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Perfect Equilibria in Games of Incomplete
Information

Oriol Carbonell-Nicolau*

February 2017

Abstract

We obtain conditions on the primitives of a Bayesian game with infinitely many types
and/or strategies that ensure the existence of a perfect Bayes-Nash equilibrium. The
main existence results are illustrated in the context of all-pay auctions.

Keywords: infinite game of incomplete information, perfect Bayes-Nash equilibrium,
payoff security.

1 Introduction
The notion of perfect equilibrium was introduced by Selten [23]. In normal-form games
with complete information, Selten’s [23] perfection refines the Nash equilibrium concept by
requiring that equilibrium strategies be immune to slight trembles in the execution of the
players’ actions. The standard definition of perfect equilibrium for normal-form games with
finite action spaces (see, e.g., van Damme [26]) can be extended to normal-form games with
infinitely many actions, and these extensions have been studied by several authors (see, e.g.,
Al-Najjar [2], Simon and Stinchcombe [24], Carbonell-Nicolau [8, 9, 10, 12], Carbonell-Nicolau
and McLean [13, 14, 15], and Bajoori et al. [4]).

This paper considers an extension of the notion of perfection to normal-form games of
incomplete information, also called Bayesian games, that refines the standard Bayes-Nash
equilibrium concept. Roughly, a Bayes-Nash equilibrium is perfect if there are nearby Bayes-
Nash equilibria in slightly perturbed Bayesian games in which each type of each player
makes slight mistakes in the execution of a strategy. Conditions on primitives are given
under which a Bayesian game with infinitely many types and/or actions, and possibly with
payoff discontinuities in type and action profiles, possesses a perfect Bayes-Nash equilibrium.
The existence results are illustrated in the context of all-pay auctions.

2 Preliminaries
Throughout the paper, the following definitions will be adopted. If A is a metric space,
then B(A) will denote the σ-algebra of Borel subsets of A, ∆(A) will represent the set of
Borel probability measures on A, and C(A) will denote the set of all bounded continuous
real-valued functions on A.

*Department of Economics, Rutgers University, 75 Hamilton Street, New Brunswick, NJ 08901. E-mail:
carbonell-nicolau@rutgers.edu.
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Definition 1. The w-topology on ∆(A) is defined as the coarsest topology for which all the
functionals in {[[

µ 7→
∫

A
f (a)µ(da)

]
:∆(A)→R

]
: f ∈ C(A)

}
are continuous.

We will refer to convergence of measures in ∆(A) with respect to the w-topology as weak
convergence of measures and we will write µn −→

w
µ to indicate that the sequence of measures

(µn) converges weakly to µ.
If A is a complete, separable metric space, the w-topology on ∆(A) is metrizable, and the

Prokhorov metric defines a compatible metric (cf. Prokhorov [21, Theorem 1.11]).

2.1 Games and strategies

Definition 2. A normal-form game (or simply a game) is a collection G = (Zi, g i)N
i=1, where

N is a finite number of players, Zi is a nonempty set of actions for player i, and g i : Z →R

represents player i’s payoff function, defined on the set of action profiles Z :=×N
i=1Zi. The

game G is called a metric game (resp. a compact game) if each Zi is a metric (resp.
compact) space. A compact metric game G = (Zi, g i)N

i=1 is called a Borel game if each g i is
bounded and (B(Z),B(R))-measurable.

Throughout the sequel, given N sets Z1, ..., ZN , we adhere to the following conventions,
which are standard in the literature, even though they sometimes entail abuses of notation:
for i ∈ {1, ..., N}, Z−i :=× j 6=iZ j; given i, the set ×N

j=1Z j is sometimes represented as Zi ×Z−i,
and we sometimes write z = (zi, z−i) ∈ Zi ×Z−i for a member z of ×N

j=1Z j.

Definition 3. A Bayesian game is a collection

Γ= (Ti, X i,ui, p)N
i=1 ,

where

• {1, ..., N} is a finite set of players;

• Ti is a nonempty, compact, metric space of types for player i;

• X i is a nonempty, compact, metric space of actions for player i;

• ui is a real-valued map on T × X , where T := ×N
i=1Ti and X := ×N

i=1X i; it represents
player i’s payoff function, and it is assumed bounded and (B(T×X ),B(R))-measurable;
and

• p is a probability measure on (T,B(T)) describing the players’ common priors over
type profiles.

For each i ∈ {1, ..., N}, let pi be the marginal probability measure induced by p on Ti, i.e.,
the probability measure in ∆(Ti) defined by

pi(S) := p(S×T−i), for every S ∈B(Ti).

Definition 4. Let Γ = (Ti, X i,ui, p)N
i=1 be a Bayesian game. A pure strategy for a player

i in Γ is a (B(Ti),B(X i))-measurable map si : Ti → X i with the interpretation that, upon
learning her type ti ∈ Ti, a player i selects the action si(ti) from the set X i.

Let P i denote the set of pure strategies for player i, and set P :=×N
i=1P i.
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Definition 5. Let Γ= (Ti, X i,ui, p)N
i=1 be a Bayesian game. A distributional strategy for

player i in Γ is a probability measure σi in ∆(Ti × X i) such that

σi(A× X i)= pi(A), for all A ∈B(Ti).

Let Di represent the set of distributional strategies for player i, and define D :=×N
i=1Di.

Given σi ∈Di, the map ti ∈ Ti 7→σi(·|ti) ∈∆(X i) will denote a corresponding version of the
regular conditional probability measure on X i.

Definition 6. A distributional strategy σi ∈Di is strictly positive if for each ti ∈ Ti, σi(V |ti)>
0 for every nonempty open set V in X i.

The set of all strictly positive distributional strategies in Di is denoted by D̂i, and the
Cartesian product ×N

j=1D̂ j is denoted by D̂. Each Di will be endowed with the relative
w-topology, and D will be endowed with the corresponding product topology.

Given a Bayesian game Γ= (Ti, X i,ui, p)N
i=1, define the normal-form game

GΓ := (Di,Ui)N
i=1 , (1)

where Ui : D →R is given by

Ui(σ1, ...,σN) :=
∫

T

∫
XN

· · ·
∫

X1

ui(t, x)σ1(dx1|t1) · · ·σN(dxN |tN)p(dt).

Given α= (α1, ...,αN) ∈ [0,1)N and µ= (µ1, ...,µN) ∈ D̂, define the normal-form game

G(α,µ)
Γ := (Di,U

(α,µ)
i )N

i=1, (2)

where U (α,µ)
i : D →R is defined by

U (α,µ)
i (σ1, ...,σN) :=Ui((1−α1)σ1 +α1µ1, ..., (1−αN)σN +αNµN).

Every pure strategy in P i induces a corresponding “pure” distributional strategy in Di in
a natural way. If si ∈P i, define σsi

i ∈Di as follows: for ti ∈ Ti and A ∈B(X i),

σ
si
i (A|ti) := δsi(ti)(A),

where δsi(ti) ∈∆(X i) denotes the Dirac measure concentrated on the point si(ti).
If si ∈P i and σ−i ∈D−i, then define

Ui(si,σ−i) :=
∫

T

∫
XN

· · ·
∫

X1

ui(t, (si(ti), x−i))

[∏
j 6=i
σ j(dx j|t j)

]
p(dt),

and note that
Ui(si,σ−i)=Ui(σ

si
i ,σ−i).

2.2 Equilibrium

Definition 7. A Bayes-Nash equilibrium of a Bayesian game Γ = (Ti, X i,ui, p)N
i=1 is a

Nash equilibrium of the game GΓ defined in (1), i.e., a profile (σ1, ...,σN) ∈D such that for
each i,

Ui(σi,σ−i)≥Ui(νi,σ−i), for all νi ∈Di.
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Definition 8. A Bayes-Nash equilibrium σ of a Bayesian game Γ= (Ti, X i,ui, p)N
i=1 is perfect

if there exist sequences (αn), (µn), and (σn) such that the following holds for each n: αn ∈
(0,1)N , µn ∈ D̂, and σn is a Nash equilibrium of the game G(αn,µn)

Γ defined in (2), and in
addition αn → 0 and σn −→

w
σ.

In the special case of complete information games (i.e., when type spaces are singletons),
this definition collapses to the notion of perfection considered in Al-Najjar [2], Carbonell-
Nicolau [8, 9, 10, 12], Carbonell-Nicolau and McLean [13, 14, 15], and the strong notion of
perfection defined in Simon and Stinchcombe [24].

3 Existence of perfect equilibrium
To begin, we recall the definition of payoff security.

Definition 9 (Reny [22]). A topological game (Zi, g i)N
i=1 is payoff secure if for each ε> 0,

z ∈×N
i=1Zi, and i, there exists a yi ∈ Zi and a neighborhood Vz−i of z−i such that g i(yi, y−i)>

g i(z)−ε for every y−i ∈Vz−i .

The following definition extends Condition (A) in Carbonell-Nicolau [8, 9] to games with
incomplete information and strengthens the notion of uniform payoff security for incomplete
information games introduced in Carbonell-Nicolau and McLean [16].

Definition 10. The Bayesian game (Ti, X i,ui, p)N
i=1 satisfies strong uniform payoff secur-

ity if there exists µ= (µ1, ...,µN ) ∈ D̂ such that for each i and ε> 0 there is a sequence ( f k) of
(B(X i),B(X i))-measurable maps f k : X i → X i satisfying the following:

(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui(t, ( f k(xi), y−i))> ui(t, x)−ε, for all y−i ∈Vx−i .

(b) For each (t, x−i) ∈ T × X−i, there is a subset Yi of X i with µi(Yi|ti) = 1 satisfying the
following: for each xi ∈Yi, there exists K such that for all k ≥ K , there is a neighborhood
V ′

x−i
of x−i such that

ui(t, ( f k(xi), y−i))< ui(t, (xi, y−i))+ε, for all y−i ∈V ′
x−i

.

The proofs of the next two lemmas are relegated to Section A.

Lemma 1. Suppose that the Bayesian game Γ = (Ti, X i,ui, p)N
i=1 satisfies strong uniform

payoff security. If p is absolutely continuous with respect to p1 ⊗·· ·⊗ pN , then there exists
µ ∈ D̂ such that the game G(α,µ)

Γ defined in (2) is payoff secure for each α ∈ [0,1)N .

Lemma 2. Given a Bayesian game (Ti, X i,ui, p)N
i=1, suppose that for each t ∈ T, the map∑N

i=1 ui(t, ·) : X →R is upper semicontinuous. Suppose further that p is absolutely continuous
with respect to p1 ⊗·· ·⊗ pN . Then the map

∑N
i=1Ui(·) : D →R is upper semicontinuous.

Our first main existence result is Theorem 1.

Theorem 1. Suppose that the Bayesian game Γ= (Ti, X i,ui, p)N
i=1 satisfies strong uniform

payoff security and that for each t ∈ T, the map
∑N

i=1 ui(t, ·) : X →R is upper semicontinuous.
If p is absolutely continuous with respect to p1⊗·· ·⊗pN , then Γ possesses a perfect Bayes-Nash
equilibrium.
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Proof. For each n ∈N, let αn := ( 1
n , ..., 1

n
)
. By Lemma 1, there exists µ ∈ D̂ such that for each

n, the game G(αn,µ)
Γ is payoff secure. In addition, Lemma 2 implies that the map

∑N
i=1Ui(·) :

D →R is upper semicontinuous, implying that for each n the map
∑N

i=1U (αn,µ)
i (·) : D →R is

upper semicontinuous. Consequently, since each Di is a compact (cf. Milgrom and Weber
[19, p. 626]), convex subset of a topological vector space, it follows from Proposition 3.2
and Theorem 3.1 of Reny [22] that the game G(αn,µ)

Γ has a Nash equilibrum σn for each n.
Now, since the sequence (σn) lies in D and since D is sequentially compact, one may write
(passing to a subsequence if necessary) σn −→

w
σ for some σ ∈D. It follows that σ is a perfect

Bayes-Nash equilibrium of Γ if it is a Bayes-Nash equilibrium of Γ.
We shall assume that σ is not a Bayes-Nash equilibrium of Γ and derive a contradic-

tion. Because σn −→
w
σ and since each Ui is bounded, we have (σn, (U1(σn), ...,UN(σn))) →

(σ, (β1, ...,βN)) for some (β1, ...,βN) ∈ RN . If σ is not a Nash equilibrium of the game GΓ

defined in (1), then, since GΓ satisfies better-reply security as defined in Reny [22] (by
Lemma 1, Lemma 2, and by Proposition 3.2 in Reny [22]), it follows that there exist i, σ∗

i ∈Di,
a neighborhood Vσ−i of σ−i, and ζ> 0 such that

Ui(σ∗
i ,σ′

−i)≥βi +ζ, for all σ′
−i ∈Vσ−i .

Therefore, since Ui(σn)→βi, there exist ζ′ > 0 and n such that

Ui(σ∗
i ,σn

−i)>Ui(σn)+ζ′, for all n ≥ n.

Consequently, there exists n′ such that

Ui((1−αn
i )σ∗

i +αn
i µi,σn

−i)>Ui(σn), for all n ≥ n′,

contradicting that σn is a Nash equilibrium of G(αn,µ)
Γ for each n. ■

In the remainder of this section, we furnish a variant of Theorem 1 in which uniform
payoff security (as formulated in Definition 10) is replaced by conditions that do not require
an explicit construction of the (B(X i),B(X i))-measurable maps f k.

We begin with some preliminaries. Given a Bayesian game (Ti, X i,ui, p)N
i=1, let A i be the

set of all accumulation points of X i (i.e., the set of all points xi ∈ X i such that (Vxi\{xi})∩X i 6= ;
for every neighborhood Vxi of xi). Since X i is compact and metric, it can be written as a
disjoint union A i ∪K i, where A i is closed and dense in itself (i.e., with no isolated points)
and K i is countable (see, e.g., Aliprantis and Border [1, Lemma 12.19]).

Definition 11. Suppose that Γ= (Ti, X i,ui, p)N
i=1 is a Bayesian game and let Y1 ⊆ X1, ...,YN ⊆

XN . The game Γ is said to satisfy entire payoff security over ×N
i=1Yi if for each i, ε > 0,

and xi ∈Yi, and for every neighborhood Vxi of xi, there exist yi ∈Vxi and a neighborhood V ′
xi

of xi such that for every (t, z−i) ∈ T × X−i, there is a neighborhood Vz−i of z−i such that

ui(t, (yi, y−i))> ui(t, (z′i, z−i))−ε, for all (z′i, y−i) ∈V ′
xi
×Vz−i .

Definition 12. Suppose that Γ= (Ti, X i,ui, p)N
i=1 is a Bayesian game and let Y1 ⊆ X1, ...,YN ⊆

XN . The game Γ is said to satisfy generic entire payoff security over ×N
i=1Yi if there exist

Z1 ⊆Y1, ..., ZN ⊆YN such that Yi \ Zi is countable for each i, Γ is entirely payoff secure over
×N

i=1Zi, and the following condition is satisfied: for each i, ε> 0, and xi ∈Yi \ Zi, there exists
yi ∈ X i such that for every (t, z−i) ∈ T × X−i, there is a neighborhood Vz−i of z−i such that

ui(t, (yi, y−i))> ui(t, (xi, z−i))−ε, for all y−i ∈Vz−i .
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Definition 13. A Bayesian game Γ= (Ti, X i,ui, p)N
i=1 is said to satisfy generic entire payoff

security if it is entirely payoff secure over ×N
i=1K i and generically entirely payoff secure over

×N
i=1A i.

Recall that the set of all strictly positive distributional strategies in Di (cf. Definition 6) is
denoted by D̂i. Let D̃i be the set of members σi of Di such that for each ti ∈ Ti, σi({xi}|ti)= 0
and σi(Nε(xi)|ti)> 0 for every xi ∈ A i and ε> 0 (where Nε(xi) denotes the ε-neighborhood of
xi), and σi({xi}|ti) > 0 for every xi ∈ K i. Observe that D̃i ⊆ D̂i. In addition, D̃i is nonempty
(see, e.g., Parthasarathy et al. [20, Corollary 6.2]). Define D̃ :=×N

i=1D̃i.

Definition 14. The Bayesian game (Ti, X i,ui, p)N
i=1 satisfies generic local equi-upper

semicontinuity if there exists µ= (µ1, ...,µN) ∈ D̃ such that for each i and (t, x−i) ∈ T × X−i,
there exists Yi ⊆ X i with µi(Yi|ti)= 1 satisfying the following: for each xi ∈Yi and ε> 0, there
is a neighborhood Vxi of xi such that for every yi ∈ Vxi , there is a neighborhood Vx−i of x−i
such that

ui(t, (yi, y−i))< ui(t, (xi, y−i))+ε, for all y−i ∈Vx−i .

Generic entire payoff security and generic local equi-upper semicontinuity combined
imply strong uniform payoff security.

Lemma 3. Suppose that Γ = (Ti, X i,ui, p)N
i=1 is a Bayesian game satisfying generic entire

payoff security and generic local equi-upper semicontinuity. Then Γ satisfies strong uniform
payoff security.

The proof of Lemma 3 is relegated to Subsection A.3.
From Theorem 1 and Lemma 3 one immediately obtains the second main existence result

of the paper.

Theorem 2. Suppose that the Bayesian game Γ = (Ti, X i,ui, p)N
i=1 satisfies generic entire

payoff security and generic local equi-upper semicontinuity. Suppose further that for each
t ∈ T, the map

∑N
i=1 ui(t, ·) : X →R is upper semicontinuous and p is absolutely continuous

with respect to p1 ⊗·· ·⊗ pN . Then Γ possesses a perfect Bayes-Nash equilibrium.

3.1 The special case of complete information games

In this subsection we state the main existence results in the absence of incomplete in-
formation (i.e., when type spaces are singletons), obtaining Theorem 2 and Corollary 1 in
Carbonell-Nicolau [9] as special cases of Theorem 1 and Theorem 2.

Definition 15. The mixed extension of a compact, metric, Borel game G = (Zi, g i)N
i=1 is the

normal-form game G := (∆(Zi),G i)N
i=1, where for each i, G i :×N

j=1∆(Z j)→R is defined by

G i(σ1, ...,σN) :=
∫

Z
g i(z)[σ1 ⊗·· ·⊗σN](dz).

Suppose that G = (Zi, g i)N
i=1 is a compact, metric, Borel game. For each i, let ∆̂(Zi) be the

set of all strictly positive members of ∆(Zi), i.e., the set of all σi ∈∆(Zi) such that σi(V )> 0
for every nonempty open set V in Zi.

Given α = (α1, ...,αN) ∈ [0,1)N and µ = (µ1, ...,µN) ∈ ×N
i=1∆̂(Zi), define the normal-form

game
G(α,µ) := (∆(Zi),G

(α,µ)
i )N

i=1, (3)

where G(α,µ)
i :×N

j=1∆(Z j)→R is defined by

G(α,µ)
i (σ1, ...,σN) :=G i((1−α1)σ+α1µ1, ..., (1−αN)σN +αNµN).
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Definition 16. Suppose that G = (Zi, g i)N
i=1 is a compact, metric, Borel game. A Nash

equilibrium σ of the mixed extension G = (∆(Zi),G i)N
i=1 is perfect if there exist sequences

(αn), (µn), and (σn) such that the following holds for each n: αn ∈ (0,1)N , µn ∈×N
i=1∆̂(Zi), and

σn is a Nash equilibrium of the game G(αn,µn) defined in (3), and in addition αn → 0 and
σn −→

w
σ.

In the special case of complete information games, Definitions 10-14 can be more simply
stated as follows.

Definition 17. A compact, metric, Borel game (Zi, g i)N
i=1 satisfies strong uniform payoff

security if there exists µ= (µ1, ...,µN) ∈ D̂ such that for each i and ε> 0 there is a sequence
( f k) of (B(X i),B(X i))-measurable maps f k : X i → X i satisfying the following:

(a) For each k and x ∈ Z, there exists a neighborhood Vx−i of x−i such that

g i( f k(xi), y−i)> g i(x)−ε, for all y−i ∈Vx−i .

(b) For each x−i ∈ X−i, there is a subset Yi of X i with µi(Yi) = 1 satisfying the following:
for each xi ∈Yi, there exists K such that for all k ≥ K , there is a neighborhood V ′

x−i
of

x−i such that
g i( f k(xi), y−i)< ui(xi, y−i)+ε, for all y−i ∈V ′

x−i
.

Definition 18. Suppose that G = (Zi, g i)N
i=1 is a metric game and let Y1 ⊆ Z1, ...,YN ⊆ ZN .

The game G is said to satisfy entire payoff security over ×N
i=1Yi if for each i, ε > 0, and

xi ∈Yi, and for every neighborhood Vxi of xi, there exist yi ∈Vxi and a neighborhood V ′
xi

of xi
such that for every z ∈ Z, there is a neighborhood Vz−i of z−i such that

g i(yi, y−i)> g i(z′i, z−i)−ε, for all (z′i, y−i) ∈V ′
xi
×Vz−i .

Definition 19. Suppose that G = (Zi, g i)N
i=1 is a metric game and let Y1 ⊆ Z1, ...,YN ⊆ ZN .

The game G is said to satisfy generic entire payoff security over ×N
i=1Yi if there exist

Z′
1 ⊆Y1, ..., Z′

N ⊆YN such that Yi \ Z′
i is countable for each i, Γ is entirely payoff secure over

×N
i=1Z′

i, and the following condition is satisfied: for each i, ε> 0, and xi ∈Yi \ Z′
i, there exists

yi ∈ Zi such that for every z ∈ Z, there is a neighborhood Vz−i of z−i such that

g i(yi, y−i)> g i(z)−ε, for all y−i ∈Vz−i .

Definition 20. A metric game (Zi, g i)N
i=1 said to satisfy generic entire payoff security if

it is entirely payoff secure over ×N
i=1K i and generically entirely payoff secure over ×N

i=1A i.

Suppose that (Zi, g i)N
i=1 is a compact, metric, Borel game. Recall that Zi can be written as

a disjoint union A i ∪K i, where A i is closed and dense in itself (i.e., with no isolated points)
and K i is countable. Recall that the set of all strictly positive mixed strategies in ∆(Zi) is
denoted by ∆̂(Zi). Let ∆̃(Zi) be the set of members σi of ∆(Zi) such that σi({xi}) = 0 and
σi(Nε(xi))> 0 for every xi ∈ A i and ε> 0 (where Nε(xi) denotes the ε-neighborhood of xi), and
σi({xi})> 0 for every xi ∈ K i.

Definition 21. A compact, metric, Borel game (Zi, g i)N
i=1 satisfies generic local equi-upper

semicontinuity if there exists µ= (µ1, ...,µN ) ∈ ∆̃(Zi) such that for each i and x−i ∈ Z−i, there
exists Yi ⊆ Zi with µi(Yi) = 1 satisfying the following: for each xi ∈ Yi and ε> 0, there is a
neighborhood Vxi of xi such that for every yi ∈Vxi , there is a neighborhood Vx−i of x−i such
that

g i(yi, y−i)< g i(xi, y−i)+ε, for all y−i ∈Vx−i .
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The following corollaries follow immediately from the main existence results.

Corollary 1 (to Theorem 1). Suppose that the compact, metric, Borel game G = (Zi, g i)N
i=1

satisfies strong uniform payoff security and that the map
∑N

i=1 g i(·) : Z →R is upper semicon-
tinuous. Then G possesses a perfect Nash equilibrium.

Corollary 2 (to Theorem 2). Suppose that the compact, metric, Borel game G = (Zi, g i)N
i=1

satisfies generic entire payoff security and generic local equi-upper semicontinuity. If the map∑N
i=1 g i(·) : Z →R is upper semicontinuous, then G possesses a perfect Nash equilibrium.

4 Application to all-pay auctions
This section illustrates the machinery developed in Section 3 in the context of all-pay auctions.
We confine attention to a generalized version of the war of attrition considered in Krishna
and Morgan [18], but the existence result presented here extends to other all-pay auctions.
An existence result is obtained, using Theorem 1, for the war of attrition with common values
and interdependent types.

There are N bidders competing for a single indivisible object. After learning their types,
the players simultaneously submit a sealed bid bi from a closed and bounded subinterval
Bi := [b,b] of R+ (where b < b). Each Bi is endowed with the usual relative Euclidean metric,
and the Cartesian product B :=×N

i=1Bi is equipped with the corresponding supremum metric.
Let T1, ...,TN be the type spaces (each Ti is a compact, metric type space). The highest bidder
wins the object and ties are broken via an equal probability rule. If player i wins the object
when Nature chooses a type profile t = (t1, ..., tN) ∈ T and when the profile of bids chosen by
the players is b = (b1, ...,bN) ∈ B, then player i’s payoff is given by v(t)−max j 6=i b j, where
v(t)≥ 0 represents the value of the object in state t and max j 6=i b j is the second highest bid
in the action profile b. All the other players j 6= i obtain a payoff of h j(t,b). The common
prior over type profiles in T is represented by a probability measure p on (T,B(T)), assumed
absolutely continuous with respect to the product of its marginal probability measures,
p1 ⊗·· ·⊗ pN .

Bidder i’s expected payoff at t = (t1, ..., tN) ∈ T and b = (b1, ...,bN) ∈ B is given by

ui(t,b) :=
{

hi(t,b) if bi <max j b j,
v(t)

#{ j:b j=maxι bι}
−max j 6=i b j if bi =max j b j.

Here, the map v : T →R is assumed bounded and (B(T),B(R))-measurable, and the maps
hi : T ×B →R are bounded and (B(T ×B),B(R))-measurable and satisfy the following: for
each i, the family {hi(t, ·) : t ∈ T} is equicontinuous on B and hi(t,b)=−max j 6=i b j whenever
t ∈ T and b ∈ B satisfies bi = max j b j. In particular, if hi(t,b) =−bi whenever bi < max j b j
(and if one makes additional assumptions on the affiliation of types) one obtains the war of
attrition game considered in Krishna and Morgan [18].

The associated Bayesian game is

Γ := (Ti,Bi,ui, p)N
i=1. (4)

Lemma 4. The game Γ defined in (4) satisfies strong uniform payoff security.

Proof. Let µ = (µ1, ...,µN) ∈ D̂ be such that for each i and ti ∈ Ti, µi(·|ti) is the normalized
Lebesgue measure over Bi.

Fix i and ε> 0. Because {hi(t, ·) : t ∈ T} is equicontinuous on the compact set B, {hi(t, ·) : t ∈ T}
is uniformly equicontinuous on B. Therefore, there exists δ> 0 such that

|hi(t,b)−hi(t,b′)| < ε, for all t ∈ T and (b,b′) ∈ B×B with d(b,b′)< δ,
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where d is a compatible metric on B.

For each k, define f k : Bi → Bi as follows: f k(bi) := 1
k b+(1− 1

k )bi. Let k∗ > b−b
δ

and observe
that for k ≥ k∗ and bi ∈ Bi,

f k(bi)−bi = 1
k

(b−bi)≤ 1
k

(b−b)< δ.

Fix k ≥ k∗ and (t,b) ∈ T ×B. We consider three cases:
Case 1. bi = max j b j < b. Let Vb−i be a neighborhood of b−i contained in Nε(b−i) such that
max j 6=i b′

j < f k(bi) for all b′
−i ∈Vb−i , and pick any b′

−i ∈Vb−i . Then

ui(t, ( f k(bi),b′
−i))= v(t)−max

j
b′

j ≥
v(t)

#{ j : b j =maxι bι}
−max

j
b′

j

> v(t)
#{ j : b j =maxι bι}

−max
j

b j −ε= ui(t,b)−ε.

Case 2. bi = max j b j = b. Let V ′
b−i

be a neighborhood of b−i contained in Nε(b−i) such that

b′
j < b for each j 6= i whenever b′

−i ∈V ′
b−i

and b j < b. For any b′
−i ∈V ′

b−i
,

ui(t, ( f k(bi),b′
−i))= ui(t, (bi,b′

−i))=
v(t)

1+#{ j : b′
j =maxι b′

ι}
−max

j
b′

j

> v(t)
#{ j : b j =maxι bι}

−max
j 6=i

b j −ε= ui(t,b)−ε.

Case 3. bi <max j b j. Choose b′
−i ∈ Nδ(b−i). If f k(bi)≥max j b′

j, then

ui(t, ( f k(bi),b′
−i))≥−max

j
b′

j = hi(t, ( f k(bi),b′
−i))> hi(t,b)−ε= ui(t,b)−ε.

If f k(bi)<max j b′
j, then

ui(t, ( f k(bi),b′
−i))= hi(t, ( f k(bi),b′

−i))> hi(t,b)−ε= ui(t,b)−ε.

This establishes item (a) of Definition 10 for Γ. To see that item (b) holds, fix (t,b−i) ∈
T ×B−i and choose bi ∈ Bi with bi 6=max j 6=i b j. If bi >max j 6=i b j, then for each k and for Vb−i

a neighborhood of b−i such that b′
j < bi for each j 6= i whenever b′

−i ∈Vb−i ,

ui(t, ( f k(bi),b′
−i))= v(t)−max

j
b′

j = ui(t, (bi,b′
−i))< ui(t, (bi,b′

−i))+ε, for all b′
−i ∈Vb−i .

If bi <max j 6=i b j, there exists K such that for k ≥ K one has f k(bi)<max j 6=i b j −β for some
β > 0 and f k(bi)− bi < δ, and one can choose a neighborhood V ′

b−i
of b−i such that for all

b′
−i ∈V ′

b−i
, max j b′

j > f k(bi)> bi. Then, for k ≥ K ,

ui(t, ( f k(bi),b′
−i))= hi(t, ( f k(bi),b′

−i))< hi(t, (bi,b′
−i))+ε= ui(t, (bi,b′

−i))+ε, for all b′
−i ∈Vb−i .

This establishes item (b) of Definition 10. ■
Theorem 3. The game Γ defined in (4) possesses a perfect Bayes-Nash equilibrium.
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Proof. In view of Lemma 4, the assertion is an immediate consequence of Theorem 1 once
one observes that for each t ∈ T, the map

∑N
i=1 ui(t, ·) : B →R is upper semicontinuous (in fact,

continuous). The continuity of this sum follows from the fact that, for every (t,b) ∈ T ×B,

N∑
i=1

ui(t,b)= v(t)−#
{

i : bi =max
ι

bι
}

b∗+ ∑
i:bi<maxι bι

hi(t,b),

where b∗ represents the second highest bid in b, together with the equicontinuity of
{hi(t, ·) : t ∈ T} on B, for each i, and the condition that, for each i, hi(t,b) = −max j 6=i b j
whenever bi =max j b j. ■

A Proofs of Lemma 1, Lemma 2, and Lemma 3
A.1 Proof of Lemma 1

Prior to proving Lemma 1 we state and prove the following preliminary result.

Lemma 5. Suppose that the Bayesian game Γ = (Ti, X i,ui, p)N
i=1 satisfies strong uniform

payoff security. Suppose that p is absolutely continuous with respect to p1⊗·· ·⊗pN . Then there
exists (µ1, ...,µN ) ∈ D̂ such that for each i and ε> 0, there is a sequence ( f k) of (B(X i),B(X i))-
measurable maps f k : X i → X i satisfying the following:

• For each (ti, xi) ∈ Ti ×X i, σ−i ∈D−i, and k, there is a neighborhood Vσ−i of σ−i such that∫
T−i

∫
X−i

[ui(t, ( f k(xi), x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

>
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)−ε, for all σ′

−i ∈Vσ−i ,
(5)

where g is a density of p with respect to p1 ⊗·· ·⊗ pN .

• For each σ−i ∈D−i, there exists K such that for each k ≥ K , there is a neighborhood V ′
σ−i

of σ−i such that

Ui(µk
i ,σ′

−i)<Ui(µi,σ′
−i)+ε, for all σ′

−i ∈V ′
σ−i

, (6)

where µk
i (·|ti) is defined by

µk
i (B|ti) :=µi( f k−1

(B)|ti).1

Proof. Strong uniform payoff security gives µ= (µ1, ...,µN) ∈ D̂ such that for each i and ε> 0
there is a sequence ( f k

(i,ε))
∞
k=1 of (B(X i),B(X i))-measurable maps f k

(i,ε) : X i → X i satisfying
the following:

1For ti ∈ Ti, it is clear that µk
i (B|ti) ∈ [0,1] for each B ∈ B(X i). In addition, µk

i (X i|ti) = µi(X i|ti) = 1, and,
given a countable collection (Bl)∞l=1 of pairwise disjoint sets in B(X i),

µk
i

( ∞⋃
l=1

Bl
∣∣∣∣ti

)
=µi

(
f k−1

( ∞⋃
l=1

Bl

)∣∣∣∣ti

)
=µi

( ∞⋃
l=1

f k−1
(Bl)

∣∣∣∣ti

)
=

∞∑
l=1

µi( f k−1
(Bl)|ti)=

∞∑
l=1

µk
i (Bl |ti).

Thus, µk
i (·|ti) ∈ ∆(X i) for each ti ∈ Ti. Moreover, given B ∈ B(X i) we have f k−1(B) ∈ B(X i), and so the map

ti ∈ Ti 7→µi( f k−1(B)|ti) is (B(Ti),B([0,1]))-measurable by Proposition 7.26 in Bertsekas and Shreve [6]. Hence,
the map ti ∈ Ti 7→ µk

i (B|ti) is (B(Ti),B([0,1]))-measurable and so (again by Proposition 7.26 in [6]) the map
µk

i : Ti →∆(X i) is (B(Ti),B(∆(X i)))-measurable.
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(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui(t, ( f k
(i,ε)(xi), y−i))g(t)≥ [ui(t, x)−ε]g(t), for all y−i ∈Vx−i .

(b) For each (t, x−i) ∈ T × X−i, there is a subset Y(i,ε,t,x−i) of X i with µi(Y(i,ε,t,x−i)|ti) = 1
satisfying the following: for each xi ∈ Y(i,ε,t,x−i), there exists K(i,ε,t,x) such that for all
k ≥ K(i,ε,t,x), there exists n(i,ε,t,x,k) such that

ui(t, ( f k
(i,ε)(xi), y−i))g(t)≤ [ui(t, (xi, y−i))+ε]g(t), for all y−i ∈ N1/n(i,ε,t,x,k)(x−i).

Given (i,ε, t−i, x−i) and {k,n}⊆N, define ξ(k,n)
(i,ε,t−i ,x−i)

: Ti × X i →R by

ξ
(k,n)
(i,ε,t−i ,x−i)

(ti, xi) := sup
y−i∈N 1

n
(x−i)

[
[ui(t, ( f k

(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)
]

.

Because ui is (B(T×X ),B(R))-measurable (and Ti and X i are compact, metric for each i), ui
is (B(Ti × X i)⊗B(T−i × X−i))-measurable, hence (Bµi (Ti × X i)⊗B(T−i × X−i))-measurable,
where Bµi (Ti × X i) denotes the µi-completion of B(Ti × X i). Therefore, since Bµi (Ti × X i)
equals its universal completion, it follows from the proof of the Theorem in Carbonell-Nicolau
[11] that the map

((τi, zi), (τ−i, z−i)) ∈ Ti×X i×T−i×X−i 7→ sup
y−i∈N 1

n
(z−i)

[
[ui(τ, ( f k

(i,ε)(zi), y−i))−ui(τ, (zi, y−i))]g(τ)
]

is (Bµi (Ti × X i)⊗B(T−i × X−i),B(R))-measurable, and so the map ξ
(k,n)
(i,ε,t−i ,x−i)

is (Bµi (Ti ×
X i),B(R))-measurable (see, e.g., Aliprantis and Border [1, Theorem 4.48]). Consequently,
applying Theorem 10.35 in Aliprantis and Border [1], we see that there exist a (B(Ti ×
X i),B(R))-measurable map ξ̂

(k,n)
(i,ε,t−i ,x−i)

: Ti × X i →R and Â ∈B(Ti × X i) such that

µi(Â)= 0 and ξ̂
(k,n)
(i,ε,t−i ,x−i)

(ti, xi)= ξ(k,n)
(i,ε,t−i ,x−i)

(ti, xi) for all (ti, xi) ∈ (Ti × X i)\ Â. (7)

Let ξ(i,ε,t−i ,x−i) : Ti × X i →R be defined by

ξ(i,ε,t−i ,x−i)(ti, xi) := lim
k→∞

[
lim

n→∞ξ
(k,n)
(i,ε,t−i ,x−i)

(ti, xi)
]

.

Then there exists a sequence (nk) such that

ξ(i,ε,t−i ,x−i)(ti, xi) := lim
k→∞

ξ
(k,nk)
(i,ε,t−i ,x−i)

(ti, xi).

By Egorov’s Theorem (e.g., see Dudley [17, Theorem 7.5.1]), there exists A ⊆ (Ti × X i) \ Â
such that

µi(A)

[
sup

((τ,z),(τ′,z′))∈T×X×T×X
[ui(τ, z)−ui(τ′, z′)]

]
< ε (8)

and ξ(k,nk)
(i,ε,t−i ,x−i)

converges to ξ(i,ε,t−i ,x−i) uniformly on (Ti×X i)\ (Â∪A). Therefore, there exists

k such that for all k ≥ k and (ti, xi) ∈ (Ti × X i)\ (Â∪ A),∣∣∣ξ(k,nk)
(i,ε,t−i ,x−i)

(ti, xi)−ξ(i,ε,t−i ,x−i)(ti, xi)
∣∣∣< ε.

In addition, by (b) one has, for ti ∈ Ti and xi ∈Y(i,ε,t,x−i),

ξ(i,ε,t−i ,x−i)(ti, xi)≤ εg(t).
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Consequently, for all k ≥ k,
ξ

(k,nk)
(i,ε,t−i ,x−i)

(ti, xi)< ε+εg(t)

for all (ti, xi) ∈ (Ti × X i)\ (Â∪ A) with xi ∈Y(i,ε,t,x−i), and so for each k ≥ k,

sup
y−i∈N 1

nk
(x−i)

[
[ui(t, ( f k

(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)
]
< ε+εg(t)

for all (ti, xi) ∈ (Ti×X i)\(Â∪A) with xi ∈Y(i,ε,t,x−i), whence for each k ≥ k and y−i ∈ N1/nk (x−i),

[ui(t, ( f k
(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)< ε+εg(t)

for all (ti, xi) ∈ (Ti × X i)\ (Â∪ A) with xi ∈Y(i,ε,t,x−i). Hence, in light of (7) and (8), it follows
that for each k ≥ k and y−i ∈ N1/nk (x−i),∫

Ti×X i

[ui(t, ( f k
(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)µi(d(ti, xi))

=
∫

Ti

∫
Y(i,ε,t,x−i )

[ui(t, ( f k
(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)µi(dxi|ti)pi(dti)< ε+2ε

∫
Ti

g(t)pi(dti).

We conclude that for given (i,ε, t−i, x−i), there exists k(i,ε,t−i ,x−i) such that for each k ≥
k(i,ε,t−i ,x−i) and y−i ∈ N1/nk (x−i),∫

Ti×X i

[ui(t, ( f k
(i,ε)(xi), y−i))−ui(t, (xi, y−i))]g(t)µi(d(ti, xi))< ε+2ε

∫
Ti

g(t)pi(dti). (9)

Next, define ψk
(i,ε) : T−i × X−i →R by

ψk
(i,ε)(t−i, x−i) :=

∫
Ti×X i

[ui(t, ( f k
(i,ε)(xi), x−i))−ui(t, (xi, x−i))]g(t)µi(d(ti, xi))

and ψ
k
(i,ε) : T−i × X−i →R by

ψ
k
(i,ε)(t−i, x−i) := lim

n→∞ sup
y−i∈N 1

n
(x−i)

ψk
(i,ε)(t−i, y−i).

Fix (i,ε) and σ−i ∈ D−i. Because ψk
(i,η) is (B(T−i)⊗B(X−i),B(R))-measurable, it fol-

lows from the Theorem in Carbonell-Nicolau [11] that ψk
(i,η) is (Bu(T−i)⊗B(X−i),B(R))-

measurable, where Bu(T−i) denotes the universal completion of B(T−i). Consequently, since
the map x−i ∈ X−i 7→ψ

k
(i,η)(t−i, x−i) is upper semicontinuous for each t−i ∈ T−i, Corollary 1 in

Averna [3] gives a compact set B ⊆ T−i such that

p(Ti × (T−i \ B))

[
sup

((τ,z),(τ′,z′))∈T×X×T×X
[ui(τ, z)−ui(τ′, z′)]

]
< η (10)

and ψ
k
(i,η)|B×X−i is upper semicontinuous. Hence, letting ψ̂k

(i,η) : T−i × X−i →R be defined by

ψ̂k
(i,η)(t−i, x−i) := sup

k′≥k
ψ

k′
(i,η)(t−i, x−i)

it follows that ψ̂k
(i,η)|B×X−i is (B(B× X−i),B(R))-measurable. Now define ψ̂(i,η) : B× X−i →R

by
ψ̂(i,η)(t−i, x−i) := lim

k→∞
ψ̂k

(i,η)(t−i, x−i).
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Applying Egorov’s Theorem (e.g., see Dudley [17, Theorem 7.5.1]), there exists B̂ ⊆ B× X−i
such that [

⊗
j 6=i
σ j

]
(B̂)

[
sup

(t−i ,x−i)∈B×X−i

ψ
k
(i,η)(t−i, x−i)

]
< η (11)

and ψ̂k
(i,η) converges uniformly to ψ̂(i,η) on (B× X−i)\ B̂, i.e., there exists k such that for all

k ≥ k and (t−i, x−i) ∈ (B× X−i)\ B̂,∣∣∣ψ̂k
(i,η)(t−i, x−i)− ψ̂(i,η)(t−i, x−i)

∣∣∣< η,

and because (9) implies

ψ̂(i,η)(t−i, x−i)< η+2η
∫

Ti

g(t)pi(dti), for all (t−i, x−i) ∈ (B× X−i)\ B̂,

it follows that for all k ≥ k,

ψ̂k
(i,η)(t−i, x−i)< 2η+2η

∫
Ti

g(t)pi(dti), for all (t−i, x−i) ∈ (B× X−i)\ B̂,

and so for all k ≥ k,

ψ
k
(i,η)(t−i, x−i)< 2η+2η

∫
Ti

g(t)pi(dti), for all (t−i, x−i) ∈ (B× X−i)\ B̂.

This, together with (11) gives, for all k ≥ k,∫
B×X−i

ψ
k
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))< 5η. (12)

On the other hand, recall that the map ψ
k
(i,η)|B×X−i is upper semicontinuous, and so

applying Theorem 3.7(viii) of Schäl [25] and Theorem 3.1 of Balder [5], it follows that there
is a neighborhood V k

(i,η) of σ−i such that∫
B×X−i

ψ
k
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

<
∫

B×X−i

ψ
k
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))+ ε

2
, for all σ′

−i ∈V k
(i,η).

Consequently, since ψk
(i,η) ≤ψ

k
(i,η), we see that∫

B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

<
∫

B×X−i

ψ
k
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))+ ε

2
, for all σ′

−i ∈V k
(i,η).

Combining this with (12) gives, for (i,η), a k(i,η) such that for all k ≥ k(i,η), there is a neigh-
borhood V k

(i,η) of σ−i such that∫
B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))< ε

2
+5η, for all σ′

−i ∈V k
(i,η).
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Hence, thanks to (10), there is, for given (i,η), a k(i,η) such that for all k ≥ k(i,η), there is a
neighborhood V k

(i,η) of σ−i such that∫
T−i×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

(T−i\B)×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))+

∫
B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

(T−i\B)×X−i

[∫
Ti×X i

[ui(t, ( f k
(i,ε)(xi), x−i))−ui(t, (xi, x−i))]g(t)µi(d(ti, xi))

][
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

+
∫

B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

Ti×(T−i\B)

∫
X

[ui(t, ( f k
(i,ε)(xi), x−i))−ui(t, (xi, x−i))]

[
µi(·|ti)⊗

[
⊗
j 6=i
σ′(·|t j)

]]
(dx)p(d(ti, t−i))

+
∫

B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

≤ p(Ti × (T−i \ B))

[
sup

((τ,z),(τ′,z′))∈T×X×T×X
[ui(τ, z)−ui(τ′, z′)]

]

+
∫

B×X−i

ψk
(i,η)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

< ε

2
+6η, for all σ′

−i ∈V k
(i,η).

Choosing η ∈ (0, ε
12 ) gives K such that for all k ≥ K , there is a neighborhood V ′

σ−i
of σ−i such

that (6) holds.
To prove the first bullet point of the lemma, fix (ti, xi) ∈ Ti × X i, σ−i ∈D−i, and k. Define

ζk
(i,η,ti ,xi)

: T−i × X−i →R by

ζk
(i,η,ti ,xi)(t−i, x−i) := sup

n∈N
inf

y−i∈N 1
n

(x−i)
ui(t, ( f k

(i,η)(xi), y−i))g(t).

Because ui is (B(Ti × X i)⊗B(T−i × X−i),B(R))-measurable, the map

(t−i, x−i) ∈ T−i × X−i 7→ ui(t, ( f k
(i,η)(xi), x−i))g(t)

is (B(T−i × X−i),B(R))-measurable (see, e.g., Aliprantis and Border [1, Theorem 4.48]),
and hence (B(T−i)⊗B(X−i),B(R))-measurable. Consequently, applying the Theorem in
Carbonell-Nicolau [11], it follows that ζk

(i,η,ti ,xi)
is (Bu(T−i)⊗B(X−i),B(R))-measurable,

where Bu(T−i) represents the universal completion of B(T−i). Therefore, since the map
x−i ∈ X−i 7→ ζk

(i,η,ti ,xi)
(t−i, x−i) is lower semicontinuous for every t−i ∈ T−i, Corollary 1 in

Averna [3] gives a compact set C ⊆ T−i such that

p(Ti × (T−i \ C))

[
sup

(τ,z)∈T×X
ui(τ, z)

]
< η. (13)

and ζk
(i,η,ti ,xi)

∣∣
C×X−i

is lower semicontinuous. Applying Theorem 3.7(viii) of Schäl [25] and

Theorem 3.1 of Balder [5], it follows that there is a neighborhood V k
(i,η,ti ,xi)

of σ−i such that∫
C×X−i

ζk
(i,η,ti ,xi)(t−i,x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

>
∫

C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−η, for all σ′

−i ∈V k
(i,η,ti ,xi).
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Consequently, for σ′
−i ∈V k

(i,η,ti ,xi)
, one has, thanks to (13),∫

T−i×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

(T−i\C)×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))+

∫
C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

T−i\C

∫
X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

+
∫

C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

=
∫

T−i\C

∫
X−i

[
sup
n∈N

inf
y−i∈N 1

n
(x−i)

ui(t, ( f k
(i,η)(xi), y−i))

][
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)p(d(τi, t−i))

+
∫

C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

≥ p(Ti × (T−i \ C))
[

inf
(τ,z)∈T×X

ui(τ, z)
]
+

∫
C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))

>
∫

C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j

]
(d(t−i, x−i))−η

>
∫

C×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−2η

=
∫

T−i×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−2η−

∫
(T−i\C)×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))

=
∫

T−i×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−2η

−
∫

(T−i\C)

∫
X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)

=
∫

T−i×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−2η

−
∫

(T−i\C)

∫
X−i

[
sup
n∈N

inf
y−i∈N 1

n
(x−i)

ui(t, ( f k
(i,η)(xi), y−i))

][
⊗
j 6=i
σ j(·|t j)

]
(dx−i)p(d(τi, t−i))

>
∫

T−i×X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j

]
(d(t−i, x−i))−3η.

In addition, for every (t−i, x−i) ∈ T−i × X−i one has

ui(t, ( f k
(i,η)(xi), y−i))g(t)≥ ζk

(i,η,ti ,xi)(t−i, x−i)≥ [ui(t, x)−η]g(t).

Combining this with the previous inequalities gives, for all σ′
−i ∈V k

(i,η,ti ,xi)
,∫

T−i

∫
X−i

[ui(t, ( f k(xi),x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

≥
∫

T−i

∫
X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

>
∫

T−i

∫
X−i

ζk
(i,η,ti ,xi)(t−i, x−i)

[
⊗
j 6=i
σ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)−3η

≥
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)−4η.
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Now choosing a small enough η gives the desired inequality in (5). ■
We are now ready to prove Lemma 1, which is restated here for the convenience of the

reader.

Lemma 1. Suppose that the Bayesian game Γ = (Ti, X i,ui, p)N
i=1 satisfies strong uniform

payoff security. If p is absolutely continuous with respect to p1 ⊗·· ·⊗ pN , then there exists
µ ∈ D̂ such that the game G(α,µ)

Γ defined in (2) is payoff secure for each α ∈ [0,1)N .

Proof. Let µ= (µ1, ...,µN) ∈ D̂ be the measure given by Lemma 5. Fix α ∈ [0,1)N , ε> 0, σ ∈D,
and i. We must show that there exist σ∗

i ∈Di and a neighborhood Vσ−i of σ−i such that

U (α,µ)
i (σ∗

i ,σ′
−i)>U (α,µ)

i (σ)−ε, for all σ′
−i ∈Vσ−i . (14)

Define
σ̂= (σ̂1, ..., σ̂N) := ((1−α1)σ1 +α1µ1, ..., (1−αN)σN +αNµN).

Lemma 5 gives a a sequence ( f k) of (B(X i),B(X i))-measurable maps f k : X i → X i with
f k(X i) ∈B(X i) satisfying the following:

(i) For each (ti, xi) ∈ Ti × X i and k, there is a neighborhood Vσ̂−i of σ̂−i such that∫
T−i

∫
X−i

[ui(t, ( f k(xi), x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

>
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ̂ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)− ε

4
, for all σ′

−i ∈Vσ̂−i ,

where g is a density of p with respect to p1 ⊗·· ·⊗ pN .

(ii) There exists K such that for each k ≥ K , there is a neighborhood V ′
σ̂−i

of σ̂−i such that

Ui(µk
i ,σ′

−i)<Ui(µi,σ′
−i)+

ε

2
, for all σ′

−i ∈V ′
σ̂−i

,

where µk
i (·|ti) is defined by

µk
i (B|ti) :=µi( f k−1

(B)|ti).

Define σ̂k
i ∈Di and σk

i ∈Di via their corresponding regular conditional probability meas-
ure as follows:

σ̂k
i (B|ti) := σ̂i( f k−1

(B)|ti) and σk
i (B|ti) :=σi( f k−1

(B)|ti).

Below we show that for each k, there exists a neighborhood V ′′
σ̂−i

of σ̂−i such that for each
σ′
−i ∈V ′′

σ̂−i
,∫

T

∫
X

[ui(t, ( f k(xi), x−i))g(t)]
[
σ̂i(·|ti)⊗

[
⊗
j 6=i
σ′

j(·|t j)
]]

(dx)
[

N⊗
j=1

p j

]
(dt)>Ui(σ̂)− ε

2
, (15)

implying
Ui(σ̂k,σ′

−i)>Ui(σ̂)− ε

2
, for all σ′

−i ∈V ′′
σ̂−i

. (16)

By (ii), there exists K such that for each k ≥ K , there is a neighborhood V ′
σ̂−i

of σ̂−i such
that

Ui(µk
i ,σ′

−i)<Ui(µi,σ′
−i)+

ε

2
, for all σ′

−i ∈V ′
σ̂−i

.
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Consequently, for k ≥ K , and for σ′
−i ∈V ′

σ̂−i
,

Ui((1−αi)σk
i +αiµi,σ′

−i)= (1−αi)Ui(σk
i ,σ′

−i)+αiUi(µi,σ′
−i)

> (1−αi)Ui(σk
i ,σ′

−i)+αiUi(µk
i ,σ′

−i)−
ε

2
=Ui(σ̂k

i ,σ′
−i)−

ε

2
.

This, together with (16), yields, for k ≥ K ,

Ui((1−αi)σk
i +αiµi,σ′

−i)>Ui(σ̂)−ε

for all σ′
−i in some neighborhood of σ̂−i. In particular, (14) holds for some neighborhood Vσ of

σ.
It remains to show that for each k, there exists a neighborhood V ′′

σ̂−i
of σ̂−i such that (15)

holds for each σ′
−i ∈V ′′

σ̂−i
. For each k and n ∈N, define the map φ(k,n) : Ti × X i →R by

φ(k,n)(ti, xi) :=
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ̂ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)

− inf
σ′
−i∈N 1

n
(σ̂−i)

∫
T−i

∫
X−i

[ui(t, ( f k(xi), x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

(here N 1
n
(σ̂−i) denotes the 1

n -neighborhood of σ̂−i). Below we show that there exist a (B(Ti ×
X i),B(R))-measurable map φ̂(k,n) : Ti × X i →R and Â ∈B(Ti × X i) such that

σ̂i(Â)= 0 and φ̂(k,n)(ti, xi)=φ(k,n)(ti, xi) for all (ti, xi) ∈ (Ti × X i)\ Â. (17)

Define ϕk : Ti × X i →R by
ϕk(ti, xi) := lim

n→∞ φ̂
(k,n)(ti, xi).

Observe that by (i) we have

ϕk(ti, xi)≤ ε

4
, for each (ti, xi) ∈ (Ti × X i)\ Â. (18)

By Egorov’s Theorem (see, e.g., Dudley [17, Theorem 7.5.1]), there exists A ⊆ (Ti × X i)\ Â
such that

σ̂i(A)

[
sup

(ν,ν′)∈D×D

(Ui(ν)−Ui(ν′))

]
< ε

8
(19)

and (ϕ(k,n)) converges (as n →∞) to ϕk uniformly on (Ti × X i)\ (A∪ Â). Consequently, there
exists n such that for all n ≥ n and (ti, xi) ∈ (Ti×X i)\(A∪ Â), |ϕ(k,n)(ti, xi)−ϕk(ti, xi)| < ε

8 , and
so in light of (18) it follows that for all n ≥ n, ϕ(k,n)(ti, xi)< 3ε

8 for all (ti, xi) ∈ (Ti×X i)\(A∪ Â).
Hence, there exists a neighborhood V ′′

σ̂−i
of σ̂−i such that for all σ′

−i ∈V ′′
σ̂−i

,∫
T−i

∫
X−i

[ui(t, ( f k(xi), x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i)

>
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ̂ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)− 3ε

8
, for all (ti, xi) ∈ (Ti × X i)\ (A∪ Â).

Therefore, using (19), we see that for all σ′
−i ∈V ′′

σ̂−i
, (15) holds.
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Finally, we show that we show that there exist a (B(Ti × X i),B(R))-measurable map
φ̂(k,n) and Â ∈B(Ti × X i) such that (17) holds. Define ψ : Ti × X i →R and ϑ(k,n) : Ti × X i →R

by

ψ(ti, xi) :=
∫

T−i

∫
X−i

[ui(t, x)g(t)]
[
⊗
j 6=i
σ̂ j(·|t j)

]
(dx−i)

[
⊗
j 6=i

p j

]
(dt−i)

and

ϑ(k,n)(ti, xi) := inf
σ′
−i∈N 1

n
(σ̂−i)

∫
T−i

∫
X−i

[ui(t, ( f k(xi), x−i))g(t)]
[
⊗
j 6=i
σ′

j(·|t j)
]

(dx−i)
[
⊗
j 6=i

p j

]
(dt−i),

so that φ(k,n) =ψ(k,n) −ϑ(k,n). It suffices to show that ψ is (B(Ti × X i),B(R))-measurable and
that there exist a (B(Ti × X i),B(R))-measurable map ϑ̂(k,n) : Ti × X i →R and Â ∈B(Ti × X i)
such that σ̂i(Â)= 0 and ϑ̂(k,n)(ti, xi)=ϑ(k,n)(ti, xi) for all (ti, xi) ∈ (Ti × X i)\ Â.

To see that ψ is (B(Ti × X i),B(R))-measurable, define ψ :∆(T × X )→R by

ψ(%) :=
∫

T×X
[ui(t, x)g(t)]%(d(t, x)).

Since ui is (B(T×X ),B(R))-measurable, the map ψ is (B(∆(T×X )),B(R))-measurable (see,
e.g., Aliprantis and Border [1, Theorem 15.13]). Let ∆p(T × X ) be the set of all product
measures in ∆(T × X ) (i.e., ν ∈∆p(T × X ) if and only if ν= ν1⊗·· ·⊗νN for some (ν1, ...,νN) ∈
× j∆(T j × X j)). Since ∆p(T × X ) is closed in ∆(T × X ), the map ψ|∆p(T×X ) is (B(∆p(T ×
X )),B(R))-measurable.2 Hence, because the map (ν1, ...,νN) ∈× j∆(T j × X j) 7→ ν1⊗·· ·⊗νN ∈
∆p(T × X ) is continuous, it follows that the map

(ν1, ...,νN) ∈× j∆(T j × X j) 7→ψ(ν1 ⊗·· ·⊗νN)

is (B(× j∆(T j×X j)),B(R))-measurable, and hence (B(∆(Ti×X i))⊗B(× j 6=i∆(T j×X j)),B(R))-
measurable (see, e.g., Aliprantis and Border [1, Theorem 4.44]).3 Therefore, the map νi ∈
∆(Ti × X i) 7→ψ(νi ⊗ [⊗ j 6=iσ̂ j]) is (B(∆(Ti × X i)),B(R))-measurable (see, e.g., Aliprantis and
Border [1, Theorem 4.48]). Now let δ(ti ,xi) denote the Dirac measure in ∆(Ti×X i) with support
{(ti, xi)}. The set {δ(ti ,xi) : (ti, xi) ∈ Ti × X i} is closed in ∆(Ti × X i) (see, e.g., Aliprantis and
Border [1, Theorem 15.8]), and so the map νi ∈ {δ(ti ,xi) : (ti, xi) ∈ Ti × X i} 7→ψ(νi ⊗ [⊗ j 6=iσ̂ j])
is (B({δ(ti ,xi) : (ti, xi) ∈ Ti × X i}),B(R))-measurable. Because the map (ti, xi) ∈ Ti × X i 7→
δ(ti ,xi) is an embedding (cf. Aliprantis and Border [1, Theorem 15.8]), it follows that ψ is
(B(Ti × X i),B(R))-measurable.

To see that there exist a (B(Ti × X i),B(R))-measurable map ϑ̂(k,n) : Ti × X i → R and
Â ∈B(Ti × X i) such that

σ̂i(Â)= 0 and ϑ̂(k,n)(ti, xi)=ϑ(k,n)(ti, xi) for all (ti, xi) ∈ (Ti × X i)\ Â, (20)

define ϑk :∆(T × X )→R by

ϑk(%) :=
∫

T×X
[ui(t, ( f k(xi), x−i))g(t)]%(d(t, x)).

2To see that ∆p(T × X ) is closed in ∆(T × X ), let (νn = νn
1 ⊗ ·· · ⊗ νn

N ) be a sequence in ∆p(T × X ) with
νn −→

w
ν ∈∆(T × X ). Then νn(A1 ×·· ·× AN )→ ν(A1 ×·· ·× AN ), where for each j, A j is any ν j-continuity subset

of T j × X j and ν j denotes the marginal projection of ν into T j × X j (see, e.g., Billingsley [7, Theorem 2.8(i)]). In
particular, letting νn

j represent the marginal projection of νn into the factor T j × X j, νn
j (A j)→ ν j(A j) for every

ν j-continuity set A j, and so it follows from the Portmanteau Theorem (e.g., see Billingsley [7, Theorem 2.1])
that νn

j −→w ν j for each j. Applying Theorem 2.8(ii) in Billingsley [7] we see that ν= ν1 ⊗·· ·⊗νN .
3The continuity of the map (ν1, ...,νN ) ∈× j∆(T j ×X j) 7→ ν1 ⊗·· ·⊗νN ∈∆p(T ×X ) follows from Theorem 2.8(ii)

in Billingsley [7].
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Reasoning as in the preceding paragraph one can show that the map

((ti, xi),ν−i) ∈ (Ti × X i)×
[
×
j 6=i
∆(T j × X j)

]
7→ϑk

(
δ(ti ,xi) ⊗

[
⊗
j 6=i
ν j

])
(21)

is (B(Ti×X i)⊗B(× j 6=i∆(T j×X j)),B(R))-measurable. Let Bσ̂i (Ti×X i) be the σ̂i-completion of
B(Ti×X i). Then the map in (21) is (Bσ̂i (Ti×X i)⊗B(× j 6=i∆(T j×X j)),B(R))-measurable, and
since Bσ̂i (Ti × X i) equals its universal completion, it follows from the proof of the Theorem
in Carbonell-Nicolau [11] that the map

((ti, xi),ν−i) ∈ (Ti × X i)×
[
×
j 6=i
∆(T j × X j)

]
7→ inf

ν′−i∈N 1
n

(ν−i)
ϑk

(
δ(ti ,xi) ⊗

[
⊗
j 6=i
ν′j

])
is (Bσ̂i (Ti×X i)⊗B(× j 6=i∆(T j×X j)),B(R))-measurable (here N 1

n
(ν−i) denotes the 1

n -neighborhood
of ν−i in D−i), and consequently the map

(ti, xi) ∈ (Ti × X i) 7→ inf
ν′−i∈N 1

n
(σ̂−i)

ϑk
(
δ(ti ,xi) ⊗

[
⊗
j 6=i
ν′j

])
is (Bσ̂i (Ti × X i),B(R))-measurable (cf. Aliprantis and Border [1, Theorem 4.48]). Now
Theorem 10.35 in Aliprantis and Border [1] gives a (B(Ti × X i),B(R))-measurable map
ϑ̂(k,n) : Ti × X i →R and Â ∈B(Ti × X i) satisfying (20). ■
A.2 Proof of Lemma 2

We restate Lemma 2 here for the convenience of the reader.

Lemma 2. Given a Bayesian game (Ti, X i,ui, p)N
i=1, suppose that for each t ∈ T, the map∑N

i=1 ui(t, ·) : X →R is upper semicontinuous. Suppose further that p is absolutely continuous
with respect to p1 ⊗·· ·⊗ pN . Then the map

∑N
i=1Ui(·) : D →R is upper semicontinuous.

Proof. Fix σ ∈D and ε> 0. Let f be a density of p with respect to P := p1⊗·· ·⊗ pN . We must
show that there exists a neighborhood Vσ of σ such that

N∑
i=1

Ui(σ′)<
N∑

i=1
Ui(σ)+ε, for all σ′ ∈Vσ. (22)

Let P ∗ be the set of all µ in ∆(T × X ) that take the form

µ(A×B)=
∫

A
µ(B|t)P(dt)

for all A×B ⊆ T×X in B(T×X ) and for some µ : T →∆(X ). Endow P ∗ with the weak-strong
topology (cf. Balder [5]).

The map µ ∈D 7→ P ⊗µ ∈P ∗, where P ⊗µ is defined by

[P ⊗µ](A×B) :=
∫

A
[µ1(·|t1)⊗·· ·⊗µN(·|tN)](B)P(dt)

is continuous. Indeed, if (µn) is a sequence in D with limit point µ ∈D, then by Theorem 2.8(ii)
of Billingsley [7] we have µn

1 ⊗·· ·⊗µn
N −→

w
µ1⊗·· ·⊗µN . In addition, since for A = A1×·· ·× AN

and B = B1 ×·· ·×BN we have

[P ⊗µn](A×B)=
∫

A
[µn

1 (·|t1)⊗·· ·⊗µn
N(·|tN)](B)P(dt)

=
∫

AN

· · ·
∫

A1

µn
1 (B1|t1)p1(dt1) · · ·µn

N(BN |tN)pN(dtN)

= [µn
1 ⊗·· ·⊗µn

N](A×B),
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it follows that P ⊗µn = µn
1 ⊗·· ·⊗µn

N . Similarly, we have P ⊗µ= µ1 ⊗·· ·⊗µN . Consequently,
P ⊗µn −→

w
P ⊗µ, and this, together with the fact that [P ⊗µn](·×B) = [P ⊗µ](·×B) for each

B ∈B(X ) and n implies (by Theorem 3.7(viii) of Schäl [25]) that P ⊗µn converges to P ⊗µ
with respect to the weak-strong topology.

By Theorem 3.1 in Balder [5], there exists a neighborhood V ′
σ of σ in P ∗ (with respect to

the weak-strong topology) such that∫
T×X

[
N∑

i=1
[ui(t, x) f (t)]

]
ν(d(t, x))<

∫
T×X

[
N∑

i=1
[ui(t, x) f (t)]

]
[P ⊗σ](d(t, x))+ε, for all ν ∈V ′

σ.

Therefore, since the map µ ∈D 7→ P ⊗µ ∈P ∗ is continuous, it follows that there is a neighbor-
hood Vσ of σ in D such that∫

T×X

[
N∑

i=1
[ui(t, x) f (t)]

]
[P⊗σ′](d(t, x))<

∫
T×X

[
N∑

i=1
[ui(t, x) f (t)]

]
[P⊗σ](d(t, x))+ε, for all σ′ ∈Vσ.

This implies (22). ■
A.3 Proof of Lemma 3

Lemma 3 is restated here for the convenience of the reader.

Lemma 3. Suppose that Γ = (Ti, X i,ui, p)N
i=1 is a Bayesian game satisfying generic entire

payoff security. Then Γ satisfies strong uniform payoff security.

Proof. Let µ= (µ1, ...,µN ) ∈ D̃ be the profile of measures given by the generic local equi-upper
semicontinuity condition. Fix ε> 0 and i. By the generic entire payoff security condition, for
each xi ∈ X i and k ∈N, there exist hk(xi) ∈ X i and γk(xi)> 0 such that for every (t, z) ∈ T × X ,
there is a neighborhood Vz−i of z−i such that

ui(t, (hk(xi), y−i))> ui(t, z)−ε for all y−i ∈Vz−i ,
if xi ∈ K i ∪Ci,

hk(xi) ∈ N 1
k
(xi) and ui(t, (hk(xi), y−i))> ui(t, (z′i, z−i))−ε for all (z′i, y−i) ∈ Nγk(xi)(xi)×Vz−i ,

if xi ∈ A i \ Ci,

where Ci is a countable subset of A i. In addition, there is no loss of generality in assuming
that γk(xi) < 1

k and, since Γ is entirely payoff secure over ×N
j=1K j, one may take hk(xi) = xi

for xi ∈ K i.
Now since A i \Ci ⊆ X i and X i is compact and metric, A i \Ci is separable, and so there is

a countable subset {x(k,1)
i , x(k,2)

i , ...} of A i \ Ci such that

∞⋃
l=1

(
N
γk(x(k,l)

i )(x
(k,l)
i )∩ (A i \ Ci)

)
= ⋃

xi∈A i\Ci

(
Nγk(xi)(xi)∩ (A i \ Ci)

)
.

Define V (k,1),V (k,2), ... recursively as follows:

V (k,1) := N
γk(x(k,1)

i )(x
(k,1)
i )∩ (A i \ Ci)

and

V (k,l) :=
(
N
γk(x(k,l)

i )(x
(k,l)
i )∩ (A i \ Ci)

)
\

(
l−1⋃
m=1

V (k,m)

)
, l ∈ {2,3, ...}.
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Now define, for each k, f k : X i → X i by

f k(xi) :=
{

hk(x(k,l)
i ) if xi ∈V (k,l),

hk(xi) if xi ∈ Ci ∪K i.

Observe that

f k(X i)= f k(A i \ Ci)∪ f k(Ci ∪K i)=
{
hk(x(k,1)),hk(x(k,2)), ...

}
∪ f k(Ci ∪K i),

and so f k(X i) is countable. Therefore, given B ∈B(X i), B∩ f k(X i) is countable, and it can be
expressed as a disjoint union B′∪B′′, where B′ ⊆ A i \ Ci and B′′ ⊆ Ci ∪K i. Since

f k−1
(B)= f k−1

(B′)∪ f k−1
(B′′)=

( ∞⋃
l=1

V (k,l)

)
∪ f k−1

(B′′)

and f k−1(B′′) is countable, it follows that f k−1(B) ∈ B(X i), and so f k is (B(X i),B(X i))-
measurable.

To see that item (a) of Definition 10 holds, fix k and (t, x) ∈ T×X . If xi ∈ Ci ∪K i, it is clear
that there exists a neighborhood Vx−i of x−i such that

ui(t, ( f k(xi), y−i))> ui(t, x)−ε, for all y−i ∈Vx−i . (23)

Now suppose that xi ∈ A i \ Ci. Then xi ∈ V (k,l) for some l and f k(xi) = hk(x(k,l)
i ). Therefore,

since there is a neighborhood Vx−i of x−i such that

ui(t, (hk(x(k,l)
i ), y−i))> ui(t, (x′i, x−i))−ε, for all (x′i, y−i) ∈ N

γk(x(k,l)
i )(xi)×Vx−i ,

and because xi ∈ N
γk(x(k,l)

i )(xi), one obtains (23).
To see that item (b) of Definition 10 holds, fix (t, x−i) ∈ T × X−i and let Yi be the set given

by the generic local equi-upper semicontinuity condition. Set Y ′
i :=Yi \ Ci. Then µi(Y ′

i |ti)= 1.
In addition, given xi ∈ Y ′

i , f k(xi) = xi if xi ∈ K i and f k(xi) = hk(x(k,l)
i ), hk(x(k,l)

i ) ∈ N 1
k
(x(k,l)

i ),

and xi ∈V (k,l) ⊆ N
γk(x(k,l)

i )(x
(k,l)
i )⊆ N 1

k
(x(k,l)

i ) if xi ∈ A i \ Ci. Consequently, f k(xi)→ xi for every

xi ∈ Y ′
i . Now given xi ∈ Y ′

i , the generic local equi-upper semicontinuity condition gives a
neighborhood Vxi of xi such that for every yi ∈Vxi , there is a neighborhood V ′

x−i
of x−i such

that
ui(t, (yi, y−i))< ui(t, (xi, y−i))+ε, for all y−i ∈V ′

x−i
.

Since f k(xi)→ xi, there exists K such that for all k ≥ K , there is a neighborhood V ′
x−i

of x−i
such that

ui(t, ( f k(xi), y−i))< ui(t, (xi, y−i))+ε, for all y−i ∈V ′
x−i

,

as desired. ■
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