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LEARNING TO COORDINATE: CO-
EVOLUTION AND CORRELATED 

EQUILIBRIUM 

ABSTRACT 

In a coordination game such as the Battle of the Sexes, agents can condition 
their plays on external signals that can, in theory, lead to a Correlated 
Equilibrium that can improve the overall payoffs of the agents.  Here we 
explore whether boundedly rational, adaptive agents can learn to coordinate 
in such an environment.  We find that such agents are able to coordinate, often 
in complex ways, even without an external signal. Furthermore, when a signal 
is present, Correlated Equilibrium are rare.  Thus, even in a world of simple 
learning agents, coordination behavior can take on some surprising forms. 
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1 INTRODUCTION 

“If there is intelligent life on other planets, in a majority of them, 
they would have discovered correlated equilibrium before Nash 

equilibrium” 

-Roger Myerson, winner of the Nobel Memorial Prize in 
Economic Sciences1 

 Aumann (1974) introduced the concept of  Correlated Equilibrium (CE), 
which is a generalization of the traditional Nash Equilibrium (NE). Under a 
mixed strategy interpretation of Nash, players randomize their strategies 
independently of each other. In a Correlated Equilibrium such independence 
is not necessary: players have probability distributions based on an exogenous 
signal or randomization device whose distribution is common knowledge. 
Players map their decisions from the outcomes of such a signal to their 
potential actions, making their actions correlated with each other. Mutual best 
responses to the belief that the other players will condition their actions based 
on the signal is considered a correlated equilibrium. 

Notice that the signal (or exogenous randomization device) has no direct 
influence on the payoff matrix of the game, but it can nonetheless affect the 
equilibrium payoffs of the players. This is not possible under NE. The 
definition of CE allows solutions where the signal can both affect or not the 
behaviour of agents. This makes it a more general concept that also includes 
NE, where the signals can play no role whatsoever. Perhaps this is why 
Myerson believes that aliens would have probably learned first to play the CE2. 
However, the presence of the external signal and its effect on equilibrium 
convergence is puzzling. It requires players to be endowed with incredible 
computational powers and to know the other players’ payoffs. Players also have 
to know the signal’s distribution and a specific mapping from signal to actions 
in order to interpret it as a recommendation of what to play. From a normative 
point of view, such assumptions might be adequate. But from a positive or 
descriptive one, it is not clear how (or if) players could actually learn this 
information under less straining rationality assumptions. 

This paper’s objective is to explore, under a canonical coordination game 
(Battle of the Sexes), the effects of an exogenous signal on equilibrium 
selection when perfect rationality assumptions are relaxed. It focuses on the 
behaviour of learning, adaptive, boundedly-rational agents, with an emphasis 
on understanding how they use the signal in order to coordinate. It takes 
Myerson’s idea about the discovery of CE to be easier than NE as a hypothesis 
to be tested. Can boundedly-rational agents learn to use exogenous signals to 
coordinate? If so, how could this happen? Will such agents learn to condition 

                                                        
1 Leyton-Brown and Shoham (2008) (p. 24) or Solan and Vohra (2002) (p. 92). Interestingly, 

this famous quote is often attributed to Myerson, but we couldn’t find the direct source. 
2In his quote, the “discovery” of the correlated equilibrium by the extra-terrestrial “players” 

is interpreted as them playing it in real life (i.e. to condition their actions on the exogenous 
signal), versus having their game theorists understand and describe the concept. 
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their behaviour on the signal as implied under a CE solution, or do they 
converge to a different equilibrium? These are the key questions explored here. 

To tackle this objective, we develop a computational model with artificial 
adaptive agents playing a repeated Battle of the Sexes game. Analyses are made 
via Monte Carlo simulations. The model represents each agent as a strategy 
that observes inputs from the environment (such as a rival’s action or an 
exogenous signal) and based on those observations, the agent outputs as an 
action in the game. We use ‘finite automata’, which is a mathematical model of 
discrete inputs and outputs that can represent boundedly rational behaviour. 
Such agents are allowed to adapt and change their behaviour via a learning 
algorithm (a ‘Genetic Algorithm’). The latter simulates social learning at the 
population level by implementing selection and mutation processes that tend 
to reinforce better performing strategies and to eliminate poorer performing 
ones. This constitutes an evolutionary approach that explores what types of 
strategies emerge in the long-run.  

In order to explore the impact of the exogenous signal in coordinating 
behaviour, computational experiments are conducted for two treatments: a 
baseline No-Signal model of the traditional game (without signal), along with 
a main Signal treatment. In the latter, agents are allowed to observe and 
potentially use an exogenous randomization device to coordinate. 

This methodology presents several advantages for answering the above 
questions. First, given the interest of modelling bounded rationality, finite 
automata allow the representation of agents with limited memory and 
processing power. While they can observe the behaviour of the other agents 
they interact with as well as the exogenous signal, they don’t have access to 
others’ payoffs or the distribution of the signal. Hence they can only react to 
the observed inputs from the environment without assuming a priori complete 
information or infinite computational capabilities. Second, the learning 
algorithm implements a computational evolutionary process that allows 
strategies to evolve endogenously; the adaptive behaviour of the agent is given 
by the evolutionary dynamics of the model. This allows a wide range of 
strategies to potentially arise, with emerging behaviour that can potentially be 
difficult to predict beforehand. Such an algorithm can find strategies that were 
not directly specified by the researcher. 

This paper contributes to the literature in its exploration of exogenous 
signals and correlated equilibrium by using adaptive agents. It studies the 
long-run effects of an exogenous randomization device on coordinating 
behaviour. Previous literature has also investigated coordination games by 
using adaptive agents, but this is the first one to allow the implementation of 
an exogenous signal and the exploration of its implications on equilibrium 
selection and evolution of individual strategies. 

The model has the structure of an evolutionary tournament including two 
populations. In each time step, all agents in one population play a repeated 
Battle of the Sexes game against every other agent in the rival population. 
Overall scores are kept, and based on those, agents with better payoffs have a 
higher probability to replicate themselves and replace other agents in their 
own population. They undergo random mutations at the end of each time step, 
and the process is repeated for several thousands times simulating long term 
evolutionary processes. 

Our results show that under both implemented treatments (with and 
without the exogenous signal) the system switches constantly between three 
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different types of equilibrium or attractors, and contrary to what was expected 
a priori, it never stabilises on one of them. This type of behaviour is sometimes 
known as ‘punctuated equilibria’, where the system remains in equilibrium for 
long periods of time but then presents sudden transitions into a different 
equilibrium. These three equilibria are i) constantly coordinating in one of the 
pure Nash solutions of the game, ii) symmetric alternation between the two 
pure Nash solutions (i.e. taking turns between the two coordination points of 
the game) and iii) biased alternation, where agents also take turns between the 
two coordination points, but one of them is played more often than the other. 
To the best of our knowledge, this is the first time that this latter behaviour has 
been documented in coordination experiments, whether computational or in 
the lab. Unexpectedly, we found no treatment differences in terms of payoffs 
and efficiency: both with and without the signal agents learn to coordinate 
quite well. 

A key finding is that agents can indeed learn to condition their actions by 
consistently following the exogenous signal. However, even if such behaviour 
can be learned, the probability of it happening is very low (around 5%). While 
agents sometimes condition their actions based on the signal, they can also 
learn to alternate and coordinate their behaviour by completely ignoring it. 

Hence, consistent with recent experimental literature (discussed below), 
our results cast doubt about CE being an accurate description of common 
coordination behaviour. If our adaptive computational agents can be somehow 
analogous to intelligent life from another planet, they will not learn CE before 
NE. 

Finally, our methodology allowed us to identify interesting behaviour that 
we couldn’t predict a priori. Not only do some strategies learn to use the signal 
while others can coordinate by completely ignoring it, but the same strategy 
can ignore the signal, use it partially, or interpret it in different ways depending 
on the history of the game. 

2 BATTLE OF THE SEXES (BOS) GAME 

Figure 1 shows the payoff matrix for the traditional Battle of the Sexes (BOS) 
game. This game has two pure Nash strategy equilibria, with both players 
playing A (action profile (A,A)) or both playing B (action profile (B,B)), 
corresponding to the upper-left and down-right corners of the matrix 
respectively. In either case, one player’s expected payoff is 2 and the other’s is 
3. Include now the simplest possible randomization device: both players 
observe the same outcome of a fair coin toss before deciding their actions, with 
a 50% probability of observing H (Heads) and 50% T (Tails).  

  Column 
Player 

  A B 

Row 
Player 

A 2,3 0,0 

B 0,0 3,2 

Figure 1: Payoff Matrix in Battle of the Sexes Game 
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Traditionally, H or T is interpreted as an exogenous signal or a non-binding 
recommendation for players on what actions to choose. For example, with 
probability 0.5 both players are ‘recommended’ to play A (i.e. the 
recommended action pair is (A,A)) when, say, Heads shows up and (B,B) 
otherwise (when Tails). This is a correlated strategy, which is given by this 
joint distribution over the set of pure strategy pairs. Notice that in this case, 
the expected payoff for both players is 2.5 (since each outcome AA or BB would 
be played with 50% probability), which differs from the expected payoffs of any 
of the two NE3.  

This correlated strategy is also a CE because no player wishes to depart from 
following the recommendation. For example, when Heads shows up with 
recommendation (A,A) and given that player Column will follow it, player Row 
would decrease its payoffs by not playing what is recommended: if Row decides 
to play B, his payoffs would be zero instead of two. The same is true for player 
Column, whose payoffs would go from three to zero in the analogous situation. 

The CE concept requires each player to assume that the rival will follow the 
recommendation given. It also requires common knowledge of the distribution 
of signal as well as every other agents’ payoff. Here we will relax these 
assumptions. As explained in section 4.2, in our model the signal will be 
observed by the agents without any common knowledge assumption, and it is 
the dynamics of the model that will determine if they learn to use it consistently 
to coordinate or not. Also, there will not be any given function mapping the 
signal to particular actions (i.e. no recommendations): whether agents learn to 
give particular meanings to the signal or not will be determined endogenously 
by the evolutionary process of the model. 

The payoffs of the game can be formalized graphically as in Figure 2. The 
line 𝐴𝐵𝐶 is the boundary of the convex hull, so all payoffs combinations on the 
line or inside of the triangle are feasible with appropriate randomization. The 
maximum attainable payoff for a single player must occur at one of the vertices 
of the convex hull (i.e. when a pair of pure strategies is played). In this case 
those points are A = (2,3) and B = (3,2). In this BOS game, A and B are also the 
two pure Nash equilibria. The line  𝐴𝐵  forms the set of Pareto optimal 
solutions. Point D = (2.5, 2.5) is the CE discussed earlier. An interesting 
characteristic of this point is that it is not only Pareto efficient, but is also an 
egalitarian equilibrium: a priori, before the coin toss, both players have the 
same expected payoffs4. 

To avoid confusion in the analysis that follows, we need to carefully specify 
what we mean by a CE in our model, or by ‘behavior consistent with CE’. 
Technically, many solution concepts, including pure Nash, are also a CE. 

                                                        
3 Although this paper will not allow the possibility of mixed strategies, is worth noting that 

these expected payoffs cannot be obtained by players randomizing on their own (i.e. without the 
signal). The coin toss in this case allows payoffs that cannot be obtained under a mixed Nash 
equilibrium concept. 

4 Aumann (1987) suggests the fair coin toss as one of the most simple randomization devices, 
making it a good candidate for studying the emergence of CE. Another equilibrium studied in 
the literature is for the Chicken game (Duffy and Feltovich, 2010), with the characteristic that 
the CE is outside of the convex hull of NE (i.e. the randomization allows higher Pareto efficient 
payoffs). However, as those authors argue, such CE can be more difficult to learn (at least for 
humans) because it requires three recommendation profiles, instead of the two implemented 
here. Cason and Sharma (2007) find that humans’ difficulty in learning a CE comes from the 
uncertainty about their rival’s actions, not a lack of incentives (i.e. higher payoffs). One objective 
here is to test a CE that could arguably be the easiest to learn. 
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However, the interest here is to focus on CE that requires agents conditioning 
their actions on the signal. So for a CE, we will require agents to condition on 
the fair coin toss without ignoring it. At the aggregate level this implies payoffs 
close to the egalitarian equilibrium; at the individual level, as in the correlated 
strategy above, using the signal as if a recommendation profile is being 
followed. 

Other behavior, even if under traditional theoretical assumptions (which 
are relaxed in our model) could also be labeled as CE, will be referred to 
independently in order to maintain focus on this particular form of signal use. 

 
 

 

 

Figure 2: Set of attainable payoffs of BOS game under a correlated strategy pair. 
𝐴𝐵𝐶 is the boundary of the convex hull, hence any payoffs on or inside of this hull are 
attainable with the appropriate randomization. Point D represents the correlated 
equilibrium given by a fair coin toss as the randomization device. 

For a more formal presentation of the one shot game and some equilibrium 
concepts, see Appendix 7.1. 

3 RELATED LITERATURE 

3.1 On Correlated Equilibrium and learning 
Aumann (1974) introduced the concept of CE into the literature and refined 

it in Aumann (1987), showing that Bayesian rationality implies convergence to 
a CE. However, this required players to have the same prior beliefs regarding 
the distribution of the exogenous signal. Some following papers focused on 
giving conditions or learning rules for achieving convergence. In Foster and 
Vohra (1997), such convergence is based on players making “calibrated 
forecasts”. This implies evaluating the complete past actions of all rivals, and 
using this to make perfect probabilistic forecasts that match beliefs with 
randomized strategies. Fudenberg and Levine (1999) presented an alternative 
mechanism requiring similar memory capabilities. Hart and Mas-Colell 
(2000) introduced convergence via “regret”, with players making better 
choices instead of using best responses (i.e. they switch to actions that would 
have given higher payoffs than the ones used in the past). This latter approach 
relaxes some of the rationality assumptions in previous work, but still requires 
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players to have a complete memory of all past actions and calculate the 
potential payoffs of all of the strategies that could have been played under all 
potential scenarios. These approaches require very sophisticated players, with 
unbounded memory and computational capabilities, playing indefinitely. In 
contrast, the approach here is to model agents with limited memory and no 
prior beliefs, and test whether evolutionary learning processes at the 
population level can lead them to learn the CE. 

Recent experiments in the lab have focused on CE. These studies have been 
conducted by Cason and Sharma (2007), Duffy and Feltovich (2010), Bone et 
al. (2013), Duffy et al. (2014) and Anbarci et al. (2015). A key result arising in 
all of them is that while some subjects do follow the recommendations given, 
they do so inconsistently, casting some doubt on the descriptive power of the 
CE concept5. However, as conjectured by Cason and Sharma (2007) in their 
conclusions, perhaps in longer time spans subjects might learn to consistently 
follow the recommendations. The evolutionary approach with adaptive agents 
presented here addresses this issue by conducting long-run analyses that 
would be impossible to conduct in the lab. Also, it is worth noting that all the 
experiments above give subjects common knowledge about the distribution of 
the recommendations as well as what is being recommended to the rival. While 
such information is useful in helping subjects understand the experiment, how 
is it that agents come to know such information in a different environment? 

3.2 On methodology 
This paper uses artificial adaptive agents to study the learning and evolution 

of behavior consistent with CE. Modelling artificial adaptive agents serves as a 
great compliment to theoretical analysis in economic theory (Holland and 
Miller, 1991), and it has been used in a wide range of social science topics like 
market institutions (Gode and Sunder, 1993), pricing (Arifovic, 1994), auctions 
(Andreoni and Miller, 1995), the evolution of norms (Axelrod, 1986), elections 
(Kollman et al. (1992)), political institutions (Kollman et al., 1997), loyalty in 
fish markets (Kirman and Vriend, 2000) and the emergence of communication 
(Miller et al., 2002), among many others. 

Agents presented in this work are boundedly rational with limited 
information and memory. They are embedded with a mechanism that 
promotes constant adaptation to their changing environment. Since all agents 
adapt to each other at the same time, they constitute a co-evolving complex 
adaptive system. Such adaptive behavior is modelled by means of a genetic 
algorithm (Holland, 1992), which captures the idea of social learning: 
strategies that are successful are more likely to be copied by other agents and 
hence spread in the population, but strategies that are unsuccessful are more 
likely to be distorted in the learning process. The algorithm strikes a balance 
between exploration and exploitation (i.e. looking for new solutions versus 

                                                        
5 Our evolutionary methodology makes it impossible to make quantitative comparisons with 

the results obtained in the short time span possible in the lab. However, in section 5, we observe 
qualitative patterns that also emerge in these experiments, giving some external validity to the 
model presented. The experimental literature is also relevant because results in the lab can 
inspire new scenarios to explore computationally and vice versa. It is our belief that 
complementarities and mutual feedbacks exists in social sciences between studies conducted 
with humans and machines (Duffy (2006) or Poteete et al. (2010) present overviews of this 
methodological complementarity. Andreoni and Miller (1995) is an example of lab experiments 
working in tandem with computational simulations). 
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exploiting the ones that have already been found), which constitutes a classic 
conundrum in problem-solving (Holland, 1992; Holland et al., 1986). 

Each agent is defined as a finite state automaton. Rubinstein (1986) was the 
first to introduce automata into game theory as representations of strategies. 
Miller (1988) introduced the idea of using evolutionary algorithms to model 
adaptive learning in games (Miller (1996), Ioannou (2013) and Zhang (2015)). 
Some recent studies have explored the use of automata in coordination games 
(such as Browning and Colman, 2004; Hanaki, 2006; Ioannou and Romero, 
2014a; Ioannou and Romero, 2014b) but no one has studied exogenous signals 
or CE. 

Here we explore with adaptive agents the long run emergence of CE 
behavior. Arifovic et al. (2015) used individual learning to see if adaptive 
agents can replicate quantitatively the short-term behavior of subjects in the 
laboratory, including exogenous recommendations. In contrast the approach 
here uses social learning at the population level to focus on the long-term 
evolution of signal conditioning. 

4 THE COMPUTATIONAL MODEL 

4.1 Overall structure 
The game used in this paper is the repeated Battle of the Sexes (BOS) as 

presented in section 2. Each agent represents a strategy, and agents face each 
other in a computational tournament.  

More specifically, agents are represented as finite automata (their 
formalization explained in detail in section 4.2). The model has two 
populations, COL and ROW, each one consisting of N agents. Each time step 
of the model is called a generation, denoted as t. At each t, each agent in 
population COL plays R rounds of the BOS game against each other agent in 
population ROW. The average score (payoffs) of each agent is recorded across 
all 𝑅×𝑁  rounds of play in one generation. Agents select their strategies by 
imitating the strategies used by other successful agents, with the average score 
being the (fitness) measure used of success. Hence, strategies with lower scores 
will tend to disappear from the population while those with higher scores will 
tend to spread. This is due to the learning algorithm (detailed in section 4.3) 
giving successful strategies higher probability of being copied by other agents. 
This learning happens at the end of each generation, with agents copying only 
strategies that are in their own population, thus the ROW and COL  
populations evolve independently of each other.6 

The computational experiments conducted here consist of two main 
treatments: No-Signal and Signal. Under No-Signal, agents play without any 
randomization device or exogenous signal. In the main treatment, Signal, 
agents play under the same game structure, but are allowed to observe an 
exogenous signal (given by the fair coin toss) at the beginning of each round. 

                                                        
6 The choice of the structure of the game, mainly repeated interactions (instead of one-shot) 

and having two populations instead of one, makes learning potentially easier and should give 
the emergence of the CE the best possible chance. Experiments conducted by Duffy and 
Feltovich (2010) show that humans in the lab learn more frequently to follow the exogenous 
signals in coordination games when they play repeatedly versus playing in one-shot interactions. 
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4.2 Artificial agents as finite automata 
Each agent is defined as a class of finite automata using a Moore machine 

(Moore (1956)), which is a mathematical model with discrete inputs and 
outputs 7 . The system can be in any of a finite number of internal 
configurations, called “states”. States summarize the past set of inputs and 
determine the automaton’s behavior for subsequent outputs. 

A finite automaton can be described as a four-tuple 𝑄, 𝑞*, 𝑓, 𝜏 , where 

• Q is a finite set of internal states, 

• 𝑞*	𝜖	𝑄 is specified to be the initial state, 

• 𝑓:		𝑄 → 𝐴1	𝜖	{𝐴, 𝐵}  is an output function that maps each state into an 
action of the machine, and 

• 𝜏: 𝑄	×	𝑊 → 𝑄 is a transition function assigning a state to every two-
tuple of state and observed input. 

Here, 𝑊 = 𝐴61	𝜖	{𝐴, 𝐵}, where 𝐴61  is the action implemented by the other 
agent. In this case the only input used by an agent to decide its next action is 
the action implemented by its rival. In the BOS such input can be A or B, giving 
agents two potential inputs to respond to. This is how the agents are 
implemented for the No-Signal treatment. 

In the Signal treatment, each automaton is allowed to respond to four 
different inputs. Let 𝑆	𝜖	{𝐻, 𝑇}  be an exogenous random signal with a 
probability distribution :

;
, :
;

 (e.g., a fair coin toss showing either Heads (H) or 
Tails (T)), and having the same value H or T for any pair of interacting agents 
at a given round (i.e. both agents observe the same signal). Thus, in this 
treatment 𝑊 = 𝐴61	×	𝑆  with 𝑊	𝜖	{ 𝐴, 𝐻 , 𝐴, 𝑇 , 𝐵, 𝐻 , (𝐵, 𝑇)}  giving all four 
possible combinations of the other agent’s action and observed signal. 

An intuitive way to describe an automaton is by using a transition diagram. 
Figure 3 shows two examples of such diagrams. The nodes in the transition 
diagrams represent the internal states. The arrows originating from each node 
represent the transition function with the labels showing the input (rival’s 
action and signal) required for a transition. The arrows point towards the state 
that the automaton transitions to after observing the corresponding input. The 
initial state of the machine is given by the “start” arrow. 

The automaton in Figure 3 (a) for the No-Signal treatment shows a strategy 
that starts by playing A in the first round. Afterwards, it does the same as the 
rival did in the last round: whenever it observes A it transitions to the state 
playing A, and whenever it observes B it transitions to the state playing B. This 
is the famous Tit-for-Tat strategy (Axelrod (1980)). In the Signal treatment 
(Figure 3 (b)), transitions are coded using two letters, the first representing the 
rival’s last action (A or B) and the second representing the observed signal (H 
or T). So a transition showing, say, AT, means that such a transition occurs 
when the agent observed the rival playing A in the last round and the signal is 
T for the current one. There are four possible transitions for each node in the 
diagram. The strategy here starts playing A and when it observes a signal of T, 
regardless of the rival’s past action or the machine’s current internal state, it 

                                                        
7  There are other types of finite automata such as Mealy machines. Choosing Moore 

machines as the type of automata implemented is due to it being the standard in previous game 
theoretical literature. We see no evident reason to deviate from this convention. 
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will play A. This is easily noticed by observing that all the arrows that have a 
signal of T go into the initial state. Similarly, whenever it observes H, 
regardless of the rival’s action, it plays B. This strategy gives a consistent 
interpretation of the signal: play A when T, B when H. This is one possible 
strategy that could be consistent with CE behaviour. 

 

Figure 3: Examples of automata for both No-Signal and Signal treatments. 

In order to use the learning routines (explained in section 4.3) the automata 
need to be coded as finite length strings. Figure 4 shows the coding for both 
treatments. The No-Signal automata is coded as a 25-length string, where the 
first element provides the initial state of the machine (Figure 4(a)). Then, there 
are eight three-element packets, each representing one of the eight internal 
states of the automaton8. In these packets, the first element gives the action 
the agent takes when it is in that particular internal state (i.e. to play either A 
or B). The other elements are the transitions to make when observing the 
different inputs (i.e. the rival’s action): the second element is the transition 
when the rival is observed to play A, and the third element is the transition 
when observed to play B (Figure 4(b)). The coding for the Signal treatment is 
very similar, with the difference that it requires a longer string (41 elements 
instead of 25). This is because including the signal allows four possible inputs, 
requiring four transition per internal state (instead of two). Hence for each 
state, as in Figure 4(d), the first element is the action to be taken, and the 
following elements are the transitions for all four possible combinations of the 
rivals’ action in the last round and the observed signal in the current. 

                                                        
8 The number of states used in the machines is in line with previous literature. For example, 

Ioannou (2013) also uses eight internal states arguing that it allows for a variety of automata 
that can incorporate a diverse array of characteristics. It is worth noting that more complex 
machines (more states) do not necessarily mean better strategies. As pointed by Rubinstein 
(1986), more complex plans of actions are more likely to break down, are more difficult to learn, 
and can require more time to be executed. Gigerenzer et al. (2011) has several examples of simple 
rules of thumb that perform better than complex strategies. 
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Figure 4: Coding of automata for both No-Signal and Signal treatments. 

There are some important technical points inherent to the use of automata. 
Notice that the machines don’t have any sort of “expectations” of what the rival 
will do and that their behavior is purely backwards looking, which is one way 
to represent simple, boundedly-rational strategies in evolutionary processes. 
Also, although no separate computational memory is implemented, the 
internal state of the machine contains the relevant history of the game. A 
strategy that is based on the past n moves of its opponent will require a 
maximum of 2? internal states: for example, the Tit-for-Tat strategy requires 
the automata to remember only the last action of the opponent, hence it 
requires two states. Even if the automata here is modelled with eight internal 
states, only a subset of these states may be accessible to a machine given the 
starting state and transitions. The number of potential configurations of 
machines is rather large. In the No-Signal treatment, there are 8:A×
2B different arrangements of the strings. However, since many of the 
configurations lead to the same behavior, the number of unique strategies is 
lower. For example, two-state machines have 2C = 128 possible arrangements 
(genotypes) but only 26 unique strategies (phenotypes)9. Finally and related to 

                                                        
9  For 3-state machines (with also two inputs and two outputs) the number of unique 

strategies is 5,832. Notice the exponential growth in the number of possible phenotypes. This 
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the latter, automaton theory, as in Harrison (1965), proves that isomorphic 
automata that represent the same behavior can be mapped to a minimal state 
machine in the canonical form. This means that many different machines can 
lead to the same behavior, all of them being able to be represented by a single 
‘minimal’ automaton. These are referred to as “behaviorally equivalent” or 
“minimized” machines. 

4.3 Evolution of strategies 

4.3.1 Motivation for the learning mechanism 
The learning algorithm used in this paper is derived from a class of 

optimization routines from computer science called genetic algorithms (GA), 
introduced by Holland (1975). GAs are computer programs that mimic the 
processes of biological evolution in order to solve problems and to model 
evolutionary systems. We use GAs for two main reasons: its technical 
advantages and its analogy as a learning mechanism reflecting bounded 
rationality. 

The algorithm has several advantages over other optimization methods. It 
is designed to work well in difficult domains, meaning domains that involve 
discontinuities, nonlinearities (many local optima), noise and high 
dimensionality (these issues arise in the strategy space in the tournament 
analyzed here). Contrary to calculus-based methods that require derivatives in 
order to perform an effective search for better structures, GAs require payoffs 
associated with the individual strings, making it ideal for game theoretical 
environments with their well-defined payoffs structure. All of the above makes 
GAs a more canonical optimization method than many other search schemes10. 

Evolutionary processes such as a GA explicitly model a dynamic process 
describing how agents adjust their choices over time by learning from 
experience; this makes the GA a useful tool for observing the learning (or lack 
thereof) of coordinating behavior with an exogenous signal. In the same line 
as Kandori et al. (1993), this evolutionary approach gives a concretely defined, 
step by step process of how an equilibrium can emerge based on trial and error 
mechanics. Even if biological interpretations are usually given to such 
processes, the algorithm’s processes can be reinterpreted as bounded 
rationality, reflecting the limited ability on the player’s part to receive, decode 
and act upon information they get in the course of the game. As in Kandori et 
al. (1993) three main hypotheses are relevant and related to this learning 
interpretation, reflecting its adequacy in order to model adaptive, boundedly 
rational agents. First, the inertia hypothesis holds since not all players react 
instantaneously to their environment. This is because given the imperfect 
observations agents have (for example, regarding payoffs and strategic choices 
of other agents), changing one’s strategy can be costly. Second, the myopia 
hypothesis holds since there is substantial inertia in the system with only a 
small fraction of agents changing their strategies simultaneously, resulting in 
agents making only moderate changes. The myopia hypothesis also captures a 
key factor in social learning: imitation or emulation. Agents learn what are 

                                                        
makes calculations on the exact number of possible strategies for machines with more internal 
states increasingly costly in computational terms. 

10 For further discussions on genetic algorithms, see Mitchell (1998). 



13 
 

good strategies in a complex environment (where they cannot calculate best 
responses) by observing what works well for others. In such an environment 
strategies that remain effective in the present are likely to remain effective in 
the near future. Also, myopic agents do not take into account the long-run 
implications of their actions or strategies. Finally, the mutation hypothesis 
holds given that with some small probability agents will play an arbitrary 
strategy, capturing the exploration aspect of most learning processes. 

4.3.2 Details of the Genetic Algorithm implementation 
The mechanics of the implemented GA (for both No-Signal and Signal 

treatment) are as follows: two populations (ROW and COL) are randomly 
initialized with 40 agents each at t=1 (first generation).  This initialization 
consists of generating for each agent a random finite-length string automaton 
as in Figure 4 (with uniform probability across the alternatives)11. Then each 
automaton is tested against the environment: this consists of each agent in 
population ROW playing 50 rounds of the repeated BOS game against each of 
the 40 agents in COL population. Scores are stored for all automata, with the 
score for each agent being the average payoffs earned across all games.  

Two new offspring populations, each with 40 agents, are created based on 
the current parent populations (i.e. the populations existing at the beginning 
of the generation). Each population evolves independently, so the offspring of 
the COL population will be based only on the parent COL population (the same 
applies for ROW). Offspring populations are created based on two operators: 
selection and mutation. For selection, the top 20 scorers are chosen and given 
a copy in the new population. The other 20 needed to keep populations 
constant are chosen via pairwise tournaments by randomly picking two agents 
(with replacement), and keeping the one with the highest score. Such 
tournaments are repeated 20 times in order to keep population size constant. 

Before moving on to the next generation, the 20 strategies picked via the 
pairwise tournament go through mutation process. Each automaton has a 0.5 
probability of being randomly altered. If a strategy undergoes mutation, one of 
the internal states is randomly selected and with a 0.5 probability the action of 
that state is changed (thus, if the state had an action of A, it is changed to B 
and vice versa); otherwise, a randomly chosen transition (from the chosen 
state) is changed with uniform distribution for the alternatives12. 

                                                        
11  Randomly generated populations will favour minimized (behaviourally equivalent) 

machines that represent strategies with only one internal state (i.e. always play A or always play 
B). When the maximum internal states allowed is equal to two, the probability of generating a 
machine that always plays A is 31% (analogous for always playing B). When three internal states 
are allowed, this probability is 20%. Making such calculations for more internal states becomes 
increasingly costly; however, the dynamics of the GA will quickly start favouring strategies that 
perform better. 

12 There are other ways to implement selection and mutation. GAs are a broad class of 
algorithms with many variations, but fortunately they are fairly robust to different parametric 
and algorithmic choices. The mutation parameters and mechanism used are the same as in 
Miller et al. (2002) and Miller and Moser (2004). In general, within reasonable changes, results 
will be consistent. However, if taken to an extreme, too small mutation rates eliminate 
exploration and will lead the system to converge based only on the selection process. If mutation 
is too high, the system will always be exploring, unable to settle down and exploit information. 
The chosen mechanism tends to be in a reasonable “sweet spot” to balance this out. 
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Finally, once both ROW and COL offspring populations have been created, 
scores are reset to zero and a new generation of the algorithm is begun (i.e. 
agents are again tested against the environment, scores are assigned, and 
populations undergo selection and mutation). An overview of the whole 
process is given in Figure 5. 

 

Figure 5: Structure of the evolutionary process (works the same for both No-
Signal and Signal treatment) 

5 RESULTS 

Given the model we can analyze its behavior. The following five questions 
address the overarching research goals presented in the introduction, serving 
as a roadmap for the evidence ahead. They will be answered in the order 
presented. 

1) Will the system converge to an equilibrium? 
A priori, is not clear if an equilibrium will emerge. We hypothesize that 
without the signal agents will converge into one of the pure Nash 
equilibria. With it, our hypothesis is that they will converge in Turn-
Taking (alternation), taking turns symmetrically in both coordination 
points of the game. For both treatments the hypothesis is that the 
system will stabilize in the corresponding equilibrium and remain there. 

1) Initialise	two	random	populations	(ROW	and	COL)	with	40	agents	
each.	Set	t=1	(first	generation)	

2) Test	each	agent	against	the	environment:	play	50	rounds	of	BOS	
against	each	agent	in	the	rival	population,	saving	average	scores.	

3) For	ROW	population,	 form	a	new	population	of	40	agents	 in	the	
following	way:	

a) Copy	top	20	scorers	from	old	population	(will	also	be	potential	
parents)	

b) Pairwise	 tournament:	 choose	 randomly	 2	 potential	 parents	
from	the	population	of	20	copied	in	(a),	with	replacement.	The	
one	with	the	highest	score	gets	one	child	copy	of	itself	

c) With	50%	probability,	mutate	the	child:	

i) Randomly	choose	one	internal	state	

ii) With	50%	probability,	switch	the	action	of	that	state	

iii) If	 didn’t	 change	 action	 in	 step	 (ii)	 (50%	 prob.),	
randomly	 choose	 one	 transition	 of	 the	 state	 and	
change	 it	 with	 uniform	 probability	 across	
alternatives.	

d) Repeat	steps	(b)	and	(c)	until	the	new	ROW	population	has	40	
agents.	

4) Do	step	(3)	for	COL	population	

5) Increment	t	by	1	(next	generation),	reset	scores	to	zero	and	iterate	
(go	to	step	(2)).	
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2) Will the presence of the signal allow agents to coordinate more easily? 
That is, will the system be more efficient when the signal is included? 
We hypothesize that when the signal is included, agents will 
miscoordinate less often leading to higher payoffs. 

3) Are there other treatment differences, if any, in terms of the aggregate 
behavior of the system?  
We have no other a priori hypotheses regarding treatments differences 
besides the ones addressed in questions 1 and 2, but we leave the 
possibility for unexpected results. With the power of hindsight, we know 
that there are indeed other differences that are worth exploring once 
answers to questions 1 and 2 above are known. 

4) Conditioned on observing Turn-Taking (alternation) as hypothesized in 
question 1, will agents be actually conditioning on the signal in a way 
consistent with CE? 
This question might seem subtle, but its analysis is key to understanding 
the emergence of CE. Notice that agents might alternate or take turns in 
the two coordination points by either using the signal or by completely 
ignoring it. Both types of behavior would seem similar at the aggregate 
level, but only conditioning on the signal would be consistent with CE 
as defined here. We hypothesize that agents will learn to condition their 
actions based on the signal. 

5) At the micro level, how are agents coordinating? That is, how do we 
characterize the strategies that evolve? 
Analysis of questions 1 to 4 are made at the aggregate level of the system 
(e.g. average payoffs, coordination rates). But one of the advantages of 
using automata and computational methods is that we can directly 
observe each and every strategy in the system at any point in time. Here 
we use a methodology based on pairs of interacting strategies to 
characterize them and understand their exact behavior. A priori, given 
the immensity of the possible strategy space, we don’t have any 
particular expectation of the type of strategies that would evolve besides 
the ability to invoke both pure Nash and alternating behavior. However, 
as we will see, novel and interesting behavior evolved that we didn’t 
predict beforehand.    

5.1 Regimes and epochs 
We start by focusing on what type or types of equilibrium are selected under 

the No-Signal treatment. Figure 6 shows the average payoffs obtained by each 
population across all rounds of play. Five panels are shown, each one of them 
corresponding to a different run of the model. Some key patterns can be 
observed and some characteristics inferred based only on the average payoffs. 

Note that the system never fully stabilizes. Instead, it is characterized by 
punctuated equilibria: the system locks for several generations in a kind of 
stasis where average payoffs per population are quite stable, followed by a 
sudden transition into a different (and similarly stable) configuration13. 

                                                        
13 The assertion that the system “never” stabilises is based on longer runs. Some of the 

earliest literature on similar models ran simulations for around 50 generations. Recent work has 
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Three kinds of equilibrium behavior are identified. Remembering that both 
game’s pure Nash equilibria have payoffs of (3,2) and (2,3), the run in the top 
panel of Figure 6 shows consistent coordination on either (A,A) or (B,B). In 
this run, one population is consistently receiving average payoffs very close to 
three and the other very close to two. Thus, one population is ‘dominating’ the 
other in terms of payoffs. The transitions here only change which population 
is getting the higher payoffs. 

The second equilibrium behavior observed, for example, on the third panel 
around the 1,000 generations mark, has both populations obtaining average 
payoffs close to 2.5. Given the structure of the model, without the exogenous 
signal this means that the agents have found a way to coordinate on some sort 
of turn-taking behavior. They are alternating symmetrically between the two 
coordination points, although it is not clear if they are alternating each turn. 
They could, for example, by playing three times in a row (A,A), then three times 
in a row (B,B), and so on. 

The third equilibrium that arises in the model was not foreseen. It can be 
observed in the bottom panel, around generations 1,100 to 1,700. Here agents 
use ‘biased turn-taking’: although they take turns, it is not symmetric. Agents 
are playing, for example, two rounds at (A,A), followed by one round of (B,B) 
and then back to (A,A). This gives both agents a chance to play to their 
preferred coordination point, but one of them having its way more often. This 
is the first time such behavior has been documented in a BOS game, either in 
simulated or experimental data. The micro analysis showing exactly what 
strategies emerged for all three equilibria will be done section 5.5.2, allowing 
us to understand how such coordination happens. 

 

Figure 6: No-Signal treatment. Average payoffs per population. Each panel is one 
different run of the model, each consisting of 2,000 generations. 

It is convenient to have a formal way to describe and name these equilibria: 
each generation, t, will be classified under one of the following regimes based 

                                                        
used between 1,000 and 2,000 generations. Besides the five simulations, the model has been 
run several times up to 5,000 and 10,000 generations. One very long simulation that will be 
reported below was run for 100,000 generations. In all runs the system displayed punctuated 
equilibria. 
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on the a-posteriori probability of observed play. Let 𝐴𝐴EF  be the percentage of 
rounds for any pair of agents playing (A,A) during generation t, and 𝐵𝐵EF  the 
analogous for (B,B). Then each generation is classified into one of four regimes 
according to the following rules14: 

• Domination A (B): if 𝐴𝐴EF 	 𝐵𝐵EF > 	0.8 

• Turn-Taking: if (0.4 > 	𝐴𝐴EF < 0.55)	𝑎𝑛𝑑	(0.4 > 	𝐵𝐵EF < 0.55) 

• Biased Turn-Taking A (B): if 

0.15 > 	𝐴𝐴EF 𝐵𝐵EF < 0.4 	𝑎𝑛𝑑	 0.55 > 	𝐵𝐵EF 𝐴𝐴EF < 0.80  

• Other: if none of the above. 
An epoch is defined as a streak of consecutive generations under the same 

regime. Technically, it is a window of at least ten generations with the same 
regime where no more than three are being classified under a different regime 
(hence allowing for some “mistakes”). For example, 500 generations in a row 
classified under the regime “Domination A” (allowing for a few mistakes) is 
considered as one ‘Domination A’ epoch. 

In order to have representative measures of the system’s behavior, one very 
long simulation (with t=100,000) was run for each treatment15. Compared to 
the t=2,000 of initial simulations, the longer time span gives us a good 
measure of the system’s statistical properties. All of the following data for each 
treatment is based on the corresponding long simulation16. 

Based on such long simulations, less than 1% of generations are classified 
under the ‘Other’ regime. So the system under the No-Signal treatment can be 

                                                        
14  The threshold values for each regime were chosen in order to allow a convenient 

classification, and the analysis is robust to reasonable changes. 
15 Having one very long simulation instead of aggregating several short ones for the main 

analysis was chosen for a reason: as will be seen below, some epochs can be rather long, 
characteristic that would be lost with short simulations. 

16 Although one might initially have concerns for the effects of the random initial conditions, 
given enough time and due to the switch between epochs (i.e. the phase transitions), the system 
will eventually forget its past. Each type of epoch (i.e. regime) can be seen as an attractor of the 
model, and by visiting them all the system is no longer dependent on the initial conditions. This 
would be different if the system would lock in one of the attractors forever, which would make 
initial conditions critical. 
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accurately described in terms of the three main regimes Domination, Turn-
Taking and Biased Turn-Taking. 

What is the equilibrium behavior of the system when the signal is included? 
Surprisingly, it is very similar to the No-Signal treatment. One can grasp an 
intuitive feeling for this by observing appendix 7.2, where figures for the 
100,000 simulations and five short ones for the Signal treatment are 
presented. The reader will notice that the payoffs present very similar patterns 
compared to the No-Signal treatment. Formally, based on the corresponding 
100,000 generations simulation, the system can also be classified in more than 
99% of the time in one of the three main regimes, and constant transitions 
between them are also observed. This means that at the aggregate level, both 
with and without the signal the model presents similar behavior in terms of the 
regimes that emerge. Other treatment differences will be addressed below, 
including the probability of finding the system in each regime (confirming this 
result). 

The evidence so far can be summarized as follows: 
Result 1: The behavior of the system can be described in terms of three 

main regimes: Domination, Turn-Taking and Biased Turn-Taking. The 
system never stabilizes in one particular regime, but instead presents 
transitions switching from one long epoch to another in short time spans. 
This applies for both Signal and No-Signal treatments17. 

5.2 Efficiency 
The next question we consider is the efficiency of the system. Table 1 

presents the average payoffs in the long run as well as the average coordination 
rates. The latter is measured as the percentage of rounds across all generations 
where any pair of agents play a coordination point (either (A,A) or (B,B)). In 
terms of payoffs both treatments have virtually the same value of 2.4, which is 
very close to the Pareto optimal of 2.518. Coordination rates also show that the 
system is highly efficient. In both treatments agents play one of the pure Nash 
strategies (i.e. a coordination point) in more than 95% of rounds. Comparing 
this with the expected coordination rates for agents playing mixed strategies 
(48%) or even playing randomly (50%), it can be seen that the system is equally 
efficient with or without the use of the signal. Contrary to what was 
hypothesised a priori, the signal doesn’t really help agents solve the 
coordination problem. 

Result 2: Under both treatments the system is quite efficient: the 
probability of agents coordinating in one of the two pure Nash equilibria is 
close to 95% with and without the signal. Payoffs are virtually the same and 
very close to the Pareto optimal of 2.5, so we conclude that there are no 

                                                        
17  Simulations using an alternative selection mechanism also have been run. Instead of 

selecting 20 top scorers to go directly into the next generation and then using a pairwise 
tournament, the alternative was to conduct the tournaments directly for the whole population, 
without guaranteeing any strategy a direct copy. Simulations are robust to this result, namely 
the regimes observed and the constant transitions between them. 

18 Average payoffs by population are, for the Signal treatment 2.38 and 2.43, and for the No-
Signal treatment, 2.26 and 2.48. Due to the large amount of observations, differences are 
statistically significant, although they seem relatively small in economic terms. Such small 
differences can occur due mainly to the presence of some very long epochs, particularly for the 
Biased Turn-Taking regime (as shown below). 
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treatment effects in terms of payoffs or efficiency. Agents learn to coordinate 
equally well with or without the exogenous signal. 

Average Payoffs  Average Coordination 
Rate 

No-Signal Signal  No-Signal  Signal 

2.36 2.4  95% 96% 

Table 1: Average Payoffs and Coordination Rates for both No-Signal and Signal 
treatments. Treatment differences are barely noticeable. 

5.3 Probabilities of each regime 
We turn now to the differences in regime frequencies. Figure 7 presents the 

probability of randomly choosing one generation and having it classified under 
each regime. The percentages presented are equivalent to the ratio of the 
number of generations classified under each regime to the total number of 
generations in the run (here t=100,000). This provides a measure of how much 
time the system spends in each regime. For easy of exposition, notice that 
‘Domination A’ and ‘Domination B’ are aggregated simply as ‘Domination’ (the 
same applies to Biased Turn-Taking). 

 

Figure 7: Percentage of the time that the system spends in each regime. Measured 
as the ratio of generations classified under each regime to the total generations in the 
run (t=100,000).  

Figure 7 shows that Turn-Taking is the least frequent of the three regimes, 
both with and without the signal. This suggests that CE may not be a more 
likely equilibrium concept than pure Nash. There’s also no evidence that Turn-
Taking would be learned “first”. All simulations ran started with a short period 
of learning (usually no more than ten generations) followed by a Domination 
epoch. This is due to the random generation of automata favoring strategies 
that always play A or always play B (as mentioned before). So in this model, 
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behavior consistent with pure Nash equilibrium is both more frequent and 
happens before any kind of Turn-Taking. Figure 7 also shows that the system 
spends most of the time in a Biased Turn-Taking regime under both 
treatments. Why is this the case? 

One potential explanation for the prevalence of Biased Turn-Taking is that 
the system transitions more often into these epochs than into the others. 
Figure 8 shows the total number of transitions the system underwent (a), and 
how are those distributed across the three regimes, i.e. the percentage of 
transitions into each regime (b). It can be seen that even if the system 
transitions more often under the No-Signal treatment, the distribution is the 
same under both treatments. For both treatments, Biased Turn-Taking is the 
regime to which the system transitions into least frequently. If Biased Turn-
Taking is the more frequent regime, but also the one to which the system 
transitions into less frequently, the length of the epochs must be driving our 
results19. 

 

Figure 8: Panel a): Number of different epochs observed per treatment (i.e. time 
the system underwent a phase transition). Panel b): Distribution of epochs across 
regimes. Under the Signal treatment the system has less phase transitions (left 
panel), but the relative proportions across the regimes is the same for both 
treatments (right panel). 

Figure 9 shows the average length of epochs per regime. As expected, the 
Signal treatment has longer epochs than No-Signal. But more importantly it 
also shows that Biased Turn-Taking has the longest epochs of all regimes for 
both treatments. So even if the number of Biased Turn-Taking epochs is low, 
their length makes it more frequent. 

                                                        
19 Further tests on understanding better the difference in the frequency of transitions across 

treatments have been conducted (not reported), although preliminary results show that the 
causes might be quite complex. See section 6.3, on “future research”, for additional comments 
on this regard. 
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Figure 9: Average length of epochs per regime. Signal treatment presents the 
longest epochs. 

Finally, it is worth emphasizing the difference in time spent under the Turn-
Taking regime across treatments. In this case, the probability of a generation 
being classified as Turn-Taking goes from 11% without the signal to 22% when 
it is included (which can be seen in Figure 7) 20. So, even if Turn-Taking is the 
least frequent regime, it is more likely to be found with the signal than without 
it. 

Let us summarize these findings as follows: 
Result 3: Two main treatment effects are identified: first, the system 

undergoes fewer epoch changes under the Signal treatment: a total of 35 
compared to 177 for No-Signal. Second, the probability of finding the system 
under a Turn-Taking regime increases with the Signal from 11% to 22%. 
However, Turn-Taking is the least probable regime for the system. The 
system spends most of its time under Biased Turn-Taking regimes, with such 
epochs being longer, rather than more frequent. 

This result rules out CE being more frequent than other equilibrium 
concepts such as pure Nash, but it doesn’t say anything about agents actually 
following the signal. For this, the strategies that are being used under Turn-
Taking epochs need to be evaluated in a different way, both at the macro and 
micro level. 

5.4 Searching for CE behavior at the aggregate level 
In order to analyze behavior consistent with CE, the reader is reminded 

that, here, CE is being used only to refer to an equilibrium in which agents 

                                                        
20 Differences here are statistically significant: since the sample is so large and the units of 

observation are generations, each one taken as an independent observation (with t=100,000), 
standard errors of the mean are on the order of 1×106P , resulting in very small confidence 
intervals. 



22 
 

condition their actions by using the signal. This avoids using CE to describe 
other types of behavior such as pure Nash. 

The first way to explore if there are Turn-Taking epochs in which agents are 
following the signal, is to develop an aggregate measure based on the 
probabilities of agents playing each action conditioning on the signal. The 
intuition is that if agents are following the signal, one should observe, on 
average, that the probability of playing the same action (say A) should be high 
when the same signal is observed (say Heads). On the contrary, if the signal is 
being ignored, one should not expect the same action for each signal. Although 
this measure doesn’t show exactly how agents are coordinating (such analysis 
is done in section 5.5), it will allow us to identify if there are epochs in which 
the signal is consistently being followed.  

Let 𝑝 𝑟𝑜𝑤 = 𝐴 𝑆 = 𝑇𝑎𝑖𝑙𝑠)  be the observed probability in a particular 
generation for an agent from population ROW to play A, given that the 
observed signal for that round was Tails. Then, using analogous notation for a 
player from population COL, action B and signal Heads, we define our 
Correlated Equilibrium Measure in generation t (𝐶𝐸𝑀F) as follows: 

 
Notice that 𝐶𝐸𝑀F ∈ [0,1]. If agents are using the signal, 𝐶𝐸𝑀F ≈ 1. Under a 

Domination regime, 𝐶𝐸𝑀F ≈ 0 . If agents are Turn Taking but ignoring the 
signal, 𝐶𝐸𝑀F will be somewhere in-between. 

We find that the behaviour of the values of 𝐶𝐸𝑀 are very stable within single 
epochs. Agents use the signal in the same way within epochs, meaning that 
within a single one, agents tend to use the signal in the same way. Appendix 
7.3 shows the 𝐶𝐸𝑀 values vs. the average payoffs for the Signal treatment. 
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Average 
𝑪𝑬𝑴 Regime 

Number 
of 

Epochs 

0.12 Turn-Taking 2 

0.86 Turn-Taking 2 

0.11 Biased Turn Taking 1 

0.23 Biased Turn Taking 1 

0.40 Biased Turn Taking 2 

0.00 Domination 26 

Table 2: Average Correlated Equilibrium Measure (CEM) for all observed epochs 
under the Signal treatment. Calculated as the average 𝐶𝐸𝑀F of all generations within 
a single epoch. Different epochs under the same regime can have the same average 
CEM, which is reflected in the “Number of Epochs” column. 

Table 2 presents the average values of 𝐶𝐸𝑀F  for all different epochs 
observed under the Signal treatment. The values in the left column are the 
average 𝐶𝐸𝑀F  across all generations within a single epoch. Different epochs 
can have the same CEM value, which is shown in the “Number of Epochs” 
column. The first two rows of the table indicate that out of a total of four 
observed Turn-Taking epochs, the average value of 𝐶𝐸𝑀a  is 0.12 for two of 
them and 0.86 for the other two. Thus, in two of the Turn-Taking epochs 
agents are following the signal. This is our first evidence showing that agents 
have indeed learned to play CE. Yet, despite agents being able to learn 
coordination by using the exogenous signal, they can also ignore it completely 
and alternate as they would do in the absence of a signal21. 

Unexpectedly, the CEM also shows that the behaviour under Biased Turn-
Taking regimes can vary widely in its use of the signal. This behaviour will be 
explored below when analysing at the micro level the strategies that emerged, 
but it is worth mentioning that agents use the signal in different ways: this is 
what leads to the various observed intermediate values of the 𝐶𝐸𝑀  in Table 2. 

How important are the epochs where agents are learning to use the signal? 
The total time the system spends under a Turn-Taking regime in the Signal 
treatment is 22% (Figure 7), corresponding to four different epochs. However, 
the two epochs with a high average CEM constitute only 6.2% of the total time. 
So even if the evidence shows that agents can indeed learn to alternate their 
actions by following the signal, this happens rarely in the system22. 

                                                        
21  Duffy et al. (2014) found similar results in their experiments. They document evidence in 

a BOS game where subjects exhibit both types of behaviour, alternating both by using the signal 
as well as by ignoring it. 

22 Why are agents not learning CE more often? One potential answer is that the learning 
algorithm is having difficulties in finding complex solutions (strategies) that include processing 
the signal. If the latter is true, one could argue that the results are driven by an inefficient 
algorithm instead of some deeper property of the system’s dynamics. Appendix 7.4 implements 
a test that addresses this issue. Results show that without the strategic component of the game, 
agents can easily learn to alternate their actions by using the signal. 
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Result 4: Agents can learn to play CE and alternate their actions tied to 
an external signal. However, the likelihood of finding such behaviour is small. 
Agents can also learn to alternate by completely ignoring the signal. No 
evidence is found of CE being learned faster, or more frequently, than other 
types of behaviour. 

Thus while agents can indeed learn to play by conditioning on the signal, 
such learning occurs very rarely, and CE may not be the best descriptive notion 
of actual behaviour. 

The one remaining question is related to how exactly are agents 
coordinating. Regimes and epochs classification hint at what agents are 
playing and gives us a characterization of the system at the macro level, but 
several different strategies at the micro level can lead to the same aggregate 
patterns. For example, even without the signal, Turn-Taking behaviour could 
be happening by playing (A,A) four times in a row followed by (B,B) four times, 
or by alternating one time on each. Understanding precisely what strategies 
have evolved is also important for the Biased Turn-Taking regimes. Not only 
does the system spend most of its time under such epochs, but the different 
values observed for CEM suggest that coordination happens under a wide 
range of behaviours. Such heterogeneity is impossible to grasp based on the 
aggregate measures presented so far as exploring such findings requires a 
more fine-grained micro analysis of what strategies evolved under each 
regime. 

5.5 Micro Analysis 

5.5.1 Individual Machines 
Here we observe the exact structure of the most successful strategies playing 

under each regime. How are strategies responding to both the signal and the 
rival’s actions? One first approach to understand these micro characteristics of 
the agents is to observe the top evolved individual machines. 

Figure 10 shows some of the most frequent machines for each regime, 
chosen by randomly picking one epoch and selecting the most frequent 
strategy in one population23. The most frequent machine for one Domination 
epoch (Column population) is shown in panel (a), showcasing a very simple 
kind of behavior: play A no matter what. Perhaps surprisingly, simple 
strategies can perform very well in complex environments (see for example 
Gigerenzer et al. (2002) or Gigerenzer et al. (2011)). Strategies for Turn-Taking 
and Biased Turn-Taking are a bit more complex, but still far away from using 
all eight states. Even so, it becomes difficult to gain a clear insight about the 
system by observing only individual strategies. For example, it is hard to infer 
directly from the Turn-Taking machine (panel (b)) if that strategy follows the 
signal. For some particular cases (such as the automaton in panel (b) of Figure 
3) this can be easier, but in general it is not trivial. 

                                                        
23 The reader is reminded that the machines all have eight internal states, but that some of 

those states can be inaccessible or redundant (e.g. a machine with all eight states having an 
action of A has the same behaviour as a machine with one single state with action A). The shown 
machines are the minimal equivalents. 
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To be able to make such inferences one often needs to observe also the 
opponents’ strategies. These are shown in Figure 11 for the Domination and 
Turn Taking regimes. 

 

Figure 10: Some evolved strategies from Signal treatment. These were chosen by 
randomly selecting an epoch of the corresponding regime and choosing the most 
frequent strategy for one of the populations. 

As can be seen, the top (most frequent) strategies in the opposing 
population are more complex. By observing the two interacting machines in 
panel (b) (of both Figure 10 and Figure 11), it is difficult to infer if they are 
following the signal or not. How exactly are they managing to coordinate?24. 
So directly observing the strategies may not be the best way to analyze the 
system at the micro level, unless one limits the strategies to a few internal 
states. 

Another way to analyze the machines, previously used in the literature (e.g. 
Miller (1996) or Ioannou (2013)) is to generate average measures based on the 
accessible states of the machines. For example, checking how many of the 
accessible states in each machine have particular behavioral traits has been 
used to describe cooperation games (e.g. how many states punish defections, 
or how many forgive one). 

Although this approach has proven very useful, it doesn’t come without 
limitations. To illustrate this, observe that larger strategies may not necessarily 

                                                        
24 These two strategies, when playing against each other, actually do follow the signal.  
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use all of their states even if they are accessible25. A machine could only visit a 
subset of the accessible states if no rival machine gives it the necessary input. 
So focusing the analysis on measures of the states of the individual machines 
can be misleading, because it could include behavior that is never actually 
used. 

 

 

Figure 11: Evolved complex individual strategies. They were chosen by randomly 
selecting an epoch of the corresponding regime and choosing the most frequent 
strategy for one of the populations. The strategies presented are considered among 

                                                        
25 As a reminder, a state is accessible if there exists at least one combination of inputs (i.e. 

opponent’s last action and exogenous signal) that can lead the machine to be in that state. 
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the complex ones (i.e. having more internal states). Is very difficult to infer the 
behavior of the system by observing them. 

In summary, focusing the micro behavior on the analysis of individual 
machines presents two potential difficulties: first, single machines don’t 
capture the interaction between strategies. Second, average measures of the 
accessible states can be misleading, for not all of them are necessarily visited. 
So how can such analysis be done? In order to solve these issues, this paper 
uses ‘Joint Machines’ analysis26. 

5.5.2 Joint Machines 
The interaction between any two automata can be modeled as a Joint 

Machine (JM). A JM is a ‘meta’ machine that represents, in a single automaton, 
the observed behavior of two automata playing each other. An example is 
appropriate to understand it. 

Figure 12, in panels (a) and (b) shows automata for the No-Signal 
treatment. Is not straightforward to understand how are they coordinating by 
directly observing them, but panel (c) shows the corresponding JM. Both 
interacting machines start playing B in their initial state, which is represented 
by a starting state of the JM with action BB. The machine in (a), after observing 
B, transitions to its last state with action A, while the machine in (b) transitions 
to a state with action B (also its last). These actions are captured by the second 
state of the JM, with a joint action of AB. Following the same logic, using the 
input received by each machine and the state they transition into, the JM 
captures the actions in states that are visited. In Figure 12, by observing the 
JM in (c), it is easy to notice that after the two initial rounds, both machines 
will take turns, alternating their coordination point from AA to BB and back to 
AA, indefinitely. These machines correspond to a Turn-Taking regime. 

Notice that JMs’ actions are no longer the action of one particular strategy, 
but those of both interacting machines that are being represented. A state of 
the JM is given by corresponding states of the two interacting machines. So if 
the action of the JM is, for example AB, it means that in that particular state 
one agent plays A and the other B. This representation makes a JM a simpler 
representation of complex behavior. 

 

                                                        
26 This approach is an original idea of, and has been developed by, professor John H. Miller. 

The implementations here are based on his own original algorithms via personal 
communication. 
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Figure 12: Example of Joint Machine for No-Signal treatment. When the machines 
in (a) and (b) play each other, their interaction can be represented as the Joint 
Machine in (c). These machines evolved under a Turn-Taking regime. 

Without the signal there is no stochastic component, so the JM is 
completely deterministic (as the one in panel (c) of Figure 12). With the signal, 
transitions of the JM will depend only on the stochastic observed signal H or 
T. In any case, since the constituent automata are finite, the JM at some point 
will return to one state-pair that has already been visited, and from there cycle 
between a subset of states indefinitely27. The focus in what follows of this 
section is on the Signal treatment, but some intuition about JMs under No-
Signal can be found in Appendix 7.5.1. 

                                                        
27 In the formal definition of automata in section 4.2, the following are the differences when 

the automata defined is a JM instead of a single strategy. For both Signal and No-Signal 
treatments, the JM actions are 𝐴1	𝜖	{𝐴𝐴, 𝐵𝐵, 𝐴𝐵, 𝐵𝐴}. For Signal, now 𝑊 = 𝑆 ∈ {𝐻, 𝑇}, meaning 
that the machine no longer depends on the input 𝐴61 (opponent’s action last round) since such 
information is already contained in the actions of each internal state. Under No-Signal the 
machines are simpler: 𝑊 is no longer defined since the JM doesn’t depend in any input or state 
of the world. The transitions are deterministic with 𝜏: 𝑄 → 𝑄, with each state Q having one single 
transition into another 𝑄. 
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5.5.2.1 Turn-Taking Joint Machines 

 

Figure 13: Joint Automata that evolved during the Turn-Taking epochs of the 
Signal treatment. Each machine was picked from the corresponding epoch (with low 
or high CEM value). One generation was randomly chosen from that epoch, and the 
most frequent Joint Machine is the one shown. Probability Density Functions show 
the long-run probability of finding the machine in each particular internal state. 

Observe the JM presented in panel (a) in Figure 13, which is one of the three 
representative JMs shown for three different Turn-Taking epochs. The 
machine has only two states. In the starting one, both machines play A, and 
whatever the observed signal is (either H or T), it will always transition into 
the second state. In the second state, the action is BB, and again the transitions 
are the same regardless of the signal, returning into the initial state. This JM 
represents two strategies that when interacting will take turns playing (A,A), 
then (B,B), then (A,A) and so on. Notice that this machine completely ignores 
the signal, but still manages to perfectly alternate. This is precisely what the 
CEM captures at the aggregate level. Such machines belong to a Turn-Taking 
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regime with 𝐶𝐸𝑀a = 0.12: a low value reflecting that under such regime agents 
are not relying on the signal to coordinate their actions. 

The JMs presented in Figure 13 are representative of the behavior observed 
during each epoch28. They were chosen by randomly picking a generation from 
an epoch with the corresponding CEM and then selecting the most frequent 
JM. For example, for the machine in panel (a), its frequency is 67%. This means 
that 67% of all the pairs of strategies playing each other in such generation are 
described by this automaton29. 

Associated with each machine, there is a Probability Density Function 
(PDF). It shows the probability of finding the machine in each state in the very 
long run. States that have zero probability would only be visited before the JM 
starts cycling, so in the long run their probability tends to zero. Those states 
with positive probabilities are the ones characterizing the core behavior of the 
system, and will be referred to as the cycling states. Finally, it is worth noting 
that the cycling states are also very stable across epochs. Even if the JMs don’t 
represent 100% of the interactions, usually the states in the cycle do. Two JMs 
can have different states before reaching the cycle, but once there, their 
behavior is very similar. This is the case for JMs in panels (b) and (c), having 
different states with low probability, but the same cycle. JMs, and particularly 
the states with positive probabilities in the PDF, are an excellent tool for 
understanding the micro behavior of the system. 

Let us also explain the behavior found in panels (b) and (c). Such JMs give 
us another formal way to understand the CE learned by the agents. Notice the 
cycling states (again, the ones with positive probability in the PDF). Even if 
both machines are from different epochs and have different states, their 
cycling behavior is identical. In both JMs the behavior alternates between AA 
and BB depending on the signal: in any of the two cycling states, whenever the 
signal is T, it will transition to the actions AA. Whenever it is H, it will 
transition to actions BB. This shows that the machines have learned to 
interpret the signal and coordinate based on it. As expected, on average, most 
JMs found under Turn-Taking epochs (the three panels) will play 50% of the 
times AA and 50% of the times BB. The difference —what is being captured by 
the CEM—is whether their transitions depend on the signal or not. This can be 
easily grasped in the JMs by observing the transitions in the cycling states. 

                                                        
28 A total of four Turn-Taking epochs were identified for the No-Signal treatment. Only three 

machines are shown because the JM that doesn’t follow the signal (panel (a)) was found to be 
representative under two of them. The other two epochs with high CEM values are shown in 
order to highlight that even if the machines are different, their core behaviour can be the same. 

29 With 40 agents in each population, the total number of possible Joint Machines in each 
generation is 40×40 = 1,600.  
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5.5.2.2 Biased Turn-Taking Joint Machines 

 

Figure 14: Joint Automata that evolved during a Biased Turn-Taking epoch of the 
Signal treatment. Each machine was picked from an epoch having a different CEM 
value. One generation was randomly chosen from that epoch, and the most frequent 
machine is the one shown. Probability Density Functions show the long-run 
probability of finding the machine in each particular internal state. 

The corresponding analysis for the Biased Turn-Taking regime is also 
presented. Representative JMs for epochs with different CEM values are 
shown in Figure 14. Notice that the ratio of AA to BB actions varies across JMs 
(observe the probabilities of each machine being in AA or BB during the cycling 
states). This characteristic is impossible to grasp by observing only the 
aggregate classification based on the regime. 

Each machine uses the signal differently in each state. For example, the JM 
in panel (a) interprets the signal consistently in state 4 and state 5, but not in 
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its other states. In state 4, it transitions to AA given H and to BB given T. This 
means that the two constituent strategies found a way to coordinate by using 
the signal in that particular state. In state 5 an interpretation to the signal is 
also given, but it is the opposite of that in state 4: BB when H and AA when T. 
In state 3, the machine completely ignores the signal and always transitions to 
state 4. Here again, such behavior would have been impossible to observe 
based only on the aggregate CEM measure of 0.11 (and very difficult to grasp 
based on the individual machines). The JM’s cycling states and the associated 
PDFs allows an understanding of how partial signal following is happening. 
Similar intuitions can be made for the other JMs in the Biased Turn-Taking 
epochs. 

Perhaps the reader could have had an accurate a priori intuition of the kind 
of behavior observed under the Turn-Taking regime based on the values of 
CEM. Even so, the JMs present a much more intuitive and clear analysis of 
how machines coordinate. But for the Biased Turn-Taking epochs, such a 
priori expectations are more unlikely: the varied and perhaps less intuitive 
ways in which agents follow the signal were not hypothesized and were 
surprising. Potentially finding some strategies that follow the signal and others 
that don’t was initially thought of. But observing such behavior under one 
single interaction (one single pair of agents) that represents strategies able to 
follow the signal or ignore it at the same time, was unexpected. This is a nice 
example of how adaptation can come up with marvelous and unexpected 
solutions that would be difficult to anticipate. 

Result 5: Analysis based on Joint Machines (which summarizes any two 
interacting strategies) is more clear and robust than analyzing individual 
machines. For the Turn-Taking epochs, such analysis shows how some agents 
completely ignore the signal and how others perfectly condition on it. For the 
Biased Turn-Taking epochs, it shows that single machines can at the same 
time ignore, partially use, or perfectly follow the signal depending on the 
history of the game (i.e. their internal state). 

6 CLOSING REMARKS 

6.1 Summary 
This paper uses an explicit evolutionary process, simulated by a genetic 

algorithm, in order to analyze the effects of an exogenous signal in a repeated 
Battle of the Sexes coordination game. Its focus is on analyzing the strategies 
that emerge when coordinating with boundedly rational agents. 

Contrary to what was expected, with and without the signal, coordination 
behavior was quite similar, presenting the same types of equilibria (such as 
pure Nash and alternation, both symmetrical and asymmetrical). 
Interestingly, the system doesn’t settle down to a single equilibrium, but rather 
exhibits a constant transition from one to the other. Efficiency in terms of 
payoffs is the same with and without the signal, meaning that agents 
coordinate equally well under both setups. The main difference found was the 
frequency of transitions from equilibrium to equilibrium: with the signal, there 
is more stability (i.e. less transitions). 

Our adaptive agents can indeed learn to coordinate consistently using the 
signal as a “recommendation” of what to play. However, such behavior is 
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learned very rarely (around 5% of the time), making other strategies a more 
likely descriptive notion of observed behavior. 

This is the first work using adaptive agents in the long run to study 
coordination games that include a signal. The above results constitute our 
main findings regarding Correlated Equilibrium. It also analyzes automata by 
focusing on Joint Machines: ‘meta’ automata that summarizes several 
interacting agents in a single representation. This analysis permitted us to 
analyze complex agents. Regarding Correlated Equilibrium, this analysis 
showed that when the signal is included some strategies can alternate their 
actions by using the signal while others can do so by completely ignoring the 
signal. It also allowed us to see that signal interpretation is not necessarily as 
intuitive as one might think, and that complex strategies learned to use signals 
in very different ways. For example, the same strategy can, depending on the 
history of the game, sometimes use the signal as different “recommendations” 
of play, partially use it, or completely ignore it. This complexity on how 
strategies use the signal would be difficult to observe without this 
methodology. 

Previous studies of signal use in coordination game have mainly been done 
with experiments. Conclusions from such experiments show that even though 
some subjects can indeed learn to alternate their actions by following an 
exogenous signal, this rarely happens, as they can also alternate by completely 
ignoring signals (as in Duffy and Feltovich (2010)). One of the main 
advantages of evolutionary simulations is that they allow agents to learn over 
considerably longer time spans than in the lab. The limited time span of the 
lab has led some authors (e.g. Cason and Sharma (2007)) to speculate that 
signal conditioning would probably be learned much more often if agents were 
given more time. Our results, however, show that this is not necessarily the 
case, reinforcing previous results that cast doubt on the notion of  Correlated 
Equilibrium as an accurate description of commonly observed behavior. 

6.2 Discussion 
The Battle of the Sexes game has both coordination and conflict elements 

(Camerer (2003), p.354;  Lau and Mui (2008), p.154). This “mixed motive” 
social situation arises because both players want to coordinate and choose the 
same action (a social or shared motive) but also disagree on the activity they 
want to coordinate on (an individual motive). Our results show that the 
coordination dimension is solved most of the time, with or without the signal: 
the system is equally efficient most of the time. But the degree of conflict 
inherent in the solutions (equilibria) found by the agents can vary at different 
moments in time. When agents are taking turns symmetrically, they have 
found a solution without any conflict in terms of received payoffs, but when 
playing one of the Nash solutions consistently or under asymmetric turn 
taking, the conflict dimension is not solved. We can make a distinction in the 
behavior of the system in terms of the time span analyzed. In the short run, 
coordination seems to dominate over conflict. But since regimes are subject to 
change and transitions, in the (very) long run the conflict issues are averaged 
out. So in the long run the system has both coordination an absence of conflict 
(or efficiency and equality), but at any moment in time only coordination is 
found for sure. 

Regarding the effects of the signal, in theory it could help agents solve both 
coordination and conflict. However, since agents learn to coordinate quite well 
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without it, the signal is addressing a problem that doesn’t need help to be 
solved. The signal could also solve the conflict dimension, but in evolutionary 
terms, it only does that in occasion according to our model. At the heart of this 
distinction, is the game theoretic induction approach to solve these problems. 
Theoretically, agents could reason a priori and arrive to a common 
understanding about how to use the signal to solve both coordination and 
conflict, hence playing conditioning on the signal.  But this would require a lot 
of reasoning and common knowledge. And notice that such outcome is only 
one possibility consistent with traditional rationality, since one agent being 
completely stubborn and only playing its preferred action, with the other 
complying, is a Nash Equilibrium. 

In summary, it seems that the signal doesn’t have the expected effect in 
behavior because agents don’t really need it to coordinate. And even if the 
signal could solve the conflict dimension in the short run, the system can still 
operate under different degrees of conflict, since it doesn’t lead to 
miscoordination or efficiency losses. In the long run, without the signal, both 
dimensions are solved, so the introduction of the signal seems redundant. 

6.3 Future research 
One of the main behavioral differences found between the No-Signal and 

Signal treatments was the difference in number of transitions. Tests on 
alternative treatments have been conducted, hinting that such results can be 
related to how the mutation rates interact with the number of transitions in 
the machines. However, results are not conclusive. The problem seems more 
complex than anticipated, requiring the development of better performing 
software than the one currently being used. Not only being able to run 
simulations for longer time spans could aid in this regard (which would reduce 
potential effects of very long epochs), but would also allow more efficient 
exploration of other potential variables that could also be related30. 

Answering the above is also related to more general questions, to be 
pursued in the mid and long-term. Recent efforts in evolutionary biology have 
focused on understanding similar phase transitions in natural systems, and 
other areas ranging from statistical physics, to artificial life to evolutionary 
robotics, have already made some contributions in understanding general 
principles of such changes across domains31. The computational nature of our 
model makes detailed analysis of all its components feasible, at least in 
principle. Understanding what mutations at the micro level are necessary for 
the system to transition, what aggregate measures show that the system is 
“ripe” for a sudden change and what precise evolutionary pathways are 
followed when this happens, will certainly shed some light not only in better 
understanding equilibrium behavior in systems with boundedly rational 

                                                        
30 Several of this tools have already been implemented. Some measures such as evolutionary 

“waste” or inefficiency in the construction of the machines, or unused behaviour related to 
unvisited states present in the machines (reflecting potential for change in the system) have 
already been explored. However, their examination is currently very expensive in computational 
terms, requiring further development on the implemented software. 

31  Solé (2016) presents a recent review of contributions across different fields. Sornette 
(2004) is an example of how understanding phase transitions is relevant for social sciences, in 
this case financial markets. 
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agents, but also into understanding phase transitions in evolutionary, artificial 
and social systems. 
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7 APPENDIX 

7.1 Formal presentation of correlated equilibrium and the one 
shot BOS game32 

7.1.1 Correlated strategy pairs: relations with pure and mixed strategies 

In a game one shot game with two players having two possible actions the 
general form of a correlated strategy pair is 

  Player 2 

  C D 

 Player 
1 

A 𝑝: 𝑝; 

B 𝑝c 𝑝d 

where 𝑝: + 𝑝; + 𝑝c + 𝑝d = 1. Such strategy can be represented as a 4-dimensional 
vector 𝜋 = 𝑝:, 𝑝;, 𝑝c, 𝑝d , meaning that (A,C) is played with probability 𝑝: , (A,D) is 
played with probability 𝑝;, etc.. Under correlated strategy 𝜋 the expected payoffs or 
rewards of player 𝑖  are denoted as 𝑅1(𝜋)  and calculated with respect to the joint 
distribution of the actions to be taken. So such payoffs are given by a linear 
combination of the 𝑝1: 

𝑅1 𝜋 = 𝑝:𝑅1 𝐴, 𝐶 + 𝑝;𝑅1 𝐴, 𝐷 + 𝑝c𝑅1 𝐵, 𝐶 + 𝑝d𝑅1(𝐵, 𝐷) 

Notice the relationship between a correlated strategy pair and other 
strategy types. If 𝑝1 = 1 for some 𝑖, then the correlated strategy pair is a pair of 
pure strategies. If 𝜋 is of the form (𝑞𝑟, 𝑞 1 − 𝑟 , 1 − 𝑞 𝑟, 1 − 𝑞 1 − 𝑟 ) then it 
corresponds to a pair of mixed strategies. Here, Player 1 takes action A with 
probability 𝑞  and Player 2 takes action C with probability 𝑟 , with such 
probabilities being independent of the action of the rival. This makes the set of 
correlated strategy pairs an extension of the set of mixed strategy pairs. 

In general, to attain a correlated strategy pair communication is required, 
with an agreement on it before the game is played. However, the agreement is 
not (and cannot be made) binding, so players are free to ignore any 
recommendation. 

7.1.2 Conditions for a CE in a 2x2 matrix game 
According to strategy pair 𝜋 = 𝑝:, 𝑝;, 𝑝c, 𝑝d , Player 1 is recommended (by the 

randomization device or the external third party) to play A with probability 𝑝: + 𝑝;. 
Given that Player 1 is recommended to play A, the probability of Player 2 being 
recommended to play C is Ei

EijEk
. 

                                                        
32 A textbook presentation on correlated equilibrium can be found in Myerson (1997). The 

one in this appendix was greatly benefited from the lecture notes of Dr. David Ramsey used at 
the University of Limerick, found online at 
http://www3.ul.ie/ramsey/Lectures/Operations_Research_2/gametheory4.pdf (last visited on 
April 25 of 2016).  
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In a CE each player should maximise her expected payoffs 𝑅1(𝜋) given the 
recommendation (signal) she receives. So if Player 1 is recommended to play A, her 
expected payoffs under such a correlated strategy pair are 

𝑅: 𝜋 =
𝑝:𝑅: 𝐴, 𝐶
𝑝: + 𝑝;

+
𝑝;𝑅: 𝐴, 𝐷
𝑝: + 𝑝;

 

If Player 1 ignores her recommendation to play A and she plays B instead, 
her expected payoffs are 

𝑅: 𝜋 =
𝑝:𝑅: 𝐵, 𝐶
𝑝: + 𝑝;

+
𝑝;𝑅: 𝐵, 𝐷
𝑝: + 𝑝;

 

For stability it is required that 
𝑝:𝑅: 𝐴, 𝐶
𝑝: + 𝑝;

+
𝑝;𝑅: 𝐴, 𝐷
𝑝: + 𝑝;

≥
𝑝:𝑅: 𝐵, 𝐶
𝑝: + 𝑝;

+
𝑝;𝑅: 𝐵, 𝐷
𝑝: + 𝑝;

 

which leads to 

𝑝:𝑅: 𝐴, 𝐶 + 𝑝;𝑅: 𝐴, 𝐷 ≥ 𝑝:𝑅: 𝐵, 𝐶 + 𝑝;𝑅:(𝐵, 𝐷) 

For the sake of completion, notice that the above expression is not defined 
in the case where 𝑝: = 𝑝; = 0 since we would be dividing by zero. However, in 
this case Player 1 is never recommended to play A and this condition might 
then be ignored. 

The same line of argument given above can be used for the conditions 
corresponding to the following recommendations: i) Player 1 to play A, ii) 
Player 1 to play B, iii) Player 2 to play C and 4) Player 2 to play D. 

Hence, the four condition for a correlated equilibrium, respectively for the 
above recommendations are: 

𝑝:𝑅: 𝐴, 𝐶 + 𝑝;𝑅: 𝐴, 𝐷 ≥ 𝑝:𝑅: 𝐵, 𝐶 + 𝑝;𝑅:(𝐵, 𝐷) 

𝑝c𝑅: 𝐵, 𝐶 + 𝑝d𝑅: 𝐵, 𝐷 ≥ 𝑝c𝑅: 𝐴, 𝐶 + 𝑝d𝑅: 𝐴, 𝐷  

𝑝:𝑅; 𝐴, 𝐶 + 𝑝c𝑅; 𝐵, 𝐶 ≥ 𝑝:𝑅; 𝐴, 𝐷 + 𝑝c𝑅; 𝐵, 𝐷  

𝑝;𝑅; 𝐴, 𝐷 + 𝑝d𝑅; 𝐵, 𝐷 ≥ 𝑝;𝑅; 𝐴, 𝐶 + 𝑝d𝑅; 𝐵, 𝐶  

There are some relationships between correlated equilibria and other types 
of equilibria that are worth mentioning. First, any Nash equilibrium pair of 
strategies is also a correlated equilibrium. Second, a pair of mixed strategies 
that is not a Nash equilibrium is not a correlated equilibrium. Third, any 
randomization over Nash equilibria is also a correlated equilibrium. Finally, 
any randomization over a set of strong Nash equilibria can be attained by joint 
observation of a public signal33. 

7.1.3 Battle of the sexes correlated equilibrium 
The CE solution of interest in this paper for the BOS game, as indicated in 

the main text, is the one given by a fair coin toss as the exogenous signal. 
Formally, such CE is described as 𝜋 = :

;
, 0, 0, :

;
. This equilibrium is both an 

                                                        
33 The two last conditions allow the easy graphical representation of the convex hull for 

correlated equilibria, as in the main text. In such case for the BOS, both (A,C) and (B,D) are 
strong Nash equilibrium, so any correlated strategy pair that picks (A,C) with probability 𝑝 and 
picks (B,D) otherwise, is a correlated equilibrium. 
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utilitarian and an egalitarian equilibrium. Let us define such properties 
formally and then use the concrete payoffs examined in this paper in order to 
derive such solution. 

1) Utilitarian equilibrium: an equilibrium which maximizes the sum of 
the expected payoffs of the players 

2) Egalitarian equilibrium: an equilibrium which maximizes the 
minimum expected payoff of a player. 

Since the expected payoff of players are linear combinations of 𝑝1 , the 
criteria above can be expressed as a maximization of a linear combination of 
𝑝1. So equilibria of such types can be derived by defining the problem as a linear 
programming one. For this, consider the following payoff matrix, with the 
same rewards of interest as in the main text: 

  Player 2 

  A B 

 Player 
1 

A 2,3 0,0 

B 0,0 3,2 

 
The utilitarian equilibrium can be found by solving the following problem: 

max 𝑧 = (2 + 3)𝑝: + 0 + 0 𝑝; + 0 + 0 𝑝c + 3 + 2 𝑝d = 5𝑝: + 5𝑝d 

subject to 

𝑝1 ≥ 0	𝑓𝑜𝑟	𝑖 = 1,2,3,4 

𝑝: + 𝑝; + 𝑝c + 𝑝d = 1 

2𝑝: + 0𝑝; ≥ 0𝑝: + 3𝑝; ⟹ 𝑝: ≥
3𝑝;
2

 

0𝑝c + 3𝑝d ≥ 2𝑝c + 0𝑝d ⟹ 𝑝d ≥
2𝑝c
5

 

3𝑝: + 0𝑝c ≥ 0𝑝: + 2𝑝c ⟹ 𝑝: ≥
2𝑝c
5

 

0𝑝; + 2𝑝d ≥ 3𝑝; + 0𝑝d ⟹ 𝑝d ≥
3𝑝;
2

 

The first two restrictions represent the conditions for (𝑝:, 𝑝;, 𝑝c, 𝑝d)  to 
define a joint distribution. The final four conditions are the ones required for 
the solution to be a correlated equilibrium (as defined before). 

One could solve this problem for all 𝑝1, but there is a simpler way if one 
knows the pure Nash equilibria for this problem. Here, (A,A) and (B,B) are 
Nash equilibria that maximize the sum of the payoffs to the players over the 
set of pure strategy pairs. And any randomization over these two Nash 
equilibria is a correlated equilibrium that gives the same sum of payoffs. 
Hence, any 𝜋 of the form 𝜋 = 	 (𝑝, 0, 0, 1 − 𝑝) is a utilitarian equilibrium. So 𝜋 =
:
;
, 0, 0, :

;
 is a utilitarian equilibrium. 
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Let’s turn now to the egalitarian equilibrium. For this, it is convenient to 
notice that the BOS game is not symmetric but still has a degree of symmetry. 
A 2x2 game where both players can choose either action A of action B will be 
called quasi-symmetric if the following conditions hold (which is indeed the 
case for BOS): 

𝑅: 𝑖, 𝑗 = 𝑅;(𝑗, 𝑖) 

𝑅: 𝑖, 𝑖 = 𝑅; 𝑗, 𝑗 , 𝑤ℎ𝑒𝑟𝑒	𝑖 ≠ 𝑗, 𝑎𝑛𝑑	𝑖, 𝑗	𝜖	{𝐴, 𝐵} 

In words, this means that a payoff vector on the leading diagonal is the 
reverse of the other payoff vector on that diagonal. 

As a result, at an egalitarian equilibrium of a quasi-symmetric game both 
players must obtain the same expected payoffs. So to find an egalitarian 
equilibrium of a quasi-symmetric game, the problem is to maximize the 
expected sum of the payoffs using the same constrains as before, but adding a 
new one: that both players should obtain the same payoffs. Hence the problem, 
is 

max 𝑧 = 5𝑝: + 5𝑝d 
subject to (as before) 

𝑝1 ≥ 0	𝑓𝑜𝑟	𝑖 = 1,2,3,4 

𝑝: + 𝑝; + 𝑝c + 𝑝d = 1 

2𝑝: + 0𝑝; ≥ 0𝑝: + 3𝑝; ⟹ 𝑝: ≥
3𝑝;
2

 

0𝑝c + 3𝑝d ≥ 2𝑝c + 0𝑝d ⟹ 𝑝d ≥
2𝑝c
5

 

3𝑝: + 0𝑝c ≥ 0𝑝: + 2𝑝c ⟹ 𝑝: ≥
2𝑝c
5

 

0𝑝; + 2𝑝d ≥ 3𝑝; + 0𝑝d ⟹ 𝑝d ≥
3𝑝;
2

 

and adding the condition 

2𝑝: + 3𝑝d = 3𝑝: + 2𝑝d ⟹ 𝑝: = 𝑝d 

 

As before, any correlated equilibrium of the form (𝑝, 0, 0, 1 − 𝑝) maximises the 
sum of expected payoffs. And observing that setting 𝑝 = :

;
 holds for that new 

last condition, one can then define :
;
, 0, 0, :

;
 as the egalitarian equilibrium of 

interest. 

7.2 Additional overview of average payoffs 
Statistical analyses of the model are based on the simulations presented on 

Fig. A. One very long run with 100,000 generations is run for each treatment. 
Fig. B presents five shorter simulations for the Signal treatment, analogous to 
the figure presented on the main text for No-Signal. 
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Fig. A: Average payoffs per population. Longest simulations for both Signal and 
No-Signal treatment with 100,000 generations. Statistical analyses in the main text 
are based on these runs of the model. 

 

Fig. B: Signal treatment. Average payoffs per population. Each panel is one 
different run of the model, each consisting of 2,000 generations. 
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7.3 Correlated Equilibrium Measure (CEM) 

 

Fig. C: Average Payoffs on Signal treatment (top panel)  vs. Correlated 
Equilibrium Measure CEM (bottom panel). Vertical lines in the bottom panel indicate 
the end of an epoch. It can be seen that within single epochs, the CEM is quite stable, 
meaning that agents use (or not) the signal in the same way consistently under each 
single epoch. 

7.4 A learning test 
Why agents don’t learn to play CE more often? If the cause is that the 

algorithm finds it difficult to explore the larger strategy space when the signal 
is included, then not finding CE more often wouldn’t be due to an interesting 
feature of the strategic interactions of the agents, but rather to having an 
inefficient (or perhaps wrongly ‘tuned’) learning mechanism. In order to 
address this concern, a test for the model in the Signal treatment was run by 
changing the payoffs of the game. The test is implemented by modifying the 
payoffs depending on the outcome of the signal in each round as follows: 

Payoffs if Signal = Heads  Payoffs if Signal = Tails 

  Player 2    Player 2 

  A B    A B 

 Player 
1 

A 3,3 0,0   Player 
1 

A 0,0 0,0 

 B 0,0 0,0  B 0,0 3,3 

 
Notice that with these payoffs there’s no conflict of interests between the 

agents. If they are able to follow the signal in this environment, it means the 
algorithm is not having difficulties exploring the larger strategy space 
(compared to No-Signal). The model was run five different times up to 2,000 
generations. Under this setup both generations will have the exact same 
payoffs and the Pareto optimal is now three for both populations. 
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 In all of the simulations agents quickly learned to follow the signal and 
coordinate appropriately. After some generations (around 30) the system’s 
behaviour becomes stable. No transitions are observed, average payoffs settle 
very close (2.85) to the Pareto optimal and the average 𝐶𝐸𝑀a is very close to 
one (equals 0.9). This indicates that the learning mechanism has no problems 
finding CE strategies. If agents don’t learn CE is due to the strategic 
environment, not due to something inherent to the implementation of the GA. 
Fig. D shows graphically this information (only 200 generations are reported 
due to the model becoming very stable and not presenting relevant changes).  

 

Fig. D: Average payoffs and CEM for the learning test. Around generation 30 
agents have learned to follow the signal almost perfectly, shown by the high payoffs 
and high CEM. 

7.5 Additional Joint Automata (JM) 

7.5.1 No-Signal JMs 
Compared to the JMs with the signal, the ones without are much simpler 

due to their deterministic nature. Fig. E presents three typical JMs that 
evolved, one under each regime. All JMs without the signal have a very similar 
“lollipop” shape: they visit several states in order, and at their end (since the 
automata are finite) they transition back to one that was previously visited. 
This last transition marks the beginning of a cycling behavior, meaning that 
the machine will forever repeat its actions. In our analysis, usually the JM takes 
one or more states that can include some miscoordination, but then enters the 
cycle and coordinates in a way reflected by the corresponding regime.  
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Fig. E: Joint Automata under No-Signal treatment. Transitions are deterministic. 
The machines will eventually come back to an already visited state, cycling forever 
into a subset of states. Each Joint Automata corresponds to the indicated regime. 
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