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Proportional payoffs in legislative bargaining with

weighted voting: a characterization

Maria Montero∗

March 2, 2016

Abstract

We examine the relationship between voting weights and expected equilib-

rium payoffs in legislative bargaining and provide a necessary and suffi cient

condition for payoffs to be proportional to weights. This condition has a nat-

ural interpretation in terms of the supply and demand for coalition partners.

An implication of this condition is that Snyder et al.’s (2005) result, that pay-

offs are proportional to weights in large replicated games, does not necessarily

extend to the smaller games that arise in applications. Departures from propor-

tionality may be substantial and may arise even in well-behaved (homogeneous)

games.
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1 Introduction

Many important collective bodies make decisions by weighted majority voting. Ex-

amples are the Electoral College in the United States, the International Monetary

Fund, the European Union Council of Ministers and any legislature with disciplined

political parties. An important question in this setting is how the distribution of

votes affects payoffs. Power indices such as the Shapley-Shubik index coincide with

voting weights only rarely. In contrast, Snyder, Ting and Ansolabehere (2005, p.

982) argue that

Elementary microeconomic theory teaches that in competitive situ-

ations perfect substitutes have the same price. In a political setting in

which votes might be traded or transferred in the formation of coalitions,

one might expect the same logic to apply. If a player has k votes, then

that player should command a price for those votes equal to the total

price of k players that each have one vote.

Snyder et al. (2005) use a noncooperative bargaining game based on the Baron-

Ferejohn (1989) model to show that a voter’s expected payoff is proportional to its

voting weight. They mention two diffi culties in proving this result: corner solutions

created by equal recognition probabilities, and nonhomogeneity of the game. Equal

recognition probabilities may lead to low-weight voters having disproportionately

high payoffs due to proposing power, whereas nonhomogeneous games create a dif-

ficulty in that players may be substitutes in some minimal winning coalitions but

not in others, and it is not immediately obvious what the competitive price for their

votes should be. They address these diffi culties by making recognition probabil-

ities proportional to voting weights and by replicating the game a finite (though

potentially large) number of times (see Proposition 2 in Snyder et al. (2005)).

Since the proof in Snyder et al. (2005) only covers replicated games, how far this

result extends to the legislatures with only a few parties that arise in applications is
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an open question. The present paper provides a necessary and suffi cient condition

for proportional equilibrium payoffs. This necessary and suffi cient condition is rele-

vant for any weighted voting game; the only assumption needed is that recognition

probabilities are proportional to the voting weights. We give an interpretation of

this condition in economic terms: there is no excess supply or demand of any player

type. An implication of this condition is that, even in the intuitively most favor-

able case (i.e. uniquely defined homogeneous weights and recognition probabilities

proportional to those weights) the equilibrium of the game is not necessarily com-

petitive. It may be possible for larger players to get a disproportionate payoff even

if cheaper perfect substitutes appear to be available.

In order to get a rough idea of how often proportional payoffs are predicted

in applications, the condition is used to calculate the frequency with which the

model actually predicts proportional payoffs in Snyder et al.’s dataset of coalition

governments in 14 countries from 1946 to 2001. Proportional payoffs are predicted

for about 69% of the legislatures; this proportion varies between countries and can be

as high as 100% (for Australia and Austria) or as low as 28% (for Italy). Deviations

from proportionality may be substantial, both quantitatively and qualitatively, and

this is illustrated with some examples from the dataset. Perhaps the most important

qualitative deviation is that it is possible for asymmetric parties to have the same

equilibrium expected payoff, even though one of the parties is a more desirable

coalition partner and has a greater probability of being proposer. Also, minimal

winning coalitions are not necessarily proposed in equilibrium (surplus coalitions in

which the proposer is the only nonpivotal player are also possible).

The remainder of the paper is organized as follows. Section 2 presents the model

and some simple examples, section 3 contains the characterization result, section 4

turns to the predictions of the model for the dataset, and section 5 concludes.
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2 Preliminaries

2.1 Weighted voting games

N = {1, ..., n} is the set of players, S ⊆ N represents a generic coalition and X is the

set of alternatives. In the legislative bargaining model under consideration, there is

a budget of size 1 to be divided and X = {x|xi ≥ 0 for all i and
∑
i∈N xi ≤ 1} is

the set of all possible allocations. Player i’s preferences are described by the utility

function ui(x) = xi.

The voting game is described by a set of winning coalitions W , where a winning

coalition is a coalition that can enforce any alternative in X. A voting game is

proper if a coalition S and its complement N\S cannot both be winning. A voting
game is strong if ties are not possible, i.e., S and N\S cannot both be losing. We
assume henceforth that the voting game is proper, but not necessarily strong. A

minimal winning coalition (MWC) S is a coalition that is just large enough to win,

that is, S is winning but no T  S is winning.

The voting game is weighted if it is possible to assign a number of votes (weight)

wi ≥ 0 to each player and to set a threshold q such that S is winning if and only
if
∑
i∈S wi ≥ q. The combination [q;w1, ..., wn] is a representation of the voting

game. There are many representations [q;w1, ..., wn] that are equivalent in that

they produce the same set of winning coalitions. A representation [q;w1, ..., wn] is

called homogeneous if all minimal winning coalitions have the same total weight.

For example, [5; 4, 3, 2] is not homogeneous because coalition {1, 2} has a weight of
7, whereas coalition {2, 3} has a weight of 5. A homogeneous representation of the
same game is [2; 1, 1, 1]. Homogeneous representations are preferred because they

give a more accurate description of the situation: [2; 1, 1, 1] reflects the fact that all

three players are in a symmetric position (i.e., they are perfect substitutes) since

any two of them can form a winning coalition. A game that admits a homogeneous

representation is a homogeneous game.
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Homogeneous voting weights are not necessarily unique. For example, [5; 3, 2, 2, 1]

and [7; 4, 3, 3, 1] are homogeneous representations of the same game. A possible ap-

proach to deal with this indeterminacy is to use minimal integer weights (MIWs);

this approach has been taken in the empirical literature1 (Ansolabehere et al. (2003),

Snyder et al. (2005), Cutler et al. (2014)). A representation has minimal integer

weights if all wi’s are integer numbers and there is no representation with smaller

weights (see Ostmann (1987), Freixas and Molinero (2009)).

2.2 The noncooperative model

The noncooperative model is the Baron-Ferejohn (1989) model with weighted voting.

Given a set of players N and an associated set of winning coalitions W , bargaining

proceeds as follows. Nature randomly selects one of the players to be the proposer,

according to a vector θ := (θ1, ..., θn) of recognition probabilities, where θi ≥ 0 for
all i ∈ N and

∑n
i=1 θi = 1. The proposer then proposes a distribution (x1, ..., xn)

of a budget, with xj ≥ 0 for all j = 1, ..., n and
∑n
j=1 xj ≤ 1. This proposal is then

voted upon.2 If the set of voters in favor of the proposal is a winning coalition,

the proposal is implemented and the game ends; otherwise the game proceeds to

the next round in which the process is repeated. Players share a discount factor

δ ∈ (0, 1].
A (pure) strategy for player i is a sequence σi = (σti)

∞
t=1, where σ

t
i, the t-th round

strategy of player i, prescribes:

1. A proposal, denoted by x.

1A large body of empirical literature is devoted to testing Gamson’s law, which states that

ministerial portfolios are allocated proportionally to the "raw" seat shares of parties in government

irrespective of the voting weights (see Warwick and Druckman (2006)). Cutler et al. (2014)

incorporate both seat shares and MIWs in their statistical model, and find that MIWs have a

bearing on which parties get into government, whereas portfolio allocation follows Gamson’s law.
2Voters are assumed to vote on the proposal sequentially. This assumption can be replaced by

simultaneous voting plus the additional equilibrium refinement that voters always vote as if their

vote makes a difference (see Baron and Kalai (1993)).
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2. A response function assigning "yes" or "no" to all possible proposals by the

other players.

Players may condition their actions on the history of play; however the literature

focuses on equilibria in which they do not condition on any elements of history other

than the current proposal, if any. These equilibria are called stationary subgame

perfect equilibria (SSPE). Stationarity requires that players follow the same strategy

at every round t regardless of past offers and responses to past offers. An SSPE

always exists (Banks and Duggan, 2000). For a fixed δ < 1, all SSPE involve

immediate agreement (Okada, 1996) and lead to the same expected payoffs (Eraslan

and McLennan, 2013). Expected equilibrium payoffs are usually unique even if

δ = 1; when they are not, it is possible to obtain a unique prediction by taking

the limit when δ → 1. As in Snyder et al. (2005), we consider the model with

no discounting, i.e., δ = 1. Calculations for particular numerical examples assume

δ → 1.

The logic of the Baron-Ferejohn model is simple. Take any stationary strategy

combination. Because of stationarity, player i’s expected payoff computed after a

proposal has (just) been rejected takes a constant value; we denote this expected

payoff (continuation value) by vi. Since δ = 1, this is also i’s expected payoff

computed at the start of the game. These expected payoffs act as prices. It is

optimal for player i to accept any proposal that guarantees him at least vi as a

responder and to reject all other proposals.3 Given that responders follow these

cutoff strategies, it is optimal for player i as a proposer to find the cheapest group

of players whose votes are enough to form a winning coalition and to offer each

of them exactly vj . We say that player i proposes coalition S if i ∈ S and the

proposed payoff vector x has xj = vj for j ∈ S\{i}, xi = 1 −
∑
j∈S\{i} vj and

xj = 0 for j ∈ N\S. Let pi(S) be the probability that i proposes S. Any SSPE
3There is little loss of generality in assuming that ties are always solved in favor of acceptance

(see Yan (2002), proposition 2; Eraslan and McLennan (2013), Appendix A).
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involves a vector of players’acceptance thresholds (vi)i∈N and a vector of proposal

probabilities (pi(S))S3i,i∈N satisfying two conditions (see Okada (1996), theorem 2):

(1) Proposers propose only the cheapest coalitions available given responders’ac-

ceptance thresholds, that is, any coalition with pi(S) > 0 must minimize
∑
j∈T\{i} vj

(or, equivalently,
∑
j∈T vj) subject to the constraint that T is a winning coalition

with T 3 i.
(2) Responders’acceptance thresholds coincide with their continuation values,

that is,

vi = θi
∑
S:S3i

pi(S)

1− ∑
j∈S\{i}

vj

+
 ∑
j∈N\{i}

θj
∑

S⊇{i,j}
pj(S)

 vi.
Intuitively, this bargaining model is competitive because a player with a dispro-

portionately high vi would be overpriced and get few proposals if any, which would

make it diffi cult for the player to have a high vi in the first place.

2.3 Replicated games

Given the original weighted majority game [q;w1, ..., wn], the game with r replica-

tions has rn players and a quota qn. The weight vector is found by replacing each

player i with r copies with weight wi.

Snyder et al. (2005) make no claims on how large r needs to be in order to ob-

tain proportional payoffs. Anecdotal evidence suggests that r is often surprisingly

small. However, as Laver et al. (2011) point out, the link between a replicated

game and the original game may be tenuous. For example, [5; 4, 3, 2] is a sym-

metric game with three interchangeable players but its replicated game with r = 2,

[10; 4, 4, 3, 3, 2, 2], has three non-interchangeable types of players. Likewise, [3; 2, 1, 1]

is a game in which player 1 belongs to all winning coalitions and therefore has veto

power, whereas the corresponding game with r = 2, [6; 2, 2, 1, 1, 1, 1], has no veto

players. Since the properties of replicated games are not always a good guide to the

properties of the original game, it is worth examining the original game directly.
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2.4 Some simple examples of nonproportionality

In this section we discuss why equilibrium payoffs may deviate from proportionality,

using some simple examples.

The simplest examples of deviation from proportionality are games with a veto

player, such as [3; 2, 1, 1]. The veto player gets everything (Winter, 1996) even

though it has only half of the total weight. It is clear that the substitution argument

does not bite in this case, since the veto player must be in all coalitions and cannot

be replaced by other players.

Games with veto players are special since the veto player cannot be replaced

at all, hence we would not expect proportionality to hold.4 However, lack of sub-

stitutability is not confined to games with veto players, as the following example

illustrates.

Consider the weighted voting game [5; 3, 2, 2, 1], discussed in Montero (2000).

This is a homogeneous game, and the weights reported are MIWs. There are two

types of MWCs: the large party together with one of the medium-size parties,

and the three smaller parties together. Let v[3], v[2] and v[1] denote the expected

equilibrium payoffs for a player with 3, 2 and 1 votes respectively. Since each

medium-size party could form a coalition with either the large party or the two

smaller parties, one would expect v[3] = v[2] + v[1]. However, there is no particular

reason to expect v[2] = 2v[1]. A player with 2 votes need not command a price equal

to that of two players with 1 vote each, since no two players with 1 vote are available

to replace the player with 2 votes.5

Example 1 Consider the weighted voting game [5; 3, 2, 2, 1]. Let θ =
(
3
8 ,
2
8 ,
2
8 ,
1
8

)
. It

is easy to see that v 6=
(
3
8 ,
2
8 ,
2
8 ,
1
8

)
. All SSPE have v[3] =

5
14 , v[2] =

4
14 and v[1] =

1
14 .

Proof. See Appendix.
4 Indeed, Snyder et al. (2005) exclude games with veto players from their analysis.
5Situations where one player cannot be replaced by smaller players in a MWC are known as

games with steps (see Ostmann (1987)).
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Note that equilibrium payoffs are quite different from the MIWs we started from.

In particular, the ratios v[3]/v[1] and v[2]/v[1] are 5 and 4 respectively instead of 3

and 2. Intuitively, there is an excess demand for the medium-size players. There

is competition for the medium-size players, since they are needed by both the large

and the small player, and there is no competition at all for the small player. As a

result, the medium-size players receive too many proposals and the other two players

do not receive enough proposals to sustain payoffs proportional to θ.

The ambiguity of the perfect substitutes argument (or, equivalently, the lack of

uniqueness of the homogeneous representation) is not the only reason why equilib-

rium payoffs may differ from the MIWs. The following example illustrates the lack

of proportionality of equilibrium payoffs in a particularly surprising setting, where

this issue does not arise.

Example 2 Consider the game [20; 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1]. There are two

types of MWC in this game: four of the large players, or three of the large players

together with five of the small players. The game is clearly homogeneous; further-

more, it has a unique homogeneous representation (up to a multiplicative constant).

The substitutability argument points in a very clear direction: a large player can be

replaced by five small players, and should get five times as much. Suppose players are

recognized with probabilities proportional to their voting weight, i.e., a large player

is recognized with probability 5
34 and a small player is recognized with probability

1
34 .

It turns out that the equilibrium is such that v[5] =
50
331 and v[1] =

9
331 . Hence, the

large players are getting a disproportionately high payoff since v[5] > 5v[1].

Proof. In order to show that this is an equilibrium, we need to find strategies

that lead to the expected payoffs and are optimal given the expected payoffs. The

strategies are as follows: all players propose a coalition of three large players and

five small players, and the proposer offers the coalition partners either 50
331 (for large

players) or 9
331 (for small players). As a responder, a large player votes in favor

of any proposal that gives him at least 50
331 , and a small player votes in favor of
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any proposal that gives him at least 9
331 . Proposers are acting optimally given the

responders’prices: no other winning coalition would be cheaper. Responders are

acting optimally provided that expected payoffs are indeed those, so it only remains

to check that expected payoffs are as assumed given the strategies:

v[5] =
5

34

[
1− 2× 50

331
− 5× 9

331

]
+
20

34

2

4

50

331
+
9

34

3

5

50

331
=
50

331

v[1] =
1

34

[
1− 3× 50

331
− 4× 9

331

]
+
25

34

5

9

9

331
+
8

34

4

8

9

331
=

9

331
.

It is tempting to conclude that the trouble with the previous example is that

there are not enough smaller players to replace the large players. All coalitions

that form in equilibrium are of type [55511111]. Proposers would rather replace

one of the coalition partners of type [5] with five players of type [1], but this is not

possible because there are only nine of those and five are already in the coalition.

Indeed, adding another small player would lead to proportional payoffs. Interest-

ingly, this is not the whole story: removing one of the small players would also lead

to proportional payoffs (more on this in the next section).

3 A necessary and suffi cient condition for proportion-

ality

Montero (2006) shows that, if θ coincides with the nucleolus (Schmeidler (1969)),

v coincides with the nucleolus as well. A suffi cient condition automatically follows

from this result: if the weights happen to be proportional to the nucleolus, expected

payoffs are proportional to the weights.6 Peleg (1968) shows that MIWs are pro-

6This condition is not necessary. For example, the nucleolus of the game [10; 3, 3, 3, 2, 2, 2] is

( 2
9
, 2
9
, 2
9
, 1
9
, 1
9
, 1
9
), which is not a system of weights at all, and nevertheless expected payoffs would

be proportional to the weights. I’m grateful to Peter Sudhölter for pointing out this example, which

appears in Kopelowitz (1967).
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portional to the nucleolus for all strong homogeneous games, hence the game being

in this class is a suffi cient condition for the proportionality of expected payoffs.

The arguments in Montero (2006) can be adapted to provide a more general

suffi cient condition for expected payoffs to be proportional to an arbitrary system

of weights. Moreover, this condition turns out to be necessary as well as we show

below.

Let W ∗ be the set of winning coalitions with minimum total weight, i.e. W ∗ =

argminS∈W
∑
i∈S wi. This set is weakly balanced if it is possible to find a collection

of weights (λS)S∈W ∗ such that λS ≥ 0 for all S ∈W ∗ and
∑
S3i λS = 1 for all i ∈ N .

Proposition 3 Let [q;w1, ..., wn] be an arbitrary weighted majority game, normal-

ized so that
∑
i∈N wi = 1, and let θ = w. There exists an SSPE with v = w if and

only if W ∗ is weakly balanced.

Proof. Because we haven’t imposed any conditions on the weights, it is possible

that no coalition has exactly q votes. Let minS∈W
∑
i∈S wi := q.7

1. Necessity. Suppose we have an SSPE with v = w. Expected payoffs are given

by

vi = θi
∑
S:S3i

pi(S)

1− ∑
j∈S\{i}

vj

+ rivi
where vi is i’s expected payoff, θi is the probability that i is selected to be proposer,

pi(S) is the probability that i proposes S conditional on i being the proposer, and

ri is the probability that i receives a proposal from another player.

Consider first the case in which wi > 0 for all i and each player belongs to at

least one coalition in W ∗. Then, if expected payoffs coincide with w, the optimal

coalitions for the proposer are the coalitions in W ∗ to which it belongs. Since

these coalitions have a total weight of q,
∑
j∈S\{i} vj = q − wi for all the proposed

7For example, if w =
(
5
13
, 4
13
, 4
13

)
and q = 7

13
, there is no coalition with exactly 7

13
votes and

q = 8
13
.
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coalitions, and
∑
S:S3i pi(S)

[
1−

∑
j∈S\{i} vj

]
can be written as 1− (q−wi). Since

both vi and θi coincide with wi for all i, we can write the equation for expected

payoffs as

wi = wi [1− (q − wi)] + riwi.

Dividing by wi (which we have assumed to be positive), it must be the case that

ri = q − wi, i.e. ri + wi = q. Since wi is also the probability of being proposer,

we see that the total probability of being part of the final coalition (the probability

of being proposer, wi, plus the probability of being responder, ri) must be the

same for all players. This implies that, if p(S) is the equilibrium probability of

coalition S forming,
∑
S3i p(S) = q for all i. Notice also that only coalitions with

q votes form in equilibrium (other coalitions are too expensive), so we may write∑
S:S∈W ∗,S3i p(S) = q for all i. If we divide both sides of the equation by q and

define λS := p(S)/q, we obtain
∑
S:S∈W ∗,S3i λS = 1 for all i. In other words, the

set of minimal winning coalitions with q votes must be weakly balanced.

If there is a player with wi > 0 who does not belong to any of the coalitions with

exactly q votes, this player needs to buy more than q − wi votes, and its payoff as
a proposer is less than 1− (q − wi). We then write

vi < θi [1− (q − wi)] + rivi.

If we replace vi and θi by wi and divide everything by wi, collecting terms we

find ri + wi > q. Since q > 1
2 we find that ri + wi >

1
2 , i.e., player i’s probability of

being in the final coalition is above 1
2 . Let S be one of the coalitions with q votes.

Players in S will never include i in their proposal. But this then implies that player

i is in the final coalition with a probability of at most 1 − q, which is less than 1
2 .

Hence, there cannot be an equilibrium with v = w in which a player does not belong

to any coalition in W ∗.

If v = w and wi = 0 for some i, we can still show that the setW ∗ must be weakly

balanced. Note that players with wi = 0 trivially belong to at least one coalition in
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W ∗. If wi = 0, the coalition that forms can be viewed as including i (since i receives

vi) or excluding i (since i receives 0). Choose a player k with wk > 0 and adopt the

arbitrary accounting convention that players with wi = 0 are considered part of the

coalition if and only if player k is part of the coalition. It follows from the analysis

above that
∑
S∈W ∗,S3i λS = 1 for all j.

2. Suffi ciency. Suppose W ∗ is weakly balanced. As in Montero (2006), we

can use the weights λS to construct a mixed strategy equilibrium in which v = w.

As a proposer, player i proposes one of the coalitions in W ∗ to which it belongs

according to the probability distribution pi(S) = λS for all S such that S ∈ W ∗,
S 3 i; pi(S) = 0 for all other S. Proposing S means that player i sets xj = wj for all

j ∈ S\{i}, xi = 1 −
∑
j∈S\{i}wj and xj = 0 for all j ∈ N\S. Since by assumption∑

S3i λS = 1 for all i, the strategy is well defined. As a responder, player i accepts

proposals if and only if xi ≥ wi.
We now show that this strategy combination leads to vi = wi for all i. This is

trivially the case if wi = 0, since by assumption this player has no chance of being

proposer and no other player offers i a positive payoff as a responder. If wi > 0,

player i’s expected payoff given this strategy combination equals

vi = θi
∑
S:S3i

pi(S)

1− ∑
j∈S\{i}

wj

+
 ∑
j∈N\{i}

θj
∑

S⊇{i,j}
pj(S)

wi.
By assumption, θi = wi. Player i’s payoff as a proposer can be written as 1 −

(q−wi) since player i only proposes coalitions inW ∗ and by definition these coalitions
have a total weight of q. The probability of receiving a proposal,

∑
j∈N\{i} θj

∑
S⊇{i,j} pj(S),

can be rewritten as
∑
S3i
∑
j∈S\{i} θjpj(S). Hence,

vi = wi[1− (q − wi)] +

∑
S3i

∑
j∈S\{i}

θjpj(S)

wi.
Since by construction only coalitions inW ∗ are proposed and those have pj(S) =
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λS , we can write

vi = wi[1− (q − wi)] +

 ∑
S:S3i,S∈W ∗

∑
j∈S\{i}

θjλS

wi =
= wi[1− (q − wi)] +

 ∑
S:S3i,S∈W ∗

λS
∑

j∈S\{i}
θj

wi.
Furthermore, since θj = wj and

∑
j∈S\{i}wj = q − wi for all S ∈ W ∗ we have∑

j∈S\{i} θj = q − wi. We can then write

vi = wi[1− (q − wi)] +

 ∑
S:S3i,S∈W ∗

λS(q − wi)

wi =
= wi[1− (q − wi)] +

(q − wi) ∑
S:S3i,S∈W ∗

λS

wi = wi

where the last equality follows from
∑
S:S3i,S∈W ∗ λS = 1.

Since vi = wi for all i, players are behaving optimally both as proposers and

as responders. Proposers propose only the cheapest coalitions available given the

responders’ acceptance thresholds (i.e., coalitions in W ∗) and responders accept

proposals if and only if xi ≥ vi. Hence, we have an SSPE.
The introduction of a discount factor δ ∈ (0, 1) would not affect the necessary

and suffi cient condition. If the condition is satisfied, expected payoffs are still pro-

portional and the only effect is that all continuation values shrink proportionally

and the proposer advantage increases. If the condition is not satisfied, expected

equilibrium payoffs cannot be proportional for any δ > 0, and their actual value

does in general depend on δ.

The condition can be interpreted as a requirement for the set of cheapest coali-

tions to be suffi ciently rich, so that no player is systematically in excess supply or

demand. Fix a vector of prices. The cheapest set of coalitions given those prices

are the coalitions most likely to form. If we can have a probability distribution over
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those coalitions such that all players are equally likely to be in the final coalition,

this is a sign that the prices are competitive. Instead, if a player always or never

appears in the final coalition, that player must be underpriced or overpriced.

There are no requirements on [q;w] in order for the condition to apply. Note

however that the condition has almost no chance to hold if w is the vector of seat

shares, since in general not all parties will belong to a coalition with the minimum

number of seats.8 MIWs on the other hand ensure that all players belong to a

winning coalition of minimum total weight, though even in this case the condition

does not necessarily hold as we have seen.9

Example 1 is a clear case of violation of this condition: player 4 is an inferior

player (Napel and Widgrén, 2001) in that it can only be in a MWC when players

2 and 3 are also present; since player 1 also needs either player 2 or player 3, it is

impossible for all players to be in the final coalition with equal probability. Example

2 is a more subtle instance of the same problem. There are two types of MWC,

[5555] and [55511111]. Even in the most favorable case for the small players, which

is when the only coalition type that forms is [55511111], it is still the case that a

type [5] player ends up in the coalition with probability 3
5 , whereas a type [1] player

only ends up in the coalition with probability 5
9 <

3
5 . Either adding or removing a

player of type [1] would make the equilibrium competitive again. Adding a player

8For example, assuming simple majority voting, the German Bundestag as of September 2014

would be associated with the weighted majority game [316; 311, 192, 64, 63]. There are four minimal

winning coalitions: {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}. The coalition with the minimum total number of

seats is {2, 3, 4}, with 319 seats. Party 1 does not belong to any coalition with 319 seats, hence the
corresponding W ∗ would not be balanced.

9Even though there are no requirements on [q;w] in order for the condition to apply, there is

an important requirement on the game form: recognition probabilities must be proportional to w.

As Kalandrakis (2006) has shown, recognition probabilities have a strong influence on equilibrium

payoffs. Diermeier and Merlo (2004) found some empirical support for the hypothesis of formateur

selection being proportional to seat shares. To the best of my knowledge there has been no empirical

testing of selection proportional to voting weights.
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would introduce a new type of MWC that favors the small players, [551111111111].

Removing a player leaves the two types of MWC unchanged, but it gives individual

type [1] players a greater chance of being part of coalition type [55511111].

It is worth noting that the condition does not have a straightforward connection

with other properties such as the homogeneity of the game. The condition always

holds for strong homogeneous games, but may hold for other games as well. For

example, it holds for the game [30; 14, 14, 12, 4, 4, 4, 4, 1, 1], which is neither homo-

geneous nor strong.10

4 Deviations from proportionality in applications

4.1 Predicted frequency of the deviations

Because the condition in Proposition 3 is necessary and suffi cient we have a charac-

terization, and are able to answer the question of whether payoffs would be propor-

tional to the voting weights in any particular case. Table 1 shows the frequency of

proportional equilibrium payoffs for the weight distributions in Snyder et al. (2005)’s

dataset.11 This frequency provides some guidance as to how likely the condition is

to hold in applications.12 As a byproduct, it also indicates the proportion of cases

in which the predictions tested by Snyder et al. are supported by the equilibrium

10Putting Proposition 3 together with Proposition 2 in Snyder et al. (2005), it follows that the

condition must be satisfied for suffi ciently large replica games. Kurz et al. (2014) show a stronger

result: weights of large replica games coincide with the nucleolus.
11These calculations use the MIWs provided by Snyder et al. in their supplementary material,

available at www.aeaweb.org. All frequencies are computed as a fraction of the total number of

observations in the dataset, where each government is an observation.
12Another potential application is the EU Council of Ministers. The condition fails to hold for

most of the historical weight distributions (see Le Breton et al. (2012)).
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of their theoretical model.

Table 1. Frequency of proportional equilibrium prediction

Observations Proportional Frequency

Australia 26 26 1

Austria 23 23 1

Belgium 36 25 0.69

Denmark 32 25 0.78

Finland 44 19 0.43

Iceland 22 18 0.82

Ireland 22 12 0.55

Italy 46 13 0.28

Luxembourg 17 11 0.65

Netherlands 23 10 0.43

Norway 27 26 0.96

Portugal 15 11 0.73

Sweden 25 24 0.96

(West) Germany 20 19 0.95

All countries 378 262 0.69

Some of these observations correspond to trivial cases in which either one party

has the overall majority or all parties are de facto symmetric. If we excluded trivial

cases (defined as cases in which all minimal integer weights are 0 or 1), the overall

frequency of the proportional equilibrium prediction would drop to about 59%.

4.2 Predicted size of the deviations

The necessary and suffi cient condition in Proposition 3 provides a yes/no answer

on proportionality: if it fails, expected equilibrium payoffs cannot be proportional.

But how far are they from being proportional? The following tables compare equi-

librium payoffs and weights for all games in the dataset with at most 7 players that
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fail to satisfy the condition (excluding games with a veto player, of which there are

two in the database). For each game, the table shows wi (the MIWs), vi (expected

equilibrium payoffs), and two quantitative measures of how far v is from being pro-

portional to w. One such measure is vi
wi/

∑
j∈N wj

, the ratio of payoffs to weights,

where weights are normalized so that they add up to 1. This ratio measures how

much of a player’s weight is translated into expected equilibrium payoffs; if expected

equilibrium payoffs were proportional to weights it would always be 1. Another mea-

sure is the relative payoffs vi/vn, i.e. the exchange rate between players according

to equilibrium predictions. If expected equilibrium payoffs were proportional, this

exchange rate would always be equal to wi/wn (in particular, if wn = 1, this ratio

would replicate the MIWs).

Expected payoffs for individual players can be substantially different from weight

shares, and this is very often true for the smallest player type, who may get as little

as 43% of its weight share. As a result, ratios between a player’s payoff and the

payoff of the smallest player are very different from wi/wn. For example, in the

game [9; 5, 4, 4, 1, 1, 1], a player with 5 votes does not get 5 times as much as a

player with 1 vote, but about 12 times as much. Nevertheless, if we focus on the

ratio of expected payoffs to weights, we see that many players get an expected payoff

that is close to their voting weight.
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Table 2. Homogeneous games with up to 6 players

Weights
Payoffs

Payoffs/weights
Relative payoffs

7 5 5 2 2 1

0.323 0.226 0.226 0.097 0.097 0.032

1.014 0.993 0.993 1.067 1.067 0.699

10.16 7.10 7.10 3.05 3.05 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

5 4 4 1 1 1

0.324 0.297 0.297 0.027 0.027 0.027

1.038 1.190 1.190 0.430 0.430 0.430

12.06 11.06 11.06 1 1 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

5 3 3 2 1

0.376 0.208 0.208 0.168 0.040

1.053 0.970 0.970 1.178 0.556

9.47 5.24 5.24 4.24 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

5 2 2 2 1

0.412 0.176 0.176 0.176 0.059

0.988 1.059 1.059 1.059 0.706

7 3 3 3 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

4 3 3 1 1

0.333 0.295 0.295 0.038 0.038

1.000 1.181 1.181 0.456 0.456

8.77 7.77 7.77 1 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

3 2 2 1

0.357 0.286 0.286 0.071

0.952 1.143 1.143 0.571

5 4 4 1
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Table 3. Homogeneous games with 7 players

Weights
Payoffs

Payoffs/weights
Relative payoffs

9 7 7 2 2 2 1

0.302 0.233 0.233 0.069 0.069 0.069 0.026

1.006 0.998 0.998 1.035 1.035 1.035 0.771

11.74 9.06 9.06 2.69 2.69 2.69 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

9 6 6 3 2 1 1

0.325 0.217 0.217 0.108 0.085 0.024 0.024

1.013 1.013 1.013 1.013 1.188 0.661 0.661

13.79 9.19 9.19 4.60 3.60 1 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

9 3 3 3 2 1 1

0.416 0.139 0.139 0.139 0.109 0.023 0.023

1.017 1.017 1.017 1.017 1.200 0.650 0.650

14.08 4.69 4.69 4.69 3.69 1 1

Table 4. Nonhomogeneous games with up to 6 players

Weights
Payoffs

Payoffs/weights
Relative payoffs

9 5 5 3 2 2

0.364 0.182 0.182 0.091 0.091 0.091

1.051 0.945 0.945 0.788 1.182 1.182

4 2 2 1 1 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

8 6 5 3 3 1

0.320 0.227 0.206 0.113 0.113 0.020

1.039 0.983 1.073 0.983 0.983 0.528

15.75 11.16 10.16 5.58 5.58 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

7 6 4 3 3 1

0.280 0.280 0.140 0.140 0.140 0.018

0.962 1.122 0.841 1.122 1.122 0.439

15.33 15.33 7.67 7.67 7.67 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

5 4 3 2 2

0.290 0.280 0.150 0.140 0.140

0.928 1.119 0.801 1.119 1.119

2.07 2 1.07 1 1
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Table 5. Nonhomogeneous games with 7 players

Weights
Payoffs

Payoffs/weights
Relative payoffs

13 11 9 6 5 4 2

0.261 0.218 0.174 0.130 0.088 0.087 0.043

1.003 0.989 0.968 1.082 0.877 1.082 1.082

6.03 5.03 4.03 3 2.03 2 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

13 10 9 6 6 3 1

0.264 0.198 0.198 0.132 0.132 0.066 0.010

0.975 0.951 1.056 1.056 1.056 1.056 0.472

26.86 20.14 20.14 13.43 13.43 6.71 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

12 10 7 5 4 3 1

0.288 0.237 0.170 0.119 0.102 0.068 0.017

1.009 0.996 1.017 0.997 1.070 0.947 0.704

17.20 14.16 10.12 7.08 6.08 4.04 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

11 8 7 4 4 1 1

0.320 0.222 0.209 0.111 0.111 0.014 0.014

1.046 1.000 1.073 1.000 1.000 0.491 0.491

23.43 16.28 15.28 8.14 8.14 1 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

10 9 7 3 3 3 1

0.269 0.269 0.179 0.090 0.090 0.090 0.013

0.969 1.077 0.923 1.077 1.077 1.077 0.462

21 21 14 7 7 7 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

10 3 3 3 2 2 1

0.426 0.120 0.120 0.120 0.093 0.093 0.027

1.023 0.961 0.961 0.961 1.117 1.117 0.649

15.76 4.44 4.44 4.44 3.44 3.44 1

Weights
Payoffs

Payoffs/weights
Relative payoffs

9 8 5 4 4 1 1

0.278 0.278 0.139 0.139 0.139 0.014 0.014

0.988 1.111 0.889 1.111 1.111 0.444 0.444

20 20 10 10 10 1 1

4.3 Qualitative equilibrium phenomena

An alternative way of looking at the importance of deviations is to focus not on

their size, but on the presence of equilibrium phenomena that would be ruled out if
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payoffs were proportional to the MIWs. We discuss three such phenomena: players

that are not interchangeable may have the same expected equilibrium payoffs, some

players may be too expensive to receive any proposals, and surplus coalitions may

form. All three phenomena can be illustrated using one of the weighted majority

games in the dataset, [13; 7, 6, 4, 3, 3, 1], corresponding to Belgium in 1972.

Example 4 Consider the weighted majority game [13; 7, 6, 4, 3, 3, 1]. Note that types

[7] and [6] are genuinely asymmetric: coalition [733] is winning but coalition [633] is

losing. Likewise, types [4] and [3] are genuinely asymmetric because [643] is winning

but [633] is losing. Let θ =
(
7
24 ,

6
24 ,

4
24 ,

3
24 ,

3
24 ,

1
24

)
. All SSPE have v[7] = v[6] =

46
164 ,

v[4] = v[3] =
23
164 and v[1] =

3
164 .

Proof. See Appendix.

4.3.1 Asymmetric players may have the same payoff

Example 4 shows that it is possible for two players to have the same equilibrium

expected payoffs, even though one of the players is more valuable as a coalition

partner and has the additional advantage of a higher recognition probability.

Some intuition for this result can be obtained by inspecting the list of MWCs.

There are seven MWCs of five types: [76], [743], [733], [643], [6331]. All MWCs

have exactly 13 votes except for the two coalitions of type [743]. If v[7] > v[6] and

v[4] > v[3], coalition [743] would be too expensive to be proposed by any player type,

because the alternative coalitions [643] and [733] would be cheaper. This leaves

four coalition types that could potentially be proposed, [76], [733], [643] and [6331].

Given this list, player [1] would need the cooperation of player [6] and both players

of type [3], whereas player [4] would need player [6] and one of the players of type

[3]. Likewise, player [7] would need either player [6] or both players of type [3].

Types [6] and [3] would be more in demand than types [7] and [4], and it would

not be possible to have v[7] > v[6] and v[4] > v[3]. It turns out that, in equilibrium,

v[7] = v[6] and v[4] = v[3].
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4.3.2 Some players may be too expensive to receive proposals

The equalities v[7] = v[6] and v[4] = v[3] have two implications. On the one hand,

coalition type [743] becomes relevant, because it is just as expensive as [643] and

[733] despite having one more vote. On the other hand, coalition type [6331] becomes

too expensive for anybody other than player [1] even though it only has 13 votes.

Players [6] and [3] would rather propose [643] than [6331], since its total cost is

v[6] + v[4] + v[3] = v[6] + 2v[3] < v[6] + 2v[3] + v[1].

Note that the substitutability logic applies to this example, but in a somewhat

perverse way. Instead of applying to the MWCs with 13 votes (coalition types [76],

[733], [643], and [6331]), it applies to coalition types [76], [733], [643] and [743].

Looking at the SSPE payoffs, player [1] appears underpriced since it only expects

about 0.02 even though its weight share is about 0.04. Types [6] and [3] are getting

a disproportionately high payoff compared to their weight share but this does not

result in their exclusion; instead, it is type [1] that is excluded. Indeed, given that

v[7] = v[6] and v[4] = v[3], player type [1] would be perceived as too expensive for any

positive value of v[1].

4.3.3 Surplus coalitions may form

The original Baron-Ferejohn model with symmetric players always leads to minimal

winning coalitions, since the proposer could otherwise drop one of the responders

and still have a winning coalition. With asymmetric players, it is still true that all

coalition partners must be pivotal, but the proposer is not necessarily pivotal. In

the previous example, type [1] finds it optimal to propose surplus coalitions such as

[7331] or [7431], since they are as expensive as the minimal winning coalition [6331]

given that v[7] = v[6] and v[4] = v[3]. Hence, surplus coalitions are not ruled out in

equilibrium under weighted voting, though the only type of surplus coalition that

may form is one in which the proposer is the only member of the coalition who is

not pivotal.
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5 Concluding remarks

This paper provides a necessary and suffi cient condition for equilibrium payoffs

to be proportional in the Baron-Ferejohn model with weighted voting. When the

condition is satisfied, the set of available coalitions is suffi ciently rich so that none of

the parties appears systematically too often (excess demand) or too seldom (excess

supply) in the final coalition. The condition is relatively easy to check in applications

since all equations involved are linear. Using the condition, it is found that the

frequency of legislatures in the field with proportional equilibrium payoffs is about

69%, though there is a lot of variation across countries. This frequency may be

viewed as suffi ciently high to support empirical work, specially in the countries

where it is highest.

Most counterexamples are not a result of the competitive bargaining logic failing,

but rather of its working in unexpected ways. However, in these cases the deviations

from proportionality may be substantial, both quantitatively and qualitatively, as

the examples provided illustrate.
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6 Appendix

6.1 Calculations for [5;3,2,2,1]

By contradiction, suppose v =
(
3
8 ,
2
8 ,
2
8 ,
1
8

)
. What would be the optimal proposer

behavior given v? The player with 3 votes needs to buy 2 votes, hence it always

offers v[2] to one of the players with 2 votes (the player with 1 vote is of no use to

this player, regardless of the value of v[1]). The player with 1 vote needs to buy 4

votes, and will buy them from the two players that control 2 votes each. A player

with 2 votes needs to buy 3 votes, and would be indifferent between buying them

from the large player or from the other two players since v[3] = v[2] + v[1]. Let p

be the probability that a player with 2 votes proposes to the player with 3 votes

(conditional on a player with 2 votes being selected as proposer). Expected payoffs

for types [3] and [1] must satisfy the following equations:

3

8
=

3

8

[
1− 2

8

]
+
4

8
p
3

8

1

8
=

1

8

[
1− 4

8

]
+
4

8
(1− p)1

8

From the second equation we find p = 0. This means that in order to sustain

a payoff of 18 for type [1], type [2] must always propose a coalition of type [221].

However, p = 0 does not solve the first equation: in order to sustain a payoff of 38
for type [3], p must be 1

2 .

Interestingly, the equilibrium is still competitive in the sense that v[3] = v[2]+v[1].

Below we construct an equilibrium strategy profile. Let player [3] propose to each

of the two players of type [2] with probability 1
2 , and let each of the players of type

[2] propose to player [3] with probability p. The equilibrium values of v[3], v[2], v[1]
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and p can be found from the following system:

v[3] =
3

8

[
1− v[2]

]
+
4

8
pv[3]

v[2] =
2

8

[
p(1− v[3]) + (1− p)(1− v[2] − v[1])

]
+
3

8

1

2
v[2] +

2

8
(1− p)v[2] +

1

8
v[2]

v[1] =
1

8
[1− 2v[2]] +

4

8
(1− p)v[1]

v[3] = v[2] + v[1]

The solution to this system is v[3] =
5
14 , v[2] =

4
14 , v[1] =

1
14 and p =

1
2 . This

is an equilibrium since players are behaving optimally both as proposers and as

responders. Because of the uniqueness result of Eraslan and McLennan (2013), all

SSPE must have the same payoff vector.

6.2 Calculations for [13;7,6,4,3,3,1]

There are seven MWCs of five types: [76], [743], [733], [643], [6331]. If expected

equilibrium payoffs were proportional, only types [76], [733], [643] and [6331] could

be proposed in equilibrium. It can be checked that the necessary and suffi cient con-

dition for proportionality does not hold: for any probability distribution over those

coalitions, type [6] and/or type [3] would appear in the final coalition disproportion-

ately often.

It turns out that, even though there are five player types, SSPE payoffs divide

the players in only three groups, which we denote as L,M and S. We now construct

an equilibrium with v[7] = v[6] := vL, v[4] = v[3] := vM , v[1] := vS and vL = 2vM . In

this situation, player [7] is indifferent between proposing to the other large player

and paying vL, and proposing to two medium players, paying vM to each (vL in

total). Type [6] is also indifferent between buying votes from the large player or

from two medium players (except that, when buying votes from a medium player,

one of the two medium players has to be of type [4] because otherwise the coalition

would be losing). Coalition [6331] would be too expensive, since on top of 2vM one

needs to pay vS > 0. Type [4] may propose [743] or [643]; in both cases it needs to
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pay vL + vM . Likewise, type [3] has three coalition types that are equally optimal:

[743], [733] and [643]; coalition [6331] is too expensive. Player [1] has [6331] as its

only MWC; given the prices, it could replace [6] with [7] or/and [3] with [4] at no

extra cost, hence the surplus coalitions [7331] and [7431] would also be optimal for

type [1] (we return to this point below).

We now construct a profile of SSPE strategies. The following table introduces a

notation for the strategies. The rows in the table are player types and the columns

are coalition types. Each entry in the table represents the probability that the player

type in the corresponding row proposes the coalition type in the corresponding

column. It is assumed that all players of the same type follow the same strategy

and each coalition of the same type is proposed with equal probability.

[76] [743] [733] [643] [6331]

[7] α β 1− α− β − −
[6] γ − − 1− γ 0

[4] − µ − 1− µ −
[3] − π ρ 1− π − ρ 0

[1] − − − − 1
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Equilibrium strategies and payoffs solve the following system of equations13

vL =
7

24
[1− vL] +

[
6

24
γ +

4

24
µ+

6

24
(π + ρ)

]
vL

vL =
6

24
[1− vL] +

[
7

24
α+

4

24
(1− µ) + 6

24
(1− π − ρ) + 1

24

]
vL

vM =
4

24
[1− vL − vM ] +

[
7

24
β +

6

24
(1− γ) + 6

24
(1− ρ)

]
vM

vM =
3

24
[1− vL − vM ] +

[
7

24
(
β

2
+ 1− α− β) + 6

24

1− γ
2

+
4

24

1

2
+
3

24
ρ+

1

24

]
vM

vS =
1

24
[1− vL − 2vM ]

vL = 2vM

There are many solutions to this system, all with vL = 46
164 , vM = 23

164 and

vS =
3
164 . The mixed strategies are not uniquely determined. A possible solution is

α = µ = π = 0, β = 5
23 , γ =

14
23 , ρ =

55
138 . These strategies constitute an SSPE since

players are behaving optimally both as proposers and as responders: only optimal

coalitions are proposed given the acceptance thresholds (vL, vM and vS), and the

acceptance thresholds equal the continuation values given the strategies. Due to the

uniqueness result of Eraslan and McLennan (2013), all SSPE must have the same

v-values.

There are also equilibria in which surplus coalitions are proposed with positive

probability. For example, if type [1] proposes [6331] with probability 1
2 and [7431]

with probability 1
2 , the system of equations can be amended accordingly and a new

solution for the equilibrium strategies would be α = µ = π = 0, β = 12
161 , γ =

14
23 ,

ρ = 29
92 (the v-values are of course unaffected).

13Note that we are simplifying the first five equations by using the sixth one (i.e., all coalitions

proposed with positive probability in equilibrium must give the same payoff to the proposer). For

example, player [6]’s proposer payoff is written as 1− vL rather than γ[1− vL] + (1− γ)[1− 2vM ].
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