each token of punishment assigned, the punished player payoffs 
are reduced by 3. Source: Nikiforakis and Normann (2008). 

Summarising, both studies show that when effectiveness is too low, 
contributions decline on average. As effectiveness increases, contributions 
monotonically increase. With high enough effectiveness, cooperation can be 
sustained. 

4.2.3 First period contributions remain the same with or without 
punishment and for different levels of effectiveness 

This fact can be observed again in the experiments of Egas and Riedl (2008) 
and Nikiforakis and Normann (2008) (Figure 3 and Figure 4). The latter’s 
main result is that average contributions are monotonic on all tested 
effectiveness levels; however, such condition holds for every period except the 
first one. In both studies initial average contributions are around half of the 
endowment, and are not statistically different for any effectiveness level, 
including zero (i.e. no punishment). This fact seems to highlight the non-
strategic nature of punishment. The data of Fehr and Gächter (2000) and Fehr 
and Gächter (2002) show the same: with and without punishment, first round 
contributions are not statistically different. 

4.2.4 When punishment sustains cooperation, group welfare is increased 
after sufficient rounds 

One important caveat is to be made regarding the studies referenced in this 
section showing that punishment can sustain cooperation. Even if 
contributions levels are higher with punishment, this does not mean that 
group welfare is also necessarily higher. Punishment can lead to inefficiencies: 
the costs of punishing can outweigh the benefits of higher contributions in 
terms of group’s payoffs. This is the case in Fehr and Gächter (2000) and Fehr 
and Gächter (2002), where punishment led to lower average net earnings. In 
both Egas and Riedl (2008) and Nikiforakis and Normann (2008), net 
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earnings were higher only in the one treatment with the highest effectiveness. 
In all the other treatments, the social costs of punishment exceeded the 
benefits of higher contributions to the public good. Is then punishment mostly 
inefficient for group welfare? 

To address this, Gächter et al. (2008) ran treatments with and without 
punishment, but allowing the experiments to last both 10 and 50 rounds under 
a partners setup.  Their objective was to test if group welfare would increase 
after more periods of play were allowed. Figure 5 shows the net earnings of 
their experiment. Observing both treatments that allowed 50 rounds with and 
without punishment (P50 and N50), it can be seen that punishment allowed 
higher earnings. Without punishment, earnings were higher during the first 
periods of play (as was observed in previous studies), but once cooperation was 
established, punishment was unambiguously beneficial. The explanation is 
that once high levels of contributions are established, punishment is rarely 
needed: the credible threat of punishment, not punishment itself, is what 
sustains cooperation. So that the more rounds are played, the more the 
benefits of cooperation will outweigh the costs of punishment. 

 

Figure 5: Average net earnings in a public goods game. Treatments included 
both no punishment and punishment setups (‘N’ and ‘P’ respectively), as well as time 

spans of both 10 and 50 rounds. For example, treatment P50 means that 
punishment was allowed and that the game lasted 50 rounds. Numbers in 

parenthesis show average earnings across all periods for each treatment. Source: 
Gächter et al. (2008) 

Given the above facts on punishment, let us now turn to our presentation of 
the model. 

5 MODELLING PUNISHMENT 

In this section we present our modelling approach. Our model extends 
IELORP by introducing expectations of punishment: agents include such 
expectation in their counterfactual evaluation of potential actions (foregone 
utility) so that the learning algorithm favors strategies expected not to be 
punished. Our extended model will be referred to as ‘Punishment Heuristics’ 
(PH) from now on. 

Punishment expectations are modeled as a simple rule of thumb, or as a 
‘fast and frugal heuristic’ (Gigerenzer et al., 2011). Before formally introducing 
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the model, we show that our punishment expectations are inspired in data 
showing that players in the lab use similar rules of thumb to assign 
punishment. This is both a motivation for our approach (showing it is plausible 
given the data), but will also give the reader some intuition before formalizing 
the model. After presenting PH, we discuss both how our heuristics approach 
fits IELORP theoretically, as well as other relevant aspects of the model. For 
example, is worth mentioning that the expectation of whether an action would 
be punished or not is the only necessary ingredient in the model to explain the 
stylised facts: this means that such expectation is considered exogenous, since 
it can’t change through experience in the model. This makes it independent 
from actual punishment (i.e. allocation of punishment points): modelling 
punishment decisions is not required for obtaining the presented main results. 
Such independence between the expectations and actual experienced 
punishment might seem strange from a strategic game theoretical point of 
view, but there are empirical reasons that make this a valid approach. Section 
5.3 will discuss this and other points, after PH is presented. 

5.1 Motivation for punishment as a simple rule of thumb 
How do subjects across experiments decide on which other players to 

punish? Figure 6, taken from Hetzer and Sornette (2013) can shed some light. 
The authors used the data from three different experiments (Fehr and Gachter 
(2002), (2000) and Fudenberg and Pathak (2010)) and calculated how much, 
on average, a player in a given group spends in punishing other players in 
relationship with pairwise deviations of contribution levels. Such pairwise 
deviations are defined as the difference between the contribution level of the 
punisher player with the contribution level of the punished one. Figure 6 shows 
that the more negative the deviations are, the more punishment is assigned. 
This data hints at players assigning punishment when other players contribute 
less than themselves, increasing punishment linearly when such contributions 
are lower. 
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Figure 6: Mean expenditure of a given punishing member as a function of the 
deviation between that member’s contribution and that of the punished member 

(for all pairs of subjects within a group). The straight line crossing zero shows the 
average decision rule for punishment: the more negative the deviations, 

punishment increases in a linear way. Error bars indicate the standard error 
around the mean. Data from the experiments of Fehr and Gachter (2002), (2000) 

and Fudenberg and Pathak (2010). Source: Hetzer and Sornette (2013) 

PH will assume that players expect to receive punishment in a similar 
fashion. Our artificial agents will expect to be punished when they contribute 
less than other players in the group. However, instead of using pairwise 
comparisons, they compare their contribution with the group average, which 
simplifies their calculations. Agents will expect that only contributions below 
the group average will be punished, and that the higher the difference with 
respect to that average, the more punishment they will receive14. 

The above rule of thumb is closely related to how different effectiveness 
levels affect punishment and the sustainability of cooperation (stylized fact in 
section 4.2.2), vital in our modelling approach. Conclusions from Egas and 
Riedl (2008) can help in understanding the connection, since they find similar 
pairwise deviations for explaining punishment. As a reminder, their 
experiments changed both cost and impact of punishment, implying different 
levels of effectiveness. Their main results (Figure 3) showed that for higher 
effectiveness levels, higher contributions were observed. But they have other 
conclusions relevant for motivating PH.  First, their results show that 
“surprisingly, the marginal propensity to increase punishment with 
increasing deviations in contribution is the same for all four punishment 

                                                        
14 Figure 6 shows that positive deviations (i.e. contributing more than others) can also be 

punished, although such effect is smaller than for negative deviations. This “anti-social” 
punishment towards co-operators (Herrmann et al., 2008) is neglected in our model. 
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treatments”15. This means that for all effectiveness levels, one less token of 
contribution is associated with the same amount of punishment, meaning that 
a linear effect similar to that in Figure 6 (slope for negative differences) can be 
expected for different effectiveness. 

Second, and perhaps more importantly, Egas and Riedl (2008) conclude 
that “the cost and the impact of punishment have a significant effect on the 
threshold of deviation in contribution at which participants start to punish 
free-riders […] One surprising upshot of these results is that the force of 
punishment effectiveness can be pinned down to one single variable: the 
threshold level of free-riding that goes unpunished”16. A key feature of PH will 
be related to the latter results: effectiveness levels affect the threshold at which 
agents start expecting to be punished. In other words, the lower the 
effectiveness levels are, agents will expect to be able to “get away” unpunished 
with lower contributions. 

The above results give us an intuition about how we implement expectations 
of punishment. First, agents expect to be punished when they contribute less 
than their peers (below the group’s average contributions), expecting more 
punishment the lower their contribution. Second, they expect a threshold, 
below the group’s average contribution, for which they will start to be punished 
(i.e. small deviations from the group would not be punished). The key factor is 
that the higher the effectiveness levels, the smaller that threshold is, meaning 
that they expect to be punished easier. Let us now introduce PH formally. 

5.2 The model 

Agents’ mechanism to evaluate if a particular action 𝑎V)  would be punished 
depends on an estimated reference point 𝑅V) . If the action is lower than the 
reference point, the agent assumes that it would be punished. The reference 
point depends on two components: the last period’s average group 
contribution 𝑐V = ∑𝑐V)/𝑁 and a tolerance value 𝑇, such that 𝑅V_;) = 𝑐V − 𝑇. How 
the tolerance value is estimated depends on the effectiveness parameter of the 
experiment, 𝑒. The latter is controlled by the experimenter, representing how 
many tokens a punished player is deducted from her profits when another 
player has assigned her one punishment token. So 𝑇 is calculated as 

𝑇 =
𝑤
𝐿�

 (4) 

where 𝐿 > 1  is the main free parameter of PH. Notice that 𝑇 is the same for 
every period and every agent17. 𝐿 represents how the tolerance T of players 
changes in response to different values of 𝑒. 

                                                        
15 pp.875, italics added. 
16 pp.875, their own bolds, italics added. 
17 Here, since we simplify that the reference point is based on 𝑐V  (i.e. the whole group’s 

average contribution, instead of the average of the other players in the group), then 𝑅V_;) = 𝑅V_; 
for all 𝑖, giving all agents the same reference point in a given period. The notation is kept as 𝑅V_;)  
because it is more general, and the model can easily be changed to allow for heterogeneity. In 
this case, we move forward with the homogeneity assumption as a particular case, testing how 
far can we go with this simpler assumption. 
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A behavioural interpretation of 𝑅V)  and equation (4) is straightforward. 𝑇 
represents an agent’s belief of how much it can get away with without being 
punished. Higher 𝑇 means that agents believe lower contributions with respect 
to the group’s average would still go unpunished. How is such tolerance 
estimated? It is entirely based on 𝑒. Lower 𝑒 implies that punishment is less 
effective (more costly), so agents expect that others will punish less18. The key 
feature of Equation (4) is to impose an inverse relationship between 𝑒 and 𝑇. 

Then, if an action is expected to be punished, how much punishment is 
expected? This amount will be denoted by 𝑧V). The basic idea is that the farther 
the potential contribution 𝑎V)  is with respect to 𝑅V) , the more punishment is 
expected. The latter is modelled by allowing agents to calculate 𝑧V) =
𝑅)V − 𝑎V) 𝐾, where 𝐾 is the second free parameter of PH. Notice that here an 

agent expecting punishment from all the other agents in the group doesn’t care 
about where does the punishment comes from (i.e. from which player). The 
agent simply assumes that for each token of contribution below 𝑅V)  it will 
receive a certain amount of punishment 𝐾 . Then the amount of tokens 
expected as punishment 𝑧V) when evaluating action 𝑎V)  is 

𝑧V) =
(𝑅V) − 𝑎V))𝐾						𝑖𝑓							𝑎V) < 𝑅V)

0																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(5) 

Equations (4) and (5) determine 𝑧V)  for 𝑎V)  depending on two free 
parameters, 𝐿  and 𝐾  (calibration procedures for these will be explained in 
section 6.1.1). The next step is to connect this PH expectation mechanism with 
the IELORP model. 

In IELORP, the foregone utility 𝑣V)(𝑎|𝐼) 𝑐V = 𝜇)) is calculated for every 𝑎8,V)  
with 𝑗 = {1, … , 𝐽}. A similar calculation will apply with punishment, with the 
difference that 𝑣V)  will be modified to include 𝑧V) , as implied in the following 
equation: 

𝑣) 𝑐), 𝑧V) 𝜇) = 𝑐) 𝑀 − 1 + 𝛽) 𝑀 −
1
𝑁

− 𝛾∗)
𝑁 − 1
𝑁

 

                            +	 𝑁 − 1 𝜇) 𝑀 + 𝛽) 𝑀 − ;
9
+ 𝛾∗) +

𝑤 1 + 𝛽) − 𝑒𝑧V) 

(6) 

The reader will notice that equation (6) is almost identical to equation (2), 
with the only difference that it subtracts at the end the term 𝑒𝑧V). This indicates 
that the actions 𝑎V)  that are expected to be punished will be penalized according 
to the calculated 𝑧V) multiplied by 𝑒. Two points are important to mention here: 
first, notice that in experiments that allow punishment the information 
revealed to subject 𝑖  also includes punishment received in last rounds and 
individual contributions of other players. In this case, 𝐼) 𝑐V  would include 

                                                        
18 Some authors (e.g. Anderson and Putterman (2006)) have referred to this effect as a 

demand for punishment that is decreasing on its price. We reserve from referring to it this way 
because a demand curve at the aggregate level does not imply that the law of demand holds at 
the individual level. Also, a demand interpretation is based on a rational choice model, different 
to the approach here. 
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more information besides 𝜇). However, the model assumes that agents ignore 
such information19. Second, the model assumes that the agents don’t have the 
computational capabilities to evaluate how the payoffs including punishment 
decisions would affect the social or inequality component of the utility function 
(equation (1)). One way to think about it is that players evaluate their payoffs 
as if there would be no punishment. Then, after that calculation is made, they 
take any expectation of punishment received as a personal cost, ignoring its 
social impact. This assumption implies that players care about the social 
outcomes when deciding about contributions, but not when evaluating 
received punishment 20 . Notice that from the payoff equation when 
punishment is included, 𝜋) = 𝑤 − 𝑐) + 𝑀 𝑐89

8:; − 𝑝)88�) − 𝑒 𝑝8)8�) , 𝑒𝑧V)  is 
equivalent to an expectation of 𝑒 𝑝8)8�)  which enters the utility only in the 
“selfish” component of equation (1). 

With a value function that includes their punishment expectations 
(equation (6)) and a way to calculate how much punishment each potential 
action would receive (equation (5)), given a reference point (equation (4)), PH 
is complete. It includes a way for agents to make counterfactual assumptions 
of received punishment which are integrated into the learning mechanism IEL, 
using the same computations (i.e. experimentation, replication and selection) 
for its reinforcement mechanism. 

Before showing results, the next subsection addresses some points worth 
discussing on why this particular modelling approach for extending PH was 
chosen. 

5.3 Discussion of modelling strategy 

A first point that is important to address is how an exogenous expectation 
of punishment fits AL modelling strategy. Initial intuitions regarding its 
extension pointed towards allowing agents to update the foregone utility of the 
evaluated contributions based on observed punishment. In IELORP, 𝑣V)  is 
evaluated, for each action 𝑎V) , based on observed past contributions 
(particularly on 𝜇V)). That way, by observing last round’s group contributions 
and assuming that other agents wouldn’t change their strategy, it is possible to 
calculate exactly how much profits 𝜋) each 𝑎)V would represent. Why not do the 
same with punishment? The reason is that in experiments without 
punishment, the payoffs are given directly by the experimenter and depend 
only on the known functional form of 𝜋) (taking group contribution as a given). 
With punishment, such functional form doesn’t allow a direct calculation of 
profits. Observing that action 𝑎;)  has been punished at time 𝑡, says nothing 
about whether action 𝑎X)  would be punished or not. The agent observes that 
one action is punished (or not punished), but extrapolating that information 
to other actions would require some additional belief on other players’ 
punishment behaviour. PH endows agents with such belief. In IELORP, the 

                                                        
19 See for example Gigerenzer et al. (2011). In Gigerenzer’s line of research, a fast and frugal 

heuristic is a rule of thumb that allows agents to make smart decisions by ignoring information. 
PH could be thought of in a similar line. 

20 This is consistent with players increasing their contribution levels when only symbolic 
punishment points are allowed (Masclet et al., 2003). This could be interpreted as players taking 
punishment received only as a personal cost, since symbolic punishment doesn’t affect social 
payoffs. 



23 
 

naïve expectation that other players play the same contributions as last round 
is enough to allow counterfactual evaluations. For the more complex 
environment with punishment, an additional (and perhaps still naïve) 
expectation of what would be punished is now implemented. 

Let us also address two potential criticisms about PH and the approach 
presented above.  

The first one is that intuitively, it seems unnatural to have an expectation of 
punishment that is independent from actual punishment. This means that 
agents still expect punishment even if none is being allocated at all (i.e. is not 
being modelled). To answer to this point, the experiments conducted by 
Fudenberg and Pathak (2010) are illuminating. Their design has subjects 
playing a traditional repeated public goods game with punishment, with the 
twist that it included treatments for not allowing players to observe 
punishment decisions by others until the end of all periods. That means that 
throughout the game players do not know if their punishment is affecting the 
behaviour of others or if they themselves are being punished. In the words of 
the authors: “Our experiment shows that subjects will engage in costly 
punishment even when it will not be observed until the end of the session, 
which supports the view that agents enjoy punishment. Moreover, players 
continue to cooperate when punishment is unobserved, perhaps because they 
(correctly) anticipate that shirkers will be punished: Fear of punishment can 
be as effective at promoting contributions as punishment itself” (pp. 78, italics 
added). This is consistent with PH: agents expect punishment without any 
requirement for observing it.21 

But suppose now that punishment is indeed modelled. Even if there’s still 
independence in the expectations and allocation of punishment, one could 
argue intuitively that players should learn from observing the punishment 
received. The response to this critique is intuitive as well. Such argument 
would definitely be true in more realistic time spans beyond what is allowed in 
the lab, where enough learning opportunities are given: with time, people will 
learn if their free-riding goes unpunished. However, the model assumes that 
in the time span of the examined public goods games, the player doesn’t have 
a way to reach this result without prior assumptions. For example, imagine a 
player that contributes 10 tokens to the public good when the average was 11 
in the last round. If the player is not punished this round, what inferences 
should be made? Would a contribution of 10 tokens never be punished? What 
would’ve happened if the contribution would’ve been 9 tokens? PH assumes 
that players answer these questions based on given beliefs, derived perhaps 
from the institutional framework of the experiment. At least in the time span 
of the experiments analysed, it is assumed that players stick to them. 

Finally, a simpler point to motivate the modelling strategy without 
including actual punishment (only expectations of it), is that the model is 
simpler that way (an Occam’s razor argument). If adding punishment 

                                                        
21 Of course the claim is not that PH is a general overarching model of behaviour (assuming 

one actually exists). It is instead intended to represent particular rules of thumb under a specific 
environment. In this case, the environment is a repeated public goods game where punishment 
is regarded as “legitimate” according to culturally accepted norms (see for example Ertan et al. 
(2009)), which includes a real threat of punishment. An interpretation of PH could be that 
players expect punishment due to the belief on the institutions implemented (i.e. the 
experimental norms in the lab) instead of the observed punishment. 
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decisions, or allowing agents to use more information in their calculations, or 
allow them to take into account the social costs of punishment, can help to 
explain better the stylized facts, then perhaps the additional complexity might 
be worth it. If not, then until other stylized facts are intended to be explained 
by the researcher, the simplicity argument is relevant. Whether PH can 
successfully account for the stylized facts or not is answered below in section 
6. For now, we examine how far we can go in explaining the data using this 
simple model. 

To summarise, IELORP assumes behaviour that is adaptive but also 
includes a simple forward looking component through naïve expectations: the 
assumption that other agents in the group will maintain the same 
contributions observed last period. PH’s core assumption is that agents, when 
punishment is included, add another (perhaps still naïve) expectation 
component related to the reference point. The counterfactual nature of IEL 
makes the inclusion of another naïve expectation strategy fit appropriately into 
AL’s modelling strategy. 

6 MODEL CALIBRATION AND MAIN RESULTS 

This section presents the main results from PH. An important objective of 
this paper is to test AL’s modelling approach by extending IELORP to include 
punishment. The test is not a “horse race” comparing different models, but 
rather an attempt to extend IELORP and check the robustness of its 
parameters along with the plausibility to include another sort of information 
into the model (i.e. heuristics). Would the extended model produce data that 
is quantitatively similar to that from lab experiments? Foreshadowing the 
results, they will show that the model can reproduce quite accurately the main 
punishment stylized facts described above, keeping the same parameter 
estimations used by AL (calibrating only the two new parameters included in 
PH). We believe this out-of-sample parameter stability is a strong robustness 
test for the modelling approach, and shows that it is flexible for researchers 
without needing to recalibrate in every data set. This section will first describe 
the calibration of the newly introduced PH’s parameters, followed by the main 
results. We close this chapter discussing stylized facts of section 4.2 that are 
not addressed with the main data. 

6.1 Parameters and calibration procedure 

PH’s free parameters are eight in total: IEL has as free parameters {𝐽, 𝜌, 𝜎}, 
the ORP distribution of types is determined by {𝑃, 𝐵, 𝐺}  and finally the 
expectation of punishment has {𝐿, 𝐾} . Under the belief that eight free 
parameters in a model can give too much degrees of freedom to the researcher, 
the robustness of IELORP parameters across experiments is a way to address 
this issue: its parameters have been tested by AL across domains and data sets 
without recalibration22. So here the approach followed is to test PH using 
exactly the same parameter numbers estimated by AL. The main goal of doing 

                                                        
22 As mentioned in Appendix 8.1. 
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this is that the amount of degrees of freedom is reduced to only two (PH’s free 
parameters).23 

Table 1 summarises the values used for the parameters of the model. The 
values of 𝐽, 𝜌, 𝜎, 𝑃, 𝐵 and 𝐺  are taken exactly from the estimations of AL. The 
values of PH were calculated as explained next. When using this set of 
parameter values, the model will be referred to as PH*. 

IEL ORP PH 

𝐽 = 100 𝑃 = 0.48 𝐿 = 3.3 

𝜌 = 0.033 𝐵 = 22 𝐾 = 14 

𝜎 = 𝑤/10 = 2 𝐺 = 8  

Table 1: Parameter values for PH. IEL and ORP values taken from Arifovic and 
Ledyard (2012). PH values estimated 

6.1.1 Estimation of PH parameters (L and K) 

In PH, the parameter 𝐿 is a measure of how sensitive is the expectation of 
tolerance (𝑇) with respect to changes in the effectiveness of punishment, 𝑒. 𝐾 
represents the amount of punishment players expect for each point their own 
contribution is lower than the group’s average. For example, in a group of N=4,  
𝐾 = 6 represents that an agent expects an average of 2 punishment points from 
each player if its own contribution is one point below his reference point 𝑅V) . 𝐾 
and 𝐿 are estimated by generating simulated experiments with PH, keeping the 
values for IEL and ORP parameters as given by Table 1. Unless specified 
differently, all simulations where conducted with such corresponding values. 

The estimation was conducted using the data of Nikiforakis and Normann 
(2008) (NN from now on)24. In their experiments, the main treatment is the 
variation of 𝑒. Each treatment, under a partners setting, takes values of 𝑒 =
{0,1,2,3,4}. Each one of the five treatments is named according to the value of 
𝑒 : for example, when 𝑒 = 0 , (i.e. no punishment), the treatment is called 
Treatment 0. NN experiments kept the values of N=4 and M=0.4 constant 
across all treatments, with 𝑤 = 20. Such values are the same used in all the 
simulations reported here unless specified differently. 

                                                        
23 The learning parameters have been tested in different environments, so they seem quite 

robust according to AL. For the distribution of types (ORP parameters), AL try both a single 
estimation as well as a recalibration when using different data sets (they claim that a lot of data 
is necessary for having one single distribution of types across games). However, their conclusion 
is that the recalibration keeps almost the same results, which is why we test the PH extension 
while keeping those same parameter values. 

24 As discussed in section 4.2, other dataset that captures the stylized fact that cooperation 
changes with effectiveness is that of Egas and Riedl (2008), which uses an stranger setup 
(contrary to NN, which used partners). We chose the experiments of NN mainly for two reasons: 
first, although AL tested IELORP under both partners and strangers setup, they mention that 
further research is still required to conclude about the model under strangers. Second, NN alters 
effectiveness levels while always keeping constant the cost of one punishing token (equal to one). 
On the contrary, Egas and Riedl (2008) change both cost as well as impact, which can introduce 
framing effects not intended to be captured by our adaptive agents. 
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Each run (or trial) simulated 𝑁 agents for ten periods by drawing 𝛽) and 𝛾) 
according to the distribution and parameter values explained in section 2.2. A 
grid search was conducted for the duplet (𝐾, 𝐿) selecting the values with better 
fit to NN data25. An initial wide search was conducted.  𝐾 was given values from 
0 to 15 in steps of one, and 𝐿 was given values in the interval from 1 to 5 in steps 
of 1. For each treatment 1, 2, 3 and 4 and each combination of (𝐾, 𝐿), 100 trials 
were conducted. Then a second narrow search was conducted with 𝐾 taking 
values from 12 to 15 in steps of one, and 𝐿 with values from 2 to 4 in steps of 
0.1. For the latter search, 100 trials were also run for each parameter 
combination. The best fit was chosen according to a standard approach as 
follows. 

As in section 3.2, the SE (Squared Error) was estimated, this time for each 
treatment and parameter combination of 𝐾 and 𝐿. Using similar notation, let 
𝑐��;� (𝑟)  denote the average contribution for all simulated agents with PH* 
across all ten periods on treatment 𝑟 for a particular combination of (𝐾, 𝐿). Let 
𝑐��� (𝑟) be the analogous for the average of the last three periods, and 𝑐99;� (𝑟)  
and 𝑐99� (𝑟) be the same but for NN experimental data (across the six group 
observations for each treatment in their experiment). The squared deviations 
between the simulated data and the experimental data were computed with the 
objective of finding the minimum of their sum. That way, MSE, the Minimum 
Squared Deviation was calculated as26 

𝑀𝑆𝐸 = 𝑀𝑖𝑛 [𝑐99;� 𝑟 − 𝑐��;� 𝑟 ]X + [𝑐99� 𝑟 − 𝑐��� 𝑟 ]X	
�

�:;

 
(7) 

where 𝑅 is the total number of treatments. For the present case of NN, 𝑅 =
4 (treatments 1,2,3 and 4)27. As before, the error is normalized, so that the 
reported value of the NMSE (normalized mean squared error) is 

𝑁𝑀𝑆𝐸 =
𝑀𝑆𝐸
2𝑅

 

The lowest value of NMSE was generated by the parameter values shown in 
Table 1. Interpretations of the values for L and K are as follows. A value of 
L=3.3, given equation (4), implies that with an effectiveness of 1, the tolerance 
level is about 6 tokens, so agents expect that only contributions more than 6 
tokens below last round’s average would be punished. For effectiveness equal 
to 2 and 3 the tolerance is, respectively, about 2 and 0.5, showing that the 
higher the effectiveness, agents expect to be punished more easily. On the 
other hand, K=14 represents that even contributions one point below the 
reference point 𝑅V)  are expected to be highly punished. 

                                                        
25 This procedure follows AL calibration for IELORP. 
26 This is almost the same as equation (3). However, besides being useful to remind the 

reader of the procedure, here it specifies that this time we focus on finding the minimum SE in 
order to select the parameter values. 

27 Since the results of the model under Treatment 0 (i.e. no punishment) are not affected by 
the parameters L and K, it was not included in the calibration. 
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6.2 Simulations and statistical tests 

6.2.1 Main results 
The fit of PH* to NN data can be grasped quickly with the value of 

NMSE=0.840. Since  𝑐��;� (𝑟) and the other averages for its calculation belong 
to the interval [0,w], they are the average contribution for an endowment of 
𝑤 = 20. That way, it corresponds to less than a 5% error in the fit across all the 
four treatments. The model generates data that is on average very close to the 
experimental dataset on the lab (an error of 4.2%). 

But to observe closer the dynamics and patterns of the data and have a 
better idea of how good the performance of the model is, Figure 7 shows both 
PH* simulations and NN data across the ten periods of the experiments for 
different levels of effectiveness. Each point of the simulated data is the average 
group contribution across 100 trials (analogous to 100 groups or 100 
observations for each treatment) for each period. NN data consists of six 
observations per period, each one a different group. Due to having fewer 
observations for NN data, the simulations present a “smoother” pattern than 
the experimental data. 

 

Figure 7: Experimental vs. simulated data for treatments e=0, e=1, e=2 and e=3. 
Simulations generated with PH* (blacked dashed lines). Experimental data source is 
Nikiforakis and Normann (2008) (NN, red lines). 



28 
 

Figure 7 shows how close each treatment is replicated by the model28. The 
simulations capture closely both the levels of contribution as well as its 
dynamics, and the figure can easily be related to the stylized facts in section 
4.2. The first fact, that punishment can sustain cooperation (or put differently, 
that it can prevent its decline), can be observed for effectiveness equal to two 
(e=2) and higher, since the trend for such treatments is not negative. The 
second fact, that such contributions can be sustained only for high enough 
levels of punishment, is also easily observed and constitutes the main 
empirical focus of NN. As in their experimental data, in PH average 
contributions decrease over time with e=0 and e=1, they are constant with e=2 
and increase with e=3. In the model, this effect comes from the higher 
tolerance levels associated with lower values of the effectiveness parameter. 
The third fact is that first period contributions are not statistically different 
across treatments (i.e. effectiveness levels). Figure 7 shows that average 
contributions (for both simulated and experimental data) increase 
monotonically in the effectiveness of punishment in every period, except for 
the first. Graphically this is observed by noticing that all first period data is 
clustered close to ten (half the endowment). In the model this is explained by 
the fact that in the first period agents don’t have experience of a previous 
average contribution, hence they can’t have any reference point. This leaves 
agents expecting the same punishment (or lack thereof) for each potential 
contribution until a reference point is formed in the second period. Analysis of 
the fourth and final stylized fact regarding welfare, is addressed below in 
section 6.3. 

6.2.2 Statistical tests 
To further test the fit of the model, two-sample Kolmogorov Smirnov (KS) 

tests were conducted. 1,000 runs of PH* were simulated for each treatment, 
calculating for each run the values of 𝑐��;� (𝑟)  and 𝑐��� (𝑟) . Two tests were 
conducted for each treatment, one for the average contribution of all periods 
and the other for the average of the last three. These results are reported in 
Figure 8. As can be seen almost none of the tests can reject the null hypothesis 
that the simulated and experimental data come from the same distributions. 
This is further evidence of the good fit of the model to NN data. 

 

 Combined Kolmogorov Smirnov test (two-sample). 
 Corrected p-value 

Data 
used 

Treatment 
0 

Treatment 
1 

Treatment 
2 

Treatment 
3 

Treatment 
4 

All 
periods 0.669 0.547 0.180 0.383 0.010*** 

Last 3 
periods 0.291 0.320 0.132 0.126 0.200 

Figure 8: Kolmogorov-Smirnov tests, using average contributions for all ten 
periods and for the last three. Reported is the corrected p-value of the two sample 
test, under the null hypothesis that both the simulated and experimental data come 
from the same distribution. *** for significance at 1% level. 

                                                        
28 Reference to treatment e=4 (not included in the figure) is done below. 
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Is worth noting that Treatment 4, for the average of all ten periods, is the 
only one for which the KS rejects the null hypothesis of the test at less than 5% 
(or 10%) significance level. What is happening in the data? Observing Figure 9 
can help to understand better what the model can replicate (and where it has 
a limitation). Comparing the simulated data for Treatments 3 and 4 shows that 
qualitative patterns from NN are still captured by the model. Besides the 
random initialization (i.e. first round behaviour), which is in line with the 
empirical facts, the figure shows that the model replicates higher contribution 
levels, in the final periods, for e=4 compared to e=3. This can be observed by 
comparing both simulated data of PH* in the figure. However, one can notice 
that for e=4 the experimental data is higher than the simulated in every period 
(except the last one). In PH*, the main variable determining the contribution 
levels is the reference point 𝑅V)  , which depends on the tolerance level (T). If the 
effectiveness level is high enough, the value of T will be lower than one, which 
happens with  𝑒 = 3. Higher effectiveness still lowers the value of T, but since 
the minimum contribution is one token29, with 𝑒 ≥ 4 the effect  of 𝑇 on which 
actions are penalized (in terms of foregone utility) becomes imperceptible. 
Hence, with 𝑒 = 4	, contribution levels slightly increase due to the effect of 𝑒 in 
the value function (i.e. by multiplying the amount 𝑧V) in equation (6)) but not 
because the reference point is changing. That is why the model has difficulty 
replicating the higher contribution levels in the data, reflected in the p-value 
of the KS test. 

 

Figure 9: Experimental vs. simulated data for Treatment e=3 (simulations) and 
e=4 (simulations and experimental data). Simulations are generated with PH* 
(dashed, black lines). Experimental data source is Nikiforakis and Normann (2008) 
(NN, red line). 

Given the above, another calibration for only treatments 1,2 and 3 
(excluding 4) was also conducted as a robustness check. The obtained average 
fit was virtually identical (NMSE=0.844, compared to 0.840), but more 

                                                        
29  This is to replicate the fact that most experiments allow only discrete changes in 

contribution (e.g. one token). However, technically in PH the experimentation component of the 
learning mechanism can introduce contributions that are not integers. 
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importantly, the parameter values remained exactly the same as those 
reported in Table 1 (K=14 and L=3.3). 

To summarise, the main results presented show that PH* generates data 
that has an average error of less than 5% compared to NN experimental data. 
Graphically one can observe the fit for the different levels of effectiveness: the 
model closely tracks both the dynamics and the convergence levels of average 
contributions observed in the data. Such patterns are confirmed for all 
treatments (except for e=4) by the corresponding statistical tests. This fit was 
obtained without recalibrating the six original parameters of IELORP. Such 
values were taken directly from previous calibrations in the literature, 
conducted for different datasets that did not include punishment. The 
parameters that were estimated here were the ones included in our extension 
to allow expectations of punishment. The close fit of the model as well as the 
out of sample robustness of the previously estimated parameters, are evidence 
of both the good performance of the model as well as of the flexibility of AL’s 
modelling approach. 

6.3 Further analysis of stylized facts 
As seen above (Figure 7), NN data captures our main stylized facts related 

to contribution levels, and they are closely replicated by the model: 
cooperation can be sustained by punishment, but only with high enough 
effectiveness levels. And the higher the effectiveness, the higher the 
contributions levels in all periods, except for the first one. However, there is 
one fact that has not been analyzed so far: that eventually, given enough time, 
punishment will increase group welfare (our fourth stylized fact). Is PH 
consistent with this fact? 

Even without comparing directly simulated net earnings with experimental 
data, one can realize how the model actually does account for this fact. The 
learning algorithm will eventually find those potential contributions not 
expected to be punished, since they represent higher payoffs. Such 
contributions will replicate so that the set of potential actions of each agent 
becomes homogenous. With time, agents will not choose actions expected to 
be punished, except for random mutations. So under any effectiveness level 
that sustains cooperation, given that agents will learn to avoid expected 
punishment, the social benefits of cooperation will unambiguously outweigh 
the costs of punishment. 

To illustrate better this decline in potential punishment, we ask the 
following question: “how many players would be punished every period, if 
every agent punishes others based on the same rule on which they expect to be 
punished?” That is, if agents punish any contributions below the last round’s 
group average minus the tolerance level T. We ran additional simulations 
including such a simple punishment behavior. To keep it simple, we included 
punishment just as a binary decision of either to punish or not. To notice that 
punishment will go to zero, is not necessary to worry about how much 
punishment is given30. 

                                                        
30 Earlier versions of the model included more complicated punishment rules, calibrating 

parameters of when and how much to punish based on the experimental data. However, the final 
model didn’t include those (keeping only fear of punishment) because they required more free 
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Figure 10 presents the average number of players that would receive (any) 
punishment under the above rule, across 100 simulations of PH* for each 
treatment. As can be observed, eventually in all treatments the number of 
punished agents converges virtually to zero. The small positive number of 
punished agents is due to some of them randomly trying new alternatives 
(mutation). As expected, the higher the effectiveness level, the longer it takes 
for agents to avoid punishment completely. Intuitively, this is due to agents 
being ‘more tolerant’ towards punishment (higher T) when effectiveness levels 
are lower. Technically, this is because a lower T makes the set of potential 
actions not expected to be punished smaller, hence making the learning 
algorithm to take longer to find them. So the model is consistent with the main 
conclusions of Gächter et al. (2008): once cooperation is established (through 
expectations of punishment, not punishment itself in the model), punishment 
is rarely needed, so with time its costs become negligible. 

 

Figure 10: Average number of agents punished for different effectiveness levels 
(across 100 simulations per treatment). Punishment is modeled: an agent punishes 

any other in the group that contributes below the group average minus the 
tolerance level T. 

7 CLOSING REMARKS 

Experimental research has spanned a wide range of literature on public 
goods games containing many facts on human behaviour that are at odds with 
traditional game theoretical approaches. Recent models with boundedly 
rational agents have emerged trying to close this gap, but few can claim to have 
done it thoroughly. The model developed by Arifovic and Ledyard (2012) in 
the context of voluntary contribution mechanisms, IELORP, has been claimed 
to predict many of the main stylized facts in this literature, with remarkable 
transferability to other experiments and out-of-sample robustness of its 
parameter values. This makes IELORP a contender in closing that gap. 

                                                        
parameters and complicated the model without actually adding much to the explanation of the 
stylized facts. 
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However, the model wasn’t designed to explain one of the most important 
facts on public good games: that punishment mechanisms can sustain 
cooperation and prevent the tragedy of the commons. We have presented here 
an extension to IELORP that relies on the expectations of punishment, not 
punishment itself, as a way to sustain cooperation in public good games. This 
extension can be seen as contributing to the literature in two significant ways: 
first, it is considered a test to IELORP’s modelling approach. This is not a 
traditional test in the sense of comparing it with different models, but as a 
mean to answer the questions, Is the model flexible for researchers to be 
extended, maintaining its core components of learning and other regarding 
preferences? Would the extension retain the same parameter calibrations used 
in the literature before? The answers to these questions are positive. Results 
presented here show that while keeping exactly the same parameter values 
(calibrating only the new ones included), the model can replicate four main 
stylized facts on the experimental punishment literature, producing data 
quantitatively similar to that of human subjects in the lab. 

Second, the model presents an interesting modelling approach on its own: 
it combines core behavioural principles, such as learning, with ad-hoc rules of 
thumb that are tailored specifically to the environment under study. This is 
presented under the belief that in the toolkit of the social scientist, all 
approaches can be used as long as they give useful insights. 

Is the model presented here useful? One way to think of whether a model is 
useful of not, is to ask whether it presents new questions that could be explored 
empirically31. In this regard, one clear topic addressed by the model is the 
learning time spans of subjects. Empirical evidence has shown that even 
unobserved punishment can deter free-riding. In the model, agents have a 
given expectation of punishment that can’t change, assuming a short time span 
similar to that of short lab experiments. But how long would it take subjects in 
the lab to learn? Once cooperation has been established, how long would it take 
players to adapt to new institutional frameworks, such as removing 
punishment (without being explicitly told about the change)? In PH, even after 
removing the punishment expectation, once cooperation is sustained, 
contributions remain high for several periods: the strategy set of agents is 
populated by the equilibrium strategy, and is not until experimentation takes 
place that new strategies can be tried. This can take several rounds depending 
on the model parameters. Would human players sustain cooperation for long, 
or would they quickly revert to free-riding? What factors (e.g. social norms) 
could affect this behaviour? These are considered empirical questions that the 
model hints to be explored as future research. 

Finally, there are theoretically relevant approaches that come to mind after 
working closely with PH. The model highlights both a learning mechanism as 
well as the use of (exogenously given) rules of thumb in order to explain the 
patterns in the data. An interesting question is how these rules of thumb come 
to be used, or which others can be learned adaptively. Making the process of 
trying and developing new rules of thumb explicit, is a modelling approach that 
would make such adaptation process endogenous. Work on such mechanisms 
of inductive learning points in that direction (e.g. Holland et al., 1986). Some 
implementations of similar approaches in economic environments have been 
done in the literature: see for example Kirman (2010) for examples in financial 
and fish markets, Miller (1988) and Zhang (2015) for prisoner’s dilemma, or 

                                                        
31 Here again, thanks to Simon Gächter for pointing this out. 
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Lee-Penagos (2016) for coordination games. Allowing agents to learn and 
adapt different rules of behaviour is suggested as a next step to understand 
better how agents adapt their behaviour in a complex environment as a public 
goods game with punishment in the lab. 

8 APPENDIX 

8.1 Additional features of IELORP in public good games 
Besides the main results in the main text, AL tested the model in different 

datasets and treatments from different experimenters in public goods games 
without punishment (not formally explored in our replication). Their overall 
conclusion is that IELORP fits the data very well. The following are other 
environments (besides IW) in which AL claim that the model has been 
successful at predicting out of sample32. 

1. Partners vs strangers: to explore differences between these two 
setups, AL tested IELORP in an strangers setting with the data of 
Andreoni (1995) (remember that IW’s used a partners setup). 
Andreoni also had different experimental parameter values (N=5 
and M=0.5). Without recalibrating any of the parameters, the model 
generated data that differed on average with the experimental one 
in 4.9%. As a caveat, AL present a discussion on IELORP’s 
explanation for the difference between partners and strangers 
setups. Is worth mentioning that although their model fitted the 
data accurately, more data is required to conclude strongly about the 
partners vs. strangers explanation given by the model. 

2. Rank based payoffs: Andreoni (1995) also presented treatments 
where subjects are not paid according to their profits, but on how 
their profits ranked compared to the rest of the group. By modifying 
the value function 𝑣)  accordingly and again keeping the same 
parameter values, IELORP differed on average on 4.1% with the 
experimental data. 

3. Experience vs inexperienced: the treatments mentioned 
already, which varied the values of N and M in the data of Isaac and 
Walker (1988), provided previous experience to the players (i.e. 
played some practice rounds). However, some groups didn’t receive 
such experience. Sessions with M=0.3 and N=4 were compared with 
IELORP’s generated data. Average difference was 6.6% without 
recalibration of any parameter. AL conclude that experience of the 
subjects is not something that needs to be controlled for in the 
model. 

4. Restart effect: Introduced by Andreoni (1988). The effect consists 
in that after subjects finish the initially announced periods of the 
experiment, they are informed that they will play additional ones. 
After the announcement, contributions to the public good raise and 

                                                        
32 We mention “other” environments because even if the whole IELORP model was firstly 

implemented for the Isaac and Walker (1988) data, the learning component IEL had been 
designed and tested before for different experiments, but not jointly with the ORP component. 
To that degree, the IEL behavioural model was tested out of sample with IELORP. 
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start declining again. IELORP captures this effects by randomly 
populating again the set of available strategies 𝐴V)  (agents “rethink” 
the problem). Croson (1996) replicated Andreoni’s experiments. AL 
used both data sets to test their explanation of the restart effect. 
Although more data is required to confirm it (due to small sample 
size) IELORP presents similarities with the data that don’t discard 
it as a potential explanation. 

Two additional points are worth mentioning regarding the stability of the 
parameters and their transferability to other domains. 

First, robustness of the above results to changes in the parameter values is 
tested by AL. Their conclusion is that the model doesn’t require re-calibration 
when transferring it to different experiments and conditions for public goods 
games without punishment. Also, when re-calibration was indeed conducted 
(for the ORP parameters) there was only a marginal benefit in the fit to the 
data, a strong point in favor of the model robustness to parameter changes. For 
AL’s main results several ranges for the parameters of both IEL and ORP were 
tested. Their conclusion is that all of the model parameters are robust and 
changes within “reasonable ranges” affect very little the model’s performance. 

Second, and perhaps more interesting, is that the learning model (IEL) was 
initially designed for other kind of repeated games. It was implemented first to 
study Groves-Ledyard mechanisms for public good allocations (Arifovic and 
Ledyard, 2011, 2004) as well as for call markets (Arifovic and Ledyard, 2007). 
Remarkably, AL claim that the IEL model not only has replicated data across 
such domains accurately, but that it has done so using exactly the same 
parameter values (the triplet (𝐽, 𝜌, 𝜎)). The fact that IEL kept those same values 
when extended with ORP is a strong test of the model transferability, and a 
motivation to use it and test it further with our implementation of punishment. 

Finally, is worth referring the reader to AL’s final discussion on the model’s 
shortcomings. An example of those is not including reputation concerns, which 
makes the model not well suited to strategic coordination games that require 
more sophistication. The latter, for example, would require agents that can 
learn strategies beyond one single period of history. 

8.2 Conditions for each equilibrium behavior 

In IELORP, in equilibrium each agent will have one of three equilibrium 
behaviors: free riding ( 𝑐) = 0),  fully contributing ( 𝑐) = 𝑤)  or conditional 
cooperation (𝑐) = 𝑐). On which strategy an agent converges will depend both 
on its ORP parameters (𝛽)	𝑎𝑛𝑑	𝛾)) and the experimental parameters (groups 
size (N) and public good marginal productivity (M)). Hence, altruism or 
conditional cooperation are behaviors that arise from other regarding 
preferences, but only when the environment provides the setting for it. The 
conditions, as presented by AL, are as follows: 

𝑐) = 	
0
𝑐
𝑤

	𝑖𝑓	

0 ≥ 	 𝑀 −
1
𝑁

𝛽) + 𝑀 − 1

𝛾)
𝑁 − 1
𝑁

≥ 𝑀 −
1
𝑁

𝛽) + 𝑀 − 1 ≥ 0

𝛾)
𝑁 − 1
𝑁

≤ 𝑀 −
1
𝑁

𝛽) + 𝑀 − 1
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