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Abstract
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1 Introduction

It is well known that for a wide class of principal-agent problems, the principal may find

it costly to observe the actions or characteristics of agents. The classical team production

literature recommends appointing a manager to divide the surplus (Alchian and Demsetz

(1972); Holmström (1982)). However, if the surplus division is not made proportional to

effort, an agent who feels under-compensated for her deserved share, may end up reducing

her effort. Often in reality, while it may be costly for a principal to observe the actions of

agents, it is possible that agents themselves are in a position to observe each others’ actions.

In this context, we consider a simple mechanism in which fair-minded agents are not only

able to monitor each other, but also in positions to determine each other’s payoffs. The

mechanism we propose takes the form of a two stage game. In the first stage, each player

chooses some effort level and in the second stage, after having observed each others’ effort,

each player proposes a fraction of the total surplus to be received by each of the remaining

players. A player’s final share depends on the other players’ allocation toward her.

The interesting feature of such a mechanism is that how a player allocates shares in the

second stage does not affect her own payoff. Therefore, fair-minded players are able to reward

or punish their peers based on the first stage observed actions. Our behavioural assumption

relates to the notion of fairness. While some theoretical literature on fairness has focused on

equality (Fehr and Schmidt, 1999), a growing empirical literature appeals to other fairness

criteria to justify unequal allocations, e.g., Adams (1965); Konow(1996, 2000, 2009); Gächter

and Riedl (2006); Cappelen et al. (2007); Shaw (2013); Cappelen et al. (2013).1 For example,

in one of Konow’s (2000) experiments, when asked to divide some surplus among a group of

participants, a disinterested third party almost always allocated the surplus proportional to

each group member’s contribution to that surplus. The main contribution of this paper is

to propose a simple mechanism that relies on the notion of fairness whereby agents reward

others based on their merit, and that achieves social efficiency by eliminating the free-rider

problem in experimental settings.

We label our mechanism the “Galbraith Mechanism” as the idea is inspired by John

Kenneth Galbraith who in an aside in The Great Crash described a bonus sharing scheme

used by the National City Bank (now Citibank) in the U.S in the 1920s where each officer

1The literature distinguishes between two type of allocators: stakeholders and spectators. Stakeholders
can allocate stakes to themselves in the allocation decisions, a self-biased fairness view may occur (Konow,
2000). Spectators allocate between the others, therefore are more likely to maintain impartiality. In our
mechanism, all allocators are spectators because their allocation decisions do not affect their own earnings.
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would sign a ballot giving an estimated share towards each of the other eligible officers,

himself/herself excluded. The average of these shares would guide the final allocation of the

bonus to each of the officers. This profit-sharing scheme can be applied to many economic

problems including games with positive externalities and principle-agents problems in which

the principal needs to decide on the distribution of some common resource among the agents.2

In their seminal paper, Fehr and Gächter (2000) show that players exhibit a strong

social preference to “punish” those who free-ride on the group production. Such a social

preference helps to achieve social efficiency. Their result not only remains robust in many

subsequent studies, but has also lead to some theoretical studies that incorporate behavioral

considerations in utility functions (see Chaudhuri (2010) for a recent survey). However, it

has been argued that from a welfare view point costly punishments might be inefficient as

players need to destroy some of their own payoffs in order to punish others. Moreover, the

practicality of implementing “punishment” in organizations remains unclear. The mechanism

we propose is based on an endogenous payoff allocation in which players can freely decide

on some fraction of the counter-players payoff. Players are free to punish, to reward, or even

always allocate randomly to the remaining players while no costs are incurred by the players

in the allocation exercise.

Our research is also related to endogenous mechanisms used to solve social dilemma

problems. For example, Andreoni and Varian (1999) studied a mechanism where players can

agree on a pre-play contract before the prisoner’s dilemma game. However, their mechanism

does not perform well when tested in laboratory settings. There are other mechanisms that

perform better in the laboratory, for example, Falkinger et al. (2000); Masuda et al. (2014)

and Stoddard et al. (2014). But these mechanisms demand either an enforcement instituion,

or require the intervention of a third party. Instead, our mechanism can achieve the full

cooperation result in a decentralized manner, with no external allocator required.

The remainder of the paper is organized as follows. Section 2 presents our mechanism

and its assumptions. Section 3 describes the experimental design. Experimental results are

discussed in section 4 and section 5 concludes.

2Another example which fits our mechanism well is the division of marks in university level group
assignments. There professors typically observe only the final output but wish to award marks based on
individual students’ inputs. In such a situation, our mechanism can be described by a two stage game in
which students choose how much effort to exert in the first stage and in the second stage after observing
each others effort, each student proposes a fraction of the total marks (sum of marks given to all students
in the group) to be given to each of the remaining students in his group.
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2 Galbraith Mechanism (Theory)

We focus on the following simple model of team production. There are three players. Each

player, indexed i, has an initial endowment of ē and takes an observable action ei ∈ Ei =

(0, ..., ē). The players’ actions determine a joint monetary outcome Π = β(e1 + e2 + e3),

which must be allocated among the players. Let qi stand for player i’s share of the outcome

Π, and each player i’s payoff function is πi = ē− ei + qiΠ.

We now describes the determination of each player’s share from the final outcome, qi, in

the Galbraith Mechanism. Let aij denote the fraction of Π proposed by player i to player j

such that aii = 0, aij ∈ [0, 1] ∀i 6= j and aij +aik = 1. In other words, each player proposes a

fraction of Π to be received by each of the other players. The final share qi that each player

i receives is qi =
aji+aki

3
.

At this point, there is no prediction of how a player i will divide Π
3

between the other two

players. In fact, they can allocate all Π
3

to one player, or divide equally between the group

members, or even allocate randomly. To give some guidance of plausible allocation rules

based on previous research on distributive justice,3 we construct the following allocation

rule in the context of the Galbraith Mechanism:

a∗ij =


ej

ej+ek

1
2

if ej + ek 6= 0

if ej + ek = 0
(1)

Proposition 1 (Galbraith Mechanism with Fair Allocation). For the three player case,

suppose each player i allocates using the proportional rule outlined in Equation 1 in the

second stage. Then the strategy profile in which ei = ē for each i is the dominant strategy

Nash equilibrium in the first stage if and only if β > 3
2
.

The proof of Proposition 1 is relegated to Appendix A. Note that this proposition can

be easily extended to the n player case: ei = ē for each i is the dominant strategy Nash

equilibrium in the first stage if and only if β > n
n−1

.

3According to the equity theory (Adams, 1965), the fair proportion of player j’s share of the total outcome
should be qi = ei

ei+ej+ek
. Under the Galbraith Mechanism, perfect implementation of the proportional rule

cannot always be achieved. This is because the highest fraction one player can get is two-thirds. Suppose
player i deserves more than two-thirds under the exact proportional rule, i.e., qi = ei

ei+ej+ek
> 2

3 , then this

cannot be implemented under the Galbraith Mechanism. However, the allocation rule described in equation
(1) is equivalent to what has be described as the accountability principle in Konow (1996) and the Liberal
fairness rule in Cappelen et al. (2007) from the spectator’s point of view.
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Motivated by Proposition 1, we now investigate whether the experimental findings will

support our theory. In particular, we run experiments to try to answer the following two

questions: first, how do people allocate in the second stage, and second, how do people

contribute in the first stage.

3 Experimental Design and Procedure

We ran 14 experimental sessions at the Centre for Decision Research and Experimental

Economics (CeDEx) in Nottingham in February 2015. The experiments have two treatments:

one control treatment and one Galbraith Mechanism treatment (see Table 1). In total, 126

university students from various fields of study took part, with 9 participants in each session.

Participants were allowed to participate in only one session. Those participants were drawn

from the CeDEx subject pool, which was managed using the Online Recruitment System

for Economic Experiments (ORSEE; Greiner (2015)). The experiment was programmed in

z-Tree (Fischbacher, 2007). Each session lasted about 60 minutes and the average payment

was 8.34 (equivalent to $12.93 or e11.65 at the time of the experiment).

Upon arrival, participants were asked to randomly draw a number from a bag and they

were seated in a partitioned computer terminal according to that number. The experimental

instructions were provided to each participant in written form and were read aloud to the

subjects (the instructions can be found in Appendix B). Only after all participants had

given the correct quiz answers with respect to the instructions, the experiment started.

Each experiment contained 20 rounds of decision making tasks that can be divided into two

segments of ten rounds (see Table 1). The instructions for the second ten-round segment were

distributed only after the completion of the first ten rounds. In each round, the computer

program draws three participants to form a group, and the group composition reshuffles

every round.4

In the first ten rounds, equal sharing rules were applied to all participants.5 We used

4The matching of the three-person group was pre-determined by the computer software. Specifically,
each participant would never be in the same group with the two other participants twice during the whole
experiment. We randomized the display of players’ contribution details on the screen in each round; in this
way, players were not able to track the identities of other players over rounds.

5The equal sharing rule, where the final production is equally divided among group members, is equivalent
to the voluntary contribution mechanism. To compare with other studies (e.g., Andreoni and Varian (1999);
Fehr and Gächter (2000); Falkinger et al. (2000)), we introduce our mechanism after ten rounds of the equal
sharing rule.
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Table 1: Experiment Design

Treatment No. of No. of
Round1-10 Round11-20 subjects sessions

Experiment Equal Share Galbraith Mechanism 90 10

Control Equal Share Equal Share 36 4

Total: 216 14

Notes: In each round, a group of three players will be matched by random-matching protocols . Each player

chooses a contribution ei, and the production function is Π(e1, e2, e3) = 1.8(e1 + e2 + e3). In the equal share

treatment, player i’s payoff function is πi = 10 − ei + 0.6(e1 + e2 + e3). In the Galbraith Mechanism, each

player i allocates 0.6(e1 + e2 + e3) between the other two players so that aij +aik = 0.6(e1 + e2 + e3). Player

i’s own payoff is πi = 10− ei + aji + aki.

neutral terminology in the experiment and the contribution question formulated on the

computer screen was “Tokens you want to add to the Group Fund: .” In each round, players

chose an integer from 0 to 10. The integer hence represented the contribution, ei, chosen by

the player i. The production function was Π(e1, e2, e3) = 1.8(e1 + e2 + e3), and each player’s

payoff function was πi = 10 − ei + 1
3
Π. At the end of each round, players were informed

about all group members’ payoffs and were reminded that they would not be in the same

group again.

In round 11-20, there were two decision stages in each round of the Galbraith Mechanism.

The first stage decision was the same as in the Equal Share treatment, that is, each player

voluntarily chose an integer from 0 to 10. In the second stage, the computer screen displayed

each group members contribution decisions in the first stage and the value of the group

fund. Each players task was to divide 1
3
Π or 0.6(e1 + e2 + e3) between the other two group

members with a resolution of 0.1. In other words, player i allocated ãij to player j and

allocated the remaining ãik = Π
3
− ãij to player k. Player i’s share of the group production

was determined by the allocation decisions by player j and player k. Their payoff function

was πi = 10 − ei + ãji + ãki.
6 In the control treatment, players simply repeated the same

decision task as in round 1-10 for another ten rounds.

6In section 2, aij is defined as the proportion player i allocates to player j, and aij +aik = 1. To calculate
player’s final profit, aij would be normalized by dividing by the group number and multiplying by the joint

profit, i.e., πi = 10−ei +
aji+aki

3 Π. To make our experiment cognitively easy, we asked participants to divide
Π
3 ex ante. In other words, we set ãij = Π

3 aij .
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Figure 1: Time-path of the Average Contribution by Treatment

4 Experimental Results

We split the analysis into three parts. Section 4.1 looks at the difference of the contribution

decisions across treatments. Section 4.2 analyzes the participants’ allocation decisions, and

Section 4.3 studies how allocation choices affect the players’ contribution decisions.

4.1 Contributions

Figure 1 displays the time-path of the average contributions over all 20 iterations for each

treatment. The first ten rounds are when the equal sharing rule is used. We observe a steady

decline in the level of contributions over time. Participants start with an average contribution

level of 3.72 and end up with 0.65 in round 10. This finding is consistent with results from

other studies in which group compositions are reshuffled every round (e.g.,Croson (1996);

Fischbacher and Gächter (2010)).

At the beginning of round 11, we introduce the Galbraith Mechanism in 10 out of 14

sessions. This introduction triggers a dramatic increase in the contribution level. Specifically,

43.3% of players increase their contributions with the Galbraith Mechanism in round 11, but

only 24.3% of players raises their contributions in the control treatment (binomial test, z =

1.99, p = 0.02, one-sided). Furthermore, the contribution level in the Galbraith Mechanism
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in round 11 (mean=5.17) is significantly higher than the contribution in the control treatment

(mean=1.33, Mann-Whitney test on session’s average contribution, z = 2.82, p < 0.01, one-

sided). Over the ten rounds with the Galbraith Mechanism, the average contribution is 8.0

and the final round contributions reach an average of 9.16. In the last round, most players

(82.8%) contribute fully to the group fund, and 21 out of 30 three-player groups coordinate

on the (10,10,10) equilibrium. On the other hand, almost all players (35 out of 36) in the

control treatment have zero contribution in later rounds. Appendix C1 shows the average

contributions across rounds and sessions.

Result 1. Sessions with the Galbraith Mechanism observe a 80% cooperative rate while

sessions with the equal share allocation rule fail to promote cooperation.

4.2 Allocation Decisions

In this section, we investigate players’ allocation decisions. Recall that for each round in the

Galbraith Mechanism treatment, participants need to decide on how to allocate between the

other two group members. The allocation must sum up to one third of the group fund, that

is, ãij + ãik ≡ Π
3
. In the following analysis, we only consider each player i’s allocation to

player j (randomly determined from the data), ãij, because the allocation to each player k

is automatically determined by ãik ≡ Π
3
− ãij.

We represent all players’ allocation choices in Figure 2a. The horizontal axis indicates

the fraction player j deserves from player i, that is,
ej

ej+ek
, and the vertical axis shows the

actual fraction i allocates to player j, that is,
ãij

ãij+ãik
. The size of the circle indicates the

relative frequency of the observation. More than half of the observations (55.4%) fall exactly

on the 45-degree line where
ej

ej+ek
=

ãij
ãij+ãik

. This means a large number of players allocate

proportionally according to the other’s entitlement. Indeed, the fractional allocations (mean

of
ãij

ãij+ãik
equals 0.503) are very close to players’ entitlements (mean of

ej
ej+ek

equals 0.502,

t-test, p = 0.75, two sided).

Table 2 presents additional support for the use of the proportional rule from a random

effects regression. The dependent variable is the fraction player i allocates to player j, and the

independent variables is the fraction player j deserves from player i. The proportional rule

predicts the coefficient of
ej

ej+ek
equals 1 and the intercept term equals zero. The estimates of

these parameters are consistent with the hypothesis: the estimated coefficient of
ej

ej+ek
, 0.919,

is different from zero (p < 0.01) and not significantly different from 1(F-test, χ2(1) = 1.43,
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Figure 2: Allocation Decisions in Galbraith Mechanism

p = 0.23). The intercept, meaning the fraction player i allocates to player j when player j

deserves zero, is not significantly different from zero (p = 0.20).

Result 2. In most cases, players allocate according to the others’ contributions.

Besides these observations gathered on the 45-degree line, a closer visual investigation

in Figure 2a reveals some other interesting patterns of the allocation choices. We categorize

allocators into four different types as shown in Figure 2b.7

Proportionists Those are the players who allocate based on others merit. Overall, 55.4%

of the observations fall exactly on the 45 degree line in Figure 2a, i.e.,
ãij

ãij+ãik
=

ej
ej+ek

.

Because our software only allows the input with a resolution of 0.1 and that
ej

ej+ek
may

not always be a fraction of ten, we relax the equality condition and use the following

condition instead. Define player i as a Proportionist when | ãij
ãij+ãik

− ej
ej+ek

|≤ 0.05 (see

the category highlighted as Proportionists in Figure 2b). In 76.7% of the instances,

players allocate like proportionists.

7A depper investigation of which players use the non-proportional rules is provided by probit regressions
in Appendix C2. For these players, the higher their contribution the more likely they are to choose the
super-proportional rule and the less likely to use the egalitarian rule or to make a random allocation.

8



Dep. Variable: Fraction Player i Allocate to Player j
(1) (2) (3)

Fraction j Deserved: β1 0.919∗∗∗ 0.844∗∗∗ 0.889∗∗∗

(0.068) (0.121) (0.068)

Intercept: β0 0.044 0.138 -0.006
(0.034) (0.082) (0.079)

#Data Used All ej > ei ej < ei
#Observations 900 219 214
#Clusters 10 10 10

H0 : β1 = 1 χ2(1) = 1.43 χ2(1) = 1.66 χ2(1) = 2.63
(p = 0.231) (p = 0.197) (p = 0.105)

Notes: The table reports the regression results for random-effects model with the standard error
clustered at the session level. ∗∗∗ indicates significance at 1% level. Period dummies are controlled
for in the regression: the estimated coefficients are between -0.028 to 0.021, and they are not
significantly different from zero at conventional significance levels.

Table 2: Allocation Choice: Random Effects

Egalitarians These are the players who allocate the 1
3
Π equally to the other two group

members. In 52.2% of the observations, players allocate using the egalitarian rule

(see the category highlighted as Egalitarians in Figure 2b). Note that proportionists

and egalitarians are not mutually exclusive. For example, if the other two players

contribute the same amount, both the proportional and the egalitarian rules predict

an equal allocation. This is not a rare case especially in later rounds (rounds 16-

20), where full contributions of all three players are frequently observed. In total,

there are 48.2% of the observations that can be classified as both using proportional

and egalitarian rules. However, when conditioning on the inequality of contributions

between the other two players, only less than 5% of players choose to allocate equally.

Super-proportionists If player j contributes less than player k, player i, under the “super-

proportionists” category, rewards player j with less than what a proportionist would

give. The other player, player k, is consequently over-compensated. 10.5% of the ob-

servations falls under this rule (see the category highlighted as Super-proportionists in

Figure 2b). In other words, super-proportionists tend to “punish” players who con-

tribute less than the others and over-compensate players who contribute more than

the others. Note that the possibility allowed by the Galbraith Mechanism to “pun-

ish” other players is different from the “punishment mechanism” in Fehr and Gächter

9



(2000). Under their setting, players can choose to incur a cost to destroy part of the

other players’ payoff. With the Galbraith Mechanism, however, players bear no cost to

“punish” others. Moreover, if a super-proportionist “punishes” one player, the other

group member will be over-compensated automatically. The overall welfare, hence,

remains the same.

Random-allocators The remaining 8.6% of observations that cannot be captured by any

of the three rules listed above, we label as random allocators (see the last panel of

Figure 2b).

4.3 Allocation received and contribution decisions

So far, we have established the empirical support for Proposition 1. That is, most players do

allocate using the proportional rule and the contribution rate is high. In this section, we want

to check the causal relationship between these two events. Specifically, we look at the effect of

the reward players receive in the previous round on their contribution decisions in the current

round. Note that the reward a player receives in a certain round is the aggregate result of

her two group members’ allocation rules. We categorize them in a similar way where we

define different types of allocators in the previous section.8, 9 Most players are treated by the

proportional rule under most circumstances (77.5%), and in about 47.7% of the cases all three

group members are rewarded with equal shares. Note that, in 45% of the total observations,

these two rules overlap. This occurs because all three players contribute equally; hence, they

deserve an equal share. To study the effect of each individual allocation rule received on a

player’s next round contribution, we exclude these observations in the following analysis.10

In this restricted dataset (n=425), in 59.2% of the circumstances, players are treated by

the proportional rule, and in 4.8% of the cases, they are treated by the egalitarian rule.

In 12.5% of the incidences, players are under-compensated, or punished, for contributing

8The fair allocation player i “should” receive under the Galbraith Mechanism is qFi = 1
3 ( ei

ei+ej
+ ei

ei+ek
).

When ei + ej = 0 or ei + ek = 0, qFi = 1
6 and when ei + ej + ek = 0, qFi = 1

3 , although these later two

cases never showed up in our dataset. The actual fraction player i receives is qi =
aji+aki

3 . Player i is
treated by the proportional rule if |qi − qFi | ≤ 0.05. Player i is treated by the egalitarian rule if qi = 1

3 .
When qi < qFi < 1

3 and qFi − qi > 0.05, we say player i is being under-compensated, or punished. When
qi > qFi > 1

3 and qi − qFi > 0.05, we say player i is being over-compensated. If player i’s received allocations
cannot be classified by the rules outlined before, we say player i is treated by a random allocation.

9Note that the fair allocation i should receive in the liberal sense is q∗i = ei
ei+ej+ek

; it can be different to

the fair amount player i receives under the Galbraith Mechanism qFi = 1
3 ( ei

ei+ej
+ ei

ei+ek
).

10We also conduct a parametric test in Appendix C3 with and without the data exclusions. The results
are consistent with the following analysis.
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less than their group members; in 13.8% of the cases, players are over-compensated for

contributing more than their group members. These latter two categories correspond to the

“super-proportional” types of players as discussed in the previous section. In the remaining

9.7% of incidences, players are treated by a random allocation.

Figure 3 presents the one-round change in the contributions according to whether or not

the player is treated by a certain allocation rule from the previous round. We want to discover

whether there is difference in the one round change based on the allocations players received

from the last round. For example, the first two bars in the figure show that players who are

being “punished” increase their contributions in the next round (mean = 1.85) more than

those players who are not being punished (mean = 0.62, Mann-Whitney test,11 z = 3.07, p <

0.01, two-sided). While receiving a proportional allocation increases players’ contribution

compare to those players who are treated by other rules (mean difference = 0.45; Mann-

Whitney test, z = 1.58, p = 0.11, two-sided), being over-compensated seem to decrease

their contributions (mean difference = -0.41; Mann-Whitney test, z = 3.80, p < 0.01, two-

sided).12 Players who receive an equal allocation despite their unequal contributions lower

their next round contributions (mean difference = -0.97; Mann-Whitney test, z = 3.02,

p < 0.01, two-sided). Last, being treated by a random rule has a strong negative effect on

players’ contribution in the subsequent round; on average, those players contribute 1.07 less

than players who are treated by alternative rules (Mann-Whitney test, z = 4.19, p < 0.01,

two-sided).

Result 3. How players are rewarded in the allocation stage affects their contribution deci-

sions in the subsequent round: those players who are treated by the proportional rule or who

are under-compensated by their group members increase their contributions; on the other

hand, those players who are treated by the egalitarian rule or random rules, or who are

over-compensated by their group members, decrease their contributions in the next round.

11To cope with the repeated measure problem, the following Mann-Whitney tests are all clustered at the
individual level.

12Players who are being overcompensated have an average contribution of 8.58, and 68.3% of these
players have full contributions. Therefore, it is difficult for over-compensation to stimulate further increases
in contribution. Previous studies also found that the effect of punishment is stronger than the effect of
reward (e.g. Andreoni et al., 2003; Sefton et al., 2007).
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those players who are not treated by that particular rule.

Figure 3: The response of contributions according to each allocation rules received

5 Conclusion

Our goal in this study was to propose and experimentally test a mechanism in which peers

can decide on others’ payoffs after a joint production stage. We test the mechanism in a

economic laboratory with groups of three players. We found that the majority of participants

allocate according to what the other players deserve from the group. Consequently, almost

full contribution in the production stage in the later rounds of the experiment are observed.

We interpret our result as a successful attempt to improve social efficiency by combining

social preference with the right form of institution.

In the traditional mechanism design literature, self-interest is an important assumption.

Recent developments in behavioural and experimental studies show various degrees of other-

regarding preferences (Fehr and Schmidt (1999); Charness and Rabin (2002); Cox et al.

(2007); Benabou and Tirole (2011)). Although a complete replacement of pure self-interest

with various forms of “social preferences” may lead to unreliable results, to design an effective

institution, richer behavioural assumptions such as fairness and other moral standards are

undeniably valuable. In our study, we demonstrate that a small intrinsic concern for justice,

12



when utilized by an appropriate social institution, has significant success in overcoming the

free-rider problem in team production and improving social efficiency. In our view, such a

mechanism inherently relying on behavioural assumptions deserves further study, and may

have great potential in practical applications.
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Appendices

Appendix A. Proof of Proposition 1

Proof. In the first stage, ei = ē is a dominant strategy if and only if πi(ē, e−i) > πi(ei, e−i),
∀e−i. It suffices to prove πi(ei + ∆ei, e−i) > πi(ei, e−i),∀e−i where ∆ei > 0 . We consider the
following three cases.

1. Suppose ej = ek = 0. If player i chooses to contribute, ei > 0, both player j and player
k will give player i 1 in the allocation stage. Therefore, aji + aki = 2 and πi(ei, e−i) =
ē − ei + 2

3
βei. If player i chooses not to contribute, then πi(0, e−i) = ē. Note, β > 3

2

is a sufficient condition to make πi(ei, e−i) > πi(0, e−i). Furthermore, when ei > 0, we
have πi(ei + ∆ei, e−i) = ē+ (2

3
β−1)(ei + ∆ei). Therefore, πi(ei + ∆ei, e−i) > πi(ei, e−i)

if and only if β > 3
2
.

2. Suppose ej = 0 and ek > 0, or, ej > 0 and ek = 0. That is, except for player i, there is
only one player who contributes. We only consider the case where player k contributes
and player j does not; the other case would be similar. Now if player i chooses to
contribute, ei > 0, player k would give player i aki = 1 and player j would give player
i ei
ei+ek

. Therefore aki + aji = 1 + ei
ei+ek

and πi(ei, e−i) = ē− ei + β
3
(ei + ek)(1 + ei

ei+ek
).

Next, suppose that player i does not contribute, that is, ei = 0. Then only player
k will give him 1

2
and player j will give him zero. Therefore, aki + aji = 1/2 and

πi(0, e−i) = ē+ β
6
ek. Note, β > 3

2
is a sufficient condition to make πi(ei, e−i) > πi(0, e−i).

Furthermore, when ei > 0, we have πi(ei + ∆ei, e−i) − πi(ei, e−i) = (2
3
β − 1)∆ei.

Therefore, πi(ei + ∆ei, e−i) > πi(ei, e−i) if and only if β > 3
2
.

3. Suppose ej > 0 and ek > 0. That is, both player j and player k contribute. If player
i chooses to contribute, ei > 0, player j will give him ei

ei+ek
and player k will give

him ei
ei+ej

. Therefore, aji + aki = ei
ei+ek

+ ei
ei+ej

and πi(ei, e−i) = ē − ei + β
3
(ei + ej +

ek)(
ei

ei+ek
+ ei

ei+ej
). If player i chooses not to contribute, then πi(0, e−i) = ē. We next

re-write player i’s payoff function πi(ei, e−i) for ease of calculation, and then prove
πi(ei + ∆ei, e−i)− πi(ei, e−i) > 0:
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πi(ei, e−i) = ē− ei +
β

3
(ei + ej + ek)(

ei
ei + ej

+
ei

ei + ek
)

= ē− ei +
β

3
(ei +

eiek
ei + ej

+ ei +
eiej
ei + ek

)

= ē− ei +
2β

3
ei +

β

3
ei(

ek
ei + ej

+
ej

ei + ek
)

= ē+ (
2β

3
− 1)ei +

β

3
(

ek
1 +

ej
ei

+
ej

1 + ek
ei

) (2)

Thus,

πi(ei + ∆ei, e−i)− πi(ei, e−i)

= (
2β

3
− 1)∆ei +

β

3
(

ek
1 +

ej
ei+∆ei

+
ej

1 + ek
ei+∆ei

)− β

3
(

ek
1 +

ej
ei

+
ej

1 + ek
ei

)

= (
2β

3
− 1)∆ei +

β

3
(

ek

1 +
ej

ei+∆ei

−
ek

1 +
ej
ei

+
ej

1 + ek
ei+∆ei

−
ej

1 + ek
ei

) (3)

The first bracket in Equation 3 is greater than zero if and only if β > 3
2
; the second

bracket is always greater than zero when ∆ei > 0.
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Appendix B. Experimental Instructions

We present the experimental instructions for the experiment treatment (Sequence 1 is for
the equal sharing rules and sequence 2 is for the Galbraith Mechanism). Participants receive
printed copies of the instructions and the experimenter read it aloud in each session. Sequence
2 instruction is distributed only after the completion of Part 1 decisions. The accompanied
quiz questions and z-Tree program are available upon request.

SEQUENCE 1 (Decision round 1-10)

Welcome! You are taking part in a decision making experiment. Now that the experiment
has begun, we ask that you do not talk. The instructions are simple. If you follow them
carefully and make good decisions, you can earn a considerable amount of money. If you
have questions after we finish reading the instructions, please raise your hand and one of
the experimenters will approach you and answer your questions in private. This experiment
consists of two sequences of decision rounds. Each sequence contains ten rounds. In each
round, you will be in a group with two other people, but you will not know which of the
other two people in this room are in your group. The people in your group will change from
round to round, and in particular you will never be matched with the same set of two other
participants twice during the whole experiment.

The decisions made by you and the other people in your group will determine your
earnings in that round. Your earnings in this experiment are expressed in experimental
currency units, which we will refer to as ECUs. At the end of the experiment you will be paid
in cash using a conversion rate of 1 of every 30 ECUs of earnings from the experiment. Under
no circumstance will we expose your identity. In other words, your decisions and earnings
will remain anonymous with us. This set of instructions details Sequence 1. An additional
set of instructions detailing sequence 2 will be provided after sequence 1 is completed.

Sequence 1 consists of ten decision rounds. At the beginning of each round, you will
be randomly allocated a participant identification letter, either A, B, or C. (Thus, your
identification letter may change from round to round).

Decision Task in Each Round Each individual begins each round with an endowment
of 10 tokens in their Individual Fund. Tokens in Individual Fund worth 1 ECU each. Each
three-person group begins with a Group Fund of 0 ECUs each round. Each person will
decide independently and privately whether or not to contribute any of his/her tokens from
his/her own Individual Fund into the Group Fund. Tokens in the Group Fund worth 1.8
ECU each. Each person can contribute up to a maximum of 10 tokens to the Group Fund.
Decisions must be made in whole tokens. That is, each person can add 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, or 10 tokens to the Group Fund.

Feedback and Earnings After all participants have made their decisions for the round,
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the computer will tabulate the results. ECUs in Group Fund = 1.8 × (Sum of tokens in
the Group Fund). ECUs in the Group Fund will be divided equally among all individuals in
the group. That is, each group member will receive one-third of ECUs in the Group Fund.
Your earning in one round equals ECUs in your Individual Fund plus one-third of ECUs in
the Group Fund. Your Earnings =ECUs in Individual Fund + 1

3
ECUs in Group Fund. At

the end of each round, you will receive information on your Group Fund earnings and your
total earnings for that round. You will also be informed of all group members’ contribution
to the Group Fund and their earnings in ECUs. Total Earnings for the experiment will be
the sum of the earnings in all rounds of the experiment. This completes the instructions for
Sequence 1.Before we begin the experiment, to make sure that every participant understands
the instructions, please answer several review questions on your screen.

SEQUENCE 2 (Decision round 11-20)

Sequence 2 consists of ten decision rounds. In each round, you will be in a group with two
other people, but you will not know which of the other two people in this room are in your
group. The people in your group will change from round to round, and in particular you
will never be matched with the same set of two other participants twice during the whole
experiment. At the beginning of each round, you will be randomly allocated a participant
identification letter, either A, B, or C. (Thus, your identification letter may change from
round to round).

Decision Task in Each Round Each individual begins each round with an endowment
of 10 tokens in their Individual Fund. Tokens in Individual Fund worth 1 ECU each. Each
decision round will have two phases.

Phase 1: Decision Choice Decision choice will be the same as in Sequence 1. Each three-
person group begins with a Group Fund of 0 ECUs each round. Each person will decide
independently and privately whether or not to contribute any of his/her tokens from his/her
own Individual Fund into the Group Fund. Tokens in Group Fund worth 1.8 ECU each.
Each person can contribute up to a maximum of 10 tokens to the Group Fund. Decisions
must be made in whole tokens. That is, each person can add 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10
tokens to the Group Fund.

Phase 2: Allocation Choice After all individuals have made their decisions in Phase 1,
you will be informed of the other two group members’ contribution to the Group Fund,
the total number of tokens and ECUs in the Group Fund. ECUs in Group Fund = 1.8 ×
(Sum of tokens in the Group Fund). You decide how to allocate one-third of the ECUs
in the Group Fund between the other two group members.In other words, the sum of your
allocation between the other two group members will be one-third of ECUs in the Group
Fund. Each person can only divide one-third of ECUs in the Group Fund for the other two
group members, their own share of the Group Fund will be determined by the allocation
decisions of the other two group members. Specifically, 1) Person A will divide one-third of
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ECUs in the Group Fund between Person B and Person C. 2) Person B will divide one-third
of ECUs in the Group Fund between Person A and Person C. 3) Person C will divide one-
third of ECUs in the Group Fund between Person A and Person B. You may change your
choice as often as you like. But once you click Submit, the decision will be final. Click the
calculator button on the lower-right corner if you need the assistance of calculation.

Feedback and Earnings After all individuals have made their decisions for the round, the
computer will tabulate the results. A person’s share of the Group Fund will be determined
at the end of phase 2. His/her earnings from Group Fund will be the sum of ECUs that
the other two group members allocate towards him/her. Your earnings in a round will equal
ECUs in your Individual Fund plus ECUs the other two group members allocated to you
(i.e., your share of ECUs in the Group Fund). At the end of each round, you will receive
information on your Group Fund earnings and your total earnings for that round. You will
also be informed of all group members’ contribution to the Group Fund, their allocation
decisions in phase 2 and their earnings in ECUs for that round. Total Earnings for the
experiment will be the sum of the earnings in all rounds of the experiment. This completes
the instructions. Before we resume the experiment, to make sure that every participant
understands the instructions, please answer several review questions on your screen.
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Appendix C. Further statistical analysis

C.1. Descriptive Statistics

This appendix provides additional statistics on players’ contributions in round 11-20. Table 3
shows the average contributions and the standarded deviation across rounds. Columns 6-7
report the Mann-Whiteney test clustered at the session level with the null hypothesis of
equal contributions. Figure 4 outlines the average contributions across sessions.

Round
Galbraith Mechanism Equal Share Mann-Whitney test

Mean S.D. Mean S.D. z statistic p value

11 5.17 3.56 1.33 2.98 2.82 0.005
12 6.18 3.22 0.44 1.18 2.82 0.005
13 7.29 2.98 0.14 0.54 2.83 0.005
14 8.06 2.75 0.14 0.68 2.83 0.005
15 8.59 2.28 0.22 1.05 2.84 0.004
16 8.94 2.14 0.33 1.69 2.84 0.004
17 8.97 2.45 0.03 0.17 2.91 0.004
18 8.93 2.44 0.00 0.00 2.93 0.003
19 9.11 2.23 0.00 0.00 2.93 0.003
20 9.17 2.20 0.06 0.33 2.91 0.004

Table 3: Summary of contributions in round 11-20
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C.2. What determines players’ allocation rules?

To understand what may help to explain players’ different allocation rules outlined in section
4.2, we use probit regressions of the form:

Pr{Aij,r = 1} = Λ(α1Contributioni,r+α2OtherContributioni,r+α3
ej

ej + ek
+α4Roundi+εi)

where Aij,r = 1 if the subject chooses a certain allocation rule to allocate to player j in
round r, and zero otherwise. We use the allocation rules defined in section 4.2 to classify Aij,r.
That is, in models (1)-(4), Aij,r indicates whether or not player i is using the proportional
rule, the egalitarian rule, the super-proportional rule and random rules to allocate in round
r, respectively. Contributioni,r is player i’s own contribution in round r. The variable
OtherContributioni,r is the average contribution of the other two group members in round
r. The variable

ej
ej+ek

is the fraction player j deserves from player i and εi,r is error term. We

exclude observations where the proportional rule and the egalitarian rule predict the same
outcome, because they do not help us to distinguish how players choose different rules.

Dependent Variables:
1 if player choose the allocation rule:

(1) (2) (3) (4)
Proportional Egalitarian Super-proportional Random

Contributioni 0.060 -0.325∗∗∗ 0.135∗∗∗ -0.079∗∗∗

[0.024] [-0.016] [0.037] [-0.019]
(0.038) (0.029)∗∗∗ (0.040)∗∗∗ (0.011)∗∗∗

Others′Contributioni -0.023 0.097∗∗ -0.059 0.057
[-0.009] [0.005] [-0.016] [0.014]
(0.021) (0.037)∗∗ (0.036) (0.043)

Entitlement:
ej

ej+ek
-0.253 0.764 -0.172 0.147

[-0.100] [0.038] [ -0.046] [0.035]
(0.260) (0.402) (0.247) (0.470)

Roundi -0.038 0.056 -0.037 0.098
[-0.015] [0.003] [-0.010] [0.023]
(0.042) (0.038) (0.046) (0.052)

Constant 0.537 -1.587∗ -0.834 -2.320∗

(0.575) (0.694)∗ (0.603) (1.052)∗

pseudo R2 0.016 0.344 0.061 0.050
Number of observations 466 466 466 466

Notes: The table shows four Probit estimates of the propensity for players to choose allocation rules: 1)
proportional rule, 2) egalitarian rule, 3) Super-proportional rule and 4) Random allocations, respectively.
Standard errors clustered at the session level are reported in brackets and the implied average marginal effects
are shown in parentheses below the coefficient estimates. *,** and *** denote, respectively, significance level
at the 10%, 5% and 1% levels.

Table 4: The Determinants of Allocation Rules
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Table 4 presents the estimated parameters for the model. (1) None of these variables has
a significant role in explaining why players choose the proportional rule relative to the others.
(2) The egalitarian rule tends to be chosen by low contributors, when others’ contributions
are high. (3) The super-proportional rule tends to be chosen by high contributors and (4)
Random allocations tend to made by low contributors.

C.3. How allocations received affect players’ decisions on contribu-
tions in the next round?

Figure 3 above graphically illustrates how a player is treated in the previous round affects
her next round contribution. In this appendix we use regression analysis to investigate this
relationship further. Our behavioural equation of the change in contribution for player i in
round r, ∆ei,r is given by:

∆ei,r = γ0 + Bi,r−1θ + γ1OtherContributioni,r−1 + γ2Roundi + εi

Here Bi,r−1 is a set of dummy variables which indicate how the player was treated at
the allocation stage in the previous round. Specifically, BEGA

i,r−1, BUNDERCOMP
i,r−1 , BOV ERCOMP

i,r−1 ,
BRANDOM
i,r−1 are dummy variables indicating whether the player was treated by the egalitarian

rule, was undercompensated, was overcompensated or was subject to a random allocation,
respectively, in the previous round. Being treated by the proportional rule is taken as the
base case. The variable OtherContributioni,r−1 represents the average contribution of the
other two members in the player’s group in the previous round. This is intended as a proxy
for the player’s belief about the likely contributions of the other group members in the
current round. The behavioural regulation of conditional cooperation (i.e. matching the
other group members’ contributions) is well documented in the literature (e.g. Fischbacher
et al. (2001);Fischbacher and Gächter (2010)). Roundi captures the time trend and εi,r is
an unobservable variable that is assumed to have mean zero and is uncorrelated with other
explanatory variables. The estimation method is OLS with robust standard errors clustered
at the session level.

Table 5 presents the estimated equations. The result in Columns 2 and 3 confirm that,
relative to the proportional rule, egalitarian or random treatment in the previous round
results in a lower increase (or larger decrease) in contribution in the current round. The
estimates in Column 2 exclude the “dual” observations (i.e. those that meet both the
proportional and egalitarian criteria), and there we find that players who were punished in
the previous round seem to increase their current contribution (the estimated coefficient is
0.741, two sided p = 0.11) and those who were over-compensated tend to decrease their
current contribution (the estimated coefficient is -0.489, two sided p = 0.09). These results
are strengthened when we include the dual observations under the egalitarian dummy in
Column 3. The estimated coefficient on OtherContributioni,r−1 is consistently positive and
significant indicating that a higher average contribution by the other group members in the
previous round generates a larger increase (or smaller decrease) in a player’s contribution
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Dependent Variable: One-round Change in Contribution

Treated by the egalitarian rule -0.935∗∗∗ -0.788∗∗∗ -0.947
(0.125) (0.0987) (0.443)

Being under-compensated 0.741 0.749∗ 2.803∗∗∗

(0.421) (0.275) (0.309)
Being over-compensated -0.489 -0.512∗∗ 0.270

(0.253) (0.111) (0.340)

Treated by random allocations -0.942∗∗∗ -0.608 -0.686
(0.177) (0.320) (0.387)

Others’ average contribution 0.146∗∗ 0.143∗∗ 0.278∗∗

(0.0358) (0.0324) (0.0646)

Round -0.175∗∗ -0.168∗∗∗

(0.0442) (0.0256)

Constant 2.545∗∗∗ 2.383∗∗∗ -0.238
(0.526) (0.359) (0.418)

Round used 12-20 12-20 12
Data Excluded Yes No No
Observations 415 810 90
Adjusted R2 0.168 0.184 0.257

Notes: All results are from OLS regression. Standard errors clustered on session level are reported
in brackets. ∗,∗∗ and ∗∗∗ denote, respectively, significance level at the 10%, 5% and 1% levels.
Column 2 excludes observations where all three players contribute equally.

Table 5: Determinants of One-Round Contribution Change

in the current round, regardless of treatment. Likewise the negative coefficient on Round
indicates that the increase in contributions get smaller as the rounds progress, other things
equal. This is consistent with the concavity of the plots in Figure 1. Finally, the last column
reports the results based on observations from round 12 only, which is the first round in
which the players receive feedback on the allocations made by the other group members.
Noteworthy here is the magnitude of the estimated coefficient on BUNDERCOMP

i,r−1 (two-sided
p < 0.01), which suggests that, other things equal, players who are being “punished” (under-
compensated) in round 11 increase their contributions dramatically (by an average of 2.8
out of 10 tokens) in round 12.
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