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Abstract

We study a boundedly rational model of imitation when payoff distributions of actions differ across

types of individuals. Individuals observe others’ actions and payoffs, and a comparison signal. One of

two inefficiencies always arises: (i) uniform adoption, i.e., all individuals choose the action that is optimal

for one type but sub-optimal for the other, or (ii) dual incomplete learning, i.e., only a fraction of each

type chooses its optimal action. Which one occurs depends on the composition of the population and how

critical the choice is for different types of individuals. In an application, we show that a monopolist serving

a population of boundedly rational consumers cannot fully extract the surplus of high-valuation consumers,

but can sell to consumers who do not value the good.

Key words : Imitation, heterogeneous populations, bounded rationality, Fubini extension.

JEL codes: D81, D83.

1 Introduction

We study decision-making when individuals have little information about the outcome of choosing among

different actions. Although individuals may use information from their own experience, they may also use
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information obtained by observing other individuals.1 In many situations, however, it is unlikely that the

same choice yields similar outcomes to different individuals. For instance, if a farmer observes another farmer

from a different geographic area, who obtains high profits after adopting hybrid maize, this may suggest that

she should adopt hybrid maize as well. Yet, she may intuit that she might not reach such a high profit if her

farm is located in a remote area with poor infrastructure, where obtaining hybrid seeds and fertilizers is much

more costly.2 The literature on boundedly rational learning and imitation has paid little attention to how

individuals learn in the presence of heterogeneity. In particular, do all individuals converge to the same action

or does each individual converge to her optimal choice? What factors determine the actions that are chosen in

the long run? This paper offers answers to these and other related questions.

Our framework is similar to the setup of boundedly rational learning in social contexts (e.g., Ellison and

Fudenberg, 1993, 1995; Schlag 1998). Here individuals learn from their own and others’ experiences in a process

of repeated decision making. Hence, these models provide a natural environment for analyzing the implications

of heterogeneity. We consider a population of individuals of two different, fixed and exogenously given, types (A

and B) who repeatedly choose between two actions (a and b). Payoffs are determined according to distribution

functions that are unknown to the individuals and that depend on the individual’s type and chosen action. The

expected payoff of a (b) is greater than the expected payoff of b (a) for type A (B) individuals. An individual

makes choices by considering only three pieces of information: (i) her own most recent choice and consequent

payoff, (ii) the most recent choice and payoff of a randomly sampled individual in the population, and (iii) a

random comparison signal. The comparison signal an individual observes is informative about the difference

between the individual’s and the observed individual’s expected payoff associated with the observed individual’s

choice. In our example of the farmers above, the comparison signal originates from the information they may

have about the difference in costs of obtaining seeds and fertilizer for hybrid maize. This information suggests

to a remotely located farmer that she may not obtain as high profits as a farmer located in a geographic area

with better infrastructure, if she follows him in adopting hybrid maize. Whenever an individual observes an

action different from the one that she is currently using, she makes a new choice using a decision rule. The

decision rule is a mapping from the payoffs obtained by herself and the observed individual, and the observed

comparison signal, to the probability of switching to the action of the observed individual. We confine our

analysis to a class of decision rules that are linear in observed payoffs and the comparison signal. We show

(Proposition 1) that linearity and the unbiasedness of comparison signals combined yield payoff-ordering, i.e.,

on average, given that an individual observes the two actions, she is most likely to make the right choice.3

1The role of imitation has been widely documented both empirically and experimentally (e.g., Munshi 2004 and Apesteguia,
Huck, Oechssler 2007, respectively). See also Young (2009).

2This example is inspired in the analysis of hybrid maize adoption among heterogeneous farmers in Kenya (Suri 2011).
3See, e.g., Schlag (1998), Morales (2002), and Borgers, Morales and Sarin (2004) for related analysis in learning models with

2



Under homogeneity this property drives the whole population to choose optimally: optimal actions become

popular and hence more likely to be sampled and chosen (see, e.g., Schlag 1998). Heterogeneity interferes with

this implicit popularity weighting, leading to the inefficiencies discussed below.4

In our model learning is always incomplete: either (i) all individuals converge to make the same choice,

which is optimal for one type but suboptimal for the other, or (ii) only a fraction of the populations of both

types choose their optimal action. We refer to these two cases as uniform adoption and dual incomplete

learning, respectively. Which one occurs is determined by two factors: (i) each type’s size, i.e., the fraction of

each type in the population and (ii) the sensitivity of each type’s decision problem, i.e., each type’s difference

in expected payoffs across actions. Our main results (Lemma 1 and Theorem 1) characterize the long run

inefficiency that arises (uniform adoption or dual incomplete learning) in terms of the sizes and sensitivities of

each type. If one type is much larger or has a much more sensitive decision problem than the other, the whole

population converges to choose that type’s optimal action. On the other hand, a population that is relatively

balanced in terms of sizes and sensitivities exhibits dual incomplete learning.

In our benchmark model, we assume uniform sampling, i.e., each individual samples each of the others

with uniform probabilities. Our framework, however, can be tractably generalized to allow for biased sampling.

We consider both homophily and heterophily, i.e., bias toward sampling individuals of the same type and of a

different type, respectively.5 We show (Proposition 2) that the predictions are qualitatively similar to those

obtained under uniform sampling. Furthermore, the more homophilous a type is, the greater their fraction

that choose their optimal action and the smaller is the fraction of the other type that ends up choosing their

optimal action.

We apply our results to a model where a rational monopolist, who has structural knowledge of the economy,

faces boundedly rational consumers with heterogeneous valuations for her good.6 The population is composed

of two types of consumers: those whose expected valuation of the good is positive and those whose expected

valuation is zero. We characterize the profit-maximizing price of the monopolist and show that bounded

rationality leads to lower profits for the monopoly and a larger deadweight loss in comparison to full information.

The monopolist cannot charge a price that extracts all the consumer surplus from consumers with positive

expected valuation. This would make their problem sensitivity equal to zero and all consumers would converge

linear response to observed payoffs.
4The inefficiencies caused by heterogeneity are not confined to payoff-ordering decision rules. Indeed, it can be shown that a

decision rule would lead both populations to converge to choose their respective optimal actions only if the problem is “trivial”,
i.e., if for each individual, the revised probability of choosing her optimal action is one every time she observes both actions.

5Homophilic tendencies are widely documented (see Currarini, Jackson and Pin 2009 and the references therein). The results
of other extensions are discussed in section 6.

6Models in which rational firms interact with boundedly rational consumers in the market have recently been studied, for
instance, in Spiegler (2006) and (2011) and Alos-Ferrer, Kirchsteiger and Walzl (2010).
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to not buying the good. Therefore, consumers with positive expected valuation are better off than under full

information. The other consumers, however, converge to buy a good that they do not value and hence, are

worse off than under full information.

Related literature. In Ellison and Fudenberg (1993, 1995) and Schlag (1998), individuals receive feedback

about their own and others’ choices and make decisions according to cognitively simple rules (for a thorough

survey, see Alos-Ferrer and Schlag 2009). In homogeneous populations, relatively simple imitation rules allow

most individuals to choose the optimal action over the long run (e.g., Ellison and Fudenberg 1995, Schlag

1998). In contrast, in our analysis, the uniform adoption of one action is not optimal. Furthermore, it is

possible that both actions are chosen over the long run by a positive fraction of each type.7

In Ellison and Fudenberg (1993), individuals observe only neighbors who, in most cases, have the same

optimal actions. The smaller the “window” of neighbors an individual observes, the greater is the fraction of

the population that chooses an optimal action in the long run. This is somewhat related to our result that

more segregated types achieve better long-run outcomes. Their assumptions on the structure of sampling and

heterogeneity, however, prevent their model from generating uniform adoption8 or allowing the sizes of the

types to play a role in the analysis.9

Finally, Neary (2012) analyzes a population of individuals who repeatedly play an asymmetric coordination

game. He finds that an action is more likely to appear in the long run if it is preferred by the largest type, or if

it is more strongly preferred by one of the types. While Neary’s (2012) focus is on Group-Darwinian dynamics

within strategic settings, our analysis aims to reveal the merits and limitations of simple imitation rules in

problems of decision under uncertainty.

2 Framework

In this section we provide the framework from which the parameters of the dynamical system (to be formally

introduced in the next section) are derived.

Individual-action types. There are two types of individuals in the population W , denoted by A and B,

i.e., W = A [ B. The measure of the set of type A individuals in the population is denoted by ↵ 2 (0, 1)

and the measure of type B individuals is 1 � ↵; furthermore, ⌧, ⌧

0 2 T := {A,B} denote generic types of
7Along with this literature, our analysis is fundamentally different from the study of Bayesian sequential observational learning

(e.g., Banerjee 1992, Bikhchandani, Hirshleifer and Welch 1992, and Smith and Sorensen 2000).
8Since our benchmark model assumes uniform sampling and generates uniform adoption, and Ellison and Fudenberg (1993)

assume non-uniform sampling and do not generate uniform adoption, one may ask whether uniform sampling is what leads to
uniform adoption (when it occurs). Our extension to biased sampling, however, reveals that in our model uniform adoption is
consistent with non-uniform sampling.

9An additional technical difference is that, while in Ellison and Fudenberg (1993, 1995) and Schlag (1998) time is discrete,
here we have chosen to analyze a continuous time model (for details, see Section 3).
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individuals. At each time t 2 R+, each individual i 2 W has chosen an action c 2 S := {a, b} and she revises

this decision from time to time as described below.

Payoffs and comparison signals. The chosen action yields a payoff (rate) x in a finite set X ⇢ [0, 1];

thus, there is a lower and upper bound for payoffs represented by 0 and 1, respectively. The payoff distribution

is the same for all type ⌧ individuals, it is time homogeneous, and its expected value and distribution function

are denoted by ⇡

⌧c

and µ

⌧c

, respectively, for all ⌧ 2 T and c 2 S. In particular, an individual’s payoff at time t

depends only on her choice and type (and the state of the world) –but not on the choices of other individuals.

Individuals do not know ⇡

⌧c

or µ

⌧c

. We assume that a is the optimal action for type A individuals and b is

the optimal action for type B, i.e., ⇡
Aa

> ⇡

Ab

and ⇡

Ba

< ⇡

Bb

. We refer to the gains of type A individuals from

choosing their optimal action over their suboptimal action, i.e., ⇡
Aa

� ⇡

Ab

, as the sensitivity of their decision

problem. The sensitivity of the decision problem of type B individuals is analogously defined.

When at time t, a type ⌧ 2 T individual i observes a type ⌧

0 2 T individual who has chosen d 2 S, she also

observes a comparison signal, denoted by �. The comparison signal takes values in a finite set � ⇢ [�1, 1];

its distribution function, denoted by µ

⌧⌧

0
d

, is assumed to be time homogeneous and the same for all type ⌧

individuals observing a type ⌧ 0 individual who has chosen d. The comparison signal is interpreted as information

about the relative performance of the type ⌧ individual if she were to choose d, compared to the performance

of a type ⌧

0 individual when he chooses d. The comparison signal is assumed to be unbiased in the sense that

its expected value, denoted by ⇡

⌧⌧

0
d

, is assumed to be equal to ⇡

⌧d

� ⇡

⌧

0
d

. Therefore, the expected value of the

comparison signal is positive (negative) when the individual who observes it would do better (worse) with d

than the observed individual. For instance, if i observes � > 0 when she samples j who chose d, this may be

interpreted as the judgement “on average, I would obtain � more than j if I choose d.”

Individual states. We define individual states as a combination of type, action, obtained payoff, and

comparison signals � := (⌧, c, x, �

A

, �

B

) 2 T ⇥ S ⇥ X ⇥ �

2
=: ⌃. The comparison signals �

A

and �

B

act as

latent variables such that at most one of them activates when a different action is observed to be chosen by a

type A individual or a type B individual, respectively, the next time that the individual revises her action.

Intensities and sampling. At time t 2 R+, every individual observes another individual whose state is

� 2 ⌃ with an intensity that, under the assumption of uniform sampling adopted here, corresponds exactly

to the fraction of individuals in the state � within the population at time t. Upon observing the action and

payoff of the sampled individual and the comparison signal corresponding to the sampled individual’s type,

the individual reviews her choice using a decision rule that we now describe.

Decision rules. Individuals are boundedly rational and make choices according to a decision rule. As

is common in the literature (e.g., Ellison and Fudenberg 1995, Cubitt and Sugden 1998), we assume that
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individuals contemplate switching actions only when they observe an action different from the one that they

are currently choosing. In this case, the probability of switching to the sampled action is determined by the

decision rule (and otherwise individuals simply stick with their current action). Formally, the decision rule is a

function that maps the observed payoffs and the comparison signal to the probability of switching to the other

action when it is sampled. We denote this function by L, thus L : [0, 1]

2⇥ [�1, 1] ! [0, 1]. Therefore, L(x, y, �)

is the probability that an individual switches, given that she obtained the payoff x, observed an individual

who chose a different action and obtained the payoff y, and observed the comparison signal �. Notice that the

decision rule L is valid only when a different action is observed, and that � = �

A

if the sampled individual’s

type is A and � = �

B

if the sampled individual’s type is B.10

In spite of their severe information restrictions, there are decision rules that allow individuals to be more

likely to choose their optimal action every time they observe two different actions (and hence contemplate

switching) –regardless of the specific payoff distributions or those of the comparison signals. We call this prop-

erty payoff-ordering and show that only decision rules that are linear in observed payoffs and the comparison

signal satisfy this property. Below, in Section 3, we assume that payoffs and comparison signals are independent

from each other and across individuals, but for now we aim to define payoff-ordering in a more robust manner,

without imposing independence. In particular we assume that the probability mass function of the join vector

(x, y, �) 2 X ⇥X ⇥� is time homogenous and the same for every pair of individuals (i, j) 2 W

2 whose respec-

tive types and actions are (⌧, c) and (⌧

0
, d), with c 6= d. The corresponding probability mass function is denoted

by µ

⌧c,⌧

0
d

and the expected value of L is denoted by L

cd

(⌧, ⌧

0
) :=

P
(x,y,�)2X⇥X⇥� µ

⌧c,⌧

0
d

(x, y, �)L(x, y, �). I.e.,

L

cd

(⌧, ⌧

0
) is the expected value of the probability that a type ⌧ individual who chooses c and observes a type

⌧

0 individual who chooses d, switches from c to d.

Definition 1 A decision rule L is payoff-ordering if for any two different actions c and d, if ⇡
⌧d

> (<) ⇡

⌧c

,

then L

cd

(⌧, ⌧

0
) > (<)

1
2 for all ⌧, ⌧ 0 2 T and probability mass function µ

⌧c,⌧

0
d

: X⇥X⇥� ! [0, 1], with arbitrary

finite sets X ⇢ [0, 1] and � ⇢ [�1, 1].11

Proposition 1 L is payoff-ordering if and only if L(x, y, �) =

1
2 + �(y + � � x), with � 2 (0, 1/4] for all

x, y 2 [0, 1], and � 2 [�1, 1].12

10Given that we introduce comparison signals, calling our decision rule a model of imitation might be a bit controversial. We
follow this convention because the most related models in the literature are usually called imitation models (see, e.g., Alos-Ferrer
and Schlag 2009).

11The assumption that the comparison signal is unbiased is still imposed here and throughout the paper, except in Appendix F,
where we study the effect of abandoning it.

12Since y + � � x 2 [�2, 2], we need � 2 (0, 1/4] so that the probabilities of switching are specified in [0, 1]. In general, when
(y + � � x) 2 [�c, c], with c > 0, we need � 2

�
0, 1

2c

⇤
. Here c = 2, but, for instance, the assumptions we make in the application

of Section 5 yield a different value for c.
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The proof for the ‘if’ statement is instructive and is provided here. The argument for the ‘only if’ part is

provided in Appendix A.

Proof. For any ⌧, ⌧

0 2 T , and d 6= c 2 S,

L

cd

(⌧, ⌧

0
) =

X

(x,y,�)2X2⇥�

µ

⌧c,⌧

0
d

(x, y, �)

✓
1

2

+ �(y + � � x)

◆

=

1

2

+ �(⇡

⌧

0
d

+ ⇡

⌧d

� ⇡

⌧

0
d

� ⇡

⌧c

)

=

1

2

+ �(⇡

⌧d

� ⇡

⌧c

).

Therefore, if ⇡
⌧d

> ⇡

⌧c

, then L

cd

(⌧, ⌧

0
) > 1/2.

From now on, unless stated otherwise, we assume that decision rules are payoff-ordering. Since the compar-

ison signal is unbiased, y + � is an unbiased estimator of the expected payoff of individual i if she chooses the

action of the sampled individual j. Therefore, y+ ��x is an unbiased estimator of the difference between the

expected payoff of d and c for individual i. Hence, since � > 0, in expected value, the probability of choosing

the action that provides her the greatest expected payoff is greater than the probability of choosing the action

that provides her the smallest expected payoff. Notice also that since � 2
�
0,

1
4

⇤
and ⇡

⌧d

� ⇡

⌧c

 1, by the

proof of Proposition 1, L
cd

(⌧, ⌧

0
) 2

�
1
2 ,

3
4

⇤
when ⇡

⌧d

> ⇡

⌧c

and L

cd

(⌧, ⌧

0
) 2

⇥
1
4 ,

1
2

⇤
otherwise.

Previous work on imitation in homogeneous populations focuses on either exogenously given rules or decision

rules that have been shown to satisfy some desirable properties. For instance, Schlag (1998) studies improving

rules, which satisfy that the population’s average expected payoff is expected to be non-decreasing in time. It

is easy to show that in our model, heterogeneity rules out this possibility. It would also be desirable for the

decision rule to guarantee that individuals not only would be more likely to choose their optimal action, but also

that they do so with high probability. Unfortunately, this is not possible in our model. Indeed, from the proof

of Proposition 1 we have that for every decision rule, the expected value of the updated probability of choosing

the action with the highest payoff of two observed actions is arbitrarily close to one half for some probability

mass functions µ

⌧c,⌧

0
d

. The expected probability of choosing the optimal action for any environment depends

on the value of �. This probability is maximized at � = 1/4, yet the subsequent analysis is valid for all

� 2 (0, 1/4].

13

13It may seem unintuitive that a payoff-ordering decision rule prescribes switching with positive probability even if the observed
action earned a lower perceived payoff than the own action. Changing this feature of the decision rule, however, would not
allow payoff-ordering as the decision would necessarily have to be non-linear in observed payoffs and then the construction in the
argument of sufficiency of the proof of Proposition 1 would not go through. To illustrate, consider an environment in which c gives
a payoff of 0.1 to type A individuals with certainty, d gives a payoff of 0 with certainty for type B individuals and the comparison
signal observed by type A individuals observing type B individuals choosing d is equal to 0 with probability 4/5 and 0.9 with
probability 1/5. In this case ⇡

Ad

> ⇡

Ac

. Nevertheless, a decision rule that never switches if the observed action’s perceived payoff
is lower than the own would require a type A individual to stick with c with probability 4/5 when observing a type B individual

7



Finally, we notice that observing comparison signals allows individuals to make choices that, in expected

value, do not depend on the observed individual’s type and depend only on his choice. This result follows from

the assumption that the comparison signal is unbiased; the formal argument for its proof follows directly from

the proof of sufficiency in Proposition 1, and it is omitted.

Remark 1 If L is payoff-ordering, then L

cd

(⌧, ⌧) = L

cd

(⌧, ⌧

0
) for all ⌧, ⌧ 0 2 T and different actions c, d 2 S.

Hence, for any payoff-ordering decision rule we define L

cd

(⌧) := L

cd

(⌧, ⌧

0
) for any different actions c, d 2 S

and ⌧, ⌧

0 2 T .

Individual state update. As mentioned above, each individual reviews her choice at points in time

determined by the intensities, i.e., the probability of sampling an individual of each state � 2 ⌃.14 We assume

that, upon sampling, an individual whose state is � = (⌧, c, x, �

A

, �

B

) and samples an individual with state

�

0
= (⌧

0
, c

0
, x

0
, �

0
A

, �

0
B

) updates her state to �

00
= (⌧

00
, c

00
, x

00
, �

00
A

, �

00
B

) with probability &

��

0
(�

00
), given by

&

��

0
(�

00
) =

8
>>>>>><

>>>>>>:

µ

⌧c

(x

00
)µ

⌧Ad

(�

00
A

)µ

⌧Bd

(�

00
B

) if c = c

0
= c

00 and ⌧

00
= ⌧

L(x, x

0
, �

⌧

0
)µ

⌧c

0
(x

00
)µ

⌧Ac

(�

00
A

)µ

⌧Bc

(�

00
B

) if c

00
= c

0 6= c and ⌧

00
= ⌧

(1� L(x, x

0
, �

⌧

0
))µ

⌧c

(x

00
)µ

⌧Ac

0
(�

00
A

)µ

⌧Bc

0
(�

00
B

) if c

00
= c 6= c

0 and ⌧

00
= ⌧

0 otherwise,

(1)

where d 6= c. This assumption effectively imposes independence between an individual’s payoff and the com-

parison signal she observes the next time she reviews her action.

3 Population dynamics

In this section we analyze the dynamics of choices when individuals choose according to a payoff-ordering

decision rule. The aim is to use a continuum population as an approximation of what would happen in an

economy populated by such a large population that the effect of idiosyncratic shocks vanishes by virtue of the

Law of Large numbers. In particular, we apply results in Duffie, Qiao and Sun (2016) (see also Sun 2006 and

Duffie and Sun 2007 and 2012) to construct a dynamical system in which an Exact Law of Large numbers can

be applied so that the fractions of the populations of each type choosing each action are those corresponding

to the dynamics of their expected values. The formal derivation of this dynamical system is provided in

who chose d.
14Similarly, the standard approach in the literature assumes that action revision times are determined according to an indepen-

dent Poisson distribution. See, e.g., Sandholm (2010a, 2010b), and Hofbauer and Sandholm (2011) for further details.
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Appendix B.15

The model proceeds in continuous time. Each individual reviews her choice at points in time according to

the intensities and sampling procedures described in Section 2. Upon sampling, individuals update their state

according to (1). Our analysis is concerned with the fraction of type A individuals choosing a and the fraction

of type B individuals choosing b. These fractions follow a stochastic process fully determined by the sampling

and updating procedures described above. Since we assume a continuum population, our analysis focuses on

the deterministic path corresponding to the expected value of the stochastic process. Let p(t) be the fraction

of type A individuals choosing a and let q(t) be the fraction of type B individuals choosing b, for all t � 0,

along this path. If the fraction of individuals whose state is � at time t is denoted by p

�

(t) for all � 2 ⌃ and

t 2 R+, we have that

↵p(t) =

X

�2⌃:⌧=A,c=a

p

�

(t) (2)

and

(1� ↵)q(t) =

X

�2⌃:⌧=B,c=b

p

�

(t). (3)

Let �(⌃) be the set of all possible distributions of individual states at any point in time; that is,

�(⌃) :=

8
<

:p 2 R|⌃|
: p

k

� 0 for k = 1, 2, ..., |⌃| and
|⌃|X

k=1

p

k

= 1

9
=

; .

The initial fractions of the population in each individual state, denoted by (p

�

(0))

�2⌃ 2 �(⌃), are assumed

exogenously given. Yet, these initial conditions need to satisfy that the fractions of the population of type

A and B individuals are ↵ and 1 � ↵, respectively; i.e.,
P

�2⌃:⌧=A

p

�

(0) = ↵ and
P

�2⌃:⌧=B

p

�

(0) = 1 � ↵.

Similarly, the initial fraction of type ⌧ individuals who choose action c and obtain a payoff x (among all type

⌧ individuals who choose c) is assumed to be µ

⌧c

(x), for all ⌧ 2 T , c 2 S, and x 2 X; and the fraction of type

⌧ individuals who choose action c, sample a type ⌧

0 individual who chooses d 6= c, and observe a comparison

signal �
⌧

0 (among all type ⌧ individuals who choose c and sample a type ⌧

0 individual who chooses d 6= c) is

µ

⌧⌧

0
d

(�

⌧

0
), for all ⌧ 2 T , ⌧ 0 2 T , c 2 S, and �

⌧

0 2 �. The subset of �(⌃) that satisfies all these restrictions is
15There are measurability problems in invoking the law of large numbers for a continuum of random variables (see, e.g., Feldman

and Gilles 1985, Judd 1985, and Alos-Ferrer 2002). We thank Carlos Alos-Ferrer for pointing this out and providing us with these
references. In the last decade, a number of papers deal with this issue and with independent random matching in particular,
using Fubini Extensions introduced in Sun (2006) (see, e.g., Duffie and Sun 2007, 2012). See also Podczeck and Puzzello (2012),
who build on an earlier contribution by Alos-Ferrer (1999) to study independent random matching with a continuum of agents.
We thank three anonymous referees for guiding us to this literature. In particular, as mentioned above, the foundations for the
dynamical system analyzed here are an application of the results of Duffie, Qiao and Sun (2016). In a related environment,
with a different approach, Benaim and Weibull (2003) show that the deterministic path of dynamical systems yield a reasonable
approximation of discrete time stochastic adjustment in large populations and over finite time horizons (see also Sandholm 2003
and Sandholm 2010a).
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denoted by ˆ

�(⌃).

Fix the initial fractions of the population in each individual state at (p

�

(0))

�2⌃ 2 ˆ

�(⌃). Then, the paths

p(t) and q(t), are given by the solution of the system of differential equations

↵ṗ = ↵(1� p) [↵p+ (1� ↵)(1� q)]L

ba

(A)� ↵p [↵(1� p) + (1� ↵)q]L

ab

(A) (4)

(1� ↵)q̇ = (1� ↵)(1� q) [(1� ↵)q + ↵(1� p)]L

ab

(B)� (1� ↵)q [(1� ↵)(1� q) + ↵p]L

ba

(B), (5)

with initial condition (p(0), q(0)) =

⇣
↵

�1
P

�2⌃:⌧=A,c=a

p

�

(0), (1� ↵)

�1
P

�2⌃:⌧=B,c=b

p

�

(0)

⌘
.16

The first term on the right-hand side of (4) gives the flow to action a of type A individuals. The mass of

type A individuals choosing b and sampling someone choosing a is given by ↵(1� p) [↵p+ (1� ↵)(1� q)] and

the rate at which these individuals switch is given by L

ba

(A). Similarly, the second term on the right-hand

side of (4) gives the flow to action b in the type A population. An analogous interpretation applies to (5).

We define p, q : R+ ! [0, 1] as the solutions of (4)-(5) (with exogenously given initial conditions (p
�

(0))

�2⌃ 2
ˆ

�(⌃)); most of the times, though, the time dependence of p(t) and q(t) will be omitted. Let U and D be

the expected value of the probability of switching to their optimal action for type A and type B individuals,

respectively, i.e., U := L

ba

(A) and D := L

ab

(B). From the proof of sufficiency of Proposition 1, since the

difference of expected payoffs across actions is contained in [�1, 1], we have U,D 2 (1/2, 3/4].17 Payoff-

ordering decision rules satisfy L

ab

(⌧) = 1�L

ba

(⌧) for ⌧ 2 {A,B}, therefore the system of differential equations

(4)-(5) can be written as

ṗ = ↵p(1� p)(2U � 1) + (1� ↵) [(1� p)(1� q)U � pq(1� U)] (6)

q̇ = (1� ↵)q(1� q)(2D � 1) + ↵ [(1� q)(1� p)D � qp(1�D)] . (7)

In the sequel, it will often be convenient to work with the functions ṗ, q̇ : [0, 1]

2 ! R, with ṗ(p, q) and q̇(p, q)

defined by the right hand sides of (6) and (7), respectively. Notice that ṗ(p, q) is decreasing in q. As q increases

there are fewer type B individuals choosing a, therefore, when a type A individual samples a type B individual,

the probability that this individual has chosen b is greater. This makes it more likely for type A individuals

to choose b. The effect of p on ṗ is ambiguous. In both heterogeneous and homogeneous populations, ṗ

is a concave polynomial in p. In a homogeneous population, when p is very small there are too few type
16As in most of the equations below, the time dependence of p and q have been omitted.
17It may be thought that U and D being bounded away from 1 is a restrictive feature of the model. There is at least a couple of

alternative ways to avoid this. First, the distribution of the comparison signal could be allowed to depend on the payoff realization
in such a manner that y+ ��x 2 [�1, 1]. This would allow U,D 2 (1/2, 1]. Alternatively, as we discuss below, one could consider
decision rules which are not payoff-ordering. The results of allowing U,D 2 (1/2, 1], however, are qualitatively similar to those of
our benchmark case.
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A individuals from whom to sample action a. On the other hand, when p is very large, just a few type A

individuals are left to switch from b to a. In a homogeneous population, as long as p 2 (0, 1), ṗ > 0. This

follows from the fact that, since U > 1/2, the flows from a to b are more than compensated by flows in the

opposite direction. In a heterogeneous (non-isolated) population, however, p 2 (0, 1) is compatible with ṗ < 0.

This occurs for high values of p at which an important fraction of type A individuals may be mislead when

sampling type B individuals choosing b which may cause ṗ < 0. An analogous reasoning applies to q̇ and (7).

Long run results. Let the set of rest points of the system (6)-(7) be denoted by

RP := {(p, q) 2 [0, 1]

2
: ṗ(p, q) = q̇(p, q) = 0}.

First we characterize RP . When all individuals choose the same action the system is in a rest point. Hence,

(0, 1) and (1, 0) are rest points and we refer to them as corner rest points. Our next result shows that for

some values of ↵, U, and D there is a third rest point located in (0, 1)

2. This interior rest point is given by

(bp, bq), with

bp :=

U(↵(U +D � 1)� (1� U)(2D � 1))

↵(2U � 1)(U +D � 1)

and

bq := D((1� ↵)(U +D � 1)� (1�D)(2U � 1))

(1� ↵)(2D � 1)(U +D � 1)

,

and it exists if and only if

↵ :=

(1� U)(2D � 1)

U +D � 1

< ↵ <

U(2D � 1)

U +D � 1

=: ↵.

Lemma 1 If ↵ 2 (↵,↵) , then RP = {(0, 1), (1, 0), (bp, bq)}, otherwise RP = {(0, 1), (1, 0)}.

In the proof of this lemma we use the functions q : [0, 1] ! R, defined by ṗ(p, q(p)) = 0 for all p 2 [0, 1],

and p : [0, 1] ! R, defined by q̇(p(q), q) = 0 for all q 2 [0, 1].

Proof. If p = 1, then ṗ = 0 if and only if q = 0. Correspondingly, if q = 1, then ṗ = 0 if and only if p = 0.

Hence, (1, 0) and (0, 1) are rest points.

From (6) and (7), the points (p, q) that satisfy ṗ = q̇ = 0 are those that satisfy both

q =

↵p(1� p)(2U � 1) + (1� ↵)(1� p)U

(1� ↵)((1� p)U + p(1� U))

, (8)

p =

(1� ↵)q(1� q)(2D � 1) + ↵(1� q)D

↵((1� q)D + q(1�D))

. (9)

Notice that q(p) and p(q) are given by the right-hand side of (8) and (9), respectively, and hence, their graphs

contain (0, 1) and (1, 0). The second derivative of q(p) is

11



q

00
(p) =

2U(2U � 1)(1� U)

(1� ↵)(p(2U � 1)� U)

3
,

where the numerator is strictly positive and the denominator is strictly negative, because p  1 < U/(2U � 1);

hence q is strictly concave. A similar calculation reveals that p is strictly concave as well. If (p, q) is a rest

point of the system, then p = p(q(p)) and q = q(p) (or equivalently, q = q(p(q)) and p = p(q)). Hence, for

(p, q) to be a rest point, p must satisfy

p(q(p)) =

(1� ↵)q(p)(1� q(p))(2D � 1) + ↵(1� q(p))D

↵((1� q(p))D + q(p)(1�D))

= p.

This yields p = bp. For this to be a rest point not in {(0, 1), (1, 0)} we also need bp 2 (0, 1). The inequality

bp > 0 simplifies to ↵ > ↵ and bp < 1 simplifies to ↵ < ↵, i.e., bp 2 (0, 1) if and only if ↵ 2 (↵,↵). Further,

q(bp) = bq and bq 2 (0, 1) if and only if ↵ 2 (↵,↵). Hence, there is an interior rest point given by (bp, bq) if and

only if ↵ 2 (↵,↵).

We refer to corner rest points as uniform adoption and interior rest points as dual incomplete learning. Next

we analyze the conditions for the different rest points to be stable. The notion of asymptotic stability that we

study requires the system to remain close and converge to the rest point whenever the system starts sufficiently

close to it (e.g., Hofbauer and Sigmund 1998). Formally a rest point (p⇤, q⇤) is asymptotically stable if (i) for any

" > 0 there exists some �1 2 (0, ") such that if ||(p(t), q(t))�(p

⇤
, q

⇤
)|| < �1, then ||(p(t0), q(t0))�(p

⇤
, q

⇤
)|| < " for

all t0 > t, and (ii) there exists some �2 > 0 such that if ||(p(t), q(t))� (p

⇤
, q

⇤
)|| < �2, then lim

t

0!1(p(t

0
), q(t

0
)) =

(p

⇤
, q

⇤
).18

In the following theorem, we characterize the stability properties of the different rest points of system (4)-

(5) for virtually all possible parameter values.19 Furthermore, we show that in each case, the asymptotically

stable rest point is a global attractor, i.e., the system converges to this point regardless of the initial conditions

(as long as the path does not start at a different rest point). The theorem shows that, if the fraction of type

A individuals or the fraction of type B individuals is small enough, i.e., if ↵ < ↵ or ↵ > ↵, then we have

convergence to uniform adoption. Otherwise, we have convergence to dual incomplete learning. As explained

above, the cutoffs ↵ and ↵ are determined by the sensitivities of the decision problems of each type.20

18|| · || stands for the Euclidean norm.
19We only exclude ↵ = ↵ and ↵ = ↵, because the techniques that we use in the proof of the result applies only to hyperbolic

rest points (see the proof of Theorem 1) and at ↵ = ↵ and ↵ = ↵ some of the rest points are not hyperbolic.
20We cannot have complete learning for one type and partial learning for the other. E.g., we have no rest points (1, q) with

q > 0. Intuitively, since type A individuals occasionally observe action b in this point and switch with positive probability when
they do, they would move away from action a. Similarly, we have no rest points (p, 1) with p > 0.
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Theorem 1 Suppose ↵ 6= ↵ and ↵ 6= ↵. Then, the system (6)-(7) has a unique asymptotically stable point

given by

(p

⇤
, q

⇤
) =

8
>>><

>>>:

(0, 1) if ↵ < ↵

(p̂, q̂) if ↵ < ↵ < ↵

(1, 0) if ↵ > ↵.

Furthermore, in each of these cases lim

t!1(p(t), q(t)) = (p

⇤
, q

⇤
) for all paths such that (p(0), q(0)) /2 RP \

{(p⇤, q⇤)}.21

The proof of Theorem 1 is provided in Appendix C. Intuitively, since individuals make decisions according

to a payoff ordering decision rule, in each decision they are more likely to choose their optimal action. The

smaller the fraction of type A individuals in the population, however, the less likely it is to sample an individual

choosing a. This leads action a to propagate less and eventually the whole population converges to choose

b. Analogously, when the fraction of type A individuals in the population is large enough, a propagates more

than b, and eventually, the whole population ends up choosing a. Finally, if the fraction of the population of

type A is neither large enough nor small enough, both actions propagate in a more balanced manner and the

system converges to an interior asymptotically stable rest point.

The fact that we do not have efficiency in the long run, i.e., that (p, q) does not converge to (1, 1) is a

robust phenomenon that does not rely on the linearity of payoff-ordering decision rules. To see this, notice

that for an arbitrary decision rule L, system (4)-(5) at (p, q) = (1, 1) yields ṗ = �(1 � ↵)L

ab

(A,B) and

q̇ = �↵L

ba

(B,A). Hence, unless switching to the sub-optimal action occurs with probability zero for both

types, i.e., L

ab

(A,B) = L

ba

(B,A) = 0, the system cannot converge to (1, 1) if it starts elsewhere. The

conditions L

ab

(A,B) = L

ba

(B,A) = 0 are fairly restrictive, however, as they require the decision maker never

to switch in any event of realizations of observed payoffs and comparison signal, when she chose her optimal

action.22

Dynamics of the system. We illustrate the dynamics of the system in the phase diagrams displayed in

Figure 1. The isoclines correspond to the graphs of the functions p and q. The left, center and right panels

correspond to the cases ↵ < ↵, ↵ < ↵ < ↵, and ↵ < ↵, respectively. As illustrated in Figure 1, the distinctive

feature of each of these cases is that p is above q, p and q intersect, and p is below q, respectively.
21Whenever a rest point is a global attractor, it satisfies the second condition of asymptotic stability. In general, however, it

does not necessarily satisfy the first part, i.e., it is possible that the dynamics move away from the rest point before eventually
converging to it. Nevertheless, Theorem 1 reveals that a rest point of (6)-(7) is asymptotically stable if and only if it is a global
attractor of the system.

22There are, however, examples of decision rules and environments such that these conditions are met. For instance, consider
decision rules such as a suitably modified version of “imitate if better” (see, e.g., Oyarzun and Ruf 2009), in which individuals
switch (corresp. do not switch) with probability 1 if y + � > x (corresp. y + � < x), and randomize with a fair coin, otherwise.
This decision rule yields L

ab

(A,B) = L

ba

(B,A) = 0 in the environment such that ⇡
Aa

= ⇡

Bb

= 1, ⇡
Ab

= ⇡

Ba

= 0, and the
comparison signals within individuals of the same type (for all actions) are deterministic.
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Figure 1. The solid and dashed lines represent p and q, respectively. U = D = 3/4 (↵= 1/4 and ↵= 3/4) and
↵= 9/40, 1/2, and 31/40 in the left, center, and right panel, respectively.

Let us provide some intuition for why we obtain such patterns in the dynamics of the system. For concrete-

ness, we focus on the case in which both p(0) and q(0) are small and the population converge to choose b (the

left panel of Figure 1). When both p and q are initially small, there is a large amount of individuals in each

type that are subject to switch to their respective optimal action. Further, whenever an individual samples an

individual from the opposite type she is likely to sample her own optimal action. Thus, initially learning occurs

for both types of individuals in the sense that both p and q increase. In a homogeneous population imitation

would continue and the whole population would converge to choose the unique optimal action. In our model,

however, (p, q) eventually reaches a point above the isocline ṗ = 0 and when this happens p starts to decrease.

At this point the measure of type A individuals who are subject to switch to a and the measure of type B

individuals from whom a can be sampled are both smaller than at the beginning, reversing the increase in p.

The decrease in p benefits type B, who become more likely to sample b from type A. This sets q on a positive

trend, which in turn accelerates the decrease in p. The result is a dynamic in which the fraction of type A

individuals choosing a decreases until it converges to zero, while the fraction of type B individuals choosing b

converges monotonically to one. The analysis of the other cases is similar and is left for the reader.

The model predicts convergence to a corner rest point for a large set of parameter values. Therefore,

in our model, when the sensitivities of the problems are relatively similar, imitation within a heterogeneous

population may not result in optimality for minorities. This contrasts sharply with findings for homogeneous

populations, where such adverse effects cannot arise (e.g., Ellison and Fudenberg 1995, Schlag 1998). The

adverse effect for the minority is related to the fact that its optimal action eventually becomes difficult to

sample. The sampling procedure creates a bias toward actions that are more popular, in the sense that a larger

fraction of the population is choosing them. This contrasts with the manner in which Ellison and Fudenberg

(1993) introduce popularity, in which they assume that when individuals make choices, they are biased toward
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more popular actions. In our analysis, there is no exogenously imposed bias toward more popular actions. As

in Ellison and Fudenberg (1995), this bias instead arises endogenously as a result of the sampling procedure.

Comparative statics: the role of sensitivity and size. Here we analyze the impact of ↵, U , and D

on the predictions of the model. Recall that U and D are determined by the difference in the expected payoff

across actions for type A and type B individuals, respectively. Hence, the effect of U and D on the long run

outcomes reflects the impact of the sensitivity of the decision problems. Abusing notation, let the functions

↵ : (1/2, 3/4]

2 ! R and ↵ : (1/2, 3/4]

2 ! R be defined by ↵(U,D) =

(1�U)(2D�1)
U+D�1 and ↵(U,D) =

U(2D�1)
U+D�1 ,

respectively, for all (U,D) 2 (1/2, 3/4]

2. An interior rest point exists whenever ↵(U,D) < ↵ < ↵(U,D). Let

↵

i

and ↵

i

denote the first derivative of ↵ and ↵, respectively, with respect to i = U,D. We obtain ↵

U

(U,D) < 0

and ↵

U

(U,D) < 0. Thus for greater values of U the population converge to choose b for a smaller set of values

of ↵ and a for a larger set of values of ↵. Similarly ↵

D

(U,D) > 0 and ↵

D

(U,D) > 0.

Notice also that lim

D!1/2
↵(U,D) = lim

D!1/2
↵(U,D) = 0 and lim

U!1/2
↵(U,D) = lim

U!1/2
↵(U,D) = 1. This implies

that for small enough D (and for fixed ↵ and U) the population converges to choose a, whereas for small

enough U (and for fixed ↵ and D) the population converges to choose b. Hence, if the majority is close to

indifferent between a and b, but the minority is not, the population converges to choose the minority’s optimal

action. On the other hand, since ↵(U,D),↵(U,D) 2 (0, 1), for any U,D there exist some ↵ such that the

population converge to choose either a or b. This means that even if, for example, type A individuals are close

to indifferent between a and b, if type A is sufficiently large, the population converge to choose a.

Let (p̂(U,D,↵),q̂(U,D,↵)) be the interior rest point expressed as a function of the parameters of the model.

Then, for ↵ 2 (↵(U,D),↵(U,D)) we obtain bp
U

> 0, bp
D

< 0, and bp
↵

> 0, where bp
i

, denote the first derivative of

p̂(U,D,↵) with respect to i, for i = U,D,↵. Hence, the fraction of type A individuals choosing their optimal

action in an interior rest point increases in type A’s sensitivity and size and decreases in type B’s sensitivity.

In the interior rest point, ṗ(p, q) is decreasing in p. As ṗ(p, q) is increasing in U, when U increases, the isocline

ṗ(p, q) = 0 moves to the right which results in higher value of p in equilibrium. A similar argument reveals

why bp is increasing in ↵ and decreasing in D.

Homogeneous sensitivities. It is instructive to look at the case where the sensitivity of the problems of

both types of individuals is the same. In the special case U = D and ↵ = 1/2 we obtain bp = bq = U . Let us

briefly look at why this is the case. If p = q = U , then the probability of sampling either action is equal to 1/2.

The flow towards a among type A individuals is therefore 1
2(1 � p)U =

1
2(1 � U)U and the flow towards b in

A is 1
2p(1� U) =

1
2U(1� U). Hence, switching towards and switching away from a among type A individuals

are balanced.
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More generally, if U = D, we have that ↵ = 1� U , ↵ = U , and bp =

U

2U�1
U�(1�↵)

↵

and bq =

U

2U�1
U�↵

1�↵

for all

↵ 2 (1 � U,U). This implies that ↵bp = U

U�(1�↵)
2U�1 and (1 � ↵)bq = U

U�↵

2U�1 . Hence, ↵bp + (1 � ↵)bq = U , so the

total fraction of individuals in the population choosing their optimal action in the interior rest point is equal

to the common sensitivity of both types. In the corner equilibria, however, when ↵ /2 (1� U,U), the fraction

of the population choosing their optimal action is greater than U .

Non payoff-ordering decision rules. We now turn our attention to the impact of assuming that

individuals follow payoff-ordering decision rules. Alternatively, we could consider decision rules such as the

version of “imitate if better” described in footnote 22. It is easy to construct environments such that U,D 2

(3/4, 1) for this decision rule. This yields results qualitatively similar to those provided above. More possibilities

arise when U and D can be less than 1/2, which can also occur in some environments for this decision rule.

If U  1/2 and D > 1/2, then the population converge to choose b for all ↵ 2 (0, 1), and hence, as with

payoff-ordering decision rules, we obtain uniform adoption. A different result, however, can be obtained if both

U,D < 1/2. Then, for a range of values of ↵, an interior equilibrium may exist in which both p

⇤
, q

⇤
< 1/2.

A decision rule yielding U,D < 1/2, however, would certainly be very unappealing. In summary, assuming

payoff-ordering we rule out U,D < 1/2 and thus, that both types of individuals do worse in the long run than

with simple random choice.

Average expected payoff of the population. If individuals were to randomize uniformly between the

two actions, then, on average, half of the individuals of each type would choose their optimal action. We say

that imitation is detrimental for a type of individuals whenever less than half of them choose their optimal

action asymptotically. The imitation process is detrimental for one of the types when the asymptotically

stable rest point is either (0, 1) or (1, 0). At an interior rest point, imitation is detrimental for at most one

type: since q(0) = 1 and q(1) = 0, and q(p) is strictly concave, we have q(p) > 1�p for all p 2 (0, 1); therefore,

p̂+ q̂ > 1. If there is a type for which imitation is detrimental, however, this type represents a small fraction

of the population or has the decision problem with the smallest sensitivity. It turns out that the gains over

random choice of the type that benefits from imitation always exceed the losses incurred by the type for whom

imitation is detrimental, if any. The average expected payoff of the population in the state (p, q), denoted by

W

I

(p, q), is given by

W

I

(p, q) = ↵(p⇡

Aa

+ (1� p)⇡

Ab

) + (1� ↵)(q⇡

Bb

+ (1� q)⇡

Ba

).

The average expected payoff of the population when all individuals choose randomly with uniform probability,
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denoted by W

RC

, is given by

W

RC

=

1

2

(↵(⇡

Aa

+ ⇡

Ab

) + (1� ↵)(⇡

Bb

+ ⇡

Ba

)).

Remark 2 W

I

(p

⇤
, q

⇤
) > W

RC for any asymptotically stable rest point (p⇤, q⇤) of (4)-(5).

Proof. First, consider ↵ > ↵. Then (p

⇤
, q

⇤
) = (1, 0) and

W

I

(1, 0)�W

RC

=

1

2

(↵(⇡

Aa

� ⇡

Ab

)� (1� ↵)(⇡

Bb

� ⇡

Ba

)) =

1

4�

(↵(2U � 1)� (1� ↵)(2D � 1)),

which implies that W

I

(1, 0) � W

RC

> 0 if ↵ >

2D�1
2(U+D) ; and this holds, because 2D�1

2(U+D) < ↵. An analogous

argument holds if ↵ < ↵. Suppose ↵ 2 (↵,↵). For simplicity assume � =

1
4 (a similar argument holds if

� 2 (0,

1
4)). Then

W

I

(p̂, q̂)�W

RC

= ↵

✓
p̂� 1

2

◆
(⇡

Aa

� ⇡

Ab

) + (1� ↵)

✓
q̂ � 1

2

◆
(⇡

Bb

� ⇡

Ba

) = (2D � 1)(2U � 1) > 0.

4 Biased sampling

In this section we allow for homophily (bias towards sampling same type individuals) and heterophily (bias

towards sampling other type individuals). Homophilic tendencies are widely documented in the social networks

literature (see Currarini, Jackson and Pin 2009 and references therein), and may be due to segregation or

individuals’ preferences for having friends that are similar to them.

We introduce homophily and heterophily in our model using the parameters ↵

A

2 (0, 1) and ↵

B

2 (0, 1),

which correspond to the the relative intensities with which type A individuals sample a type A individual and

type B individuals sample a type B individual, respectively. In the benchmark case analyzed above, ↵
A

= ↵

and ↵

B

= 1� ↵; here, if ↵
A

> (<)↵, then type A individuals are homophilous (heterophilous); and similarly,

if ↵
B

> (<)1� ↵ then type B individuals are homophilous (heterophilous).

General intensities. In order to accommodate biased sampling we need to generalize the benchmark

model allowing the sampling intensities to differ from the fraction of the population in each state. We refer

to this case as the model with general intensities. In particular, we define the function ✓

��

0
: �(⌃) ! [0, 1],

where ✓

��

0
((p

�

00
)

�

002⌃) is the intensity with which a state � individual samples a state �

0 individual when the

cross-sectional distribution of individual states is (p

�

00
)

�

002⌃, for all �, �0 2 ⌃.
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Mass-balancing condition. Since our analysis requires that individuals sample each other, our model

needs to satisfy the mass-balancing condition

p

�

✓

��

0
((p

�

00
)

�

002⌃) = p

�

0
✓

�

0
�

((p

�

00
)

�

002⌃),

for all (p
�

00
)

�

002⌃ 2 �(⌃) and �, �

0 2 ⌃. The mass-balancing condition is satisfied automatically in the bench-

mark model analyzed above, because there we assume that intensities are equal to the fraction of individuals in

that individual state within the population; i.e., ✓
��

0
((p

�

00
)

�

002⌃) = p

�

0 , for all (p
�

00
)

�

002⌃ 2 �(⌃) and �, �

0 2 ⌃.23

However, the mass-balancing condition does not hold in general in the model with general intensities. The

construction provided here tackles this problem by introducing an additional variable in the individual state.

This binary variable represents a dummy-sampling type, which allows some individuals to sample without

changing their actions (that is, these individuals are only observed by other individuals). Thus, by introducing

dummy-sampling types, we are able to satisfy the mass-balancing condition while at the same time effectively

generate biased sampling.

Individual states. We extend the definition of individual states including the binary variable ✏ 2 {0, 1};

thus, we now consider individual states � := (⌧, c, x, �

A

, �

B

, ✏) 2 T ⇥ S ⇥ X ⇥ �

2 ⇥ {0, 1}. Sampling affects

an individual, in the sense that she will update her choice according to the decision rule L (provided that the

observed action is different from hers), only if her state features ✏ = 1.

Individual state changes. If the individual state � is such that ✏ = 0, then type ⌧ and action c remain the

same upon sampling and the new state is (⌧, c, x00
, �

00
A

, �

00
B

, ✏

00
) with probability µ

⌧c

(x

00
)µ

⌧Ad

(�

00
A

)µ

⌧Bd

(�

00
B

)µ

✏⌧ (✏
00
),

where µ

✏⌧ (✏
00
) is a constant in [0, 1] for ⌧ 2 {A,B} and ✏

00 2 {0, 1}. Otherwise, if ✏ = 1, an individual whose

state is � = (⌧, c, x, �

A

, �

B

, ✏) and has sampled an individual with state �

0
= (⌧

0
, c

0
, x

0
, �

0
A

, �

0
B

, ✏

0
) updates her

state to �

00
= (⌧

00
, c

00
, x

00
, �

00
A

, �

00
B

, ✏

00
) with probability &

��

0
(�

00
), given by

&

��

0
(�

00
) =

8
>>>>>><

>>>>>>:

µ

⌧c

(x

00
)µ

⌧Ad

(�

00
A

)µ

⌧Bd

(�

00
B

)µ

✏⌧ (✏
00
) if c = c

0
= c

00 and ⌧

00
= ⌧

L(x, x

0
, �

⌧

0
)µ

⌧c

0
(x

00
)µ

⌧Ac

(�

00
A

)µ

⌧Bc

(�

00
B

)µ

✏⌧ (✏
00
) if c

00
= c

0 6= c and ⌧

00
= ⌧

(1� L(x, x

0
, �

⌧

0
))µ

⌧c

(x

00
)µ

⌧Ac

0
(�

00
A

)µ

⌧Bc

0
(�

00
B

)µ

✏⌧ (✏
00
) if c

00
= c 6= c

0 and ⌧

00
= ⌧

0 otherwise,

where d 6= c. In order to have mass-balance, if ↵(1 � ↵

A

) < (1 � ↵)(1 � ↵

B

), then type A individuals are

required to have dummy-samples, whereas if ↵(1�↵

A

) > (1�↵)(1�↵

B

), then type B individuals are required
23And this condition does play a role in the analysis, because the proof of Proposition 4 in Appendix B uses Corollaries 1 and

2 in Duffie, Qiao and Sun (2016), which assume that the mass-balancing condition holds.
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to have dummy-samples. Hence, we set

µ

✏A(1) = min

⇢
1,

↵(1� ↵

A

)

(1� ↵)(1� ↵

B

)

�
= 1� µ

✏A(0)

µ

✏B(1) = min

⇢
1,

(1� ↵)(1� ↵

B

)

↵(1� ↵

A

)

�
= 1� µ

✏B(0).

Intensities. We set the intensities to

✓

��

0
((p

�

00
)

�

002⌃) =

8
>>>>>><

>>>>>>:

1
µ✏A (1)↵A

↵

�1
p

�

0 if ⌧ = ⌧

0
= A

1
µ✏A (1)(1� ↵

A

)(1� ↵)

�1
p

�

0 if ⌧ = A and ⌧

0
= B

1
µ✏B (1)(1� ↵

B

)↵

�1
p

�

0 if ⌧ = B and ⌧

0
= A

1
µ✏B (1)↵B

(1� ↵)

�1
p

�

0 if ⌧ = ⌧

0
= B,

for all (p
�

00
)

�

002⌃ 2 �(⌃). Thus, the model satisfies the mass-balancing condition.

The differential equations, analogous to (4)-(5), that drive the dynamical system in presence of homophily

and/or heterophily are24

↵ṗ = ↵(1� p) [↵

A

p+ (1� ↵

A

)(1� q)]L

ba

(A)� ↵p [↵

A

(1� p) + (1� ↵

A

)q]L

ab

(A) (10)

(1� ↵)q̇ = (1� ↵)(1� q) [↵

B

q + (1� ↵

B

)(1� p)]L

ab

(B)� (1� ↵)q [↵

B

(1� q) + (1� ↵

B

)p]L

ba

(B).(11)

In Subsection 10.1 of Appendix D we explain how to derive these differential equations. We now provide the

analysis of the dynamics implied by this system.

Stable Equilibria. The resulting dynamics are qualitatively similar to the case of uniform sampling, yet

the analysis allows us to obtain insights about the effect of these biases on the population’s choices. As before,

we obtain convergence to either a corner rest point or a unique interior rest point. We also obtain some results,

however, that cannot arise under uniform sampling. The corner rest point that is non-optimal for a type of

individuals can be ruled out if this type is sufficiently homophilous. More generally, the fraction of both types

of individuals choosing a (corresp. b) increases in ↵

A

(corresp. ↵

B

). This means that a type benefits from

being more homophilous and is affected negatively by the homophily of the other type. In the limit, as ↵

A

and ↵

B

go to one, so each type is completely homophilous, the global attractor of the system approaches (1, 1),

i.e., the entire population makes the right choice. Hence, the limit of the model when ↵

A

and ↵

B

go to one

corresponds to the case of two homogeneous populations.
24In formal terms, Proposition 4 of Appendix B holds in the model with general intensities as well (with the natural necessary

adjustment to the definition of �̂(⌃) to accommodate for the dummy-sampling variable in the individual state).
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Formally, fix U,D 2 (

1
2 ,

3
4 ], and define the functions ↵

A

: R ! R and ↵

B

: R ! R such that

↵

A

(z) =

D � U + zD(2U � 1)

(1� U)(2D � 1)

and ↵

B

(z) =

U �D + zU(2D � 1)

(1�D)(2U � 1)

,

respectively, for all z 2 R. It is easy to see that ↵

A

>

⇥
↵

�1
B

⇤
, and ↵

A

< (>)

⇥
↵

�1
B

⇤
(↵

B

) if and only if

↵

B

> (<)↵

B

(↵

A

), where
⇥
↵

�1
B

⇤
is the inverse function of ↵

B

. The following lemma characterizes virtually

all the pairs (↵

A

,↵

B

) such that (1, 0) is asymptotically stable and such that (0, 1) is asymptotically stable.25

Appendix D contains all proofs of this section.

Lemma 2 Suppose ↵

A

6= ↵

A

(↵

B

) and ↵

B

6= ↵

B

(↵

A

). Then, (i) (1, 0) is asymptotically stable if and only

if ↵

A

> ↵

A

(↵

B

), (ii) (0, 1) is asymptotically stable if and only if ↵

A

<

⇥
↵

�1
B

⇤
(↵

B

), and (iii) if (1, 0) is

asymptotically stable, then (0, 1) is not asymptotically stable (and vice versa).

Corollary 1 (i) If ↵
B

>

1�D

D

, then (1, 0) is not asymptotically stable, and if U > D and ↵

B

<

U�D

U(2U�1) , then

(1, 0) is asymptotically stable. (ii) If ↵

A

>

1�U

U

, then (0, 1) is not asymptotically stable, and if D > U and

↵

A

<

D�U

U(2D�1) , then (0, 1) is asymptotically stable.

Lemma 2 implies that for any U,D 2 (

1
2 ,

3
4 ] and ↵

A

,↵

B

2 (0, 1) either (i) (1, 0) is asymptotically stable,

(ii) (0, 1) is asymptotically stable, or (iii) neither (1, 0) nor (0, 1) is asymptotically stable. For large values

of ↵

A

relative to ↵

B

, (1, 0) is asymptotically stable, whereas for large values of ↵

B

relative to ↵

A

, (0, 1) is

asymptotically stable. For more similar values of ↵

A

and ↵

B

, neither (1, 0), nor (0, 1) is asymptotically

stable. This is illustrated in Figure 2 for U = 0.7 and D = 0.65. The northwest (corresp. southeast) region

corresponds to the parameter values such that (1, 0) (corresp. (0, 1)) is asymptotically stable. In the center

region neither (1, 0), nor (0, 1) is asymptotically stable. Our next result reveals that there is a unique interior

rest point if and only if (↵
A

,↵

B

) is in the center region of Figure 2.
25The only possibilities we do not consider here are when ↵

A

= ↵

A

(↵
B

) or ↵
B

= ↵

B

(↵
A

), in which case some rest points may
not be hyperbolic and hence may not be determined using the Jacobian of the system.
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Figure 2. U = 0.7 and D = 0.65. The solid line is ↵
A

and the dashed line
⇥
↵

�1
B

⇤
.

Lemma 3 (i) If ↵
A

<

⇥
↵

�1
B

⇤
(↵

B

) or ↵

A

> ↵

A

(↵

B

), then there is no interior rest point. (ii) If
⇥
↵

�1
B

⇤
(↵

B

) <

↵

A

< ↵

A

(↵

B

), then there is a unique interior rest point.

Lemmas 2 and 3 establish that, setting aside the cases where rest points may not be hyperbolic, i.e.,

↵

A

= ↵

A

(↵

B

) and ↵

B

= ↵

B

(↵

A

), there is an interior rest point if and only if neither (1, 0) nor (0, 1) is

asymptotically stable. The closed-form expression describing the interior rest point, denoted by (ep, eq), is

cumbersome and it is provided in Lemma 8 of Appendix D. The following result provides the global attractors

of the system for virtually all the possible values of ↵
A

and ↵

B

.

Proposition 2 If (p(0), q(0)) /2 RP, then

lim

t!1
(p(t), q(t)) =

8
>>><

>>>:

(0, 1) if ↵

A

<

⇥
↵

�1
B

⇤
(↵

B

)

(ep, eq) if
⇥
↵

�1
B

⇤
(↵

B

) < ↵

A

< ↵

A

(↵

B

)

(1, 0) if ↵

A

(↵

B

) < ↵

A

.

We shall emphasize two implications of the results above. First, together with Corollary 1, Proposition 2

implies that if a given type is sufficiently homophilous, then the population will not converge to choose that

type’s non-optimal action. For example, if ↵
B

>

1�D

D

then the system will not converge to (1, 0) regardless of

↵

A

and U . An implication is that if both types are sufficiently homophilous, then the population converges

to an interior rest point. Second, if U > D and additionally type B is relatively small or heterophilous, so

that ↵
B

is below a threshold value (determined by U and D), then the whole population converges to action a,

regardless of ↵
A

. These observations are illustrated in Figure 2, where U > D. Here if ↵
B

> 0.54, then there

is no ↵

A

such that the population converges to choose a. On the other hand if ↵
B

< 0.19, then the population

converges to action a even if ↵
A

is arbitrarily small.26

26An implication of this result is that uniform adoption does not require uniform sampling. Furthermore, both types being
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Comparative Statics. The fraction of a type that chooses its optimal action in an interior rest point

increases in that type’s homophily. Fix U,D 2
�
1
2 ,

3
4

⇤
and let (ep(↵

A

,↵

B

), eq(↵
A

,↵

B

)) be the interior rest point,

when it exists, as a function of ↵
A

and ↵

B

. We obtain that the partial derivatives of these functions satisfy

ep1(↵A

,↵

B

) > 0, ep2(↵A

,↵

B

) < 0, eq1(↵A

,↵

B

) < 0 and eq2(↵A

,↵

B

) > 0 (see Appendix D). Intuitively, interior rest

points are determined by the balance of flows into and out of each action for each type. When sampling is

uniform, interior rest points (p⇤, q⇤) satisfy p

⇤
> 1�q

⇤
. Hence in equilibrium, a greater probability of sampling

individuals of the same type makes it more likely for an individual to sample her optimal action. This allows

a larger fraction of this type of individuals to choose their optimal action, as they are less exposed to the

possibility of sampling an individual of the other type choosing the other action.

Finally, from the results above, the system cannot converge to (1, 0) when ↵

B

>

1�D

D

. The following remark,

however, reveals that ep can be arbitrarily close to 1, even if ↵

B

>

1�D

D

, provided that type A individuals

are sufficiently homophilous. This result also implies that in the limit, as each type becomes completely

homophilous, a heterogeneous population behaves as two homogenous populations.

Remark 3 If ↵
B

>

1�D

D

, then lim

↵A!1
ep(↵

A

,↵

B

) = 1 and if ↵
A

>

1�U

U

, then lim

↵B!1
eq(↵

A

,↵

B

) = 1.

5 A monopolist with heterogeneous consumers

In this section we consider a monopolist who serves a market of boundedly rational consumers with heteroge-

neous valuations for his product. We assume that the expected valuation of the product is positive for some

consumers and zero for others. The two possible choices for consumers are buying or not buying the product.

The monopolist knows the expected value of the valuation and the size of each type. Furthermore, he knows

that consumers are boundedly rational and their decision rules. The valuation of each individual consumer,

however, is unknown to both the monopolist and the consumer.

Consumers’ decisions. To fix ideas, suppose the population consists of individuals that suffer from

a chronic illness that produces unpleasant symptoms. The monopolist provides the only available treatment.

Symptoms present themselves randomly and translate into physical payoffs, measured in monetary units, which

take values within a finite set whose minimum is 0.5 and maximum is 1.27 The outcomes 0.5 and 1 can be

thought of as the physical payoff of “full symptoms” and “no symptoms,” respectively. The expected physical

heavily biased toward sampling individuals of their own type is not incompatible with uniform adoption. For instance, in Figure 2,
we just require ↵

B

< 0.19 for uniform adoption of a to occur for any ↵
A

. More broadly, if we measure type B individuals’ bias to
sample their own type by  

B

:= ↵

B

(1� ↵)�1, it is easy to see that we can have uniform adoption even if  
B

is very high: if we
fix  

B

, for sufficiently small (1� ↵) one obtains that  
B

(1� ↵) < 0.54 and hence, uniform adoption of a (for high enough ↵
A

).
27We normalize the physical payoffs to be in [0.5, 1] so that the total payoff of each choice, corresponding to the physical payoffs

minus the price charged by the monopolist, fall in [0, 1], as in the benchmark model.
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payoff of an untreated individual is � < 1. The treatment of the monopolist is effective for type A individuals

but has no effect on type B individuals. The expected physical payoff of a type A individual under treatment

is �

0 2 (�, 1]. Therefore, ' := �

0 � � > 0 measures the expected effectiveness of the treatment for type A

individuals. The expected physical payoff of a type B individual under treatment is �.28 Individuals choose

whether to buy the treatment from the monopolist (action a) or buy no treatment (action b). The monopolist

sells the treatment at price r 2 [0,'] to both type A and type B individuals.29 Each individual’s payoff is

equal to her physical payoff minus the price paid to the monopolist. Hence, individuals’ payoff fall in [0, 1].

Expected payoffs are, thus, given by ⇡

Aa

= �

0 � r, ⇡
Ab

= �, ⇡
Ba

= � � r and ⇡

Bb

= �.

As before, each individual makes choices after observing her own payoff, that of another individual, and a

comparison signal. We assume that the price the monopolist charges is observed and individuals know that

they are all charged the same price if they buy the treatment. Therefore, the comparison signal is informative

only about the difference in expected physical payoffs under the observed individual’s choice.30 Formally, the

expected values of the comparison signals are ⇡

ABa

= �

0� �, ⇡
BAa

= �� �

0, ⇡
AAa

= 0, ⇡
BBa

= 0, and ⇡

⌧⌧

0
b

= 0

for ⌧, ⌧

0 2 {A,B}. In order to make the interpretation of the comparison-signal consistent with previous

sections, and since physical payoffs are contained in [0.5, 1], we restrict the finite set of comparison-signals

to have minimum �0.5 and maximum 0.5. The individuals’ decision rule is L(x, y, �) =

1
2 + �(y + � � x)

as before. Since here min(x,y,�)2X2⇥� {y + � � x} � �1.5 and max(x,y,�)2X2⇥� {y + � � x}  1.5, we can now

choose � from (0, 1/3].31 For simplicity we assume � = 1/3 and obtain L

ba

(A) =

1
2 +

1
3('� r) =:

b
U(', r) and

L

ab

(B) =

1
2 +

1
3r =:

b
D(', r). Hence, L

ba

(A), L

ab

(B) 2
⇥
1
2 ,

2
3

⇤
.

The demand curve. We assume that the monopolist fully understands how individuals make choices,

although he does not know the type of each individual or the realizations of payoffs and comparison signals.

We also assume that the monopolist chooses a fixed price that maximizes his profit in the asymptotically stable
28Our model is related to Spiegler’s (2006) model of markets for “quacks.” In his paper the treatment is ineffective for all

individuals in the population, so he refers to the healer as a quack. In our model the healer is not a quack since the treatment
works for some individuals, although it is ineffective for others.

29At prices above ', under full information, both type A and type B individuals prefer not to buy the treatment. In our setting,
such prices would lead the population to a state in which no individual buys the treatment. As we show below, prices larger than
' do not add anything to the analysis.

30For example, suppose the illness is chronic overweight and the treatment is an individualized diet prescribed by a nutritionist.
Whether the diet is effective for weight control may depend, among other things, on individuals’ willpower. Such considerations
may lead an individual to see the nutritionist even after hearing about the negative experience of an undisciplined acquaintance,
if she believes herself to have more willpower than the acquaintance.

31From footnote 12, we need � 2
�
0, 1

2c

⇤
and here y + � � x 2 [�c, c] = [�1.5, 1.5].
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rest point of the dynamic system (p

⇤
, q

⇤
).32 The monopolist, thus, faces a demand curve given by

Q(r) := ↵p

⇤
+ (1� ↵)(1� q

⇤
),

where (p

⇤
, q

⇤
), as explained below, is determined by r,', and ↵.

We can find the prices such that (p

⇤
, q

⇤
) = (1, 0) and (p

⇤
, q

⇤
) = (0, 1), respectively. In order to do this, we

need to find the values of r such that ↵(

b
U(', r),

b
D(', r)) = ↵ and ↵(

b
U(', r),

b
D(', r)) = ↵, respectively. We

denote these values by r(',↵) and r(',↵), respectively. Simple computations reveal that

r(',↵) =

1

4

(3 + 2'�
p
(3 + 2')

2 � 24↵')

r(',↵) =

1

4

(2'� 3 +

p
(3� 2')

2
+ 24↵').

Note that 0 < r(',↵) < r(',↵) < '. Further, since bU(', r) and b
D(', r) are strictly decreasing and strictly

increasing in r, respectively, and ↵ is strictly decreasing in its first argument and strictly increasing in its

second argument, it follows that the composition ↵(

b
U(', r),

b
D(', r)) is a strictly increasing function of r.

Therefore, if r  r(',↵), then ↵(

b
U(', r),

b
D(', r))  ↵, and by Theorem 1 (p

⇤
, q

⇤
) = (1, 0). By an anal-

ogous argument, if r � r(',↵), then (p

⇤
, q

⇤
) = (0, 1).33 Otherwise, if the monopolist sets a price level

r 2 (r(',↵), r(',↵)), then the asymptotically stable rest point will be interior and it will be given by

(p

⇤
, q

⇤
) =

⇣
p̂(↵,

b
U(', r),

b
D(', r)), q̂(↵,

b
U(', r),

b
D(', r))

⌘
, where p̂ and q̂ are the functions defined in Section 3.

Thus, the demand curve faced by the monopolist, Q : [0,1) ! [0, 1], is given by

Q(r) =

8
>>>>><

>>>>>:

1 if 0  r  r(',↵)

2r2+r(3�2')�3↵'
4r(r�') if r(',↵) < r < r(',↵)

0 if r � r(',↵).

If the price is below a certain threshold the monopolist sells to the entire population. If it is above a certain

threshold no one buys the treatment in the long run. At intermediate prices the monopolist captures a fraction

of the population of both types. In this case, the demand curve is downward sloping and converges to 0 and 1

as the price goes to r(',↵) and r(',↵), respectively.
32This simplifies the analysis significantly. We leave the alternative, in which the monopolist has a positive discount rate and

maximizes the present value of all his future profits, for future research.
33The statement of Theorem 1 does not include the cutoff values, which in this case correspond to r = r(',↵) and r = r(',↵),

since the techniques used to prove Theorem 1 are valid for hyperbolic rest-points and some rest points are non-hyperbolic at the
cutoff values. Nevertheless, by directly applying the definition of asymptotic stability and constructing a straightforward " � �

argument, it can be shown that for the prices r = r(',↵) and r = r(',↵), (p⇤, q⇤) is equal to (1, 0) and (0, 1), respectively.
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The monopolist optimal prices. We assume that the marginal costs of the monopolist are constant and

equal to k � 0. The profit of the monopolist as a function of the price, G : [0,1) ! R, is, hence, given by

G(r) =

8
>>>>><

>>>>>:

r � k if 0  r  r(',↵)

(r � k)

2r2+r(3�2')�3↵'
4r(r�') if r(',↵) < r < r(',↵)

0 if r � r(',↵).

The elasticity of the demand curve drops to zero at r = r(',↵), price at which the monopolist would sell the

treatment to the whole market. Furthermore, when marginal costs are low enough, the right derivative of the

profit function with respect to the price is negative at r = r(',↵) and, thus, as we show below, the monopolist

chooses r = r(',↵). On the other hand, when the marginal costs are higher, he charges a higher price and

sells the treatment to only a fraction of the population. More precisely, we have the following relation between

marginal costs and the change in profits at the price at which the monopolist sells to the whole population.

Let G

0
(x

+
) denote the right derivative of G for all x 2 (r(',↵), r(',↵)).

Lemma 4 There is a unique marginal cost ˆk 2 (0, r(',↵)) such that G0
(r(',↵)

+
) = 0. Further, G0

(r(',↵)

+
) <

0 if k <

ˆ

k and G

0
(r(',↵)

+
) > 0 if k >

ˆ

k.

Proof. If k = 0, then

G

0
(r(',↵)

+
) = 1 + r(',↵)Q

0
(r(',↵)

+
) =

2'� 3

2'� 3 +

p
(3 + 2')

2 � 24↵'

< 0.

If k = r(',↵), then G

0
(r(',↵)

+
) = 1 > 0. Simple computations reveal that G0

(r) is continuous and increasing

in k for all r 2 (r(',↵), r(',↵)). Hence, there is a unique ˆ

k 2 (0, r(',↵)) such that G

0
(r(',↵)

+
) = 1 +

(r(',↵) � ˆ

k)Q

0
(r(',↵)

+
) = 0. Further, by the monotonicity of G0

(r(',↵)

+
) in k, G0

(r(',↵)

+
) < 0 if k <

ˆ

k

and G

0
(r(',↵)

+
) > 0 if k >

ˆ

k.

The next result characterizes the optimal prices charged by the monopolist. The proof is provided in

Appendix E.

Proposition 3 Let r

⇤ be the price that maximizes the monopolist’s profits. If k  ˆ

k, then r

⇤
= r(',↵). If

k 2 (

ˆ

k, r(',↵)), then r

⇤ is the unique solution to G

0
(r) = 0 and it is contained in (r(',↵), r(',↵)). Otherwise,

if k � r(',↵), then the monopolist withdraws from the market.

If the marginal cost is low enough, when k <

ˆ

k, the monopolist sets the highest price at which he sells to

the whole population. At a higher price he loses both type A and type B clients. In this case, the reduction in
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sales outweighs the positive effect on profits of the higher price. If the marginal cost is sufficiently high, when

k > r(',↵), the monopolist chooses not to produce. In this case, marginal costs may well be below type A

individuals’ willingness to pay, which occurs if k 2 (r(',↵),'). Here, at any price at which the monopolist

earns positive profits by selling the treatment, it is unattractive for type B individuals and not sufficiently

attractive for type A individuals to the point that buying the treatment does not survive in the long run.

Finally, when marginal costs are at an intermediate level, the monopolist sells his treatment to a positive

fraction of both type A and type B individuals.

Figure 3 shows the inverse demand and marginal revenue curves of the monopolist (as a function of the

quantity). If the marginal cost is low, it is not intersected by the marginal revenue curve. The monopolist

then chooses a corner solution and charges the highest price at which he captures the entire market (the left

panel of Figure 3). When marginal costs are in the intermediate range the quantity sold in the market equates

marginal cost with marginal revenue (the right panel of Figure 3). If the marginal cost is sufficiently high, the

monopolist withdraws from the market.
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Figure 3: The dashed line is the inverse demand curve, the solid line is marginal revenue and the dotted line is marginal
cost. ↵ = 1/2, ' = 0.4, k = 0.08 (left) and k = 0.14 (right).

Whenever ˆ

k < r(',↵) the optimal price is strictly increasing in both ↵ and '. With a larger ↵ the

dynamics towards buying the treatment are stronger due to the sampling effects discussed before. With a

larger ' type A individuals tend to choose treatment more often while the sensitivity of type B individuals’

problem is unaffected. In both of these cases the monopolist loses fewer clients when raising the price and

therefore charges a higher price in equilibrium. The formal arguments for these comparative statics appear in

Appendix E.

Welfare analysis. Under full information, i.e., if the monopolist and individuals knew their type, the
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monopolist would set the price at ' and only type A individuals would buy the treatment. There would

hence be no deadweight loss in a standard computation of consumer and producer surplus. Further, the

monopolist would earn the entire surplus, equal to ↵('�k). When individuals are boundedly rational and the

monopolist sets the price at r

⇤, (i) there is always a deadweight loss (except in the cases k = 0 and k � '),

(ii) the monopolist earns lower profits than under full information, and (iii) type A and type B individuals are

weakly better off and weakly worse off, respectively, than under full information. The deadweight loss in our

setup comes from two different sources. First, whenever the treatment is sold in the market (i.e., whenever

k < r(',↵)) the cost of providing type B individuals with treatment causes a deadweight loss. Second,

whenever k 2 (

ˆ

k,') a deadweight loss arises since some type A individuals do not buy treatment in spite of

having a willingness to pay that exceeds the marginal cost.

The profits of the monopolist are smaller in our setup compared to the case of full information.34 Intuitively,

type B individuals tend to not buy the treatment in their individual choices and this influences type A

individuals through sampling effects. Therefore, in comparison to the case of full information, the monopolist

must lower his price to sell the treatment. Even if he sells the treatment to the entire population, the negative

effect of the reduced price outweighs the positive effect of increased sales.

Type A individuals are weakly better off in our setup since the monopolist extracts the entire surplus in

the case of full information. In contrast, here he may set a lower price, allowing type A individuals to obtain

a positive consumer surplus. Type B individuals are weakly worse off in our setup, since they may end up

buying a worthless treatment.

Biased sampling. While for simplicity the results here are obtained under the assumption of uniform

sampling, the analysis extends in a relatively straightforward manner to biased sampling (at the cost of slightly

more involved derivations). Under biased sampling ↵

A

(z) and ↵

B

(z) define cutoff prices in an analogous way

as above. The homophily of each type affects the cutoff prices in the obvious way. Demand depends positively

on the homophily of type A and negatively on the homophily of type B and the monopolist’s profit follows

the same pattern. In the limit, when both types are perfectly homophilic, the monopolist sets some price very

close to ' and sells only to the entire type A population. In other words, perfect homophily brings us back to

the case of full information.
34For the formal argument, see Remark 8 in Appendix E.
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6 Discussion

In the benchmark model, we assume that individuals’ assessments of their expected payoff relative to others

are unbiased. Individuals often make systematic mistakes in assessments of relative abilities.35 In Appendix

F, we illustrate the consequences of these mistakes by introducing biases in the comparison signal. The results

we obtain are qualitatively similar to those of the benchmark model. An analysis of this extension, however,

allows us to assess the effect of biased comparison signals on the long-run equilibrium. We show that if type

⌧ individuals have positive biases, i.e., ⇡

⌧⌧

0
c

> ⇡

⌧c

� ⇡

⌧

0
c

for all ⌧ 0 2 T and c 2 S, this leads to a smaller

fraction of that type choosing their optimal action in the long run. We also consider the possibility of negative

biases and show that this leads to better long-run outcomes. Intuitively, if individuals have positive biases,

they switch more often to both their optimal and suboptimal action. Since in equilibrium most individuals of

at least one of the types are choosing their optimal action, more switching leads to excessive switching away

from the optimal action. In contrast, negative biases cause individuals to be more reluctant to switch and,

hence, to choose their optimal action more often. The details are provided in Appendix F.

Since we consider linear decision rules, there is no role for the accuracy of the comparison signal in our

setup. It is intuitive, however, that the experiences of people who are different are less informative. Some

empirical evidence suggests that information about different individuals is often discarded (see, e.g., Munshi

2004). This could be handled by assuming that the variance of the comparison signal is greater when observing

a different type and by considering a concave decision rule. The experiences of different individuals would then

be discounted relative to those of similar individuals. Therefore, there would be less switching towards the

actions chosen by individuals of the other type. This could lead to results similar to those of biased comparisons.

We leave a thorough analysis for future research.

Our model assumes an exogenous sampling process. In the presence of heterogeneity, however, individuals

may have incentives to search for individuals that are similar to them and hence more suitable to learn from.

At the same time, it seems that individuals would prefer to sample others who have made good choices (e.g.,

Offerman and Schotter 2009). An analysis that considers an endogenous sampling process might provide

interesting insights into the implications of heterogeneity in the search for suitable role models.

Our model is qualitatively consistent with several empirical aspects of the process of diffusion of innovations.

In particular, it yields S-shaped adoption curves as those found in the empirical evidence. Furthermore, our

model is consistent with some features of the diffusion of hybrid corn in Kenya found by Suri (2011): less-than-

full final adoption, heterogeneities in returns to adoption, and equilibrium switching behavior. A quantitative
35For example, individuals tend to overestimate their abilities and performance at different tasks, a phenomenon that is known

as positive self-image or overconfidence (see, e.g., Van den Steen 2004, Santos-Pinto and Sobel 2005).
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analysis is beyond the scope of this paper and is left for future research.

7 Appendix A: Proof of Necessity in Proposition 1

We define the probability space (

ˆ

⌦,

ˆF ,µ̂) with ˆ

⌦ = X

2 ⇥�, ˆF = 2

X

2⇥�, and the probability measure induced

by µ

⌧c,⌧

0
d

, which we call the environment. The (marginal) distribution functions µ
⌧c

, µ
⌧

0
d

and µ

⌧⌧

0
d

are derived

from µ

⌧c,⌧

0
d

in the usual way. Thus, the payoff distribution of a type ⌧ individual who chooses c is µ
⌧c

and the

probability of the event {x 2 D}, with D ✓ X, is denoted by µ

⌧c

(D); and if D is a singleton {x}, with x 2 X,

then its probability is denoted by µ

⌧c

(x). The analogous notation conventions apply to the distributions of the

comparison signal and the payoff distribution of a type ⌧

0 individual who chooses d. Necessity in Proposition

1 is argued using the following lemmata.

Lemma 5 Suppose L is payoff-ordering. Then, ⇡
⌧d

= ⇡

⌧c

implies L

cd

(⌧, ⌧

0
) =

1
2 for all different actions c, d

and types ⌧, ⌧

0 2 T .

Proof. Consider the environment induced by µ

⌧c,⌧

0
d

such that ⇡

⌧d

= ⇡

⌧c

and assume L

cd

(⌧, ⌧

0
) <

1
2 (the

argument for the case L

cd

(⌧, ⌧

0
) >

1
2 is analogous). We will now consider a different environment induced by a

slightly different probability mass, eµ
⌧c,⌧

0
d

. Suppose that payoffs and comparison-signals, in both environments,

are independent. The modified version of µ
⌧d

, denoted by eµ
⌧d

, is such that for any set I ⇢ X \ {1} we have

eµ
⌧d

(I) = (1�")µ

⌧d

(I) and eµ
⌧d

(1) = µ

⌧d

(1)+"µ

⌧d

(X \{1}) for some " 2 (0, 1]. Thus, e⇡
⌧d

= (1�")⇡

⌧d

+". The

modified version of µ
⌧c

, denoted by eµ
⌧c

, is such that for any I ⇢ X \ {0} we have eµ
⌧c

(I) = (1� ")µ

⌧c

(I) and

eµ
⌧c

(0) = µ

⌧c

(0) + "µ

⌧c

(X \ {0}). Thus, e⇡
⌧c

= (1� ")⇡

⌧c

. The expected value, with the modified distribution,

of the comparison signal of a type ⌧ individual who observes a type ⌧

0 individual who chooses d, denoted by

e⇡
⌧⌧

0
d

, is

e⇡
⌧⌧

0
d

= (1� ")⇡

⌧d

+ "� ⇡

⌧

0
d

= (1� ") (⇡

⌧d

� ⇡

⌧

0
d

) + "(1� ⇡

⌧

0
d

)

= (1� ")⇡

⌧⌧

0
d

+ "(1� ⇡

⌧

0
d

),

where ⇡

⌧⌧

0
d

is the expected value of the comparison signal in the initial environment. Suppose that the

distribution of this comparison signal in the modified environment is given by a compounded distribution which

weights with probabilities 1�" and " the distribution of the comparison signal in the initial environment and a

degenerate distribution which assigns all the probability to 1� ⇡

⌧

0
d

, respectively. In all the other respects, the

modified and initial environments are the same. Let eL
cd

(⌧, ⌧

0
) denote the expected value of the probability of
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switching to d when i 2 ⌧ chooses c, observes j 2 ⌧

0 who chooses d and the comparison signal, in the modified

environment. Then, eL
cd

(⌧, ⌧

0
) can be written as a continuous function of " over the domain [0, 1] and when

" = 0,

e
L

cd

(⌧, ⌧

0
) = L

cd

(⌧, ⌧

0
) <

1
2 . In order to see this, notice that

e
L

cd

(⌧, ⌧

0
) =

ˆ ˆ ˆ
L(x, y, �)deµ

⌧c

(x)deµ
⌧⌧

0
d

(�)deµ
⌧

0
d

(y)

=

ˆ ˆ 
"L(0, y, �) + (1� ")

ˆ
L(x, y, �)dµ

⌧c

(x)

�
deµ

⌧⌧

0
d

(�)dµ

⌧

0
d

(y)

=

ˆ ⇢
(1� ")

ˆ 
"L(0, y, �) + (1� ")

ˆ
L(x, y, �)dµ

⌧c

(x)

�
dµ

⌧⌧

0
d

(�)+

"


"L(0, y, 1� ⇡

⌧

0
d

) + (1� ")

ˆ
L(x, y, 1� ⇡

⌧

0
d

)dµ

⌧c

(x)

��
dµ

⌧

0
d

(y),

where the right hand side is a polynomial function of ". Thus, for small enough ", eL
cd

(⌧, ⌧

0
) <

1
2 and, since

e⇡
⌧d

> e⇡
⌧c

, L is not payoff-ordering.

Corollary 2 If L is payoff-ordering, x, y 2 [0, 1], � 2 [�1, 1], and x = y + �, then L(x, y, �) =

1
2 .

Proof. Consider x, y, � which satisfy the hypothesis and an environment in which µ

⌧c

(x) = µ

⌧d

(y + �) =

µ

⌧

0
d

(y) = µ

⌧⌧

0
d

(�) = 1.36 In this environment L
cd

(⌧, ⌧

0
) = L(x, y, �), and thus, Lemma 5 implies L(x, y, �) = 1

2 .

Lemma 6 If L is payoff-ordering, then L(x, y, �) is an affine transformation of y + � � x for all x, y 2 [0, 1]

and � 2 [�1, 1].

Proof. Consider arbitrary x, y 2 [0, 1] and � 2 [�1, 1]. Consider an environment such that, with probability
1
2 , a first event occurs in which the payoff received by type ⌧ when she chooses c is x, the payoff received by

type ⌧

0 individual when she chooses d is y, and the comparison signal observed by a type ⌧ individual when

she observes the type ⌧

0 individual is �. Otherwise, a second event occurs in which the payoff received by a

type ⌧ individual when she chooses c is y, the payoff received by a type ⌧

0 individual when she chooses d is x,

and the comparison signal observed by a type ⌧ individual when she observes a type ⌧

0 individual is ��. It

follows that ⇡

⌧c

= ⇡

⌧d

=

x+y

2 . If L is payoff ordering, then L

cd

(⌧, ⌧

0
) =

1
2 , i.e.,

1

2

L(x, y, �) +

1

2

L(y, x,��) =

1

2

. (12)

Now consider a second environment that differs from the previous one only in that the first event is replaced by

two events that occur with probability 1
2
y+��x+2

4 and 1
2

�
1� y+��x+2

4

�
, respectively. In the first of these events,

36Notice that since the payoff-ordering property has to hold for arbitrary finite sets X ⇢ [0, 1] and � ⇢ [�1, 1], the triplet
(x, y, �) can be chosen arbitrarily within [0, 1]⇥ [0, 1]⇥ [�1, 1] (as long as it satisfies the hypothesis of the corollary).
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the payoff received by a type ⌧ individual when she chooses c is 0, the payoff received by a type ⌧

0 individual

when she chooses d is 1, and the comparison signal observed by a type ⌧ individual when she observes a type

⌧

0 individual is 1. In the second of these events, the payoff received by a type ⌧ individual when she chooses c

is 1, the payoff received by a type ⌧

0 individual when she chooses d is 0, and the comparison signal observed by

a type ⌧ individual when she observes a type ⌧

0 individual is �1. As in the previous environment, ⇡
⌧c

= ⇡

⌧d

and, if L is payoff ordering, then L

cd

(⌧, ⌧

0
) =

1
2 , i.e.,

1

2

y + � � x+ 2

4

L(0, 1, 1)+

1

2

✓
1� y + � � x+ 2

4

◆
L(1, 0,�1)+

1

2

L(y, x,��) =

1

2

. (13)

Subtracting (12) from (13), we obtain

L(x, y, �) = L(1, 0,�1)+ (L(0, 1, 1)� L(1, 0,�1))

✓
1

2

+

y + � � x

4

◆
.

It follows that L is a linear function of y + � � x, and thus, from Corollary 2, L must satisfy L(x, y, �) =

1
2 + �(y + � � x) for some real number �.

Finally, consider x, y 2 [0, 1] and � 2 [�1, 1] such that y + � > x and the environment F such that

µ

⌧c

(x) = µ

⌧d

(y + �) = µ

⌧

0
d

(y) = µ

⌧⌧

0
d

(�) = 1. Since L

cd

(⌧, ⌧

0
) = L(x, y, �) =

1
2 + �(y + � � x), payoff ordering

implies that � > 0.

To close the proof of Proposition 1, since the range of L is [0, 1], x, y 2 [0, 1], and � 2 [�1, 1], we also need

�  1
4 .

8 Appendix B: Formal derivation of the dynamic system

We first introduce the probability space and individual space.

Probability space. The population is modeled as an index probability space (W,W ,�) where W is the

continuum of individuals, W is a ��algebra of subsets of W , and � is a super-atomless measure; in particular

�(A) = ↵ and �(B) = 1 � ↵.37 Time is indexed by t 2 R+ with the Borel ��algebra denoted by B. The

probability space that we use to model the random aspects of the imitation process is (⌦,F , P ).38

Dynamical system. Our analysis is concerned with the fraction of type A individuals choosing a, p(!, t),

and the fraction of type B individuals choosing b, q(!, t) for all ! 2 ⌦ and t 2 R+. In order to analyze the paths

(p(!, t), q(!, t))

t2R+ , we define the state function ⇢ : W ⇥⌦⇥R+ ! ⌃ where ⇢(i,!, t) is the state of individual
37For a definition of super-atomless measures see Definition 5 and the appendix of Podczeck (2010).
38The analysis also assumes a right-continuous filtration {F

t

: t 2 R+} in the probability space (⌦,F , P ), such that all null
events are included in F0; but this filtration will not appear (explicitly) in our analysis.
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i in the state of the world !, at time t. We also define the sampling function ⇡ : W ⇥ ⌦ ⇥ R+ ! W [ {J}

specifying the individual ⇡(i,!, t) that the individual i samples at time t in the state of the world !, where

⇡(i,!, t) = J means that individual i does not sample any other individual at time t in the state of the world

!. We assume that ⇡(i,!, t) 6= J implies ⇡(⇡(i,!, t),!, t) = i; that is, individuals sample each other.

The fraction of individuals whose state is � at time t in the state of the world !, denoted by p

�

(!, t), is

given by p

�

(!, t) = � ({i 2 W : ⇢(i,!, t) = �}) for all � 2 ⌃, ! 2 ⌦, and t 2 R+. Therefore, we have the

following versions of (2) and (3) that express directly the state of the world dependence of the fractions of

individuals making optimal choices:

↵p(!, t) =

X

�2⌃:⌧=A,c=a

p

�

(!, t) (14)

and

(1� ↵)q(!, t) =

X

�2⌃:⌧=B,c=b

p

�

(!, t). (15)

Differential equations of the system. We now provide the differential equations governing the fractions

of the population making their optimal choices within each type.

Proposition 4 Fix the initial fractions of the population in each individual state at (p

�

(0))

�2⌃ 2 ˆ

�(⌃).

There exists a Fubini Extension (W ⇥ ⌦,W ⇥ F ,� ⇥ P )

39 in which the state and sampling function (⇢, ⇡)

are defined, such that: (i) (p(!, t), q(!, t)) is deterministic almost surely; and (ii) for P�almost all ! 2 ⌦,

(p(!, ·), q(!, ·)) : R+ ! [0, 1]

2 is the solution of the system of differential equations

↵ṗ = ↵(1� p) [↵p+ (1� ↵)(1� q)]L

ba

(A)� ↵p [↵(1� p) + (1� ↵)q]L

ab

(A) (16)

(1� ↵)q̇ = (1� ↵)(1� q) [(1� ↵)q + ↵(1� p)]L

ab

(B)� (1� ↵)q [(1� ↵)(1� q) + ↵p]L

ba

(B), (17)

with initial condition (p(!, 0), q(!, 0)) =

⇣
↵

�1
P

�2⌃:⌧=A,c=a

p

�

(0), (1� ↵)

�1
P

�2⌃:⌧=B,c=b

p

�

(0)

⌘
.40

Before providing the proof of Proposition 4 we need to introduce the following definition, which is adapted

from Duffie, Qiao and Sun (2016).

Definition 2 Consider a pair of a state and a sampling function (⇢, ⇡) defined on a Fubini Extension (W ⇥

⌦,W ⇥F ,�⇥P ), (p
�

(0))

�2⌃ 2 ˆ

�(⌃), and
�
(&

��

0
(�

00
))

�

002⌃
�
(�,�0)2⌃2 with (&

��

0
(�

00
))

�

002⌃ 2 �(⌃) for all (�, �0
) 2

39Theorem 1 in Podczeck (2010) shows that a sufficient condition allowing � ⇥ P to be a rich Fubini extension (i.e., a proper
extension of the product measure of � and P on W ⇥⌦ that allows for essentially pairwise independent random variables that are
not essentially constant), is that the measure in the index probability space (�) is super-atomless, which we have assumed from
the outset.

40As in most of the equations below, the time and state-of-the-world dependence of p and q have been omitted.
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⌃

2. The pair (⇢, ⇡) is said to be a continuous time dynamical system with independent random sampling and

independent random state-changing with parameters41
(p

�

(0))

�2⌃ and
�
(&

��

0
(�

00
))

�

002⌃
�
(�,�0)2⌃2 (denoted by DS)

if: (i) (p

�

(!, t))

�2⌃ is deterministic almost surely with given initial conditions (p

�

(!, 0))

�2⌃ = (p

�

(0))

�2⌃; (ii)

for ��almost every i 2 W , ⇢(i, ·, ·) is a continuous time Markov chain in ⌃ with transition intensity

R

��

00
(!, t) =

X

�

02⌃

p

�

0
(!, t)&

��

0
(�

00
), (18)

for all two different states � and �

00 in ⌃, and R

��

(!, t) = �
P

�

02⌃\{�} R��

0
(!, t) for all � 2 ⌃, ! 2 ⌦, and

t 2 R+; (iii) ⇢(i,!, t) is (W ⇥ F)⌦ B�measurable; and (iv) for ��almost all i 2 W , ⇢(i, ·, t) and ⇢(j, ·, t) are

independent for ��almost all j 2 W .

Now we are ready to provide the proof of Proposition 4.

Proof. From Corollary 2 in Duffie, Qiao and Sun (2016), there exists a Fubini Extension (W⇥⌦,W⇥F ,�⇥P )

such that the pair of state and sampling function (⇢, ⇡), defined on (W ⇥ ⌦,W ⇥ F ,� ⇥ P ), is a DS with

parameters (p

�

(0))

�2⌃ 2 ˆ

�(⌃) and
�
(&

��

0
(�

00
))

�

002⌃
�
(�,�0)2⌃2 with (&

��

0
(�

00
))

�

002⌃ 2 �(⌃) for all (�, �0
) 2 ⌃

2.42

From their Corollary 1, for P�almost all !, (p
�

(!, t))

�2⌃ is the solution of the system of differential equations

ṗ

�

(!, t) =

X

�

002⌃\{�}

p

�

00
(!, t)

X

�

02⌃

p

�

0
(!, t)&

�

00
�

0
(�)� p

�

(!, t)

X

�

002⌃\{�}

X

�

02⌃

p

�

0
(!, t)&

��

0
(�

00
) (19)

for all � 2 ⌃, with (p

�

(!, 0))

�2⌃ = (p

�

(0))

�2⌃. Therefore,43

↵ṗ =

X

�2⌃:⌧=A,c=a

ṗ

�

=

X

�2⌃:⌧=A,c=a

X

�

002⌃\{�}

p

�

00

X

�

02⌃

p

�

0
&

�

00
�

0
(�)�

X

�2⌃:⌧=A,c=a

p

�

X

�

002⌃\{�}

X

�

02⌃

p

�

0
&

��

0
(�

00
) (20)

If ⌧ = A and ⌧

00
= B, then &

�

00
�

0
(�) = &

��

0
(�

00
) = 0 for all �0 2 ⌃. Therefore, in both the minuend and

41In the definition in Duffie, Qiao and Sun (2016), dynamical systems also depend on parameters describing mutation intensities
and matching intensities. In our model there are no mutations so these parameters are all zero and hence we omit them, and the
matching intensities of our model are given by the fraction of the population of the state of the individual to be sampled; thus we
omit these parameters as well. We only consider different intensities in Section 4 and Appendix D.

42Corollary 2 in Duffie, Qiao and Sun (2016) considers a slightly more general formulation of Definiton 2 (that, as mentioned in
footnote 41, allows for exogenous mutation rates of individual states and matching intensities functions where matching intensities
of individuals of different states are not necessarily proportional to the fraction of the population of the individual state of the
sampled individual). For that more general formulation, this corollary establishes the existence of a Fubini Extension where a
DS (⇢,⇡) can be defined. Their Corollary 1, which we use below, provides the differential equations describing the path of the
expected value of the fraction of individuals in each individual state and establishes that the realization of this path is almost
surely equal to its expected value.

43In the rest of the proof we omit the time and state-of-the-world dependence of p
�

, p, and q, and their time derivatives.
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subtrahend, the second summation is over {�00 2 ⌃ : ⌧

00
= A}; thus,

↵ṗ =

X

�2⌃:⌧=A,c=a

X

�

002⌃:⌧ 00=A

p

�

00

X

�

02⌃

p

�

0
&

�

00
�

0
(�)�

X

�2⌃:⌧=A,c=a

p

�

X

�

002⌃:⌧ 00=A

X

�

02⌃

p

�

0
&

��

0
(�

00
)

=

X

�2⌃:⌧=A,c=a

X

�

002⌃:⌧ 00=A,c

00=b

p

�

00

X

�

02⌃

p

�

0
&

�

00
�

0
(�)�

X

�2⌃:⌧=A,c=a

p

�

X

�

002⌃:⌧ 00=A,c

00=b

X

�

02⌃

p

�

0
&

��

0
(�

00
),

where the second equality is obtained canceling the terms appearing in the minuend and subtrahend out. Next,

since c = a and c

00
= b we have &

�

00
�

0
(�) = 0 whenever c

0
= b and &

��

0
(�

00
) = 0 whenever c

0
= a. Therefore, in

the minuend, the third summation is over {�0 2 ⌃ : c

0
= a} and, in the subtrahend, the third summation is

over {�0 2 ⌃ : c

0
= b}. Thus,

↵ṗ =

X

�2⌃:⌧=A,c=a

X

�

00:⌧ 00=A,c

00=b

p

�

00

X

�

02⌃:c0=a

p

�

0
&

�

00
�

0
(�)�

X

�2⌃:⌧=A,c=a

p

�

X

�

002⌃:⌧ 00=A,c

00=b

X

�

02⌃:c0=b

p

�

0
&

��

0
(�

00
).(21)

The minuend in the right-hand-side of (21), denoted by M , may be written as

M =

X

�

002⌃:⌧ 00=A,c

00=b

X

�

02⌃:c0=a

p

�

00
p

�

0

 
X

�:⌧=A,c=a

&

�

00
�

0
(�)

!

=

X

�

002⌃:⌧ 00=A,c

00=b

X

�

02⌃:c0=a

p

�

00
p

�

0
L(x

00
, x

0
, �

00
⌧

0),

where we have used the definition of
�
(&

��

0
(�

00
))

�

002⌃
�
(�,�0)2⌃2 in (1) and the fact that

X

�:⌧=A,c=a

µ

Aa

(x)µ

AAb

(�

A

)µ

ABb

(�

B

) = 1.

Therefore,

M =

X

�

002⌃:⌧=A,c=b

 
X

�

02⌃:⌧ 0=A,c

0=a

p

�

00
p

�

0
L(x

00
, x

0
, �

00
A

) +

X

�

02⌃:⌧ 0=B,c

0=a

p

�

00
p

�

0
L(x

00
, x

0
, �

00
B

)

!

= ↵(1� p)↵p

X

x

002X,�

00
A2�

 
X

x

02X

µ

Ab

(x

00
)µ

Aa

(x

0
)µ

AAa

(�

00
A

)L(x

00
, x

0
, �

00
A

)

!

+↵(1� p)(1� ↵)(1� q)

X

x

002X,�

00
B2�

 
X

x

02X

µ

Ab

(x

00
)µ

Ba

(x

0
)µ

ABa

(�

00
B

)L(x

00
, x

0
, �

00
B

)

!

= ↵(1� p) [↵p+ (1� ↵)(1� q)]L

ba

(A),

where the second equality follows from the fact that
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1.
P

�2⌃:⌧=A,c=a,x=x0
p

�

= ↵pµ

Aa

(x0),

2.
P

�2⌃:⌧=A,c=b,x=x0,�A=�

p

�

= ↵(1� p)µ

Ab

(x0)µAAa

(�),

3.
P

�2⌃:⌧=B,c=a,x=x0
p

�

= (1� ↵)(1� q)µ

Ba

(x0), and

4.
P

�2⌃:⌧=A,c=b,x=x0,�B=�

p

�

= ↵(1� p)µ

Ab

(x0)µABa

(�),

for all x0 2 X and � 2 �.44

Similarly, the subtrahend of (21) can be written as

�
X

�2⌃:⌧=A,c=a

p

�

X

�

002⌃:⌧ 00=A,c

00=b

X

�

02⌃:c0=b

p

�

0
&

��

0
(�

00
) = �↵p [↵(1� p) + (1� ↵)q]L

ab

(A)

thus,

↵ṗ = ↵(1� p) [↵p+ (1� ↵)(1� q)]L

ba

(A)� ↵p [↵(1� p) + (1� ↵)q]L

ab

(A).

The analogous argument yields (17).

9 Appendix C: Proof of Theorem 1

Proof. First we establish asymptotic stability. Define the Jacobian matrix of (ṗ, q̇)

J(p, q) :=

2

4ṗ1(p, q) ṗ2(p, q)

q̇1(p, q) q̇2(p, q)

3

5
,

where ṗ

i

(p, q) and q̇

i

(p, q) denote the corresponding partial derivatives of ṗ(p, q) and q̇(p, q) with respect to

their i

th arguments, i.e., with respect to p or q. A rest point (p

⇤
, q

⇤
) is asymptotically stable if the real

part of the eigenvalues of J(p⇤, q⇤) are negative (see, e.g., Sydsaeter, Hammond, Seierstad and Strom 2008,

Theorems 6.8.1 and 7.5.1). This is equivalent to Det(J(p

⇤
, q

⇤
)) > 0 and Tr(J(p

⇤
, q

⇤
)) < 0, where Det(J(p

⇤
, q

⇤
))

and Tr(J(p

⇤
, q

⇤
)) are the determinant and trace of J(p

⇤
, q

⇤
), respectively. Consider first (1, 0). We have

Tr(J(1, 0)) = 2D � (1 + U) � ↵(U + D � 1) < 0. Next, Det(J(1, 0)) = U(1 � 2D) + ↵(U + D � 1) > 0 is
44To see why 1. holds observe that, from (19), we have

P
�2⌃:⌧=A,c=a,x=x0

ṗ

�

is equal toP
�2⌃:⌧=A,c=a,x=x0

P
�

002⌃\{�} p�00
P

�

02⌃ p

�

0
&

�

00
�

0(�) �
P

�2⌃:⌧=A,c=a,x=x0
p

�

P
�

002⌃\{�}
P

�

02⌃ p

�

0
&

��

0(�00). From (1), the
minuend is µ

Aa

(x0) times the minuend in (20). The initial conditions imply that, at time t = 0, the subtrahend is µ

Aa

(x0)
times the subtrahend in (20). Thus, at t = 0,

P
�2⌃:⌧=A,c=a,x=x0

ṗ

�

= µ

Aa

(x0)↵ṗ. Therefore, at t = 0, the right derivative ofP
�2⌃:⌧=A,c=a,x=x0

p

�

/(↵p) with respect to t is 0. Furthermore, the derivative of
P

�2⌃:⌧=A,c=a,x=x0
p

�

/(↵p) with respect to t

is negative (positive) when
P

�2⌃:⌧=A,c=a,x=x0
p

�

> (<)µ
Aa

(x0). Thus,
P

�2⌃:⌧=A,c=a,x=x0
p

�

/(↵p) is constant over time and
equal to its value at t = 0, µ

Aa

(x0). The proof of the facts 2.-4. is similar and it is omitted.
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equivalent to ↵ >

U(1�2D)
U+D�1 = ↵. An analogous calculation holds for (0, 1). Now, consider (p̂, q̂). Note that

Tr(J(p̂, q̂)) =

2U(1� U)(↵ + (1� 2D)

2
) + 2D(1�D)(2� ↵)� 1

(2D � 1)(2U � 1)

< 0.

Next,

Det(J(p̂, q̂)) =

(↵(U +D � 1)� (1� U)(2D � 1))(U(2D � 1)� ↵(U +D � 1))

(2U � 1)(2D � 1)

> 0

if ↵ >

(1�U)(2D�1)
(U+D�1) = ↵ and ↵ <

U(2D�1)
(U+D�1) = ↵.

In order to prove that the asymptotically stable points are global attractors, notice that ṗ2, q̇1 < 0, hence

lim

t!1(p(t), q(t)) 2 RP for all paths (see, e.g., Theorem 3.4.1 in Hofbauer and Sigmund, 1998). It is easy to

verify that all (p, q) 2 RP \ {(p⇤, q⇤)} are saddle-path stable with no stable arm in [0, 1]

2. Hence, the system

always converges to the asymptotically stable point.

10 Appendix D: Proofs Section 4

10.1 Dynamical systems with biased sampling

In this subsection we briefly sketch how to derive (10)-(11). The general version of equation (18), when we

allow for general intensities, is

R

��

00
(!, t) =

X

�

02⌃

✓

��

0
((p

�

000
(!, t))

�

0002⌃)&��0
(�

00
)

and the corresponding version of equation (19) is45

ṗ

�

=

X

�

002⌃\{�}

p

�

00

X

�

02⌃

✓

�

00
�

0
((p

�

000
)

�

0002⌃)&�00
�

0
(�)� p

�

X

�

002⌃\{�}

X

�

02⌃

✓

��

0
((p

�

000
)

�

0002⌃)&��0
(�

00
). (22)

Then, (22) and analogous derivations to those following equation (19) in Appendix B yield (10)-(11).

10.2 Proofs of Stable equilibria

First we provide the proof of Lemma 2.

Proof. (of Lemma 2) (i) We use the determinant and trace of the Jacobian matrix of the system (4)-(5). Recall

that (p, q) is asymptotically stable if and only if Det(J(p, q)) > 0 and Tr(J(p, q)) < 0. Now, Det(J(1, 0)) =

45Dependence on time and state of the world are omitted in the notation.
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U �D+↵

B

D(1�2U)+↵

A

(2D�1)(1�U)) > 0 if and only if ↵
A

> ↵

A

(↵

B

). ↵

A

(↵

B

) � 1 for all ↵
B

� 1�D

D

, so

if ↵
A

> ↵

A

(↵

B

), then ↵

B

<

1�D

D

. Finally, if ↵
B

<

1�D

D

, then Tr(J(1, 0)) = ↵

A

�1�U(1+↵

A

)+D(1+↵

B

) < 0.

(ii) is established analogously. (iii) follows from (i) and (ii) and the fact that ↵

A

(↵

B

) >

⇥
↵

�1
B

⇤
(↵

B

) for all

↵

B

2 (0, 1).

We now provide the proof of Corollary 1.

Proof. (of Corollary 1) Part (i) follows by observing that ↵

A

(↵

B

) > 1 for all ↵
B

>

1�D

D

, and if U > D, then

↵

A

(↵

B

) < 0 for all ↵
B

<

U�D

D(2U�1) . An analogous argument proves (ii).

Now we provide the results that lead to the proof of Lemma 3. Define [p

�1
] : [0, 1] ! [0, 1] with [p

�1
](p) :=

max{q : p(q) = p} for all p 2 [0, 1]. Define [q

�1
] : [0, 1] ! [0, 1] with [q

�1
](q) = max{p : q(p) = q} for

all q 2 [0, 1]. Notice that p is strictly decreasing on {q 2 [0, 1] : p(q) < 1}. To see this, note that the

concavity of p and p(0) = 1 together imply that for all q 2 (0, 1] such that p(q) < 1 and � 2 (0, 1] we have

p((1��)q) = p(�0+(1��)q) � �1+(1��)p(q) > p(q). Combining with the fact that p(1) = 0, it follows that

p is strictly decreasing on [w, 1] and there is no q 2 [0, w] with p(q) 2 [0, 1), where w := [p

�1
](1). Therefore,

[p

�1
] is the well defined real-valued inverse function of p in the restricted domain [w, 1] (with range [0, 1]),

which is a continuous, decreasing, and concave function. An analogous argument holds for q and [q

�1
].

Remark 4 (i) ↵

A

> (<)↵

A

(↵

B

) if and only if p

0
(0) < (>)[q

�1
]

0
(0). (ii) ↵

B

> (<)↵

B

(↵

A

) if and only if

q

0
(0) < (>)[p

�1
]

0
(0).

Proof. (i) Notice that [q

�1
]

0
(0) =

1
q

0(q�1(0))
=

1
q

0(1) . Next, p

0
(0) =

↵BD+D�1
D(1�↵B) and 1

q

0(1) =

(1�U)(1�↵A)
↵A(1�U)�U

and
↵BD+D�1
D(1�↵B) <

(1�U)(1�↵A)
↵A(1�U)�U

can be written ↵

A

>

U�D+↵BD(1�2U)
(1�U)(1�2D) = ↵

A

(↵

B

). Analogous calculations hold for (ii).

In the sequel, unless stated otherwise, the domains of p and q are the whole set of real numbers. The

following results follow from straightforward calculus:

Remark 5 q(p(q)) � q = 0 is a polynomial equation of degree 4, and consequently has at most 4 different

solutions in q 2 R.

Remark 6 q(p) has the following properties: (i) q(0) = 1 and q(1) = 0, (ii) lim

p!1 q(p) = � lim

p!�1 q(p) =

lim

p!1

⇣
↵A(2U�1)�U

(1�↵A)(1�2U) +
↵A

1�↵A
p

⌘
, (iii) q is discontinuous only at U

2U�1 . In particular lim

p!( U
2U�1 )

� q(p) = �1

and lim

p!( U
2U�1 )

+ q(p) = 1 and (iv) q has two local extrema, a local maximum at some p < 1 and a local

minimum at some p > U/(2U � 1).

The following Lemma shows that one of the four roots of q(p(q))� q = 0 is located outside of [0, 1], which

implies that if there is an interior rest point it is unique.
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Lemma 7 If ↵

A

6= 1 � ↵

B

, then there is some z 62 [0, 1] such that q(p(z)) � z = 0 with p(z) 2 (�1, 0) [

(

U

2U�1 ,1).

Proof. (i) Consider the case ↵A
1�↵A

<

1�↵B
↵B

. Consider q with its domain restricted to (

U

2U�1 ,1) and p with

its domain restricted to (

D

2D�1 ,1). Both q and p are continuous on (

U

2U�1 ,1) and (

D

2D�1 ,1), respectively.

Since lim

p!1
q(p) = 1 and lim

q!( D
2D�1 )

+
p(q) = 1 there is a point q

0 2 (

D

2D�1 ,1) (close to D

2D�1) such that q

0
<

q(p(q

0
)), which means that (p(q

0
), q

0
) is in the subgraph of q(p). Next, given that ↵A

1�↵A
<

1�↵B
↵B

there is some

q

00 2 (

D

2D�1 ,1) (sufficiently large) such that p(q00) ' ↵B(2D�1)�D

(1�↵B)(1�2D) +
↵B

1�↵B
q

00, q(p(q00)) ' ↵A(2U�1)�U

(1�↵A)(1�2U) +
↵A

1�↵A
p(q

00
)

and q

00 ' � (1�↵B)(1�2D)
↵B(2D�1)�D

1�↵B
↵B

+

1�↵B
↵B

p(q

00
) > q(p(q

00
)). This means that (p(q

00
), q

00
) is in the epigraph of q(p).

From Remark 6 and an analogous analysis for p, we have that p is continuous on (

D

2D�1 ,1), q is continuous

on (

U

2U�1 ,1) and lim

p!1
q(p) = lim

p!( U
2U�1 )

+
q(p) = 1. Since (p(q

0
), q

0
) is in the subgraph of q and (p(q

00
), q

00
) is in

the epigraph of q(p), with q

0
, q

00 2 (

D

2D�1 ,1), there is a point (p(z), z) with z 2 (

D

2D�1 ,1) that is both in the

subgraph and in the epigraph of q. Hence q(p(z)) = z for some z 62 [0, 1], such that p(z) 2 (

U

2U�1 ,1).

Consider ↵A
1�↵A

>

1�↵B
↵B

. Consider q and p with their domains restricted to [0,�1). Both q and p are

continuous on [0,�1). The point (p(q

0
), q

0
), with q

0 2 [0,�1) such that p(q

0
) = 0 is in the subgraph of

q(p), because q(p(q

0
)) = 1 > q

0. Next, given that ↵A
1�↵A

>

1�↵B
↵B

there is some q

00 2 (0,�1) (sufficiently small)

such that p(q

00
) ' ↵B(2D�1)�D

(1�↵B)(1�2D) +
↵B

1�↵B
q

00, q(p(q00)) ' ↵A(2U�1)�U

(1�↵A)(1�2U) +
↵A

1�↵A
p(q

00
) and q

00 ' � (1�↵B)(1�2D)
↵B(2D�1)�D

1�↵B
↵B

+

1�↵B
↵B

p(q

00
) > q(p(q

00
)). This means that (p(q

00
), q

00
) is in the epigraph of q. Since p and q are continuous on

[0,1), and since (p(q

0
), q

0
) is in the subgraph of q and (p(q

00
), q

00
) is in the epigraph of q, there must be a point

(p(z), z), with z 2 (�1, 0), that is both in the subgraph and in the epigraph of q. Hence q(p(z)) = z for some

z 2 (�1, 0) at which p(z) 2 (�1, 0).

Hence, q(p(z))� z = 0 for some z 2 (�1, 0) [ (

D

2D�1 ,1).

Now we provide the proof of Lemma 3.

Proof. (of Lemma 3) (i) Suppose ↵

A

> ↵

A

(↵

B

). Then by Remark 4 p

0
(0) < [q

�1
]

0
(0). Define [eq�1

] :

(�1, 0] ! R with [eq�1
](q) := {p : q(p) = q} for q 2 (�1, 0]. Both [eq�1

] and p are continuous on (�1, 0).

Since p

0
(0) < [eq�1

]

0
(0) there is some q

0
< 0 (close to 0) such that p(q

0
) > [eq�1

](q

0
). Next, lim

q!1
p(q) = �1

while lim

q!1
[eq�1

](q) =

U

2U�1 . This means that there is some sufficiently large q

00 such that p(q

00
) > [eq�1

](q

00
).

Hence, there is some z 2 (�1, 0) such that p(z) = [eq�1
](z) and 1 < p(z) <

U

2U�1 . Since there are at most four

solutions to q(p(p))�p = 0 and there is one with p(q) 2 (�1, 0)[(

U

2U�1 ,1) and one such that p(q) 2 (1,

U

2U�1)

there is no solution in (0, 1). An analogous argument holds if ↵
B

> ↵

B

(↵

A

).

(ii) Suppose. ↵

A

< ↵

A

(↵

B

) or ↵

B

< ↵

B

(↵

A

). By Remark 4 q

0
(0) > [p

�1
]

0
(0), which means that there is

some p

0 2 (0, 1) (close to 0) such that q(p0) > [p

�1
](p

0
). By Remark 4 p

0
(0) > [q

�1
]

0
(0), which means that there

is some p

00 2 (0, 1) (close to 1) such that q(p

00
) < [p

�1
](p

00
). Since [p

�1
](p) and q(p) are continuous on (0, 1)
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there is some z 2 (0, 1) such that [p�1
](z) = q(z) and hence there is an interior rest point.

If ↵
A

= 1 � ↵

B

the expression for the interior rest point is given by (ep, eq) = (bp, bq). The following result

provides the expression for the interior rest point (ep, eq) when ↵

A

6= 1� ↵

B

.

Lemma 8 Suppose ↵

A

6= 1� ↵

B

. Then,

ep =

(↵

A

+ ↵

B

� 1)(U �D + 2↵

A

U(2D � 1)) + ↵

A

↵

B

(1� U �D))

2↵

A

(↵

A

+ ↵

B

� 1)(2U � 1)(2D � 1)

+

vuuut
4↵

A

(↵

A

+ ↵

B

� 1)(2D � 1)(1� ↵

A

)U [U(1� ↵

A

)� ↵

B

(2U � 1)(1�D)�D + 2↵

A

UD]

+ [(↵

A

+ ↵

B

� 1)(U �D + 2↵

A

U(2D � 1)) + ↵

A

↵

B

(1� U �D))]

2

2↵

A

(↵

A

+ ↵

B

� 1)(2U � 1)(2D � 1)

The expression for eq is analogous.

Proof. The terms p and 1 � p can be factored out from the left hand side of the fourth degree polynomial

p(q(p)) � p = 0. It is thus obtained that any interior rest point must be a solution to the second degree

polynomial
↵

A

(↵

A

+ ↵

B

� 1)(1� 2U)

2
(2D � 1)p

2

�(2U � 1) [(↵

A

+ ↵

B

� 1)(U �D + 2↵

A

U(2D � 1)) + ↵

A

↵

B

(1� U �D)] p

�(1� ↵

A

)U [U(1� ↵

A

)� ↵

B

(2U � 1)(1�D)�D + 2↵

A

UD] = 0

The expression in the statement of the lemma is obtained by applying the quadratic formula and observing

that ep 2 (0, 1) is only consistent with the positive square root.

We now provide the proof of Proposition 2.

Proof. (of Proposition 2) Since ṗ2(p, q), q̇1(p, q) < 0 the system always converges to a rest point as t ! 1 (see,

e.g., Theorem 3.4.1 in Hofbauer and Sigmund, 1998). If ↵
A

> ↵

A

(↵

B

), then, by Lemma 3, RP = {(1, 0), (0, 1)}.

By Lemma 2, (0, 1) is not asymptotically stable. Furthermore, (0, 1) has no stable arm in [0, 1]

2. Hence,

the system converges to (1, 0). Analogously if ↵

A

<

⇥
↵

�1
B

⇤
(↵

B

), then the system converges to (0, 1). If
⇥
↵

�1
B

⇤
(↵

B

) < ↵

A

< ↵

A

(↵

B

), then by Lemma 3, RP = {(1, 0), (0, 1), (ep, eq)}, for some (ep, eq) 2 (0, 1)

2. By

Lemma 2, (1, 0) and (0, 1) are not asymptotically stable and, furthermore, have no stable arm in [0, 1]

2.

Hence, the system converges to (ep, eq).

10.3 Proofs for comparative statics of Section 4

Remark 7 (i) ep1(↵A

,↵

B

) > 0, (ii) ep2(↵A

,↵

B

) < 0, (iii) eq1(↵A

,↵

B

) > 0 and (iv) eq2(↵A

,↵

B

) < 0.

Proof. eq(↵
A

,↵

B

) is defined by q(p(eq(↵
A

,↵

B

)))� eq(↵
A

,↵

B

) = 0. To establish (iv), we differentiate implicitly
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and obtain
@eq
@↵

B

= �
q

0
(p(eq(↵

A

,↵

B

)))

@p(eq(↵A,↵B))
@↵B

q

0
(p(eq(↵

A

,↵

B

))p

0
(eq(↵

A

,↵

B

))� 1

.

Consider first the denominator. It holds that [p

�1
]

0
(ep(↵

A

,↵

B

)) > q

0
(p(eq(↵

A

,↵

B

))). This means 1
p

0(eq(↵A,↵B)) >

q

0
(p(eq(↵

A

,↵

B

))), or 1 < q

0
(p(eq(↵

A

,↵

B

)))p

0
(eq(↵

A

,↵

B

)). Therefore, the denominator is positive. Now consider

the denominator. Note that @p(eq(↵A,↵B))
@↵B

> 0 and q

0
(p(eq(↵

A

,↵

B

))) < 0. Hence, the numerator is negative, so
@eq(↵A,↵B)

@↵B
> 0. An analogous procedure yields

@eq(↵
A

,↵

B

)

@↵

A

= �
@q(p(eq(↵A,↵B)))

@↵A

q

0
(p(eq(↵

A

,↵

B

))p

0
(eq(↵

A

,↵

B

))� 1

< 0.

Analogous arguments yield (i) and (ii).

We now provide the proof of Remark 3.

Proof. (of Remark 3) Consider a large enough ↵

A

such that there is some p

0 2 (0, 1) with ṗ(p

0
, 1) = 0.

Then, since q is concave and its graph contains (p0, 1) and (1, 0) it holds that ep(↵
A

,↵

B

) > p

0. Next, ṗ(p0, 1) =

↵

A

p

0
(1 � p

0
)(2U � 1) � (1 � ↵

A

)p

0
(U � 1) = 0 implies p

0
=

↵AU+U�1
↵A(2U�1) , which approaches 1 as ↵

A

! 1. Since

ep(↵
A

,↵

B

) > p

0, we obtain that lim

↵A!1
ep(↵

A

,↵

B

) = 1. An analogous argument holds for eq(↵
A

,↵

B

).

11 Appendix E: Proofs of Section 5

Proof of Proposition 3. Since G(r) = 0 for all r � ' and G is continuous on [0,'], it attains its maximum

somewhere in this interval. Both Q and G are twice continuously differentiable on (r(',↵), r(',↵)). Let G0
(x

+
)

and G

0
(x

�
) (corresp. Q0

(x

+
) and Q

0
(x

�
)) denote the right and left derivatives, respectively, of G (corresp. Q)

for all x 2 (r(',↵), r(',↵)).

Suppose k � r(',↵). Then G(r) < 0 for all r 2 [0, r(',↵)) and G(r) = 0 for all r � r(',↵). Hence, in this

case, the monopolist withdraws from the market.

Suppose k < r(',↵). Then

G

0
(r(',↵)

�
) = Q(r(',↵)) + (r(',↵)� k)Q

0
(r(',↵)

�
) = (r(',↵)� k)Q

0
(r(',↵)

�
) < 0.

Hence, in this case r

⇤
< r(',↵). From Lemma 4, G0

(r(',↵)

+
) > 0 if k >

ˆ

k. Hence, if k >

ˆ

k , then r

⇤
> r(',↵).

This proves that r

⇤ 2 (r(',↵), r(',↵)) if k 2 (

ˆ

k, r(',↵)). In order to see that in this case r

⇤ is the unique

solution to G

0
(r) = 0, first note that G(r) < 0 for r < k and hence, r⇤ � k. Next, for any k, r such that
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0  k  r 2 (r(',↵), r(',↵)) we have that

G

00
(r) = 2Q

0
(r) + (r � k)Q

00
(r) < 0.

If Q00
(r)  0 this is obvious. Note that if k = 0 then

G

00
(r) = 2Q

0
(r) + rQ

00
(r) = �3(1� ↵)'

2('� r)

3
< 0

for r < '. Thus, if Q00
(r) � 0 then G

00
(r) = 2Q

0
(r)+(r�k)Q

00
(r)  2Q

0
(r)+rQ

00
(r) < 0. G is therefore strictly

concave on (k, r(',↵)) which together with G

0
(k) > 0 implies that r

⇤ is the unique solution to G

0
(r) = 0.

Suppose k  ˆ

k. Then, from Lemma 4, G0
(r(',↵)

+
) < 0 and G is strictly concave on (r(',↵), r(',↵)) given

k  ˆ

k < r(',↵). Since G

0
(r(',↵)

+
) < 0 we have G

0
(r) < 0 for all r 2 (r(',↵), r(',↵)). Finally, since G is

increasing on [0, r(',↵)) we obtain r

⇤
= r(',↵).

Comparative Statics. Note that @r(',↵)/@', @r(',↵)/@↵, @r(',↵)/@', @r(',↵)/@↵ > 0. Further, if

k 2 (

ˆ

k, r(',↵)) then G

0
(r

⇤
) = 0 and G

00
(r

⇤
) < 0 (see the proof of Proposition 3). Implicit differentiation gives

@r

⇤

@k

= ��Q

0
(r

⇤
)

G

00
(r

⇤
)

> 0

@r

⇤

@'

= �@Q(r

⇤
)/@'+ (r

⇤ � k)@Q

0
(r

⇤
)/@'

G

00
(r

⇤
)

> 0

@r

⇤

@↵

= �@Q(r

⇤
)/@↵ + (r

⇤ � k)@Q

0
(r

⇤
)/@↵

G

00
(r

⇤
)

> 0,

where the sign of the derivative follows since the denominator is negative and the numerator can be shown to

be positive in all three cases. Hence, whenever k < r(',↵), r⇤ is strictly increasing in k,↵ and '.

Finally, the following remark shows that the monopolist’s profits in this setup are smaller than under full

information.

Remark 8 Let ˆ

G := ↵(' � k) be the monopolist’s profit under full information. Then ˆ

G > G(r

⇤
) for all

k 2 [0,').

Proof. (i) If k 2 [0,

ˆ

k], then G(r

⇤
) = r(',↵) � k. Simple calculations show that ↵(' � k) > r(',↵) � k.

(ii) If k 2 [r(',↵),') then G(r

⇤
) = 0 < ↵(' � k) =

ˆ

G. Consider k 2 (

ˆ

k, r(',↵)). Note that @Ĝ

@k

= �↵ and
@G(r⇤)

@k

= �Q(r

⇤
). We also know that Q(r

⇤
) is continuously decreasing in k. This implies that ˆ

G � G(r

⇤
) is

concave in k and, by (i) and (ii), we thus have ˆ

G > G(r

⇤
) for all k 2 (

ˆ

k, r(',↵)).
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12 Appendix F: Biased comparisons

Here, we analyze the consequences of introducing biases in the comparison signal. We make the simplifying

assumption that the comparison bias does not depend on the observed action or the observed individual. We

do allow, however, the bias to vary across types. Let "

⌧

be the bias of type ⌧ individuals. Therefore, the

expected value of the comparison signal observed by a type ⌧ individual who samples a type ⌧

0 individual

choosing c is ⇡

⌧⌧

0
c

= ⇡

⌧c

� ⇡

⌧

0
c

+ "

⌧

, for all ⌧, ⌧ 0 2 T and c 2 S. If "
⌧

> (<)0, then type ⌧ individuals have

positive (negative) biases. As in the benchmark model, we assume that the comparison signal takes values in

a finite set with minimum �1 and maximum 1. Notice that this imposes "
⌧

2 [⇡

⌧

0
c

�⇡

⌧c

� 1, 1+⇡

⌧

0
c

�⇡

⌧c

] for

all c 2 S. This yields L
cd

(⌧) =

1
2 + �(⇡

⌧d

� ⇡

⌧c

) + �"

⌧

and therefore L

ba

(A) = U + �"

A

, L
ab

(A) = 1�U + �"

A

,

L

ba

(B) = 1�D + �"

B

and L

ab

(B) = D + �"

B

. It follows that if individuals have positive biases, they switch

more often, both to their optimal and suboptimal action. If they have negative biases, they are instead more

reluctant to switch. The system of differential equations becomes

ṗ = ↵p(1� p)(2U � 1) + (1� ↵)((1� p)(1� q)(U + �"

A

)� pq(1� U + �"

A

)) (23)

q̇ = (1� ↵)q(1� q)(2D � 1) + ↵((1� q)(1� p)(D + �"

B

)� qp(1�D + �"

B

)). (24)

Qualitatively, system (23)-(24) behaves similarly to (4)-(5). Depending on the parameters, the system converges

to either a corner or an interior rest point. Let

↵

"

("

A

, "

B

) :=

(1� U + �"

A

)(2D � 1)

U +D � 1 + �"

B

(2U � 1) + �"

A

(2D � 1)

and

↵

"

("

A

, "

B

) :=

(U + �"

A

)(2D � 1)

U +D � 1 + �"

B

(2U � 1) + �"

A

(2D � 1)

.

Also let p̂("

A

, "

B

) :=

(�"A+U)(↵�↵

"("A,"B))
↵(2U�1) and q̂("

A

, "

B

) :=

(�"B+D)(↵"("A,"B)�↵)
(1�↵)(2D�1) . Using an argument analogous

to that in Section 3 we obtain the following result.

Remark 9 For all paths such that (p(0), q(0)) /2 {(0, 1), (1, 0)},

lim

t!1
(p(t), q(t)) =

8
>>><

>>>:

(0, 1) if ↵ < ↵

"

("

A

, "

B

)

(p̂("

A

, "

B

), q̂("

A

, "

B

)) if ↵

"

("

A

, "

B

) < ↵ < ↵

"

("

A

, "

B

)

(1, 0) if ↵ > ↵

"

("

A

, "

B

).
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We now consider how the predictions of the model respond to changes in "

A

and "

B

. For concreteness

we focus on "

A

. First, ↵"

1("A, "B),↵
"

1("A, "B) > 0. This means that, as type A individuals’ bias increases,

the system converges to (0, 1) for a larger set of parameter configurations and to (1, 0) for a smaller set of

parameters. Next, we obtain that

p̂1("A, "B) =
"

A

(↵� ↵

"

("

A

, "

B

))� ("

A

+ U)↵

"

1("A, "B)

↵(2U � 1)

< 0.

Hence, the outcome becomes worse for type A individuals as their bias increases. On the other hand

q̂1("A, "B) > 0, i.e., type B individuals benefit from type A individuals’ bias. If we take as a starting

point "
A

= "

B

= 0, these results imply that type A individuals are affected negatively by their bias, while type

B individuals benefit from this. On the other hand, type A individuals obtain a better outcome when their

bias decrease, while type B individuals are negatively affected by this.

There is a simple intuition behind these results. As we see in equations (23)-(24), the effect of the bias

on ṗ depends on p and q. If the biases are positive, there is a positive effect for small values of p and q

(more precisely, below the line q = 1 � p) and a negative effect for large values. The isoclines in the phase

diagrams are always above the line q = 1 � p, however. Intuitively, when q is large, it is difficult to find a

type B individual choosing a. At the same time, when p is large, there is only a small fraction of type A

individuals choosing b and who are therefore candidates to switch to action a. Hence, switching towards action

a in A is small, and the positive effect of the bias on this switching is, therefore, relatively unimportant. In

contrast, there are many type A individuals choosing a that observe type B individuals choosing b, and hence

the effect of the bias on these switches is larger. The result is that a positive bias causes a net increase in

switching towards b among type A individuals, which in the end makes A worse off. The opposite occurs when

type A individuals have negative biases. A negative bias reduces switching, and at large values of p and q

this inhibits switching away from a to a greater extent than it inhibits switching away from b. This leads to a

larger fraction of type A individuals choosing their optimal action in the long run. By the same logic as in the

benchmark model, whatever causes a stronger motion towards a among type A individuals has a negative effect

on type B individuals. Hence, when type A individuals have negative biases and obtain a better outcome,

type B individuals are worse off. Analogously, when type A individuals have positive biases and obtain a worse

outcome, this benefits type B individuals.
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