

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Castagnetti, Carolina; Rosti, Luisa; Töpfer, Marina

Working Paper The convergence of the gender pay gap: An alternative estimation approach

Hohenheim Discussion Papers in Business, Economics and Social Sciences, No. 14-2017

Provided in Cooperation with: Faculty of Business, Economics and Social Sciences, University of Hohenheim

Suggested Citation: Castagnetti, Carolina; Rosti, Luisa; Töpfer, Marina (2017) : The convergence of the gender pay gap: An alternative estimation approach, Hohenheim Discussion Papers in Business, Economics and Social Sciences, No. 14-2017, Universität Hohenheim, Fakultät Wirtschafts- und Sozialwissenschaften, Stuttgart,

https://nbn-resolving.de/urn:nbn:de:bsz:100-opus-13867

This Version is available at: https://hdl.handle.net/10419/162991

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

HOHENHEIM DISCUSSION PAPERS IN BUSINESS, ECONOMICS AND SOCIAL SCIENCES

Research Area INEPA

DISCUSSION PAPER 14-2017

The Convergence of the Gender Pay Gap - An Alternative Estimation Approach -

Carolina Castagnetti

University of Pavia

Luisa Rosti

University of Pavia

Marina Töpfer

University of Hohenheim

www.wiso.uni-hohenheim.de

Discussion Paper 14-2017

The Convergence of the Gender Pay Gap - An Alternative Estimation Approach -

Carolina Castagnetti, Luisa Rosti, Marina Töpfer

Research Area "INEPA – Inequality and Economic Policy Analysis"

Download this Discussion Paper from our homepage: https://wiso.uni-hohenheim.de/papers

ISSN 2364-2076 (Printausgabe) ISSN 2364-2084 (Internetausgabe)

Die Hohenheim Discussion Papers in Business, Economics and Social Sciences dienen der schnellen Verbreitung von Forschungsarbeiten der Fakultät Wirtschafts- und Sozialwissenschaften. Die Beiträge liegen in alleiniger Verantwortung der Autoren und stellen nicht notwendigerweise die Meinung der Fakultät Wirtschafts- und Sozialwissenschaften dar.

Hohenheim Discussion Papers in Business, Economics and Social Sciences are intended to make results of the Faculty of Business, Economics and Social Sciences research available to the public in order to encourage scientific discussion and suggestions for revisions. The authors are solely responsible for the contents which do not necessarily represent the opinion of the Faculty of Business, Economics and Social Sciences.

The Convergence of the Gender Pay Gap – An Alternative Estimation Approach –*

Carolina Castagnetti¹, Luisa Rosti¹, and Marina Töpfer^{†2}

¹Department of Economics and Management, University of Pavia, Italy ²Institute of Economics, University of Hohenheim, Germany

July 11, 2017

Abstract

So far, little work has been done on directly estimating differences of wage gaps. Studies estimating pay differentials, generally compare them across different subsamples. This comparison does not allow to conduct any inference or, in the case of decompositions, to confront the respective decomposition components across subsamples. We propose an extension of an Oaxaca-Blinder type decomposition based on the omitted variable bias formula to directly estimate the change in pay gaps across subsamples. The method proposed can be made robust to the index-number problem of the standard Oaxaca-Blinder decomposition and to the indeterminacy problem of the intercept-shift approach. Using Italian micro data, we estimate the difference in the gender pay gap across time (2005 and 2014). By applying our proposed decomposition, we find that the convergence of the gender pay gap over time is only driven by the catching-up of women in terms of observable characteristics, while the impact of anti-discrimination legislation is found to be negligible.

Keywords: Pay Gap, Omitted Varibale Bias Formula, Oaxaca-Blinder Decomposition.JEL - Classification: J7, J13, J310

^{*}The authors thank Emiliano Mandrone and the Italian Institute for the Development of Vocational Training for Workers (ISFOL) for data provision.

[†]Correspondence to: University of Hohenheim, Institute of Economics, Schloss Museumsflügel, 70599 Stuttgart. E-mail: marina.toepfer@uni-hohenheim.de

1 Introduction

Gender differentials in the labor market have obtained much attention from policy makers and researchers leading to the implementation of equal-pay legislation and the promotion of equal opportunities. Even though equal-pay legislation and equal opportunities have been promoted in Western industrialized countries for several decades, differences in pay between men and women persist (see for example Blau and Kahn, 1992, 2006; Goldin, 2014; Blau and Kahn, 2016). For example, in the European Union in 2014, women earned on average 16.7% less than men (Eurostat, 2017).

Typically, different Gender Pay Gaps (GPGs) are found across time. In particular, declining GPGs are observed with slower convergence in recent decades (see Blau and Kahn, 2006; England, 2006). The main reasons for the decline of the GPG over time are found to be the catching-up of women in terms of education and labour market experience (Goldin, 2006), technical development (Black and Spitz-Oener, 2010), changes in attitudes towards women in the labor market, less occupational segregation (Cotter, 2004; England, 2006; Mandel and Semyonov, 2014) and anti-discrimination laws (Fortin, 2015). Research has shown that the unexplained or coefficients effect of the GPG is reduced subsequently over time (e.g. Mandel and Semyonov, 2014). Differences in pay are revealed also across sectors and especially between the public and the private sector. The Public-Private Sector Wage Gap (PPWG) is found to differ significantly for men and women (Melly, 2005; Lucifora and Meurs, 2006; Arulampalam et al., 2007). In fact, the difference in pay by gender is found to be smaller in the public compared to the private sector (see for example Melly, 2005; Arulampalam et al., 2007). Regardless of gender, pay levels in the public sector are on average higher than in the private sector (Lucifora and Meurs, 2006). The public sector is generally the preferred sector of women due to its fairer recruitment, selection criteria and remuneration as well as better implementation of anti-discrimination laws (Gornick and Jacobs, 1998; Grimshaw, 2000).

However, studies examining changes in the wage gap over time and between groups do not directly estimate the difference of the GPG in year t and year t + 1 (or the wage gap by sector for men and women for instance), but rather compare the results of the pay gaps in the corresponding subsamples ex post (e.g. Christofides and Michael, 2013; Mandel and Semyonov, 2014). Studies estimating the difference of the pay gaps in different subsamples, often do not even provide standard errors for the decomposition. Hence, it is not possible to conduct statistical inference (Mandel and Semyonov, 2014; Bar *et al.*, 2015). Indeed, this does not allow to draw conclusions on which of the two wage gaps is more statistically significant, i.e. whether the difference between the two pay gaps under investigation is statistically significantly different from zero. Additionally, the conclusion about drivers of the change of pay gaps between groups may be different, when estimated directly compared to analyzing results estimated in different subsamples. The reason is that it is not possible to draw direct inference of the difference of the respective components in the latter case. Moreover, the standard method, i.e. ex-post comparison of the decomposition results, does not allow to catch time- (or sector-) and genderspecific effects that may exist simultaneously, i.e. interactions across gender and time or sector and gender (in the case of the GPG over time and the PPWG by gender, respectively). We slightly extend the method proposed by Gelbach (2016) that is based on the Omitted Variable Bias (OVB) formula to estimate directly the difference between two wage gaps. We are then able to draw inference on the changes of the pay gap by groups across subsamples and to compare the various contributors directly, i.e. we can test whether there has been a significant change of the explained or unexplained part of the gap. Moreover, we can draw conclusions on the relevance of interaction effects across subsamples and groups. The standard method in applied labor economics, when it comes to pay gaps between groups is the Oaxaca (1973) and Blinder (1973) decomposition method (Fortin *et al.*, 2011). The approach, however, suffers from noninvariance with respect to categorical variables and the index-number problem. The interceptshift approach attempts to solve the latter but suffers, in particular, from the indeterminacy problem (Lee, 2015). We extend our proposed method based on the OVB formula and show that it can be made robust to the above mentioned problems.

We apply our model to two cases. First, we examine the evolution of the GPG over ten years, from 2005 to 2014 in Italy. Second, we analyze the PPWG between men and women in 2014 in Italy. We analyze each case with the standard Oaxaca-Blinder decomposition method and then repeat the examination with our proposed extension of the Gelbach decomposition. We expect to find a statistically significant change in differences in observable characteristics (such as educational attainment, labor market presence as well as job-, industry- or occupational-specific characteristics) by gender over time as well as a statistically significant change in differences in coefficients to these characteristics between men and women over time. In fact, the latter may indicate the effectiveness of anti-discrimination policies. For the second empirical application, the PPWG by gender, we expect, to find in line with the literature larger pay gaps for women between the public and the private sector than for men. Additionally, we expect to find a larger effect of the unexplained component in the PPWG for women; while differences in endowments may be the main driver of the pay differential for men, they may not explain equally the difference in the PPWG for women.

For the first case, the findings of the study reveal interesting differences in results when applying our proposed estimation methodology compared to the 'standard' approach.¹ Changes in gender differences of observable characteristics are found to be the only statistically significant driving force of the convergence of the GPG in the last decade in Italy. On the contrary, by comparing the different components of the GPGs following Oaxaca (1973) and Blinder (1973), differences in returns to observable characteristics, often referred to as the unexplained part of the GPG, seem to play a role in closing the gap over the last decade in Italy. In the second case, we can confirm the conclusions drawn from the estimation in the respective subsamples;

¹i.e. the Oaxaca-Blinder decomposition and ex-post comparison of the decomposition results.

the higher PPWG for women than for men is due to both differences in the explained and unexplained component.

The paper is organized as follows. Section 2 presents the standard Oaxaca-Blinder decomposition. In Section 3, we outline the method by Gelbach (2016) as well as our proposed modification. Similarly, we discuss problems of the standard approach and show the robustness of our method to these problems. Next, in Section 4, we empirically apply the method proposed to the GPG over time as well as to the PPWG by gender and discuss the results obtained. Section 5 concludes.

2 Standard Estimation Strategy

The standard methodology to decompose pay differentials between two groups is the Oaxaca (1973) and Blinder (1973) decomposition. The methodology estimates Mincer-type wage regressions separately for a specific group (e.g. men or women, the public or the private sector) and then decomposes the wage differential in different components. We use the three-fold Oaxaca-Blinder approach and thus decompose the pay gap in three components; endowments, coefficients and interactions:²

$$\overline{ln(w_0)} - \overline{ln(w_1)} = \hat{\alpha}_0 + \bar{X}_0 \hat{\beta}_0 - \hat{\alpha}_1 - \bar{X}_1 \hat{\beta}_1$$

= $(\bar{X}_0 - \bar{X}_1) \hat{\beta}_1 + (\hat{\alpha}_0 - \hat{\alpha}_1) + \bar{X}_1 (\hat{\beta}_0 - \hat{\beta}_1)$
+ $(\bar{X}_0 - \bar{X}_1) (\hat{\beta}_0 - \hat{\beta}_1)$

where $\overline{ln(w_G)}$ is the logarithmic hourly wage of group G evaluated at the mean, $\hat{\alpha}_G$ is the intercept of group G and \overline{X}'_G and $\hat{\beta}_G$ are $K \times 1$ vectors of average characteristics and estimated coefficients for $G \in \{0, 1\}$. The first term is the effect due to differences in observable characteristics. As different observed characteristics are expected to have different effects on earnings, the difference in observable characteristics is also referred to as the explained component, the quantity or endowments effect of the Oaxaca-Blinder decomposition. The second term is due to differences in the starting point, i.e. differences in the intercept. The third term is the effect due to differences in returns on the same set of observable characteristics. This component is generally referred to as the unexplained part, price or coefficients effect of the gap. Differences in the intercept are attributed to the coefficients component. In the case of the GPG, if the

$$\overline{ln(w_0)} - \overline{ln(w_1)} = \hat{\alpha}_0 + \bar{X}_0 \hat{\beta}_0 - \hat{\alpha}_1 - \bar{X}_1 \hat{\beta}_1$$
$$= (\bar{X}_0 - \bar{X}_1) \hat{\beta}_0 + (\hat{\alpha}_0 - \hat{\alpha}_1) + \bar{X}_1 (\hat{\beta}_0 - \hat{\beta}_1)$$

 $^{^{2}}$ An alternative to the three-fold decomposition outlined here is the standard two-fold decomposition that decomposes the wage differential in an explained and an unexplained part;

We focus here on the three-fold decomposition, as we argue that interaction effects may be important when considering differences across pay gaps.

differential is mainly due to the price effect, this may indicate the presence of gender discrimination.³ The last term is the so-called interaction term. The intuition behind is that differences in endowments and coefficients may exist simultaneously between groups (Jann, 2008).

3 Econometric Model

We propose a slight modification of the decomposition method by Gelbach (2016). The Gelbachapproach decomposes cross-specification differences in Ordinary Least Squares (OLS) estimates of the group-dummy coefficient from the wage model in a path-independent way yielding a Oaxaca-Blinder type decomposition. By using the OVB formula, the decomposition is consistently estimated conditional on all covariates used in the regression. This method, similar to the standard estimation approach outlined in Section 2, decomposes the sample mean difference in wages between different groups in an explained and an unexplained part (see Gelbach, 2016, for details).

3.1 Extension of Gelbach (2016)

The model outlined in the following allows not only to obtain information on whether the pay gap has decreased in a statistically significant way on aggregate but also to testify what are the main contributors to the change (if any) of the differential. Consider the case, when we estimate the wage equation separately by G (group) and Y (data wave or a group different from G, i.e. $Y \neq G$) for individual i, with i = 1, 2, ... N:

$$ln(w_{iGY}) = \alpha_{GY} + X_{iGY}\beta_{GY} + \epsilon_{iGY} \tag{1}$$

with $G \in \{0, 1\}$, $Y \in \{A, B\}$; and where $ln(w_{iGY})$ is individual *i*'s logarithmic wage of G in Y, α_{GY} is a constant, X_{iGY} is a $1 \times K$ vector of exogenous regressors, β_{GY} is the corresponding $K \times 1$ vector of coefficients and ϵ_{iGY} is the error term.⁴ When we evaluate the estimation at the mean given the OLS property that OLS estimates must go through the mean of the data, equation (1) becomes:

$$\overline{\ln(w_{GY})} = \hat{\alpha}_{GY} + \bar{x}_{GY}\hat{\beta}_{GY} \tag{2}$$

 $^{^{3}}$ However, as pointed out by Blau and Kahn (2006), the unexplained portion of the GPG may include effects of unobserved characteristics such as individual productivity, motivation or educational quality.

⁴In the first empirical application in Section 4, we set the index G equal to gender and the index Y equal to different years or waves of the data set. Consequently, in case 1 of the empirical implementation, we have for $G \in \{0,1\}$; 0 = male and 1 = female and for $Y \in \{A, B\}$; A = starting period or 2005 and B = ending period or 2014. In the second empirical example shown in Section 4, group G represents different sectors and Y men or women. Thus, in case 2 of the empirical part, we have for $G \in \{0,1\}$; 0 = public-sector employment and 1 = private sector employment and for $Y \in \{A, B\}$; A = female and B = male.

where $\hat{\alpha}_{GY}$ is the constant, \bar{x}_{GY} is the $1 \times K$ row vector of sample means of observable characteristics in X:

$$\bar{x}_{GY} = \left[\bar{x}_{k1}, \bar{x}_{k2}, \dots, \bar{x}_K\right]$$

and $\hat{\beta}_{GY}$ is the corresponding $K \times 1$ vector of parameter estimates. Four different pairs of (G, Y) and thus four regressions of equation (2) are possible; (0, A), (0, B), (1, A), (1, B). The corresponding regressions between G and Y are conducted by assuming the same set of regressors for all four cases.

Now, consider estimating the joint model. The first group index G is added to the regression as a dummy variable G_i among the controls on the right-hand side. Analogously, the second group index Y is transformed in a dummy variable Y_i controlling for group Y membership. The indicator variable takes value one, if the observation corresponds to A and takes value zero, if we observe B.⁵ As in Gelbach (2016), we distinguish between two sets of regressors, X_{i1} and X_{i2} , where the set of regressors X_{i1} , with dimension 1×4 , is the base specification containing only (for each observation i) a constant, an interaction term between the group dummies, G_iY_i , as well as the dummies, G_i and Y_i , separately. The interaction of the dummies for group membership G_i and Y_i are contained in G_iY_i . The base model is therefore defined as follows:

$$ln(w_{iGY}) = X_{i1}\alpha^{base} + \epsilon^{base}_{iGY}$$

$$ln(w_{iGY}) = \alpha^{base}_0 + G_i Y_i \alpha^{base}_1 + G_i \alpha^{base}_2 + Y_i \alpha^{base}_3 + \epsilon^{base}_{iGY}$$
(3)

where α_0^{base} is the constant and α_1^{base} , α_2^{base} , α_3^{base} are the corresponding coefficients contained in the 4×1 column vector α^{base} , ϵ_{iGY}^{base} is the corresponding error term. The second set of regressors, X_{i2} , has dimension 1×4K and contains the 1×K vector of explanatory variables X_i as well as the interactions of X_i with G_i , Y_i and G_iY_i , respectively. The set of regressors X_{i2} will be considered later as omitted variables in order to obtain a decomposition of the change of the wage gap between G_i across Y_i . The full model is then defined as:

$$ln(w_{iGY}) = X_{i1}\alpha^{full} + X_{i2}\beta + \epsilon^{full}_{iGY}$$

$$ln(w_{iGY}) = \alpha_0^{full} + G_iY_i\alpha_1^{full} + G_i\alpha_2^{full} + Y_i\alpha_3^{full} + X_i\beta_1 + G_iX_i\beta_2 + Y_iX_i\beta_3 + G_iY_iX_i\beta_4 + \epsilon^{full}_{iGY}$$
(4)

⁵We thus have the index $G \in \{0, 1\}$ and the dummy variable G_i , with

$$G_i = \begin{cases} 1 & \text{if the index of person } i \text{ is } G = 1\\ 0 & \text{if the index of person } i \text{ is } G = 0 \end{cases}$$

For the second group, we have the index $Y \in \{A, B\}$ and the dummy variable Y_i , with

$$Y_i = \begin{cases} 1 & \text{if the index of person } i \text{ is } Y = A \\ 0 & \text{if the index of person } i \text{ is } Y = B \end{cases}$$

where α^{full} and β are the 4×1 and $4K \times 1$ vectors of coefficients from X_{i1} and X_{i2} , respectively. The error term is represented by ϵ^{full}_{iGY} .

We can recast the parameters of the full model evaluated at the mean from the pair-wise regressions of (2):

- 1. When (the indices) G=1 and Y=A, we get:
 - $\hat{\alpha}_{1A} = \hat{\alpha}_0^{full} + \hat{\alpha}_1^{full} + \hat{\alpha}_2^{full} + \hat{\alpha}_3^{full}$ • $\hat{\beta}_{1A} = \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 + \hat{\beta}_4$
- 2. When (the indices) G=0 and Y=A, we get:
 - $\hat{\alpha}_{0A} = \hat{\alpha}_0^{full} + \hat{\alpha}_3^{full}$ • $\hat{\beta}_{0A} = \hat{\beta}_1 + \hat{\beta}_3$
- 3. When (the indices) G=1 and Y=B, we get:
 - $\hat{\alpha}_{1B} = \hat{\alpha}_0^{full} + \hat{\alpha}_2^{full}$ • $\hat{\beta}_{1B} = \hat{\beta}_1 + \hat{\beta}_2$
- 4. When (the indices) G=0 and Y=B, we get:

•
$$\hat{\alpha}_{0B} = \hat{\alpha}_0^{full}$$

• $\hat{\beta}_{0B} = \hat{\beta}_1$

Re-arranging the terms slightly, gives us:

$$\hat{\alpha}_{0}^{full} = \hat{\alpha}_{0B}$$

$$\hat{\alpha}_{2}^{full} = \hat{\alpha}_{1B} - \hat{\alpha}_{0B}$$

$$\hat{\alpha}_{3}^{full} = \hat{\alpha}_{0A} - \hat{\alpha}_{0B}$$

$$\hat{\alpha}_{1}^{full} = \hat{\alpha}_{1A} - \hat{\alpha}_{0B} - \hat{\alpha}_{1B} + \hat{\alpha}_{0B} - \hat{\alpha}_{0A} + \hat{\alpha}_{0B}$$

$$= (\hat{\alpha}_{0B} - \hat{\alpha}_{1B}) - (\hat{\alpha}_{0A} - \hat{\alpha}_{1A})$$

$$\begin{aligned} \hat{\beta}_{1} &= \hat{\beta}_{0B} \\ \hat{\beta}_{2} &= \hat{\beta}_{1B} - \hat{\beta}_{0B} \\ \hat{\beta}_{3} &= \hat{\beta}_{0A} - \hat{\beta}_{0B} \\ \hat{\beta}_{4} &= \hat{\beta}_{0B} - \hat{\beta}_{1B} - \hat{\beta}_{0A} + \hat{\beta}_{1A} \\ &= (\hat{\beta}_{0B} - \hat{\beta}_{1B}) - (\hat{\beta}_{0A} - \hat{\beta}_{1A}) \end{aligned}$$

By estimating the base model and considering the set of regressors X_{i2} as omitted variables, we obtain the following specification:

$$\hat{\alpha}^{base} = \hat{\alpha}^{full} + (X'_{i1}X_{i1})^{-1}X'_{i1}X_{i2}\hat{\beta}^{full}$$
(5)

where

- $(X'_{i1}X_{i1})^{-1}X'_{i1}X_{i2}\hat{\beta}^{full}$ is the OVB
- The parameter estimates from the base model (3) evaluated at the mean are:

$$\hat{\alpha}^{base} = \left[\hat{\alpha}_0^{base}, \hat{\alpha}_1^{base}, \hat{\alpha}_2^{base}, \hat{\alpha}_3^{base}\right]^T$$

being a 4×1 column vector.

- $\hat{\alpha}^{full}$ is the 4 × 1 column vector containing the coefficient estimates of X_{i1} from the full model (4) evaluated at the mean.
- $(X'_{i1}X_{i1})^{-1}X'_{i1}X_{i2}$ is the linear projection of X_{i2} on X_{i1} , with dimension $4 \times 4K$.

$$\hat{\beta}^{full} = \left[\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3, \hat{\beta}_4\right]^T$$

is a $4K \times 1$ column vector of coefficients from the full model (4) evaluated at the mean. The model specification in equation (5) can be decomposed as follows:

$$\hat{\alpha}^{base} = \hat{\alpha}^{full} + \hat{\delta}^1 + \hat{\delta}^2 + \hat{\delta}^3 + \hat{\delta}^4 \tag{6}$$

with $\hat{\delta} \equiv \hat{\alpha}^{base} - \hat{\alpha}^{full} = (X'_{i1}X_{i1})^{-1} X'_{i1}X_{i2}\hat{\beta}^{full}$, where

- $\hat{\delta}^q = \hat{\Gamma}^q \hat{\beta}_q^{full}$, with $\hat{\Gamma}^q = (X'_{i1} X_{i1})^{-1} X'_{i1} X_{i2q}$ of dimension $k_{X_{i1}} \times k_q$ and X_{i2q} being the *q*th column of X_{i2} , for q = 1, ..., Q. The column vector $\hat{\beta}_q^{full}$ has dimension $k_q \times 1$, thus $\hat{\delta}_q$ is a $k_{X_{i1}} \times 1$ column vector;
- $k_{X_{i1}}$ is equal to the number of regressors from X_{i1} , i.e. 4 in our case (X_{i1} has dimension 1×4);
- k_q is equal to the number of regressors in the *q*th column of X_{i2} .

3.2 Decomposition

Recall that we are interested in the estimation and decomposition of the change in the pay gap between group G across group Y, i.e.⁶

$$\Delta^{\mathrm{B}} - \Delta^{\mathrm{A}} = \left(\overline{ln(w_{0B})} - \overline{ln(w_{1B})}\right) - \left(\overline{ln(w_{0A})} - \overline{ln(w_{1A})}\right)$$

 $^{^6\}mathrm{For}$ example, the change of the GPG across two years.

with Δ^{B} being the pay gap by group G given that Y = B and Δ^{A} being the wage gap between G given that Y = A. From equation (2), we know that:

$$\Delta^{B} = \left(\overline{ln(w_{0B})} - \overline{ln(w_{1B})}\right)$$
$$= -\hat{\alpha}_{2}^{base}$$
$$\Delta^{A} = \left(\overline{ln(w_{0A})} - \overline{ln(w_{1A})}\right)$$
$$= -\hat{\alpha}_{1}^{base} - \hat{\alpha}_{2}^{base}$$

and hence $\hat{\alpha}_1$ represents the difference of the two wage gaps:

$$\Delta^{\rm B} - \Delta^{\rm A} = \hat{\alpha}_1^{base}$$

Given the definition of $\hat{\alpha}^{base}$, we are interested in the second row of $\hat{\alpha}^{base}$, i.e. of equation (5), or $\hat{\alpha}_{1}^{base}$ in order to obtain the change of the wage gaps, $\Delta^{\rm B} - \Delta^{\rm A}$. Starting from equation (5), we calculate the second row of the $4 \times 4K$ matrix $(X'_{i1}X_{i1})^{-1}X'_{i1}X_{i2}$ considering average observable characteristics:

$$\kappa = \left[(\bar{x}_{0B} - \bar{x}_{1B}) - (\bar{x}_{0A} - \bar{x}_{1A}), (\bar{x}_{1A} - \bar{x}_{1B}), (\bar{x}_{1A} - \bar{x}_{0A}), \bar{x}_{1A} \right]$$

with dimension $1 \times 4K$. The second row of equation (5) or the difference of the respective wage gap evaluated at the mean is thus:

$$\hat{\alpha}_1^{base} = \hat{\alpha}_1^{full} + \kappa \hat{\beta}^{full} \tag{7}$$

and can be re-written as:

$$\hat{\alpha_{1}}^{base} = \underbrace{(\hat{\alpha}_{0B} - \hat{\alpha}_{1B}) - (\hat{\alpha}_{0A} - \hat{\alpha}_{1A})}_{\hat{\alpha_{1}}^{full}} + [(\bar{x}_{0B} - \bar{x}_{1B}) - (\bar{x}_{0A} - \bar{x}_{1A})]_{\hat{\beta}_{0B}}_{\hat{\beta}_{1}} \\ + (\bar{x}_{1A} - \bar{x}_{1B})\underbrace{(\hat{\beta}_{1B} - \hat{\beta}_{0B})}_{\hat{\beta}_{2}} \\ + (\bar{x}_{1A} - \bar{x}_{0A})\underbrace{(\hat{\beta}_{0A} - \hat{\beta}_{0B})}_{\hat{\beta}_{3}} \\ + \bar{x}_{1A}\underbrace{[(\hat{\beta}_{0B} - \hat{\beta}_{1B}) - (\hat{\beta}_{0A} - \hat{\beta}_{1A})]}_{\hat{\beta}_{4}} \\ = \Delta^{B} - \Delta^{A}$$
(8)

where $\hat{\alpha_1}^{base}$ and $\hat{\alpha_1}^{full}$ are scalars and \bar{x}'_{GY} , $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$ are $K \times 1$ column vectors, respectively. The above expression can be re-written as a 'double' (two-fold) Oaxaca-Blinder decomposition:

$$\hat{\alpha_1}^{base} = (\hat{\alpha}_{0B} - \hat{\alpha}_{1B}) + (\bar{x}_{0B} - \bar{x}_{1B})\hat{\beta}_{0B} + \bar{x}_{1B}(\hat{\beta}_{0B} - \hat{\beta}_{1B}) - [(\hat{\alpha}_{0A} - \hat{\alpha}_{1A}) + (\bar{x}_{0A} - \bar{x}_{1A})\hat{\beta}_{0A} + \bar{x}_{1A}(\hat{\beta}_{0A} - \hat{\beta}_{1A})]$$

Decomposing the change in the wage gap between group G across group Y in the following way allows to better understand the elements that contribute to the earnings differences across Gand $Y: \Delta^{B} - \Delta^{A} = E + U + I1 + I2$, with

$$E = [(\bar{x}_{0B} - \bar{x}_{1B}) - (\bar{x}_{0A} - \bar{x}_{1A})]\hat{\beta}_{0B}$$
(9)

Here, the same prices, namely the ones of the respective base category, $\hat{\beta}_{0B}$, are assumed. Thus, E measures the amount of the change of the gap attributable to differences in observed characteristics. It is the component referred to as differences in quantities, i.e. the explained part. The unexplained component becomes the following:

$$U = \hat{\alpha}_{1}^{full} + \underbrace{\bar{x}_{1A}[(\hat{\beta}_{0B} - \hat{\beta}_{1B}) - (\hat{\beta}_{0A} - \hat{\beta}_{1A})]}_{u}$$
$$= \hat{\alpha}_{1}^{full} + u$$
(10)

U measures the change of differences in the intercepts, $\hat{\alpha}_1^{full}$, as well as the change over Y of the differences in coefficients by G. Characteristics are hold fix at \bar{x}_{1A} . Additionally, we observe now two interaction terms, I1 and I2, accounting for the fact that differences in characteristics and parameters exist simultaneously between the four groups. The interaction effects are the following:

$$I1 = (\bar{x}_{1A} - \bar{x}_{1B})(\hat{\beta}_{1B} - \hat{\beta}_{0B}) \tag{11}$$

and

$$I2 = (\bar{x}_{1A} - \bar{x}_{0A})(\hat{\beta}_{0A} - \hat{\beta}_{0B})$$
(12)

I1 accounts for differences in prices by G given changes in the set of endowments across Y.⁷ I2 catches changes in coefficients over Y given that endowments between G are different.⁸

 $^{^{7}}$ In the case of the GPG over time, I1 catches year-specific effects in endowments given gender-related differences in prices in the ending period. That is assuming that in the ending period differences in prices between men and women persist (compared to the starting period), it accounts for changing endowments of women over time.

 $^{^{8}}$ In the first case of the empirical application, I2 assumes different endowments between women and men in the starting period and asks how coefficients change over time given gender differences in quantities.

Despite using the decomposition approach based on the OVB formula, we can compare differences in pay gaps by estimating a system of Seemingly Unrelated Equations (SURE). Using the SURE method allows errors to be correlated across equations and is more efficient. However, we prefer the more intuitive or more familiar interpretation of the method outlined above. Furthermore, the model based on the OVB formula catches otherwise unobserved interaction effects.

3.3 Robustness of the Method Proposed and Problems of the Standard Approach

The Oaxaca-Blinder decomposition suffers from various problems. In particular, the method is not unique and its components may be unstable when different controls are added to the Mincer-type wage equation. As the Oaxaca-Blinder decomposition is not unique, the choice of the non-discriminatory wage structure matters and the results may change according to the reference category chosen (Reimers, 1983; Cotton, 1988; Neumark, 1988; Oaxaca and Ransom, 1994; Fortin, 2008). Several solutions have been proposed in the literature to solve the socalled index-number problem. Suggestions in the literature consist in esimating a pooled wage structure (Neumark, 1988; Oaxaca and Ransom, 1994) or assigning different weights to the two groups (Reimers, 1983; Cotton, 1988). The intercept-shift approach including the group indicator and parameter restrictions, re-writes the decomposition in terms of advantages of men and disadvantages of women (Fortin, 2008). Thereby, the decomposition does no longer depend on the choice of the non-discriminatory wage structure. In the empirical application in Section 3.2, we take men and the ending period as base category or non-discriminatory wage structure.⁹ Indeed, the standard case of the Oaxaca-Blinder decomposition assumes positive discrimination against women, i.e. it takes men as the non-discriminatory wage structure. For a recent application, see for example Mandel and Semyonov (2014). We can easily change the reference category by imposing different weights across groups (following Reimers, 1983; Cotton, 1988) and show in Appendix A that the standard case of the GPG can be decomposed in the sense of the intercept-shift approach as proposed by Fortin (2008) based on the OVB formula. In the case of a detailed decomposition, the standard Oaxaca-Blinder decomposition varies with the choice of the left-out category of categorical variables included in the estimation. We show the invariance with respect to categorical variables of the decomposition aproach based on the OVB formula in Appendix B. The coefficients of the categorical variables are transformed making them invariant to the choice of the (omitted) base category (Gardeazabal and Ugidos, 2004; Fortin, 2008). Moreover, in Appendix C, we show that the decomposition based on the intercept-shift approach holds also for our proposed decomposition of pay gaps between groups G and Y. In Appendix D, we show that the critique of Lee (2015) stating that the intercept-shift approach relies on second moments, while first moments should be considered, does not apply to

 $^{^{9}}$ In the second empirical application, men in the public sector are the non-discriminatory wage structure.

our proposed decomposition approach with gender dummies along with parameter restrictions.¹⁰ We derive the results in the appendices based on the GPG. However, the derived results are not only valid for the case of the GPG but can be applied to a variety of decomposition problems.

4 Empirical Implementation

In this Section, we consider the change of the GPG over time (case 1) as well as the PPWG between men and women (case 2). By applying our proposed approach, we are able to draw inference on the diverse contributors to the GPG over time.¹¹ The results from the standard model are also shown for the sake of comparison.

4.1 Data and Descriptive Statistics

We use the 2014 and 2005 cross-sectional files of the survey ISFOL PLUS¹² from the Italian Institute for the Development of Vocational Training for Workers (ISFOL). The data was collected jointly with the Italian Ministry of Labor and Social Policy. Special characteristics of the survey are that it provides broad information on the interviews' working profiles and motivation to work as well as on the demographic and family background of the participants. Data collection is conducted by Computer Assisted Telephone Interviewing (CATI) and the data set is based on subjective measures only.

In 2005, the original sample contains 38,940 observations. In the wave 2014, 54,961 individuals were interviewed. In our analysis, we focus on full-time employees aged 18-64 years. We include only individuals in the sample that work at least 36 hours per week and exclude self-employed workers from the analysis. The sample is further restricted to earnings from the main job only, i.e. from the job that yields the highest income. After dropping observations with missing data on other variables of interest, our sample contains 9,495 positive wage observations in 2005 and 8,423 in 2014. For the analysis of the evolution of the GPG over time, we pool together the two cross sections of 2005 and 2014. For the analysis of the PPWG between men and women, we use the latest release, i.e. the wave of 2014. In 2005, our sample contains 4,778 women (50.3%) and 4,717 men (49.7%). In the 2014-release, 3,828 (45.4%) individuals are female and 4,595 (54.6%) are male. In 2014, 1,799 women (52.8% of total public-sector employment) and 1,607 men (47.2% of total public-sector employment) are occupied in the public sector. Thus, slightly more women than men are employed in the public sector. The OLS estimates are based on the natural logarithm of net hourly wages as dependent variable. The data set includes also a variable for monthly gross earnings. However, 98% of all observations contain missing values.¹³ Therefore, we prefer to use the monthly-based net income as dependent variable. Table 1

¹⁰That is the model outlined in Appendix C.

¹¹In the second case, we draw inference on the components of the PPWG by gender.

¹²Participation, Labor, Unemployment Survey (PLUS)

¹³The survey contains also gross annual earnings. Unfortunately, gross annual earnings divided by the number

and 2 report mean and standard deviation for some of the variables included in the analysis for the two cases under consideration, respectively. Detailed information on the variables used in the analysis can be found in Appendix E.

4.1.1 Descriptive Statistics Case 1

Table 1 shows that women have on average higher educational attainment than men and that their human capital increased from 2005 to 2014 (*Schooling*). For men, the increase is less pronounced. Men still outperform women in terms of labor market characteristics (*Exper* and *Tenure*). However, while the average years of experience of women increased over the last decade, men's average years of experience decreased slightly. Nonetheless, the average level of labor-market experience is still higher for men than for women in 2014. On average, men hold more often an unlimited contract in both years (*Contract_Type*). The proportion of married women and men reduced slightly over the last decade (*Married*). The share of individuals employed in Northern Italy decreased slightly for both men and women (*North*). In 2014, more females than males are emplyoed in highly specialized occupations, while for the wave of 2005, the opposite holds (*Manager*).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Wo	men			Μ	en	
	2 2	2005	4	2014	6 4	2005	4	2014
Variables	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
Exper	16.23	11.33	17.73	12.08	20.51	12.86	20.19	12.95
Tenure	10.42	9.822	13.52	11.46	14.10	11.70	15.41	12.34
Schooling	12.72	2.722	14.30	1.486	12.26	2.842	13.95	1.397
$Contract_Type$	0.838	0.369	0.862	0.345	0.879	0.327	0.884	0.321
Married	0.591	0.492	0.580	0.494	0.580	0.494	0.577	0.494
Italian	0.989	0.103	0.987	0.115	0.994	0.0768	0.993	0.0857
North	0.533	0.499	0.502	0.500	0.463	0.499	0.480	0.500
Centre	0.205	0.404	0.223	0.416	0.183	0.387	0.211	0.408
Manager	0.118	0.323	0.247	0.431	0.136	0.343	0.232	0.422
Intermed_Prof	0.617	0.486	0.609	0.488	0.465	0.499	0.499	0.500
Observations	4	,778	3	8,828	4	,717	4	1,595

 Table 1: Descriptive Statistics Case 1

of months in a calendar year (including a 13th month), differ by more than 800 Euros (per month) from the reported monthly gross income.

4.1.2 Descriptive Statistics Case 2

Table 2 shows that the average level of educational attainment is higher in the public compared to the private sector. Women have on average higher educational attainment than men in both sectors. Female civil servants are even better educated than their female colleagues in the private sector. Similarly, men in the public sector have higher educational performance compared to their male peers in the private sector. Men outperform women in both sectors in terms of labor market presence and job tenure. About the equal amount of male and female employees is married, yet, the proportion of married employees is higher in the public sector. In the public sector, men and women are more often employed in highly specialized jobs. The proportion of highly specialized females in public employment is higher than that of males.

		Table 2:	Descrip	otive Statist	tics Case	2		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Wo	men			М	en	
	Priva	te Sector	Publ	ic Sector	Priva	te Sector	Publ	ic Sector
Variables	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
Exper	14.09	10.65	21.83	12.29	17.69	12.57	24.84	12.35
Tenure	9.766	9.442	17.75	12.04	12.57	11.47	20.68	12.18
Schooling	14.13	1.454	14.48	1.500	13.79	1.320	14.26	1.481
$Contract_Type$	0.819	0.385	0.911	0.286	0.859	0.348	0.928	0.258
Married	0.471	0.499	0.703	0.457	0.495	0.500	0.730	0.444
Italian	0.978	0.147	0.997	0.0577	0.991	0.0964	0.996	0.0610
North	0.555	0.497	0.442	0.497	0.553	0.497	0.343	0.475
Centre	0.218	0.413	0.228	0.420	0.210	0.407	0.214	0.410
Manager	0.140	0.347	0.367	0.482	0.180	0.384	0.327	0.469
$Intermed_Prof$	0.646	0.478	0.569	0.495	0.498	0.500	0.502	0.500
Observations	2	,029	1	,799	2	2,988	1	,607

4.2 Empirical Results

We first present the decomposition results from the standard Oaxaca-Blinder approach and discuss the conclusions drawn on the change of the wage gap in this framework. Next, we apply the method derived in Section 3 in order to directly estimate changes of the wage gaps and in order to draw inference on the diverse contributors to the change of the gap.

4.2.1 The Gender Pay Gap over Time

A general finding in the literature is that the gap in pay by gender was reduced over time (Blau and Kahn, 2006; Goldin, 2014; Mandel and Semyonov, 2014). The part attributable to observed

characteristics and therefore referred to as explained component increased, while the unexplained part, i.e. the component due to differences in returns to wage-related characteristics and differences in the intercepts, decreased.

Indeed, by applying the traditional approach to our data, we also find a reduction of the GPG in hourly wages over time; 12.4% in 2005 and 9.5% in 2014.¹⁴ Table 3 shows that the gaps are highly statistically significant in either case. The composition of the gap also changed across the decade. In 2005, the explained component does not play a role in determining the GPG (as it is not statistically significant), while in 2014, the endowments part becomes highly statistically significant and contributes to a narrowing of the GPG (negative term). Differences in the unexplained component are statistically significant in both years. The component in 2014 decreased slightly (86.2% in 2005 versus 84.3% in 2014). A relatively small decrease in the unexplained component of the GPG in 2014 is in line with results of other scholars (e.g. Fortin, 2008; Mandel and Semyonov, 2014). In 2005, differences in endowments and coefficients that exist simultaneously between men and women, have a statistically significant impact as well, what is no longer the case in 2014.

All in all, our data delivers results in line with the literature, when applying the standard estimation methodology. The GPG declined over the last decade, differences in endowments (in favor of women) have become statistically significant in 2014 and the part of the GPG due to differences in prices has declined.

¹⁴The estimated GPGs in this paper are larger than the pay gaps found by Eurostat (2017). Eurostat (2017) finds wage gaps amounting to 4.4% in 2006 (missing in 2005) and 6.1% in 2014 for Italy. These relatively larger gaps are due to our sample restriction of considering only employees working at least 36 hours per week.

	(1)	(2)
Variables	2005	2014
Differential		
$\overline{ln(w_M)}$	1.999***	2.134***
	(0.006)	(0.007)
$\overline{ln(w_F)}$	1.875^{***}	2.039^{***}
	(0.006)	(0.007)
Difference	0.124***	0.095***
	(0.008)	(0.009)
Decomposition		
Endowments	0.008	-0.016***
	(0.006)	(0.006)
Coefficients	0.107^{***}	0.107^{***}
	(0.008)	(0.009)
Interaction	0.009^{*}	0.004
	(0.006)	(0.006)
%-Contribution		
Endowments	6.5	12.6
Coefficients	86.2	84.3
Interaction	7.3	3.1
Observations	9,495	8,423
Robust standard	l errors in pa	arentheses
***p < 0.01, *	p < 0.05	*p < 0.1
<i>Notes:</i> For the	e GPG in 2	014, the $\%-$
contribution for	the endown	nents effect is
$\frac{ 0.010 }{(0.016 \pm 0.107\pm 0.007)}$	$\frac{1}{004} \times 100.$	

Table 3: Standard Decompositionof the GPG in 2005 and 2014

Next, we directly estimate the change of the GPG between 2014 and 2005 and decompose that change in explained and unexplained components as well as interaction effects. Table 4, column (1), shows the base model of case 1. The coefficient estimate of *femyear* shows the change of the GPG from 2014 to 2005. The difference between the GPG in 2014 and 2005 amounts to -0.03 log points and is statistically significant. Given the negative sign, the GPG has decreased over time. The magnitude as well as the sign of the change is also visible by looking at the aggregate GPGs from the outcome of the standard estimation in Table 3. However, now we can also conclude that this reduction in the GPG is statistically significant. The full model is presented in column (2) of Table 4. We immediately see that the part of the price effect due to differences in the intercepts, $\hat{\alpha}_1^{full}$, is not statistically significant. Similarly, the effect of being a woman or in year 2005, all else equal, becomes statistically insignificant. The remaining coefficient estimates show the expected signs.¹⁵

¹⁵The full regression output is shown in Table F.1 in Appendix F.

	(1)	(2)
	Basic Specification	Full Specification
e	0.000**	0.051
femyear	-0.028**	-0.051
	(0.012)	(0.185)
female	-0.095***	-0.148
	(0.009)	(0.152)
year	-0.135***	-0.010
	(0.009)	(0.130)
Groups of Covariates		
Labor Market Presence	No	Yes
Educational Attainment	No	Yes
Job Characteristics	No	Yes
Demographic and Family Background Characteristics	No	Yes
Industrial and Occupational Dummies	No	Yes
Interaction Terms	No	Yes
Observations	17,918	17,918
R-squared	0.050	0.291

Table 4: OLS Estimates of Log Hourly Wages – Case 1, Base and Full Specification

***p < 0.01, **p < 0.05, *p < 0.1

Table 5 presents the results from our proposed decomposition. The results show that the change of the GPG is only explained by the quantity effect. The change of the GPG over time is explained by changes in observed characteristics between men and women (in favor of women) over time. We know from Table 1 that women's set of observable human capital and labor market characteristics (Schooling, Exper) is increasing over the last decade, while that of men is partly even decreasing (*Exper*) or remained lower than that of women (educational attainment). In fact, in educational matters, women have outpaced men (Goldin, 2006). The results from the standard method discussed in Section 4.2.1 suggest that the coefficients part of the GPGs, i.e. the part due to differences in returns on observable characteristics, was a main contributor to the GPG in either year with decreasing importance in the ending period. However, by estimating the difference of the GPG over time directly, we see that this so-called discriminatory part has not significantly changed over the last ten years in Italy. The decomposition shows that the only factor that contributes statistically significantly to the narrowing of the gap are better observable characteristics for women. Hence, the closing of the GPG is not explained by antidiscrimination laws, changes in attitudes towards women in the labor market or changes in the family structure and birth control. The latter is, apart from the unexplained part (U), caught by the interaction effects accounting for simultaneous differences in endowments over time and changing prices between men and women (I1) as well as variation in the set of endowments by gender and changing prices over time (I2). The components account for the effects of changes in institutional settings or attributes towards women on prices (given differences in endowments). Yet, the effects are not statistically significant.

	(1)
	Pooled Sample (2005 and 2014)
Decomposition	
E	-0.023***
	(0.007)
I1	0.002
	(0.013)
I2	-0.006
	(0.006)
u	0.050
	(0.179)
Total = E + I1 + I2 + u	0.023
	(0.185)
Observations	17,918
Robust standar	d errors in parentheses

Table 5: Decomposition of the Change in the GPG over time – Case 1

4.2.2The Public-Private Sector Wage Gap between Men and Women

In the literature a positive wage gap between the public and the private sector is found (Melly, 2005; Lucifora and Meurs, 2006; Arulampalam et al., 2007; Christofides and Michael, 2013; Mandel and Semyonov, 2014). Table 6 shows that also in our data for Italy, we find differences in earnings by sector, with higher wage levels in the public sector. A general result is that women are better-off in the public compared to the private sector, while for men the publicsector premia is less important (e.g. Melly, 2005). We find different PPWGs by gender as well; 23.2% for women and 19.8% for men (see Table 6). Both gaps are found to be highly statistically significant. Also, the composition of the PPWGs differs by gender. For women, the PPWG is mainly due to the unexplained part (54.3%). On the contrary, for men, the endowments effect is the main driver of the pay gap (59.9%). Interaction effects are rather small but more important for the wage gap in the female subsample (15.5% compared to 6.1% in the male subsample).

The decomposition outcome of the PPWG between men and women using our proposed model is provided in Tables 7–8. The results from the base model suggest that there is a positive and statistically significant difference in the PPWG between men and women equal to -0.03 log points.¹⁶ The dummy variable for working in the private sector (*private*) negative and significant, tells us that there is a wage loss for working in the private sector compared to public-sector employment. As expected, the coefficient on the *female*-dummy shows that being a women has a significant and negative impact on labor income. In the full model, the effect of private-sector employment as well as being female on wages turns statistically insignificant. Yet, the interaction term *fempriv*, is statistically significant and strongly negative (-0.72). Hence, $\hat{\alpha}_1^{full}$, i.e. the part of the price or unexplained effect due to differences in the starting points is statistically significant. This implies that there is a premia for simply working in the public sector and that this premia is higher for women than for men. Again, the remaining parameter

^{**}p < 0.01, **p < 0.05, *p < 0.1

¹⁶Indicated by the interaction of the dummies *female* and *private*; *fempriv*.

	(1)	(2)
	Women	Men
Differential		
$\overline{ln(w_{\text{Public}_\text{Sector}})}$	2.162^{***}	2.263^{***}
	(0.009)	(0.011)
$\overline{ln(w_{\text{Private_Sector}})}$	1.930^{***}	2.065^{***}
	(0.010)	(0.008)
Difference	0 939***	0 108***
Difference	(0.252)	(0.130)
	(0.013)	(0.013)
Decomposition		
Endowments	0.070^{***}	0.118^{***}
	(0.015)	(0.015)
Coefficients	0.126^{***}	0.067^{***}
	(0.016)	(0.024)
Interaction	0.036**	0.012
	(0.018)	(0.023)
%-Contribution		
Endowments	30.2	59.9
Coefficients	54.3	34.0
Interaction	15.5	61
Interaction	10.0	0.1
Observations	3,828	4,595
Robust standard	errors in par	entheses

Table 6: Standard Decomposition of the PPWG for Women and Men in 2014

***p < 0.01, **p < 0.05, *p < 0.1

estimates impact on wages as expected.¹⁷

By looking at the decomposition, we find that the difference in observable characteristics across sectors and gender, E, does play a statistically significant role in explaining the difference of the PPWG between men and women. In particular, the explained component drives the negative PPWG by gender as best-educated females are more often located in the public sector (Bordogna, 2012; Piazzalunga and Di Tommaso, 2015). The difference in the unexplained component, u, of the PPWG between men and women is significant as well and shows that the change works towards a positive PPWG between men and women. This implies that more egalitarian pay schemes in the public sector are ruled out by female discrimination in prices in both sectors. Moreover, we observe simultaneously differences in characteristics between women and men as well as difference in coefficients between the private and the public sector (for men; I1). Hence, more favorable endowments of men in the private sector compared to women in the private sector and higher pay schemes in the public sector narrow the (negative) PPWG between men and women. All in all, for case 2, the conclusions drawn from the standard estimation are confirmed; both quantity and price effects contribute to the difference in the PPWG between men and women. Yet, we gain the additional insight that the set-up or organization of the public sector does play a role as well. That is institutional norms of the public sector being relatively more gender-equal in combination with more discriminatory practices against women in the private sector lead to an increase of the significant difference in the PPWG between men

 $^{^{17}}$ The complete regression outcome of the full model is shown in Table F.2 in Appendix F.

and women in 2014 in Italy.

Table 7: OLS Estimates of Log Hourly Wages – Case 2, Base and Full Specification

	(1)	(2)
	Basic Sepcification	Full Specification
fempriv	-0.034*	-0.724**
	(0.019)	(0.289)
female	-0.101***	0.278
	(0.014)	(0.196)
private	-0.198***	0.309
-	(0.013)	(0.205)
Groups of Covariates		
Labor Market Presence	No	Yes
Educational Attainment	No	Yes
Job Characteristics	No	Yes
Demographic and Family Background Characteristics	No	Yes
Industrial and Occupational Dummies	No	Yes
Interaction Terms	No	Yes
Observations	8,423	8,423
R-squared	0.069	0.236

Robust standard errors in parentheses ***p < 0.01, **p < 0.05, *p < 0.1

Table 8: Decomposition of the Change in the PPWG by Gender – Case 2

	Pooled Sample (Women and Men)
Decomposition	
Е	-0.028***
	(0.011)
I1	0.041*
	(0.022)
I2	0.002
	(0.011)
u	0.675*
	(0.357)
Total = E + I1 + I2 + u	0.689*
	(0.360)
Observations	8,423

***p < 0.01, **p < 0.05, *p < 0.1

5 Conclusion

Adding to the discussion of the convergence of the GPG over time and the persistence of a PPWG between men and women, we propose an alternative decomposition method allowing to draw inference on the difference of two wage gaps on aggregate as well as on its components. The model set-up bases on the OVB formula and the Gelbach decomposition. Despite additional insights on the composition of differences in gaps, the method can be made robust to the choice of the reference category (Reimers, 1983; Cotton, 1988; Neumark, 1988; Oaxaca and Ransom, 1994; Fortin, 2008) as well as to the indeterminacy problem (Lee, 2015). The method proposed can be applied to a variety of cases such as differences in the GPG and its drivers over time, across countries, sectors, occupations or unions. We empirically consider two cases; the change of the GPG over time as well as the PPWG between men and women in Italy.

The observed closing of the GPG over time is heavily discussed in the literature and the determination of the reasons of the narrowing is of huge interest, especially with regard to policy implications (Blau and Kahn, 2006; Goldin, 2014; Blau and Kahn, 2016). Similarly, the PPWG that is found to differ for men and women is a topic of on-going research (Melly, 2005). Yet, up to know, in the standard estimation framework, direct inference on the difference of pay gaps and changes in their components could not be drawn. Conclusions were rather drawn by estimating the pay gaps separately in different subsamples and comparing the results ex post. In this way, it is not possible to test the significance of the change in the estimated pay gaps on aggregate or the components of the decomposition. Besides the estimation of the change of the GPG over time on aggregate as well as of the explained and unexplained component, our method also catches otherwise unobserved interaction effects across the respective groups of interest.

We find a significant convergence of the GPG over the last decade in Italy. The convergence of the GPG over time was found to be only explained by a reduction in differences in observable characteristics by gender. On the contrary, by estimating the GPG separately for 2005 and 2014, i.e. following the standard approach in the literature, the relative decline in the contribution of the price component to the wage gap might have led to the conclusion that the implementation of anti-discrimination laws and changing attitudes towards women in the labor market have influenced the narrowing of the pay gap over time as well. Yet, these policies as well as changes in social norms seem to have been less effective than expected a priori. Thereby, we add to the literature on the covergence of the GPG over time for the case of Italy the finding that the closing of the pay differential by gender over the last decade was entirely explained by the catching-up of women in terms of endowments. The results for the second case we have examined, i.e. the PPWG between men and women, point the attention to differences in the structure of the public and private sector, which are found to be important to explain the differential. Better educated females are more often employed in the public sector given more egalitarian pay schemes as well as job stability (Bordogna, 2012; Piazzalunga and Di Tommaso, 2015). In this case, the results derived from the standard approach concerning the explained and unexplained part are confirmed in the sense that both components contribute significantly to the change of the PPWG between men and women.

All in all, the analysis with the proposed decomposition method offers a better understanding of what has led to the narrowing of the GPG in the last ten years and what drives the difference in the PPWG between men and women. Most importantly, we can infer what drives the difference in the respective pay gaps in a statistically significant manner. The model proposed offers an intuitive approach to directly estimate changes in wage gaps between groups and can be applied to various problems.

References

- ARULAMPALAM, W., BOOTH, A. L. and BRYAN, M. L. (2007). Is there a Glass Ceiling over Europe? Exploring the Gender Pay Gap across the Wage Distribution. *Industrial and Labor Relations Review*, **60** (2), 163–186.
- BAR, M., KIM, S. and LEUKHINA, O. (2015). Gender Wage Gap Accounting: The Role of Selection Bias. *Demography*, **52** (5), 1729–1750.
- BLACK, S. E. and SPITZ-OENER, A. (2010). Explaining Women's Success: Technological Change and the Skill Content of Women's Work. The Review of Economics and Statistics, 92 (1), 187–194.
- BLAU, F. D. and KAHN, L. M. (1992). The Gender Earnings Gap: Learning from International Comparisons. American Economic Review, 82 (2), 533–38.
- and (2006). The US Gender Pay Gap in the 1990s: Slowing Convergence. Industrial Labor Relations Review, (60), 45–66.
- and (2016). The Gender Wage Gap: Extent, Trends, and Explanations. Tech. rep., National Bureau of Economic Research.
- BLINDER, A. (1973). Wage Discrimination: Reduced Form and Structural Estimates. Journal of Human Resources, 8 (4), 436–455.
- BORDOGNA, L. (2012). Employment Relations and Union Action in the Italian Public Services-Is There a Case of Distortion of Democracy. *Comparative Labor Law & Policy Journal*, 34, 507.
- CHRISTOFIDES, L. and MICHAEL, M. (2013). Exploring the Public-Private Sector Wage Gap in European Countries. *IZA Journal of European Labor Studies*, **2** (1), 1–53.
- COTTER, J. V. R., D.A.; HERMSEN (2004). *Gender Inequality at Work*. Russell Sage Foundation.
- COTTON, J. (1988). On the Decomposition of Wage Differentials. *The Review of Economics and Statistics*, **70** (2), 236–43.
- ENGLAND, P. (2006). Towards Gender Equality: Progress and Bottlenecks. In F.D. Blau, M.C. Brinton & D.B. Grusky (Eds.). The Declining Significance of Gender?, (63), 245–265.
- EUROSTAT (2017). Gender Pay Gap in Unadjusted Form. http://ec.europa.eu/eurostat/ tgm/table.do?tab=table&init=1&language=en&pcode=tsdsc340&plugin=1, (accessed 27-05-2017).

- FORTIN, N. (2008). The Gender Wage Gap among Young Adults in the United States: The Importance of Money versus People. *Journal of Human Resources*, **43** (4).
- (2015). Gender Role Attitudes and Women's Labor Market Participation: Opting-out AIDS and the Persistent Appeal of Housewifery. Annales of Economics and Statistics, (117-118), 379–401.
- —, LEMIEUX, T. and FIRPO, S. (2011). Decomposition Methods in Economics, Elsevier, Handbook of Labor Economics, vol. 4, chap. 1, pp. 1–102.
- GARDEAZABAL, J. and UGIDOS, A. (2004). More on Identification in Detailed Wage Decompositions. *Review of Economics and Statistics*, **86** (4), 1034–1036.
- GELBACH, J. B. (2016). When Do Covariates Matter? And Which Ones, and How Much? Journal of Labor Economics, **34** (2), 509–543.
- GOLDIN, C. (2006). The Quiet Revolution that Transformed Women's Employment, Education, and Family. *American Economic Review*, **96** (2), 1–21.
- (2014). A Grand Gender Convergence: Its Last Chapter. American Economic Review, 104 (4), 1091–1119.
- GORNICK, J. and JACOBS, J. (1998). Gender, the Welfare State, and Public Employment: A Comparative Study of Seven Industrialized Countries. American Sociological Review, (63), 688–710.
- GRIMSHAW, D. (2000). Public Sector Employment, Wage Inequality and the Gender Pay Gap in the UK. International Review of Applied Economics, (14), 427–448.
- JANN, B. (2008). The Blinder-Oaxaca Decomposition for Linear Regression Models.
- LEE, M.-J. (2015). Reference Parameters in Blinder-Oaxaca Decomposition: Pooled-Sample versus Intercept-Shift Approaches. *The Journal of Economic Inequality*, **13** (1), 69–82.
- LUCIFORA, C. and MEURS, D. (2006). The Public Sector Pay Gap In France, Great Britain and Italy. *Review of Income and Wealth*, **52** (1), 43–59.
- MANDEL, H. and SEMYONOV, M. (2014). Gender Pay Gap and Employment Sector: Sources of Earnings Disparities in the United States, 1970–2010. *Demography*, **51** (5), 1597–1618.
- MELLY, B. (2005). Public-Private Sector Wage Differentials in Germany: Evidence from Quantile Regression. *Empirical Economics*, **30** (2), 505–520.
- NEUMARK, D. (1988). Employers' Discriminatory Behavior and the Estimation of Wage Discrimination. *Journal of Human Resources*, **23** (3), 279–295.

- OAXACA, R. (1973). Male-Female Wage Differentials in Urban Labor Markets. International Economic Review, 14 (3), 693–709.
- and RANSOM, M. R. (1994). On Discrimination and the Decomposition of Wage Differentials. Journal of Econometrics, **61** (1), 5–21.
- and (1999). Identification in Detailed Wage Decompositions. Review of Economics and Statistics, 81 (1), 154–157.
- PIAZZALUNGA, D. and DI TOMMASO, M. L. (2015). The Increase of the Gender Wage Gap in Italy during the 2008-2012 Economic Crisis.
- REIMERS, C. W. (1983). Labor Market Discrimination Against Hispanic and Black Men. The Review of Economics and Statistics, 65.
- YUN, M.-S. (2005). A Simple Solution to the Identification Problem in Detailed Sage Decompositions. *Economic Inquiry*, **43** (4), 766–772.

Appendix

The robustness of the decomposition is for simplicity shown for the case of the GPG. Deriving the robust model based on the GPG allows also for a better comparison of the method with the approaches in the literature (e.g. Fortin, 2008, uses the case of the GPG).¹⁸ In Appendix C, when considering differences of gaps, we derive the model for the GPG changing over time. Notably, the methods can be applied to various other decomposition problems.

A Solving the Index-Number Problem of Decompositions using the Intercept-Shift Approach

As is well known in the literature, the Oaxaca-Blinder decomposition is not unique. Therefore, the choice of the non-discriminatory wage structure (men or women) matters and leads to different results (Cotton, 1988; Oaxaca and Ransom, 1994). Several approaches have been proposed to circumvent this problem (Reimers, 1983; Cotton, 1988; Neumark, 1988; Oaxaca and Ransom, 1994; Fortin, 2008). We extend the method proposed by Gelbach (2016) in order to have a wage decomposition invariant to the reference category adopted. In particular, we adopt the decomposition proposed by Fortin (2008) that includes gender intercept shifts along with an identification restriction in the regression of females and males pooled together, when considering the standard case of the GPG for individual i:

$$ln(w_i) = \gamma_0 + \gamma_{0F}F_i + \gamma_{0M}M_i + X_i\gamma + \epsilon_i$$

subject to:

$$\gamma_{0F} + \gamma_{0M} = 0$$

where F_i is equal to one if the individual is female and zero otherwise and M_i equals one if the individual is male and zero otherwise, i.e. $F_i = (1 - M_i)$. Correspondingly, the index Fidentifies women and the index M identifies men. For the pooled regression with male and female dummies, respectively, evaluated at the mean, we have:

$$\overline{ln(w_M)} = \hat{\gamma}_0 + \hat{\gamma}_{0M}M + \bar{X}_M\hat{\gamma}$$
$$\overline{ln(w_F)} = \hat{\gamma}_0 + \hat{\gamma}_{0F}F + \bar{X}_F\hat{\gamma}$$

The identification restriction imposes that the pooled wage equation truly represents a nondiscriminatory wage structure, i.e. a wage structure, where the advantage of men is equal to the

¹⁸The derived model is robust to the index-number problem and invariant with respect to categorical variables as well as robust to the indeterminacy problem.

disadvantage of women:

$$\overline{ln(w_M)} - \overline{ln(w_F)} = (\bar{X}_M - \bar{X}_F)\hat{\gamma} + (\hat{\gamma}_{0M} - \hat{\gamma}_{0F})$$

The first component on the right-hand side, $(\bar{X}_M - \bar{X}_F)\hat{\gamma}$, is the explained part, while $\hat{\gamma}_{0M}$ and $\hat{\gamma}_{0F}$ are the *advantage of men* and the *disadvantage of women*, respectively. In particular, from the difference of the wage regression separately for men and women and the pooled wage regression with a gender dummy, we have:

$$\begin{aligned} \hat{\gamma}_{0M} &= \bar{X}_M(\hat{\beta}_M - \hat{\gamma}) + (\hat{\beta}_{0M} - \hat{\gamma}_0) & advantage \ of \ men \\ \hat{\gamma}_{0F} &= \bar{X}_F(\hat{\beta}_F - \hat{\gamma}) + (\hat{\beta}_{0F} - \hat{\gamma}_0) & disadvantage \ of \ women \end{aligned}$$

where $\hat{\beta}_{0M}$, $\hat{\beta}_{0F}$ are the intercepts and $\hat{\beta}_M$, $\hat{\beta}_F$ are the estimated coefficients of wage equations estimated separately for men and women:

$$ln(w_{iM}) = \beta_{0M} + X_{iM}\beta_M + \epsilon_{iM} \tag{A.1}$$

$$ln(w_{iF}) = \beta_{0F} + X_{iF}\beta_F + \epsilon_{iF} \tag{A.2}$$

In order to adopt the above wage decomposition within the conditional decomposition framework proposed by Gelbach (2016), we estimate the following wage equation:

$$ln(w_i) = \gamma_0 + \gamma_{0F}F_i + \gamma_{0M}M_i + X_i\gamma + X_iF_i\gamma_{XF} + X_iM_i\gamma_{XM} + \nu_i$$
(A.3)

subject to:

$$\gamma_{0F} + \gamma_{0M} = 0$$

$$\gamma_{X_kF} + \gamma_{X_kM} = 0 \quad \text{for } k = 1 \dots K$$

where γ_{X_kF} and γ_{X_kM} are the parameters of the interaction term between the kth regressor X_i and the dummy F_i and M_i , respectively. The error term is represented by v_i . Then,

$$\overline{ln(w_M)} = \hat{\gamma}_0 + \hat{\gamma}_{0M} + \bar{X}_M \hat{\gamma} + \bar{X}_M \hat{\gamma}_{XM}$$
$$\overline{ln(w_F)} = \hat{\gamma}_0 + \hat{\gamma}_{0F} + \bar{X}_F \hat{\gamma} + \bar{X}_F \hat{\gamma}_{XF}$$

Consequently, the GPG becomes:

$$\overline{ln(w_M)} - \overline{ln(w_F)} = (\hat{\gamma}_{0M} - \hat{\gamma}_{0F}) + (\bar{X}_M - \bar{X}_F)\hat{\gamma} + \bar{X}_M\hat{\gamma}_{XM} - \bar{X}_F\hat{\gamma}_{XF}
= -2\hat{\gamma}_{0F} + (\bar{X}_M - \bar{X}_F)\hat{\gamma} - (\bar{X}_M + \bar{X}_F)\hat{\gamma}_{XF}$$
(A.4)

First, we observe that it can be easily shown that there exists the following relationship between the parameter estimates of equations (A.2)-(A.1) and (A.3):

$$\begin{aligned} \hat{\gamma} + \hat{\gamma}_{XF} &= \hat{\beta}_F \\ \hat{\gamma}_0 + \hat{\gamma}_{0F} &= \hat{\beta}_{0F} \\ \hat{\gamma} - \hat{\gamma}_{XF} &= \hat{\beta}_M \\ \hat{\gamma}_0 - \hat{\gamma}_{0F} &= \hat{\beta}_{0M} \end{aligned}$$

Therefore, the GPG of (A.4) can be re-written in terms of the Fortin decomposition as:

$$\overline{ln(w_M)} - \overline{ln(w_F)} = (\hat{\beta}_{0M} - \hat{\gamma}_0) - (\hat{\beta}_{0F} - \hat{\gamma}_0) + (\bar{X}_M - \bar{X}_F)\hat{\gamma} + \bar{X}_M(\hat{\beta}_M - \hat{\gamma}) - \bar{X}_F(\hat{\beta}_F - \hat{\gamma}) \\
= (\bar{X}_M - \bar{X}_F)\hat{\gamma} + [\bar{X}_M(\hat{\beta}_M - \hat{\gamma}) + (\hat{\beta}_{0M} - \hat{\gamma}_0)] - [\bar{X}_F(\hat{\beta}_F - \hat{\gamma}) + (\hat{\beta}_{0F} - \hat{\gamma}_0)] \\$$
(A.5)

Second, the estimation can be recast in terms of the sequential decomposition of Gelbach by considering the following base model for individual i:

$$ln(w_i) = \gamma_0^{base} + (F_i - M_i)\gamma_{0F}^{base} + \epsilon_i^{base}$$
(A.6)

where the 1×2 vector of regressors X_{i1} of the base specification contains for each observation i a constant and the difference between the two dummy variables F_i and M_i , $(F_i - M_i)$. The full model is defined as follows:

$$ln(w_i) = \gamma_0^{full} + (F_i - M_i)\gamma_{0F}^{full} + X_i\gamma + (F_i - M_i)X_i\gamma_{XF} + \epsilon_i^{full}$$
(A.7)

where the regressors X_i as well as the interaction between X_i and the difference between the two dummy variables F_i and M_i are contained in the $1 \times 2K$ vector X_{i2} . The regressors in X_{i2} are the omitted variables. By the OVB formula the following relationship holds:

$$\begin{bmatrix} \hat{\gamma}_{0}^{base} \\ \hat{\gamma}_{0F}^{base} \end{bmatrix} = \begin{bmatrix} \hat{\gamma}_{0}^{full} \\ \hat{\gamma}_{0F}^{full} \end{bmatrix} + (X_{i1}^{'}X_{i1})^{-1}X_{i1}^{'}X_{i2} \begin{bmatrix} \hat{\gamma} \\ \hat{\gamma}_{XF} \end{bmatrix}$$
(A.8)

where $\left[\hat{\gamma}_{0}^{base}, \hat{\gamma}_{0F}^{base}\right]^{T}$ is the 2×1 vector of coefficient estimates of X_{1} from the base model (A.6) evaluated at the mean; $\left[\hat{\gamma}_{0}^{full}, \hat{\gamma}_{0F}^{full}\right]^{T}$ is the 2×1 vector containing the coefficient estimates of X_{i1} from the full model (A.7) evaluated at the mean and $\left[\hat{\gamma}, \hat{\gamma}_{XF}\right]^{T}$ is the vector of coefficients estimates of X_{i2} from the full model (A.7) evaluated at the mean, i.e. $\hat{\gamma}^{full}$ with dimension $2K \times 1$. First observe that $\hat{\gamma}_{0F}^{base}$ is equal to $\frac{\overline{ln(w_{F})} - \overline{ln(w_{M})}}{2}$ and that $\hat{\gamma}_{0F}^{full}$ is equal to $\frac{\hat{\beta}_{0F} - \hat{\beta}_{0M}}{2}$. As in Section 3, we are interested in the second row of equation (A.8). Given the relationship in (A.8), we observe that:

$$\hat{\gamma}_{0F}^{base} = -\frac{\overline{ln(w_M)} - \overline{ln(w_F)}}{2} = -\frac{\Delta}{2} = \hat{\gamma}_{0F}^{full} + \eta \hat{\gamma}^{full}$$
(A.9)

where Δ is the GPG and $\eta = \left[\frac{(\bar{x}_F - \bar{x}_M)}{2}, \frac{(\bar{x}_F + \bar{x}_M)}{2}\right]$ contains the sample means of obervable characteristics in X_i obtained from the linear projection of X_i and $(F_i - M_i)X_i$ with respect to X_{i1} . The row vector η has dimension $1 \times 2K$. Moreover, we have $\hat{\gamma}_{0F}^{full} = \frac{\hat{\beta}_{0F} - \hat{\beta}_{0M}}{2} = \frac{(\hat{\beta}_{0F} - \hat{\gamma}_0^{full}) - (\hat{\beta}_{0M} - \hat{\gamma}_0^{full})}{2}$. Consequently, the GPG can be written as:

$$-2\gamma_{0F}^{base} = -2\gamma_{0F}^{full} + (\bar{x}_M - \bar{x}_F)\gamma - (\bar{x}_M - \bar{x}_F)\gamma_{XF}$$
(A.10)

what completes the proof of decomposition equivalence.

B Invariance Decomposition with respect to Categorical Variables

A second type of identification issue arises when dummy variables are considered in a detailed wage decomposition. Oaxaca and Ransom (1999) show that the assignment of the explained part of the GPG to specific variables is not invariant to the choice of reference groups. This problem can be easily solved by imposing the following parameter restrictions as proposed by Gardeazabal and Ugidos (2004), Yun (2005) and Fortin (2008):

$$\sum_{j=1}^{C_k} \gamma_{jk} = 0, \ k \in C \tag{B.1}$$

where C denotes the set of categorical variables, and C_k the number of categories for variable k. The neutral, i.e. non-sensitive to any left-out category, Oaxaca-Blinder decomposition follows. The zero-sum restriction (B.1) is applied to the wage equation, when female and male wages are estimated separately as well as to the pooled regression with gender dummies. The latter is additionally estimated with the identification restriction $\gamma_{0M} + \gamma_{0F} = 0$ on the gender parameters. Thereby, the intercepts, β_{0M} , β_{0F} and γ_0 , are no longer influenced by the choice of the reference category in the case of categorical variables.

The restriction (B.1) can also be applied to the method proposed in Section 3 leading to indicator variables that are invariant to the choice of the left-out category in the case of categorical variables.

C Estimating Differences of Gaps with the Intercept-Shift Approach

The extension of the decomposition described in Appendix A to the case of the estimation of the difference of wage gaps follows straightforward. We consider, as in Section 3.2, the indicator variable Y_i that takes values $\{0, 1\}$. Again, when the indicator variable Y_i is used as an index $(Y), Y_i = 0$ corresponds to B and $Y_i = 1$ to A. Similarly, in order to circumvent confusion with the intercept (referred to as β_0 in coherence with Appendix A), the gender index is not numerical here, but $G \in \{F, M\}$ with F = female and M = male replacing the numerical index $\{1, 0\}$, respectively. The set of regressors considered in Section 3.2 are hence transformed as follows:

$$X_{i1} = [1, (F_i - M_i)Y_i, (F_i - M_i), Y_i]$$

$$X_{i2} = [X, (F_i - M_i)X_i, Y_iX_i, (F_i - M_i)Y_iX_i]$$

for each individual *i*, with X_{i1} having dimension 1×4 and X_{i2} having dimension $1 \times 4K$. X_{i1} contains the interaction of $(F_i - M_i)$ with Y_i ; $(F_i - M_i)Y_i$. The second set of regressors, X_{i2} contains the $1 \times K$ vector of characteristics X_i as well as the interaction of X_i with $(F_i - M_i)$ and Y_i ; $(F_i - M_i)X_i, Y_iX_i$ and $(F_i - M_i)Y_iX_i$, respectively. The base model is then:

$$ln(w_i) = \gamma_0^{base} + (F_i - M_i)Y_i\gamma_{FY}^{base} + (F_i - M_i)\gamma_F^{base} + Y_i\gamma_Y^{base} + \epsilon_i^{base}$$
(C.1)

while the full model is defined as follows:

$$ln(w_{i}) = \gamma_{0}^{full} + (F_{i} - M_{i})Y_{i}\gamma_{F_{i}Y_{i}}^{full} + (F_{i} - M_{i})\gamma_{F}^{full} + Y_{i}\gamma_{Y}^{full} + X_{i}\gamma + (F_{i} - M_{i})X_{i}\gamma_{XF} + Y_{i}X_{i}\gamma_{XY} + (F_{i} - M_{i})Y_{i}X_{i}\gamma_{XYF} + \epsilon_{i}^{full}$$
(C.2)

where γ_0^{base} is the constant and γ_{FY}^{base} , γ_F^{base} , γ_Y^{base} are the coefficients of the the base model (C.1), γ_0^{full} , γ_{FY}^{full} , γ_F^{full} , γ_Y^{full} are the corresponding constant and coefficients of X_{i1} from the full model (C.2). γ , γ_{XF} , γ_{XY} , γ_{XYF} are the $K \times 1$ coefficient vectors of X_{i2} from the full model (C.2). The second row of the linear projection of X_{i2} with respect to X_{i1} is contained in the following $1 \times 4K$ vector:

$$\zeta = \left[\frac{(\bar{x}_{0A} - \bar{x}_{1A}) - (\bar{x}_{0B} - \bar{x}_{1B})}{2}, \frac{(\bar{x}_{0A} + \bar{x}_{1A}) - (\bar{x}_{0B} + \bar{x}_{1B})}{2}, \frac{(\bar{x}_{1A} - \bar{x}_{0A})}{2}, \frac{(\bar{x}_{1A} + \bar{x}_{0A})}{2}\right]$$

Consider the equivalence between the following parameter estimates evaluated at the mean:

$$\begin{aligned} \hat{\gamma}_{0}^{full} - \hat{\gamma}_{FY}^{full} - \hat{\gamma}_{F}^{full} + \hat{\gamma}_{Y}^{full} &= \hat{\beta}_{0,MA} \\ \hat{\gamma}_{0}^{full} + \hat{\gamma}_{FY}^{full} + \hat{\gamma}_{F}^{full} + \gamma_{Y}^{full} &= \hat{\beta}_{0,FA} \\ \hat{\gamma}_{0}^{full} + \hat{\gamma}_{F}^{full} &= \hat{\beta}_{0,FB} \\ \hat{\gamma}_{0}^{full} - \hat{\gamma}_{F}^{full} &= \hat{\beta}_{0,MB} \\ \hat{\gamma} + \hat{\gamma}_{XF} + \hat{\gamma}_{XY} + \hat{\gamma}_{XYF} &= \hat{\beta}_{FA} \\ \hat{\gamma} - \hat{\gamma}_{XF} + \hat{\gamma}_{XY} - \hat{\gamma}_{XYF} &= \hat{\beta}_{MA} \\ \hat{\gamma} + \hat{\gamma}_{XF} &= \hat{\beta}_{FB} \\ \hat{\gamma} - \hat{\gamma}_{XF} &= \hat{\beta}_{MB} \end{aligned}$$

Observe that $\hat{\gamma}_{FY}^{base}$ is equal to $\frac{\Delta GPG}{2}$ and $\hat{\gamma}_{FY}^{full}$ is equal to $\frac{(\hat{\beta}_{0,MB} - \hat{\beta}_{0,FB}) - (\hat{\beta}_{0,MA} - \hat{\beta}_{0,FA})}{2}$. Given the fact that

$$\hat{\gamma}_{FY}^{base} = \frac{\left(\overline{ln(w_{MB})} - \overline{ln(w_{FB})}\right) - \left(\overline{ln(w_{MA})} - \overline{ln(w_{FA})}\right)}{2}$$
$$= \frac{\Delta GPG}{2}$$

The relationship:

$$\hat{\gamma}_{FY}^{base} = \hat{\gamma}_{FY}^{full} + \zeta \hat{\gamma}^{full}$$

can be re-written in terms of the ΔGPG as:

$$2\hat{\gamma}_{FY}^{base} = \Delta GPG = \\ = \underbrace{[(\hat{\beta}_{0,MB} - \hat{\beta}_{0,FB}) - (\hat{\beta}_{0,MA} - \hat{\beta}_{0,FA})]}_{\hat{\gamma}_{FY}^{full}} + \underbrace{(\Delta \bar{x}^B - \Delta \bar{x}^A)\hat{\gamma}}_{\Lambda} + \underbrace{(\sum \bar{x}^A - \sum \bar{x}^B)\hat{\gamma}_{XF}}_{\Omega} - \underbrace{\Delta \bar{x}^A \hat{\gamma}_{XY}}_{\Theta} + \underbrace{\sum \bar{x}^A \hat{\gamma}_{XYF}}_{\Upsilon}$$

where $\Delta \bar{x}^Y$ is the difference between the average level of observed characteristics of men and women in a certain year, with $Y \in \{A, B\}$ and $\sum \bar{x}^Y$ represents the sum of observable labor market characteristics present for men and women in Y. Recall that the model can be re-written in terms of the OVB formula as follows:

$$\begin{split} &2\hat{\gamma}_{FY}^{base} = \hat{\gamma}_{FY}^{full} + \hat{\delta}^{\Lambda} + \hat{\delta}^{\Omega} + \hat{\delta}^{\Theta} + \hat{\delta}^{\Upsilon} \\ &\hat{P} + \hat{Q} = \hat{\gamma}_{FY}^{full} + \hat{\delta}^{\Lambda} + \hat{\delta}^{\Omega} + \hat{\delta}^{\Theta} + \hat{\delta}^{\Upsilon} \end{split}$$

with P accounting for the price effect and Q for the quantity effect. In particular,

$$\begin{split} \hat{P} &= \hat{\gamma}_{FY}^{full} + \Upsilon \\ \hat{Q} &= \Omega + \underbrace{\Theta}_{Y\text{-specific term}} + \underbrace{\Lambda}_{\text{gender-specific term}} \end{split}$$

 $\hat{\gamma}_{FY}^{full}$ represents the change in the disadvantage of women over time. Thereby, accounting for the relative improvement (or deterioration) of women's position in the labor market. A measures the amount of the pay difference attributable to differences in observable characteristics assuming the same prices over time and gender. Ω accounts for differences in human capital and other observable labor market characteristics in the economy over time. The underlying prices are the coefficient estimates obtained when holding F_i fixed at 1 given X_i . Equivalently, the prices could be expressed as the coefficient estimates obtained when holding F_i fixed at 1 given X_i . Equivalently, the prices could be constraint imposed: $\gamma_{XF} = -\gamma_{XM}$. Θ accounts for differences in endowments by gender holding the second indicator variable fixed, i.e. setting the index Y = A. The component Υ can be re-written as:

$$\begin{split} \Upsilon &= [\sum \bar{x}^A \hat{\gamma}_{XYF}] \\ &= [\bar{x}_{1A} \hat{\gamma}_{XYF} + \bar{x}_{0A} (-\hat{\gamma}_{XYM})] \\ &= \underbrace{\bar{x}_{FA} \hat{\gamma}_{XYF}}_{\text{disadvantage of women}} - \underbrace{\bar{x}_{MA} \hat{\gamma}_{XYM}}_{\text{advantage of men}} \end{split}$$

For the component Υ , the underlying set of characteristics are the average male and female endowments observed in Y = A, respectively. The prices can be expressed in terms of men's advantage or women's disadvantage given X_i .

Again, the pooled wage equation including the gender parameters and the male and female earnings equations are estimated separately using additional constraints for each categorical variable, i.e. under the zero-sum constraint (B.1).

D Intercept-Shift Approach versus Pooled-Sample Approach

Lee (2015) shows that the intercept-shift approach proposed by Fortin (2008) presents two drawbacks. Firstly, the reference parameter for the Oaxaca-Blinder decomposition, i.e. the parameter that would prevail in a 'fair' world under no discrimination, relies on the variance difference among categories. Secondly, the reference intercept is arbitrary: the same Oaxaca-Blinder decomposition holds with vastly different reference intercepts.

However, it can be easily shown that our proposed decomposition does not suffer from any of these aspects. Our decomposition arises from a specification that allows different intercepts and slopes. In addition, the constraints imposed on the parameters that identify the counterfactual reference parameters are the parameters such that the advantage of men is equal to the disadvantage of women. In fact, in our model the slope that would prevail under *no discrimination*, γ , is the sample average of the group slopes; β_{0M} and β_{0F} :

$$\gamma = 0.5\beta_{0M} + 0.5\beta_{0F}$$

i.e. it is equivalent to considering the weights proposed by Reimers (1983).¹⁹ Moreover, the constraint:

$$\beta_{0F} - \gamma_{0F} = \beta_{0M} + \gamma_{0F}$$

prevents the indeterminacy problem shown by Lee (2015). It turns out, that in our model, the intercept indeterminacy problem highlighted by Lee (2015) is ruled out by imposing the constraint that the advantage of men should be equal to the disadvantage of women.

 $^{^{19}}$ See also Lee (2015).

\mathbf{E} **Definition of Variables**

Variable Name	Definition
	Dependent Variables
	Dependent variables
Lhwage	Natural logarithm of net hourly wages
	Hourly wages in Euros, net of taxes and social security contributions
	Independent Variable
	Group Dummies and Interaction Terms
female	One if the individual is a woman, zero otherwise
year	One if year is 2005, zero otherwise
private	One if individual is employed in the private sector
femyear	Interactive effect of <i>year</i> and <i>female</i> , i.e. one if employee
	is observed in 2005 and is female, zero otherwise
fempriv	Interactive effect of <i>private</i> and <i>female</i> , i.e. one if employee
	is employed in the private sector and is female, zero otherwise
Inter_female_X	Interactive effect of <i>female</i> and the set of regresors X ;
	$Inter_female_Exper-Inter_female_Intermed_Prof$
$\mathrm{Inter_year_}X$	Interactive effect of <i>year</i> and the set of regresors X ;
	$Inter_year_Exper-Inter_year_Intermed_Prof$
$\operatorname{Inter_femyear_}X$	Interactive effect of <i>femyear</i> and the set of regresors X ;
	$Inter_femyear_Exper-Inter_femyear_Intermed_Prof$
$\mathrm{Inter_private}_X$	Interactive effect of <i>private</i> and the set of regresors X ;
	$Inter_private_Exper-Inter_private_Intermed_Prof$
Inter_fempriv_X	Interactive effect of <i>fempriv</i> and the set of regresors X ;
	$Inter_fempriv_Exper-Inter_fempriv_Intermed_Prof$
	Labor Market Presence
Exper	Number of years of prior work experience
- Exper2	<i>Exper</i> squared

Table E.1: Definition of Variables

Exper	Number of years of prior work experience
Exper2	Exper squared
Tenure	Number of years worked for current employer

Educational Attainment

Schooling	Number of years of schooling completed
	Job Characteristics
Work_Climate	Individual's level of statisfaction with the working climate at the individual's current job $\in (0, 4)$, where 4 is the highest level of satisfaction and 0 the lowest
Work_Stab	Individual's level of statisfaction with the stability of the individual's current job $\in (0, 4)$, where 4 is the highest level of satisfaction and 0 the lowest
Work_Time	Individual's level of statisfaction with the working time at the individual's current job, where 4 is the highest level of satisfaction and 0 the lowest
Work_Task	Individual's level of statisfaction with the tasks at the individual's current job $\in (0, 4)$, where 4 is the highest level of satisfaction and 0 the lowest
Contract_Type	One if the individual holds an unlimited contract, zero otherwise
	Demographic Background
Italian	One if individual is Italian, zero otherwise
Homeowner	One if individual owns a house (including houses financed by bank loans), zero otherwise
North	One if the individual lives and works in the North of Italy, zero otherwise
Centre	One if the individual lives and works in the Centre of Italy, zero otherwise
	Family Background
Married	One if individual is married, zero otherwise
$Educ_Moth_Uni$	One if mother's education is equal to Laurea,
	i.e. mother holds a university degree, zero otherwise
Educ_Fath_Uni	One if father's education is equal to Laurea,
	i.e. father holds a university degree, zero otherwise
	Industry and Occupations
Sec_Ind	One if individual is engaged in the industrial sector, zero otherwise
Sec_Tour	One if individual is engaged in tourism, zero otherwise
Sec_Trans	One if individual is engaged in transport, zero otherwise

Sec_Comm	One if individual is engaged in communication, zero otherwise
Sec_Fina	One if individual is engaged in financial sector, zero otherwise
Sec_Serv	One if individual is engaged in firm services, zero otherwise
Sec_PA	One if individual is engaged in the public administration, zero otherwise
Sec_Heal	One if individual is engaged in health, zero otherwise
Sec_Prof	One if individual is engaged in science and other professional activities, zero otherwise
Manager	One if individual executes intellectual professions;
	scientific and highly specialized occupations, zero otherwise
$Intermediate_Prof$	One if individual executes intermediary positions in commercial, technical
	or administrative sectors, health services and technicians, zero otherwise

F Regression Output from the Full Specification

	(1)
Variables	
femyear	-0.051
	(0.185)
female	-0.148
	(0.152)
year	-0.010
	(0.130)
Exper	0.019^{***}
	(0.002)
Exper2	-0.000***
	(0.000)
Tenure	0.004^{***}
	(0.001)
Schooling	0.038***
	(0.005)
$Contract_Type$	0.080***
	(0.023)
Work_Climate	0.001
	(0.008)
Work_Time	0.009
	(0.007)
Work_Task	-0.002
	(0.008)
Work_Stab	-0.024***
	(0.007)
North	0.060***
	(0.014)
Centre	0.038**
	(0.015)
Italian	0.004

Table F.1: OLS Estimates of Log Hourly Wages – Case 1, Full Specification

	(0.065)
Homeowner	-0.006
	(0.018)
Married	0.062^{***}
	(0.014)
Educ_Moth_Uni	-0.011
	(0.033)
Educ_Fath_Uni	0.069^{***}
	(0.027)
Manager	0.136^{***}
	(0.020)
Intermed_Prof	0.035***
	(0.013)
Constant	1.163***
	(0.110)
Industrial Dummies	Yes
Interaction Terms	Yes
Observations	17,918
R-squared	0.291

Robust standard errors in parentheses $***p < 0.01, \, **p < 0.05, \, *p < 0.1$

	(1)
Variables	
fempriv	-0.724**
	(0.289)
female	0.278
	(0.196)
private	0.309
	(0.205)
Exper	0.019***
	(0.004)
Exper2	-0.000***
	(0.000)
Tenure	0.002
	(0.001)
Schooling	0.055^{***}
	(0.007)
Contract_Type	0.182^{***}
	(0.057)
Work_Climate	0.014
	(0.012)
Work_Time	-0.001
	(0.013)
Work_Task	-0.004
	(0.014)
Work_Stab	-0.017

Table F.2: OLS Estimates of Log Hourly Wages – Case 2, Full Specification

	(0.013)
North	0.049^{**}
	(0.023)
Centre	0.072^{***}
	(0.023)
Italian	-0.177***
	(0.063)
Homeowner	0.050
	(0.032)
Married	0.031
	(0.026)
Educ_Moth_Uni	0.074
	(0.058)
Educ_Fath_Uni	0.043
	(0.046)
Manager	0.118^{***}
	(0.032)
Intermed_Prof	-0.015
	(0.024)
Constant	1 0/6***
Constant	(0.147)
	(0.147)
Industrial Dummies	Yes
Interaction Terms	Yes
Observations	8,423
R-squared	0.236

 $\label{eq:result} \begin{array}{l} \mbox{Robust standard errors in parentheses} \\ ***p < 0.01, **p < 0.05, *p < 0.1 \end{array}$

Hohenheim Discussion Papers in Business, Economics and Social Sciences

The Faculty of Business, Economics and Social Sciences continues since 2015 the established "FZID Discussion Paper Series" of the "Centre for Research on Innovation and Services (FZID)" under the name "Hohenheim Discussion Papers in Business, Economics and Social Sciences".

Institutes

- 510 Institute of Financial Management
- 520 Institute of Economics
- 530 Institute of Health Care & Public Management
- 540 Institute of Communication Science
- 550 Institute of Law and Social Sciences
- 560 Institute of Economic and Business Education
- 570 Institute of Marketing & Management
- 580 Institute of Interorganisational Management & Performance

Research Areas (since 2017)

INEPA	"Inequality and Economic Policy Analysis"
TKID	"Transformation der Kommunikation – Integration und Desintegration"
NegoTrans	"Negotiation Research - Transformation, Technology, Media and Costs"
INEF	"Innovation, Entrepreneurship and Finance"

Download Hohenheim Discussion Papers in Business, Economics and Social Sciences from our homepage: https://wiso.uni-hohenheim.de/papers

No.	Author	Title	Inst
01-2015	Thomas Beissinger, Philipp Baudy	THE IMPACT OF TEMPORARY AGENCY WORK ON TRADE UNION WAGE SETTING: A Theoretical Analysis	520
02-2015	Fabian Wahl	PARTICIPATIVE POLITICAL INSTITUTIONS AND CITY DEVELOPMENT 800-1800	520
03-2015	Tommaso Proietti, Martyna Marczak, Gianluigi Mazzi	EUROMIND-D: A DENSITY ESTIMATE OF MONTHLY GROSS DOMESTIC PRODUCT FOR THE EURO AREA	520
04-2015	Thomas Beissinger, Nathalie Chusseau, Joël Hellier	OFFSHORING AND LABOUR MARKET REFORMS: MODELLING THE GERMAN EXPERIENCE	520
05-2015	Matthias Mueller, Kristina Bogner, Tobias Buchmann, Muhamed Kudic	SIMULATING KNOWLEDGE DIFFUSION IN FOUR STRUCTURALLY DISTINCT NETWORKS – AN AGENT-BASED SIMULATION MODEL	520
06-2015	Martyna Marczak, Thomas Beissinger	BIDIRECTIONAL RELATIONSHIP BETWEEN INVESTOR SENTIMENT AND EXCESS RETURNS: NEW EVIDENCE FROM THE WAVELET PERSPECTIVE	520
07-2015	Peng Nie, Galit Nimrod, Alfonso Sousa-Poza	INTERNET USE AND SUBJECTIVE WELL-BEING IN CHINA	530

No.	Author	Title	Inst
08-2015	Fabian Wahl	THE LONG SHADOW OF HISTORY ROMAN LEGACY AND ECONOMIC DEVELOPMENT – EVIDENCE FROM THE GERMAN LIMES	520
09-2015	Peng Nie, Alfonso Sousa-Poza	COMMUTE TIME AND SUBJECTIVE WELL-BEING IN URBAN CHINA	530
10-2015	Kristina Bogner	THE EFFECT OF PROJECT FUNDING ON INNOVATIVE PERFORMANCE AN AGENT-BASED SIMULATION MODEL	520
11-2015	Bogang Jun, Tai-Yoo Kim	A NEO-SCHUMPETERIAN PERSPECTIVE ON THE ANALYTICAL MACROECONOMIC FRAMEWORK: THE EXPANDED REPRODUCTION SYSTEM	520
12-2015	Volker Grossmann Aderonke Osikominu Marius Osterfeld	ARE SOCIOCULTURAL FACTORS IMPORTANT FOR STUDYING A SCIENCE UNIVERSITY MAJOR?	520
13-2015	Martyna Marczak Tommaso Proietti Stefano Grassi	A DATA-CLEANING AUGMENTED KALMAN FILTER FOR ROBUST ESTIMATION OF STATE SPACE MODELS	520
14-2015	Carolina Castagnetti Luisa Rosti Marina Töpfer	THE REVERSAL OF THE GENDER PAY GAP AMONG PUBLIC-CONTEST SELECTED YOUNG EMPLOYEES	520
15-2015	Alexander Opitz	DEMOCRATIC PROSPECTS IN IMPERIAL RUSSIA: THE REVOLUTION OF 1905 AND THE POLITICAL STOCK MARKET	520
01-2016	Michael Ahlheim, Jan Neidhardt	NON-TRADING BEHAVIOUR IN CHOICE EXPERIMENTS	520
02-2016	Bogang Jun, Alexander Gerybadze, Tai-Yoo Kim	THE LEGACY OF FRIEDRICH LIST: THE EXPANSIVE REPRODUCTION SYSTEM AND THE KOREAN HISTORY OF INDUSTRIALIZATION	520
03-2016	Peng Nie, Alfonso Sousa-Poza	FOOD INSECURITY AMONG OLDER EUROPEANS: EVIDENCE FROM THE SURVEY OF HEALTH, AGEING, AND RETIREMENT IN EUROPE	530
04-2016	Peter Spahn	POPULATION GROWTH, SAVING, INTEREST RATES AND STAGNATION. DISCUSSING THE EGGERTSSON- MEHROTRA-MODEL	520
05-2016	Vincent Dekker, Kristina Strohmaier, Nicole Bosch	A DATA-DRIVEN PROCEDURE TO DETERMINE THE BUNCHING WINDOW – AN APPLICATION TO THE NETHERLANDS	520
06-2016	Philipp Baudy, Dario Cords	DEREGULATION OF TEMPORARY AGENCY EMPLOYMENT IN A UNIONIZED ECONOMY: DOES THIS REALLY LEAD TO A SUBSTITUTION OF REGULAR EMPLOYMENT?	520

No.	Author	Title	Inst
07-2016	Robin Jessen, Davud Rostam-Afschar, Sebastian Schmitz	HOW IMPORTANT IS PRECAUTIONARY LABOR SUPPLY?	520
08-2016	Peng Nie, Alfonso Sousa-Poza, Jianhong Xue	FUEL FOR LIFE: DOMESTIC COOKING FUELS AND WOMEN'S HEALTH IN RURAL CHINA	530
09-2016	Bogang Jun, Seung Kyu-Yi, Tobias Buchmann, Matthias Müller	THE CO-EVOLUTION OF INNOVATION NETWORKS: COLLABORATION BETWEEN WEST AND EAST GERMANY FROM 1972 TO 2014	520
10-2016	Vladan Ivanovic, Vadim Kufenko, Boris Begovic Nenad Stanisic, Vincent Geloso	CONTINUITY UNDER A DIFFERENT NAME. THE OUTCOME OF PRIVATISATION IN SERBIA	520
11-2016	David E. Bloom Michael Kuhn Klaus Prettner	THE CONTRIBUTION OF FEMALE HEALTH TO ECONOMIC DEVELOPMENT	520
12-2016	Franz X. Hof Klaus Prettner	THE QUEST FOR STATUS AND R&D-BASED GROWTH	520
13-2016	Jung-In Yeon Andreas Pyka Tai-Yoo Kim	STRUCTURAL SHIFT AND INCREASING VARIETY IN KOREA, 1960–2010: EMPIRICAL EVIDENCE OF THE ECONOMIC DEVELOPMENT MODEL BY THE CREATION OF NEW SECTORS	520
14-2016	Benjamin Fuchs	THE EFFECT OF TEENAGE EMPLOYMENT ON CHARACTER SKILLS, EXPECTATIONS AND OCCUPATIONAL CHOICE STRATEGIES	520
15-2016	Seung-Kyu Yi Bogang Jun	HAS THE GERMAN REUNIFICATION STRENGTHENED GERMANY'S NATIONAL INNOVATION SYSTEM? TRIPLE HELIX DYNAMICS OF GERMANY'S INNOVATION SYSTEM	520
16-2016	Gregor Pfeifer Fabian Wahl Martyna Marczak	ILLUMINATING THE WORLD CUP EFFECT: NIGHT LIGHTS EVIDENCE FROM SOUTH AFRICA	520
17-2016	Malte Klein Andreas Sauer	CELEBRATING 30 YEARS OF INNOVATION SYSTEM RESEARCH: WHAT YOU NEED TO KNOW ABOUT INNOVATION SYSTEMS	570
18-2016	Klaus Prettner	THE IMPLICATIONS OF AUTOMATION FOR ECONOMIC GROWTH AND THE LABOR SHARE	520
19-2016	Klaus Prettner Andreas Schaefer	HIGHER EDUCATION AND THE FALL AND RISE OF INEQUALITY	520
20-2016	Vadim Kufenko Klaus Prettner	YOU CAN'T ALWAYS GET WHAT YOU WANT? ESTIMATOR CHOICE AND THE SPEED OF CONVERGENCE	520

No.	Author	Title	Inst
01-2017	Annarita Baldanzi Alberto Bucci Klaus Prettner	CHILDRENS HEALTH, HUMAN CAPITAL ACCUMULATION, AND R&D-BASED ECONOMIC GROWTH	INEPA
02-2017	Julius Tennert Marie Lambert Hans-Peter Burghof	MORAL HAZARD IN VC-FINANCE: MORE EXPENSIVE THAN YOU THOUGHT	INEF
03-2017	Michael Ahlheim Oliver Frör Nguyen Minh Duc Antonia Rehl Ute Siepmann Pham Van Dinh	LABOUR AS A UTILITY MEASURE RECONSIDERED	520
04-2017	Bohdan Kukharskyy Sebastian Seiffert	GUN VIOLENCE IN THE U.S.: CORRELATES AND CAUSES	520
05-2017	Ana Abeliansky Klaus Prettner	AUTOMATION AND DEMOGRAPHIC CHANGE	520
06-2017	Vincent Geloso Vadim Kufenko	INEQUALITY AND GUARD LABOR, OR PROHIBITION AND GUARD LABOR?	INEPA
07-2017	Emanuel Gasteiger Klaus Prettner	ON THE POSSIBILITY OF AUTOMATION-INDUCED STAGNATION	520
08-2017	Klaus Prettner Holger Strulik	THE LOST RACE AGAINST THE MACHINE: AUTOMATION, EDUCATION, AND INEQUALITY IN AN R&D-BASED GROWTH MODEL	INEPA
09-2017	David E. Bloom Simiao Chen Michael Kuhn Mark E. McGovern Les Oxley Klaus Prettner	THE ECONOMIC BURDEN OF CHRONIC DISEASES: ESTIMATES AND PROJECTIONS FOR CHINA, JAPAN, AND SOUTH KOREA	520
10-2017	Sebastian Till Braun Nadja Dwenger	THE LOCAL ENVIRONMENT SHAPES REFUGEE INTEGRATION: EVIDENCE FROM POST-WAR GERMANY	INEPA
11-2017	Vadim Kufenko Klaus Prettner Vincent Geloso	DIVERGENCE, CONVERGENCE, AND THE HISTORY-AUGMENTED SOLOW MODEL	INEPA
12-2017	Frank M. Fossen Ray Rees Davud Rostam-Afschar Viktor Steiner	HOW DO ENTREPRENEURIAL PORTFOLIOS RESPOND TO INCOME TAXATION?	520
13-2017	Steffen Otterbach Michael Rogan	SPATIAL DIFFERENCES IN STUNTING AND HOUSEHOLD AGRICULTURAL PRODUCTION IN SOUTH AFRICA: (RE-) EXAMINING THE LINKS USING NATIONAL PANEL SURVEY DATA	INEPA
14-2017	Carolina Castagnetti Luisa Rosti Marina Töpfer	THE CONVERGENCE OF THE GENDER PAY GAP – AN ALTERNATIVE ESTIMATION APPROACH	INEPA

FZID Discussion Papers

(published 2009-2014)

Competence Centers

IK	Innovation and Knowledge
ICT	Information Systems and Communication Systems
CRFM	Corporate Finance and Risk Management
HCM	Health Care Management
CM	Communication Management
MM	Marketing Management
ECO	Economics

Download FZID Discussion Papers from our homepage: https://wiso.uni-hohenheim.de/archiv_fzid_papers

Nr.	Autor	Titel	CC
01-2009	Julian P. Christ	NEW ECONOMIC GEOGRAPHY RELOADED: Localized Knowledge Spillovers and the Geography of Innovation	IK
02-2009	André P. Slowak	MARKET FIELD STRUCTURE & DYNAMICS IN INDUSTRIAL AUTOMATION	IK
03-2009	Pier Paolo Saviotti, Andreas Pyka	GENERALIZED BARRIERS TO ENTRY AND ECONOMIC DEVELOPMENT	IK
04-2009	Uwe Focht, Andreas Richter and Jörg Schiller	INTERMEDIATION AND MATCHING IN INSURANCE MARKETS	HCM
05-2009	Julian P. Christ, André P. Slowak	WHY BLU-RAY VS. HD-DVD IS NOT VHS VS. BETAMAX: THE CO-EVOLUTION OF STANDARD-SETTING CONSORTIA	IK
06-2009	Gabriel Felbermayr, Mario Larch and Wolfgang Lechthaler	UNEMPLOYMENT IN AN INTERDEPENDENT WORLD	ECO
07-2009	Steffen Otterbach	MISMATCHES BETWEEN ACTUAL AND PREFERRED WORK TIME: Empirical Evidence of Hours Constraints in 21 Countries	HCM
08-2009	Sven Wydra	PRODUCTION AND EMPLOYMENT IMPACTS OF NEW TECHNOLOGIES – ANALYSIS FOR BIOTECHNOLOGY	IK
09-2009	Ralf Richter, Jochen Streb	CATCHING-UP AND FALLING BEHIND KNOWLEDGE SPILLOVER FROM AMERICAN TO GERMAN MACHINE TOOL MAKERS	IK

Nr.	Autor	Titel	CC
10-2010	Rahel Aichele, Gabriel Felbermayr	KYOTO AND THE CARBON CONTENT OF TRADE	ECO
11-2010	David E. Bloom, Alfonso Sousa-Poza	ECONOMIC CONSEQUENCES OF LOW FERTILITY IN EUROPE	HCM
12-2010	Michael Ahlheim, Oliver Frör	DRINKING AND PROTECTING – A MARKET APPROACH TO THE PRESERVATION OF CORK OAK LANDSCAPES	ECO
13-2010	Michael Ahlheim, Oliver Frör, Antonia Heinke, Nguyen Minh Duc, and Pham Van Dinh	LABOUR AS A UTILITY MEASURE IN CONTINGENT VALUATION STUDIES – HOW GOOD IS IT REALLY?	ECO
14-2010	Julian P. Christ	THE GEOGRAPHY AND CO-LOCATION OF EUROPEAN TECHNOLOGY-SPECIFIC CO-INVENTORSHIP NETWORKS	IK
15-2010	Harald Degner	WINDOWS OF TECHNOLOGICAL OPPORTUNITY DO TECHNOLOGICAL BOOMS INFLUENCE THE RELATIONSHIP BETWEEN FIRM SIZE AND INNOVATIVENESS?	IK
16-2010	Tobias A. Jopp	THE WELFARE STATE EVOLVES: GERMAN KNAPPSCHAFTEN, 1854-1923	HCM
17-2010	Stefan Kirn (Ed.)	PROCESS OF CHANGE IN ORGANISATIONS THROUGH eHEALTH	ICT
18-2010	Jörg Schiller	ÖKONOMISCHE ASPEKTE DER ENTLOHNUNG UND REGULIERUNG UNABHÄNGIGER VERSICHERUNGSVERMITTLER	HCM
19-2010	Frauke Lammers, Jörg Schiller	CONTRACT DESIGN AND INSURANCE FRAUD: AN EXPERIMENTAL INVESTIGATION	НСМ
20-2010	Martyna Marczak, Thomas Beissinger	REAL WAGES AND THE BUSINESS CYCLE IN GERMANY	ECO
21-2010	Harald Degner, Jochen Streb	FOREIGN PATENTING IN GERMANY, 1877-1932	IK
22-2010	Heiko Stüber, Thomas Beissinger	DOES DOWNWARD NOMINAL WAGE RIGIDITY DAMPEN WAGE INCREASES?	ECO
23-2010	Mark Spoerer, Jochen Streb	GUNS AND BUTTER – BUT NO MARGARINE: THE IMPACT OF NAZI ECONOMIC POLICIES ON GERMAN FOOD CONSUMPTION, 1933-38	ECO

Nr.	Autor	Titel	CC
24-2011	Dhammika Dharmapala, Nadine Riedel	EARNINGS SHOCKS AND TAX-MOTIVATED INCOME-SHIFTING: EVIDENCE FROM EUROPEAN MULTINATIONALS	ECO
25-2011	Michael Schuele, Stefan Kirn	QUALITATIVES, RÄUMLICHES SCHLIEßEN ZUR KOLLISIONSERKENNUNG UND KOLLISIONSVERMEIDUNG AUTONOMER BDI-AGENTEN	ICT
26-2011	Marcus Müller, Guillaume Stern, Ansger Jacob and Stefan Kirn	VERHALTENSMODELLE FÜR SOFTWAREAGENTEN IM PUBLIC GOODS GAME	ICT
27-2011	Monnet Benoit, Patrick Gbakoua and Alfonso Sousa-Poza	ENGEL CURVES, SPATIAL VARIATION IN PRICES AND DEMAND FOR COMMODITIES IN CÔTE D'IVOIRE	ECO
28-2011	Nadine Riedel, Hannah Schildberg- Hörisch	ASYMMETRIC OBLIGATIONS	ECO
29-2011	Nicole Waidlein	CAUSES OF PERSISTENT PRODUCTIVITY DIFFERENCES IN THE WEST GERMAN STATES IN THE PERIOD FROM 1950 TO 1990	IK
30-2011	Dominik Hartmann, Atilio Arata	MEASURING SOCIAL CAPITAL AND INNOVATION IN POOR AGRICULTURAL COMMUNITIES. THE CASE OF CHÁPARRA - PERU	IK
31-2011	Peter Spahn	DIE WÄHRUNGSKRISENUNION DIE EURO-VERSCHULDUNG DER NATIONALSTAATEN ALS SCHWACHSTELLE DER EWU	ECO
32-2011	Fabian Wahl	DIE ENTWICKLUNG DES LEBENSSTANDARDS IM DRITTEN REICH – EINE GLÜCKSÖKONOMISCHE PERSPEKTIVE	ECO
33-2011	Giorgio Triulzi, Ramon Scholz and Andreas Pyka	R&D AND KNOWLEDGE DYNAMICS IN UNIVERSITY-INDUSTRY RELATIONSHIPS IN BIOTECH AND PHARMACEUTICALS: AN AGENT-BASED MODEL	IK
34-2011	Claus D. Müller- Hengstenberg, Stefan Kirn	ANWENDUNG DES ÖFFENTLICHEN VERGABERECHTS AUF MODERNE IT SOFTWAREENTWICKLUNGSVERFAHREN	ICT
35-2011	Andreas Pyka	AVOIDING EVOLUTIONARY INEFFICIENCIES IN INNOVATION NETWORKS	IK
36-2011	David Bell, Steffen Otterbach and Alfonso Sousa-Poza	WORK HOURS CONSTRAINTS AND HEALTH	HCM
37-2011	Lukas Scheffknecht, Felix Geiger	A BEHAVIORAL MACROECONOMIC MODEL WITH ENDOGENOUS BOOM-BUST CYCLES AND LEVERAGE DYNAMICS	ECO
38-2011	Yin Krogmann, Ulrich Schwalbe	INTER-FIRM R&D NETWORKS IN THE GLOBAL PHARMACEUTICAL BIOTECHNOLOGY INDUSTRY DURING 1985–1998: A CONCEPTUAL AND EMPIRICAL ANALYSIS	IK

Nr.	Autor	Titel	CC
39-2011	Michael Ahlheim, Tobias Börger and Oliver Frör	RESPONDENT INCENTIVES IN CONTINGENT VALUATION: THE ROLE OF RECIPROCITY	ECO
40-2011	Tobias Börger	A DIRECT TEST OF SOCIALLY DESIRABLE RESPONDING IN CONTINGENT VALUATION INTERVIEWS	ECO
41-2011	Ralf Rukwid, Julian P. Christ	QUANTITATIVE CLUSTERIDENTIFIKATION AUF EBENE DER DEUTSCHEN STADT- UND LANDKREISE (1999-2008)	IK

Nr.	Autor	Titel	CC
42-2012	Benjamin Schön, Andreas Pyka	A TAXONOMY OF INNOVATION NETWORKS	IK
43-2012	Dirk Foremny, Nadine Riedel	BUSINESS TAXES AND THE ELECTORAL CYCLE	ECO
44-2012	Gisela Di Meglio, Andreas Pyka and Luis Rubalcaba	VARIETIES OF SERVICE ECONOMIES IN EUROPE	IK
45-2012	Ralf Rukwid, Julian P. Christ	INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: PRODUKTIONSCLUSTER IM BEREICH "METALL, ELEKTRO, IKT" UND REGIONALE VERFÜGBARKEIT AKADEMISCHER FACHKRÄFTE IN DEN MINT-FÄCHERN	IK
46-2012	Julian P. Christ, Ralf Rukwid	INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: BRANCHENSPEZIFISCHE FORSCHUNGS- UND ENTWICKLUNGSAKTIVITÄT, REGIONALES PATENTAUFKOMMEN UND BESCHÄFTIGUNGSSTRUKTUR	IK
47-2012	Oliver Sauter	ASSESSING UNCERTAINTY IN EUROPE AND THE US - IS THERE A COMMON FACTOR?	ECO
48-2012	Dominik Hartmann	SEN MEETS SCHUMPETER. INTRODUCING STRUCTURAL AND DYNAMIC ELEMENTS INTO THE HUMAN CAPABILITY APPROACH	IK
49-2012	Harold Paredes- Frigolett, Andreas Pyka	DISTAL EMBEDDING AS A TECHNOLOGY INNOVATION NETWORK FORMATION STRATEGY	IK
50-2012	Martyna Marczak, Víctor Gómez	CYCLICALITY OF REAL WAGES IN THE USA AND GERMANY: NEW INSIGHTS FROM WAVELET ANALYSIS	ECO
51-2012	André P. Slowak	DIE DURCHSETZUNG VON SCHNITTSTELLEN IN DER STANDARDSETZUNG: FALLBEISPIEL LADESYSTEM ELEKTROMOBILITÄT	IK
52-2012	Fabian Wahl	WHY IT MATTERS WHAT PEOPLE THINK - BELIEFS, LEGAL ORIGINS AND THE DEEP ROOTS OF TRUST	ECO
53-2012	Dominik Hartmann, Micha Kaiser	STATISTISCHER ÜBERBLICK DER TÜRKISCHEN MIGRATION IN BADEN-WÜRTTEMBERG UND DEUTSCHLAND	IK
54-2012	Dominik Hartmann, Andreas Pyka, Seda Aydin, Lena Klauß, Fabian Stahl, Ali Santircioglu, Silvia Oberegelsbacher, Sheida Rashidi, Gaye Onan and Suna Erginkoç	IDENTIFIZIERUNG UND ANALYSE DEUTSCH-TÜRKISCHER INNOVATIONSNETZWERKE. ERSTE ERGEBNISSE DES TGIN- PROJEKTES	ΙK
55-2012	Michael Ahlheim, Tobias Börger and Oliver Frör	THE ECOLOGICAL PRICE OF GETTING RICH IN A GREEN DESERT: A CONTINGENT VALUATION STUDY IN RURAL SOUTHWEST CHINA	ECO

Nr.	Autor	Titel	CC
56-2012	Matthias Strifler Thomas Beissinger	FAIRNESS CONSIDERATIONS IN LABOR UNION WAGE SETTING – A THEORETICAL ANALYSIS	ECO
57-2012	Peter Spahn	INTEGRATION DURCH WÄHRUNGSUNION? DER FALL DER EURO-ZONE	ECO
58-2012	Sibylle H. Lehmann	TAKING FIRMS TO THE STOCK MARKET: IPOS AND THE IMPORTANCE OF LARGE BANKS IN IMPERIAL GERMANY 1896-1913	ECO
59-2012	Sibylle H. Lehmann, Philipp Hauber and Alexander Opitz	POLITICAL RIGHTS, TAXATION, AND FIRM VALUATION – EVIDENCE FROM SAXONY AROUND 1900	ECO
60-2012	Martyna Marczak, Víctor Gómez	SPECTRAN, A SET OF MATLAB PROGRAMS FOR SPECTRAL ANALYSIS	ECO
61-2012	Theresa Lohse, Nadine Riedel	THE IMPACT OF TRANSFER PRICING REGULATIONS ON PROFIT SHIFTING WITHIN EUROPEAN MULTINATIONALS	ECO

Nr.	Autor	Titel	CC
62-2013	Heiko Stüber	REAL WAGE CYCLICALITY OF NEWLY HIRED WORKERS	ECO
63-2013	David E. Bloom, Alfonso Sousa-Poza	AGEING AND PRODUCTIVITY	НСМ
64-2013	Martyna Marczak, Víctor Gómez	MONTHLY US BUSINESS CYCLE INDICATORS: A NEW MULTIVARIATE APPROACH BASED ON A BAND-PASS FILTER	ECO
65-2013	Dominik Hartmann, Andreas Pyka	INNOVATION, ECONOMIC DIVERSIFICATION AND HUMAN DEVELOPMENT	IK
66-2013	Christof Ernst, Katharina Richter and Nadine Riedel	CORPORATE TAXATION AND THE QUALITY OF RESEARCH AND DEVELOPMENT	ECO
67-2013	Michael Ahlheim, Oliver Frör, Jiang Tong, Luo Jing and Sonna Pelz	NONUSE VALUES OF CLIMATE POLICY - AN EMPIRICAL STUDY IN XINJIANG AND BEIJING	ECO
68-2013	Michael Ahlheim, Friedrich Schneider	CONSIDERING HOUSEHOLD SIZE IN CONTINGENT VALUATION STUDIES	ECO
69-2013	Fabio Bertoni, Tereza Tykvová	WHICH FORM OF VENTURE CAPITAL IS MOST SUPPORTIVE OF INNOVATION? EVIDENCE FROM EUROPEAN BIOTECHNOLOGY COMPANIES	CFRM
70-2013	Tobias Buchmann, Andreas Pyka	THE EVOLUTION OF INNOVATION NETWORKS: THE CASE OF A GERMAN AUTOMOTIVE NETWORK	IK
71-2013	B. Vermeulen, A. Pyka, J. A. La Poutré and A. G. de Kok	CAPABILITY-BASED GOVERNANCE PATTERNS OVER THE PRODUCT LIFE-CYCLE	IK
72-2013	Beatriz Fabiola López Ulloa, Valerie Møller and Alfonso Sousa- Poza	HOW DOES SUBJECTIVE WELL-BEING EVOLVE WITH AGE? A LITERATURE REVIEW	НСМ
73-2013	Wencke Gwozdz, Alfonso Sousa-Poza, Lucia A. Reisch, Wolfgang Ahrens, Stefaan De Henauw, Gabriele Eiben, Juan M. Fernández-Alvira, Charalampos Hadjigeorgiou, Eva Kovács, Fabio Lauria, Toomas Veidebaum, Garrath Williams, Karin Bammann	MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY – A EUROPEAN PERSPECTIVE	HCM

Nr.	Autor	Titel	CC
74-2013	Andreas Haas, Annette Hofmann	RISIKEN AUS CLOUD-COMPUTING-SERVICES: FRAGEN DES RISIKOMANAGEMENTS UND ASPEKTE DER VERSICHERBARKEIT	НСМ
75-2013	Yin Krogmann, Nadine Riedel and Ulrich Schwalbe	INTER-FIRM R&D NETWORKS IN PHARMACEUTICAL BIOTECHNOLOGY: WHAT DETERMINES FIRM'S CENTRALITY-BASED PARTNERING CAPABILITY?	ECO, IK
76-2013	Peter Spahn	MACROECONOMIC STABILISATION AND BANK LENDING: A SIMPLE WORKHORSE MODEL	ECO
77-2013	Sheida Rashidi, Andreas Pyka	MIGRATION AND INNOVATION – A SURVEY	IK
78-2013	Benjamin Schön, Andreas Pyka	THE SUCCESS FACTORS OF TECHNOLOGY-SOURCING THROUGH MERGERS & ACQUISITIONS – AN INTUITIVE META- ANALYSIS	IK
79-2013	Irene Prostolupow, Andreas Pyka and Barbara Heller-Schuh	TURKISH-GERMAN INNOVATION NETWORKS IN THE EUROPEAN RESEARCH LANDSCAPE	IK
80-2013	Eva Schlenker, Kai D. Schmid	CAPITAL INCOME SHARES AND INCOME INEQUALITY IN THE EUROPEAN UNION	ECO
81-2013	Michael Ahlheim, Tobias Börger and Oliver Frör	THE INFLUENCE OF ETHNICITY AND CULTURE ON THE VALUATION OF ENVIRONMENTAL IMPROVEMENTS – RESULTS FROM A CVM STUDY IN SOUTHWEST CHINA –	ECO
82-2013	Fabian Wahl	DOES MEDIEVAL TRADE STILL MATTER? HISTORICAL TRADE CENTERS, AGGLOMERATION AND CONTEMPORARY ECONOMIC DEVELOPMENT	ECO
83-2013	Peter Spahn	SUBPRIME AND EURO CRISIS: SHOULD WE BLAME THE ECONOMISTS?	ECO
84-2013	Daniel Guffarth, Michael J. Barber	THE EUROPEAN AEROSPACE R&D COLLABORATION NETWORK	IK
85-2013	Athanasios Saitis	KARTELLBEKÄMPFUNG UND INTERNE KARTELLSTRUKTUREN: EIN NETZWERKTHEORETISCHER ANSATZ	IK

Nr.	Autor	Titel	CC
86-2014	Stefan Kirn, Claus D. Müller-Hengstenberg	INTELLIGENTE (SOFTWARE-)AGENTEN: EINE NEUE HERAUSFORDERUNG FÜR DIE GESELLSCHAFT UND UNSER RECHTSSYSTEM?	ICT
87-2014	Peng Nie, Alfonso Sousa-Poza	MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY IN CHINA: EVIDENCE FROM THE CHINA HEALTH AND NUTRITION SURVEY	HCM
88-2014	Steffen Otterbach, Alfonso Sousa-Poza	JOB INSECURITY, EMPLOYABILITY, AND HEALTH: AN ANALYSIS FOR GERMANY ACROSS GENERATIONS	HCM
89-2014	Carsten Burhop, Sibylle H. Lehmann- Hasemeyer	THE GEOGRAPHY OF STOCK EXCHANGES IN IMPERIAL GERMANY	ECO
90-2014	Martyna Marczak, Tommaso Proietti	OUTLIER DETECTION IN STRUCTURAL TIME SERIES MODELS: THE INDICATOR SATURATION APPROACH	ECO
91-2014	Sophie Urmetzer, Andreas Pyka	VARIETIES OF KNOWLEDGE-BASED BIOECONOMIES	IK
92-2014	Bogang Jun, Joongho Lee	THE TRADEOFF BETWEEN FERTILITY AND EDUCATION: EVIDENCE FROM THE KOREAN DEVELOPMENT PATH	IK
93-2014	Bogang Jun, Tai-Yoo Kim	NON-FINANCIAL HURDLES FOR HUMAN CAPITAL ACCUMULATION: LANDOWNERSHIP IN KOREA UNDER JAPANESE RULE	IK
94-2014	Michael Ahlheim, Oliver Frör, Gerhard Langenberger and Sonna Pelz	CHINESE URBANITES AND THE PRESERVATION OF RARE SPECIES IN REMOTE PARTS OF THE COUNTRY – THE EXAMPLE OF EAGLEWOOD	ECO
95-2014	Harold Paredes- Frigolett, Andreas Pyka, Javier Pereira and Luiz Flávio Autran Monteiro Gomes	RANKING THE PERFORMANCE OF NATIONAL INNOVATION SYSTEMS IN THE IBERIAN PENINSULA AND LATIN AMERICA FROM A NEO-SCHUMPETERIAN ECONOMICS PERSPECTIVE	ΙK
96-2014	Daniel Guffarth, Michael J. Barber	NETWORK EVOLUTION, SUCCESS, AND REGIONAL DEVELOPMENT IN THE EUROPEAN AEROSPACE INDUSTRY	IK

University of Hohenheim Dean's Office of the Faculty of Business, Economics and Social Sciences Palace Hohenheim 1 B 70593 Stuttgart | Germany Fon +49 (0)711 459 22488 Fax +49 (0)711 459 22785 E-mail wiso@uni-hohenheim.de Web www.wiso.uni-hohenheim.de