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Recursive Differencing:
Bias Reduction with Regular Kernels

Chan Shen and Roger Klein

1 Introduction

It is well known that it is important to control the bias in estimating
conditional expectations in order to obtain asymptotic normality for quanti-
ties of interest (e.g. a finite dimensional parameter vector in semiparametric
models or averages of marginal effects in the nonparametric case). For this
purposes, higher order kernel methods are often employed in developing the
theory. However such methods typically do not perform well at moderate
sample sizes. Moreover, and perhaps related to their performance, non-
optimal windows are selected with undersmoothing needed to ensure the
appropriate bias order.
Here, we propose a differences in differences approach to bias reduction

for a nonparametric estimator of a conditional expectation. It performs much
better at moderate sample sizes than regular or higher order kernels while
retaining a bias of any desired order and a convergence rate the same as
that of higher order kernels. We also propose an approach to implement
this estimator under optimal windows, which ensures asymptotic normal-
ity in semiparametric multiple index models of arbitrary dimension. This
mechanism further contributes to its very good finite sample performance.
The estimator has a recursive differencing structure, with the order of

the bias depending on the stage of the recursion. At any stage, the bias
depends on a kernel weighted difference in two bias terms. One term is the
bias at a target point of interest, while the other is the bias conditioned on
a data point. With kernel weighting ensuring that observations are close to
the target point, the biases cancel up to a higher order due to this differenc-
ing structure. In this manner, we are able to reduce the bias to any order
depending on the stage of the recursion.
To develop this nonparametric expectations estimator and examine its

properties, Section 2 defines the estimator and provides the intuition for its
theoretical properties. Section 3 obtains the large sample properties of the
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proposed estimator and also derives asymptotic normality results for a finite
dimension parameter vector in a large class of semiparametric models based
on this estimator. Employing a result on semiparametric derivatives, we
show that it is possible to obtain normality using optimal windows. If this
result is not employed, then undersmoothing is required and we provide the
required conditions. Section 4 provides Monte Carlo results that demonstrate
that the estimator has very good finite sample properties in triple index
models, exhibiting a substantial improvement over both regular and higher
order kernels. Section 5 contains our conclusions. The Appendix contains
proofs of all theorems and supporting intermediate lemmas.

2 The Estimator

To motivate the form of the bias reduction, we defer discussions of trimming
considerations to the next section and consider the model in localized form
for the sth observation on the dependent variable Ys

Ys = M (w) + [M (Ws)−M (w)] + εs,

where (Ws) is a vector of continuous and discrete explanatory variables and εs
is an error with E(εs|Ws) = 0. DefineKs(w) as a kernel function that controls
the localization error, [M (Ws)−M (w)], by downweighting observations Ws

not close to w.1 The familiar initial nonparametric estimator, which we
term as the stage 1 estimator, is given as:

M̂1(w) ≡
1
N

∑
s YsKs(w)

ĝ(w)
, ĝ(w) ≡ 1

N

∑
s

Ks(w)

Substituting the local model for Ys :

M̂1(w) = M(w) +
1
N

∑
s [M (Ws)−M (w) + εs]Ks(w)

ĝ(w)
⇒

∆1(w) ≡ ĝ(w)
[
M̂1(w)−M(w)

]
=

1

N

∑
s

[M (Ws)−M (w) + εs]Ks(w)

1As defined below, the kernel function, K, will have an indicator component on support
points for discrete variables.
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As the localization error, M (Ws) − M (w), is responsible for the bias,
remove an estimate of it to obtain:

M̂2(w) ≡
1
N

∑
s

[
Ys − (M̂1 (Ws)− M̂1 (w))

]
Ks(w)

ĝ(w)

= M(w) +

1
N

∑
s

[
( M (Ws)−M (w))−

(
M̂1 (Ws)− M̂1 (w)

)
+ εs

]
Ks(w)

ĝ(w)
⇒

∆2(w) ≡ ĝ(w)
[
M̂2(w)−M(w)

]
=

1

N

∑
s

[
∆1(w)

ĝ(w)
− ∆1(Ws)

ĝ(Ws)
+ εs

]
Ks(w)

We will prove that the second stage estimator has "better" bias and conver-
gence properties than the first stage. Accordingly, it would seem desirable
to use the second stage estimator to remove a "better" estimate of the bias.
Continuing in this manner, for k > 1, define the stage k estimator as:

M̂k(w) ≡
1
N

∑
s

[
Ys − (M̂k−1(Ws)− M̂k−1(w))

]
Ks(w)

ĝ(w)
⇒

∆k(w) ≡ ĝ(w)
[
M̂k(w)−M(w)

]
=

1

N

∑
s

{
∆k−1(w)

ĝ(w)
− ∆k−1(Ws)

ĝ(Ws)
+ εs

}
Ks(w)

When k = 1, it is well known that subject to regularity conditions the
bias is O(h2). To intuitively explain why the bias declines with each stage,
with k > 1 consider the expectation of a term similar to that above with the
true g in place of its estimator:

1

N

∑
s

E

{[
E

(
∆k−1(w)

g(w)
|Ws

)
− E

(
∆k−1(Ws)

g(Ws)
|Ws

)]
Ks(w)

}
It can be shown that for k > 1:

E

(
∆k−1(w)

g(w)
|Ws

)
= h2(k−1)B(w) +O(h2k) + o(N−=1/2)

E

(
∆k−1(Ws)

g(Ws)
|Ws

)
= h2(k−1)B(Ws) +O(h2k),

where B(·) is a bounded function. The o(N−=1/2) factor in the first expecta-
tion arises from a component of ∆k−1(w) that depends onWs. For k−1 = 1,
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the above orders are those for regular kernels. With the kernel ensuring that
B(w) is close to B(Ws), we are able to show that the bias at stage k is smaller
than that at stage k − 1. The more general case, which we consider in the
Appendix, requires us to analyze expressions containing density estimators
rather than true densities. While the analysis is substantially more com-
plicated, it is still the case that the recursive differencing structure of the
estimator results in the bias declining at each stage.
The nonparametric expectation estimator discussed above can also be

used in index models to estimate index parameters. In this context, in addi-
tion to the recursive differencing structure that provides bias reduction, we
also propose an extra mechanism that further reduces the bias in estimating
these parameters. To describe this additional mechanism, note that in a
wide class of extremum estimators, a critical step in the asymptotic normal-
ity argument requires that the gradient to the objective function of interest
have a low order bias. Typically, the gradient contains a multiplicative com-
ponent that is the derivative of a semiparametric expectation with respect
to a finite dimensional parameter vector. As discussed in the next section,
Newey has shown that this derivative behaves as a residual in that its ex-
pectation conditioned on the true index is zero. This residual property can
be exploited as an additional bias control. As a result, using the recursive
differencing estimator, normality can be obtained with optimal windows for
multiple indices.2

Theorems 1 and 2 in the next section provide the properties of the expec-
tations estimator in both nonparametric and semiparametric contexts. For a
wide class of semiparametric models, Theorem 3 provides conditions on the
number of stages and the kernel window to obtain asymptotic normality in
two cases: a) when an additional bias reduction mechanism is combined
with recursive differencing and b) when only recursive differencing is used as
the bias reduction method. To obtain

√
N−asymptotic normality, in case a),

optimal windows suffi ce. However, in case b), undersmoothing is required
for the normality result. Theorem 3 provides suffi cient conditions on the
stage and window parameter to ensure that these results hold.

2See Klein and Shen(2010) for Newey’s proof of this result. This paper exploits this
result to obtain asymptotic normality in single index models. With recursive differencing,
this result extends to multiple index structures.
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3 Large Sample Results

To establish large sample results, we require definitions and notation which
we introduce below.

3.1 Definitions and Notation

D1) Conditional Expectations. Let g(x, z) be the joint density for (X,Z),
where X and Z are vectors of continuous and discrete random variables
respectively, where Z has a finite number of support points. With
W ≡ (X,Z) and w ≡ (x, z) a fixed vector, define:

M(w) ≡ E(Y |W = w).

D2) Trimming. Let W ≡ (X,Z) be i.i.d. from g(x, z) in D1). With λ as
a percentile, let qx(λ) be the corresponding population quantile for X.
Let qx ≡ [qx (λ1) , qx (λ2)] . With

0 < λ1 < λI1 < λI2 < λ2 < 1,

let qIx ≡
[
qx
(
λI1
)
, qx
(
λI2
)]
. Then, define exterior and interior trimming

sets:

Cx (qx) ≡ {x : qx (λ1) < x < qx (λ2)}
Cx
(
qIx
)
≡

{
x : qx

(
λI1
)
< x < qx

(
λI2
) }

D3) Kernel. Referring to D2), let q̂ be a sample quantile vector correspond-
ing to qx. Define:

τ (Xs, q̂) ≡
{

1 k = 1
1 {Xs ε Cx (q̂)} k > 1

Let xl and Xls be the lth components of the vectors x and Xs respec-
tively. Then, with d as the dimension of X, define the kernel function:

k(w,Ws) ≡ 1 {Zs = z}
d∏
l=1

1

slh
φ

(
xl −Xls

slh

)
Ks(w) ≡ τ (Xs, q̂) k(w,Ws) ≡

1

hd
f (w,Ws)
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where h = O(N−r), sl is a constant,3 and φ(z) is a density symmetric
about 0.

D4) Density Estimator. For x ε Cx
(
qIx
)
in D2) and g(w) as the density for

W , define the estimator for g(w) as:

ĝ(w) ≡ 1

N

N∑
s=1

Ks(w).

D5) Nonparametric Expectation Estimator. Define:

M̂k(w) ≡


1
N

∑
s YsKs(w)

ĝ(w)
k = 1

1
N

∑
s[Ys−(M̂k−1(Ws)−M̂k−1(w))]Ks(w)

ĝ(w)
k > 1

∆k(w) ≡ ĝ (w)
[
M̂k(w)−M(w)

]
D6) Index Functions. Let θ be a finite dimensional parameter vector and

V (Ws; θ) a d×1 vector of functions. For fixed w, define v (θ) ≡ V (w; θ).

D7) Semiparametric Expectation. Define

M (v (w; θ) ; θ) ≡ E ( Y |V (Ws; θ) = v (θ))

D8) Estimated Semiparametric Expectation. With the functions k (•) and
τ (•) given in D3), define:

Ks(v (θ) ; θ) ≡ τ (Xs, q̂) k (v (θ) , V (Ws; θ)) , ĝ (v (θ) ; θ) ≡ 1

N

∑
s

Ks(v (θ) ; θ)

For k = 1 :

ĝ (v (θ) ; θ) M̂1 (v (θ) ; θ) ≡ 1

N

∑
s

YsKs(v (θ) ; θ)

For k > 1:
3Note that for each l, sl can be replaced by an estimate (e.g. a sample standard

deviation) that converges in probability to a constant. With our main focus being on bias
reduction, the proofs treat sl as constant.
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ĝ (v (θ) ; θ) M̂k (v (θ) ; θ) ≡ 1

N

∑
s

{
Ys −

[
M̂k−1(V (Ws; θ) ; θ)−

M̂k−1 (v (θ) ; θ)

]}
Ks(v (θ) ; θ),

∆k(v (θ) ; θ) ≡ ĝ (v (θ) ; θ)
[
M̂k (v (θ) ; θ)−M (v (θ) ; θ)

]
To obtain convergence properties for the proposed nonparametric

expectation estimator and asymptotic normality for a class of estimators we
make the following assumptions.

3.2 Assumptions

A1) The vector {Ys, Xs, Zs} is i.i.d. over i = 1, ..., N, and takes on values
in XY × XX × XZ ⊂ R1+d+d∗ . The vector Xs is continuous and the
discrete vector Zs has a finite number of support points.

A2) Define ∇α
x (f) as the αth derivative of the function f with respect to x,

where ∇0
x (f(x)) ≡ f(x). Let g(x|y, z) be the conditional density for X

conditioned on Y = y and Z = z. Then, there exists a constant c > 0,
for each xεCx

(
qIx
)
in D2), and α = 0, 1, .., 2k such that:

inf
xεCx(qIx)

[g(x|y, z)] > c > 0, |∇α
xg(x|y, z)| = O(1) , |∇α

x M(x)| = O(1)

A3) For index models, refer to D6) and assume that θ ε Φ, a compact
set. With V (Ws; θ) as the index vector and v (w; θ) a fixed index
value, interpret g(v (w; θ) |y; θ) as the density for V (Ws; θ) evaluated
at v (w; θ) and conditioned on Y = y. Assume that

|∇α
v g(v (w; θ) |y; θ0)| ,

∣∣∣∇β
θ g(v (w; θ) |y; θ)

∣∣∣ , ∣∣∣∇β
θ v (w; θ)

∣∣∣
are all O(1) for all xεCx

(
qIx
)
, z, y, and α, β = 0, 1, .., 2k. Further, for

constant c > 0 :

inf
xεCx(qIx), θεΦ

[g(v (w; θ) |y; θ)] > c

A4) The kernel function φ in D3) and D8) has window parameter r < 1
4d
.

Further, in the semiparametric case (see D8):

φ′(u)/φ(u), φ′′(u)/φ(u) = O(1) for u = O(1).
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A5) There exists m > 4 such that E [|Ys|m] = O(1).

A6) For semiparametric index models:

E(Y |W = w) = E ( Y |V (W ; θ0) = v (w, θ0))

A7) With r∗ = 1
4k+d

as the optimal window and ε > 0 suffi ciently small, set
k and r to satisfy a) or b) below:

a) : k > d+ 3

2
, r = r∗.

b) : k > 3d+ 3

4
,

1

4k
< r <

(1 + ε)

3(d+ 1)
.

3.3 Main Theorems

We begin in Theorem 1 with the convergence properties for the proposed
nonparametric expectation estimator.

Theorem 1. Assume A1)-A5). Then, for x ε Cx
(
qIx
)
in D2), there

exists M̂∗
k (w) such that:

a) : sup
w

∣∣∣ĝ (w)
(
M̂∗

k (w)− M̂k (w)
)∣∣∣ = op

(
N−1/2

)
b) : sup

w

∣∣∣E [ĝ (w)
(
M̂∗

k (w)−M (w)
)]∣∣∣ = O(h2k) + o(N−1/2)

c) : sup
w

∣∣∣M̂k(w)−M (w)
∣∣∣ = Op(h

2k) +Op

(
N−( 12−rd−

1
m+2)

)

For (a-b), the non-linear structure of M̂ makes it infeasible to directly
study its expectation. However, in using this theory to establish asymptotic
normality in econometric models, the form in (a-b) will suffi ce (see Theorem
3 below). We have written the order for b) in this form because h2k may or
may not be smaller than N−1/2.
For the semiparametric case, Theorem 2 below provides results similar to

those in the nonparametric case in Theorem 1.
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Theorem 2. Assume A5-A6). Then, for xε Cx
(
qIx
)
in D2), there exists

M̂k (v; θ) such that:

a) : sup
v,θ

∣∣∣ĝ (v, θ)
(
M̂∗

k (v; θ)− M̂k (v; θ)
)∣∣∣ = op

(
N−1/2

)
b) : sup

v

∣∣∣E [ĝ (v; θ0)
(
M̂∗

k (v; θ0)−M (v; θ0)
)]∣∣∣ = O(h2k) + o(N−1/2)

c) : sup
v

∣∣∣M̂k (v; θ0)−M (v (θ0) ; θ0)
∣∣∣ = Op(h

2k) +Op(N
−( 12−rd−

1
m+2))

For estimating semiparametric models, we will require conditions on the
stage k and the window parameter r. For this purpose, we will characterize a
wide class of estimators for which we will provide suffi cient conditions on the
stage and window parameter to obtain

√
N−asymptotic normality. This class

will employ the recursive differencing estimator for conditional expectations
discussed earlier. In addition to recursive differencing, it is also possible to
exploit a residual property of semiparametric expectations in index models
due to Whitney Newey (see Klein and Shen (2010) for a complete statement
and proof). In so doing, we will find that we are able to employ optimal
windows in the differencing estimator. Under this result :

∇θ [Mk (V (W ; θ) ; θ)]
θ0

=

{
∇θ [Mk (V (W ; θ) ; θ0)]θ0 −

E
(
∇θ [Mk (V (W ; θ) ; θ0)]θ0 |V (W ; θ0)

) }
⇒ E

{
∇θ [Mk (V (W ; θ) ; θ)]

θ0
|V (W ; θ0)

}
= 0

In many extremum problems, the gradient to the objective function mul-
tiplicatively depends on an estimator for the derivative above weighted by
a trimming function and other factors. If trimming is based (asymptoti-
cally) on the true index, it is possible to exploit the above result. Below, we
provide a definition for a class of estimators that assumes it is possible (as-
ymptotically) to trim on the index. Following this definition, we will discuss
existing estimators in the literature that employ a 2-step approach to ensure
that trimming is (asymptotically) based on the index in the second step.

A Class of Estimators. With λ − percentiles given in D2),
let qv(λ) be the population quantile for the index Vi0 ≡ V (W ; θ0). As in
D2) set 0 < λ1 < λI1 < λI2 < λ2. Letting qv ≡ [qv (λ1) , qv (λ2)] and qIv ≡
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[
qv
(
λI1
)
, qv
(
λI2
)]
. Define trimming sets:

Cv (qv) ≡ {v : qv (λ1) < v < qv (λ2)}
Cv
(
qIv
)
≡

{
v : qv

(
λI1
)
< v < qv

(
λI2
)}

With Si = Xi or V0i ≡ V (Wi, θ0) , define:

τ̄(Si) ≡


1, k = 1

1 {Xi ε Cx (qx)} k > 1, Si = Xi

1 {Vi ε Cv (qv)} k > 1, Si = Vi

Define τ̄ I(Si) by replacing qx with qIx and qv with q
I
v in the above definition for

τ̄(Si). Referring to D8), define M̂k (Vi0, τ̄(Si); θ0) by replacing the trimming
function within M̂k (Vi0; θ0) by τ̄ i (Si). Let:

ûi ≡ Yi − M̂k (Vi0, τ̄(Si); θ0)

Then, with αi ≡ α (V (Wi; θ0)) a function of the true index and Vi ≡
V (W ; θ0) define C as the linear class of estimators:

√
N
(
θ̂ − θ0

)
= Â

(
θ+
)√

NĜ (θ0) , θ+ε
[
θ̂, θ0

]
Ĝ (θ0) ≡ 1

N

N∑
i=1

τ̄ I (Si) ûi∇1
θ

[
M̂k (Vi, τ̄(Si); θ)

]
θ0
αi

Further, with D ≡ ∇2
θ

[
M̂k (Vi, τ̄(Si); θ)−M (V (Wi; θ) ; θ)

]
and A0 (θ) a

constant matrix, the class satisfies:

i) : sup
θ

∣∣∣Â (θ)− A0 (θ)
∣∣∣ = Op

(
τ̄ I (Si) sup

θ
∇2
θ [D]

)
ii) : θ̂

p→ θ0.
4

Before proceeding to provide a theorem that provides conditions on the
stage and window parameter for asymptotic normality, it is important to note
several features of this class. First, it includes multiple index Semiparametric
Least-Squares estimators (see Ichimura(1993) and Ichimura and Lee(1991))
with λ̂i = λi = 1. It also includes Quasi-Maximum-Likelihood estimators for
semiparametric binary response (see Klein and Spady(1993)), with

αi ≡
1

M (Vi (θ0) ; θ0) [1−M (Vi (θ0) ; θ0)]
.
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This class can also be easily extended to semiparametric ordered models by
defining categorical gradients and weights. It also extends to a system of
joint binary models.
As a second remark, the class in the definition also includes estimators

for which (asymptotically) trimming is based on the true index. With the
index being unknown, in the single index case Klein and Shen (2010) provide
a 2 step SLS estimator with X-trimming at the first step and index trimming
at the second.5 A similar strategy is employed by Klein, Shen, and Vella
(2014) for joint binary models.
Third, in characterizing this class, we have taken trimming (τ̄) and

weighting (α) functions as known. For the trimming function within the
estimator of M, Lemma 2 can be applied to take this function as known.
For the trimming function outside of M, Lemma 1.18 of Pakes and Pollard
(1989) can be employed to show that it can be taken as given. The analysis
for taking the weighting function as known is similar to that employed in the
proof of Theorem 3 for taking the estimated derivative of the M-function as
known.
Theorem 3 below provides conditions on the stage and window parameter

that ensure asymptotic normality for the above class of estimators. When
Newey’s result is exploited, these conditions permit an optimal choice for the
window parameter.

Theorem 3 Asymptotic Normality. Assume A2)-A5) and let ui ≡ Yi−
Mik (θ0) . With g0i as the density for V (Wi; θ0) and employing the notation

5With k set in accordance with Theorem 3 and r set optimally, in the first step, trim
on X and employ the SLS estimator. Employ the parameter estimator from the first
step to construct an estimated index. The asymptotic form for the gradient in the
definition follows from trimming on the estimated index with an adjusted estimator for
the M-function. In the adjustment, which is needed for a uniform convergence argument
underlying consistency, the density denominator ĝ is replaced by ĝ + δ, where δ is an
adjustment factor that depends on the index evaluated at θ. Near the support boundaries
for the index, δ vanishes very slowly away from θ0. At θ0, where trimming at the true
index provides protection against small density denominators, δ is uniformly op(N−1/2).
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in the definition above:

G1 (θ0) ≡ 1

N

N∑
i=1

G1i (θ0) , G1i (θ0) ≡ τ̄ I(Si)ui∇1
θ [Mik (θ)]θ0 αi

G2 (θ0) ≡ 1

N

N∑
i=1

G2i (θ0) ,

G2i (θ0) ≡ τ̄ I(Si)
ĝ0i

(
M̂∗

k (V0i, Si; θ0)−Mi (θ0)
)

g0i

∇1
θ

[
M̂∗

k (V0i, Si; θ)
]
θ0
λi

Then, for the class of estimators defined in C :

a) :
√
N
(
θ̂ − θ0

)
= A0

√
N [G1 (θ0)−G2 (θ0)] + op(1),

If Si ≡ V0i,then for the optimal window and stage in A7a):

b) :
√
N
(
θ̂ − θ0

)
d→ Z1˜N

(
0, A0E

[
G1i (θ0)G1i (θ0)′

]
A′0
)
,

Assume the window parameter and stage satisfy A7b) and define

γi ≡ τ(Xi, q
I
x)∇1

θ [M (Vi (θ) ; θ)]θ0 αi (1)

G∗ (θ0) ≡ 1

N

N∑
i=1

G∗i (θ0) , G∗i (θ0) ≡ ui [γi − E (γi|Vi (θ0))] (2)

Then, if Si ≡ Xi :

c) :
√
N
(
θ̂ − θ0

)
d→ Z∗˜N

(
0, A0E

(
G∗i (θ0)G∗i (θ0)′

)
A′0
)

4 Monte Carlo Results

We conducted Monte Carlo experiments using quadratic and cubic designs.
In both designs, we constructed three indices: V1 = X1 + X4, V2 = X2 −
X4, V3 = X3 +X4 where X1, X2 and X3 follow standard normal distribution.
We also generated an error term ε that follows a standard normal distribu-
tion. For the quadratic design the outcome is given as:

Y = αV1 + βV 2
2 + γV1V3 + ε;
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while for the cubic design

Y = αV1 + βV 3
2 + γV1V3 + ε.

The α, β, γ are standardizing constants selected so that in both models, each
of the three explanatory components has approximate standard deviation of
one.
We examine several different estimators. For the proposed differencing

estimator, we provide estimation results for stage 1 (regular kernel), stage 2,
and stage 3 estimators. We also report results for a twicing kernel with bias
O(h6) as required for asymptotic normality (see Newey et. al (2004) ).
In Table 1, we compare the differencing estimator with the higher order

kernel. Due to outlier problems for the higher order kernel estimator, we re-
port robust measures of performance. In both designs, the medians for both
estimators are reasonably close to the truth, with the differencing estimator
being marginally better. However, the median absolute deviation (MAD)
and the median absolute error (MAE) are on the order of 5 times smaller for
the differencing estimator.
In Table 2, we report results for each of three stages of the differencing

estimator. In practice, it is common for regular kernels to perform better than
bias-reducing kernels. However, with the first stage being the regular kernel
case, for both quadratic and cubic designs, the RMSE for the sequential
differencing estimator declines over the stages, with the third stage estimator
being required for asymptotic normality.
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Table 1. Monte Carlo results comparing proposed differencing
estimator with second order twicing kernel

Proposed estimator Second order twicing kernel
Quadratic Design

Median 0.99 1.07
-0.96 -0.94
0.98 1.02

MAD 0.04 0.20
0.04 0.26
0.06 0.42

MAE 0.04 0.19
0.05 0.25
0.07 0.44

Cubic Design
Median

0.93 1.04
-0.88 -1.00
0.99 0.97

MAD
0.01 0.20
0.02 0.27
0.02 0.24

MAE
0.07 0.18
0.12 0.28
0.02 0.24
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Table 2. Monte Carlo results comparing different stages of the
proposed differencing estimator

1st Stage 2nd Stage 3rd Stage
Quadratic Design

Mean
0.96 0.97 0.99
-0.99 -0.98 -0.96
1.01 1.00 0.99

SD
0.06 0.06 0.05
0.08 0.07 0.06
0.13 0.11 0.09

RMSE
0.07 0.07 0.05
0.08 0.08 0.07
0.13 0.11 0.09

Cubic Design
Mean

0.88 0.89 0.93
-0.86 -0.85 -0.88
1.02 1.01 0.99

SD
0.02 0.02 0.02
0.04 0.04 0.03
0.04 0.04 0.03

RMSE
0.12 0.11 0.07
0.15 0.16 0.12
0.05 0.04 0.03

5 Conclusions

In this paper, we propose a nonparametric recursive differencing estimator
for conditional expectations. Depending on the stage of the recursion, it is
possible to obtain any order for the bias without any change in the vari-
ance. Theorems 1 and 2 provide these results for both nonparametric and
semiparametric models.
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While higher order kernels share the above properties, they differ from the
proposed estimator in two important respects. First, the proposed estimator
not only performs much better than higher kernels in monte-carlo studies,
but it also dominates regular kernels. Accordingly, the proposed estimator
is both theoretically valid and performs quite well at moderate sample sizes.
Second, in estimating index models, we show that with recursive differencing
it is possible to exploit a "residual" property of semiparametric derivatives.
In so doing, we obtain asymptotic normality without undersmoothing, re-
gardless of the dimension of the index vector. This theoretical property
which is obtained in Theorem 3, may contribute to the very good finite sam-
ple performance of the proposed estimator. As there are estimators for
which Newey’s residual result does not hold (e.g. Klein and Vella (2010)),
Theorem 3 shows that asymptotic normality can be obtained with recursive
differencing as the sole bias control.
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6 Appendix

When the proposed estimator is employed in estimating semiparametric
index models, we require two types of trimming. We refer to these two types
of trimming as interior and exterior, with interior trimming based on a subset
of that for exterior trimming. With exterior trimming, we trim to insure
that the recursive bias adjustments have desirable properties. We employ
interior trimming to control the target observation at which the recursive
differencing estimator is evaluated.

In addition, we require external trimming to control the target observa-
tion at which the estimator is evaluated. Lemma 3 takes exterior trimming
as known and provides conditions under which interior trimming can be taken
as known. Lemma 1.17 in Pakes and Pollard (1997) provides the basis for
taking interior trimming as known. Based on these results, all remaining
lemmas and theorems are then proved on the basis of known trimming.

6.1 Proofs of Main Theorems

a) : sup
w

∣∣∣ĝ (w)
(
M̂ ∗

k (w)− M̂k (w)
)∣∣∣ = op

(
N−1/2

)
b) : sup

w

∣∣∣E [ĝ (w)
(
M̂ ∗

k (w)−M (w)
)]∣∣∣ = O(h2k) + o(N−1/2)

c) : sup
w

∣∣∣M̂k(w)−M (w)
∣∣∣ = Op(h

2k) +Op

(
N−( 12−rd−

1
m+2)

)

Proof of Theorem 1. With ∆∗ (w) defined as in Lemma 3 and M̂∗
k (w) ≡

∆∗
k−1(w)

g(w)
, part a) follows from Lemma 3. Part b) follows from Lemma 7. For

part c) from the uniform convergence ĝ (v; θ) in Lemma 10, with g uniformly
bounded away from zero for w bounded (Assumption A3), and Part a) of
Theorem 1, it suffi ces to consider:

ĝ (w)
[
M̂∗

k (w)−M (w)
]

(3)

For k = 1 from Lemma 10 and the uniform bias result in part b), the uniform
convergence rate is that given. Assume that the rate holds for stage k−1 and
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define E∗k−1(w) as in Lemma 5. Employing the same decomposition as in
Lemma 7, an upper bound for the term in (3) is given as:

sup
w

∣∣∣∣〈δ(w)〉P
g(w)

∣∣∣∣
∣∣∣∣∣ 1

N

∑
s

[
∆∗k−1 (w)

g(w)
− E∗k−1(w)

]
Ks(w)

∣∣∣∣∣ (4)

+ sup
w

∣∣∣∣〈δ(w)〉P
g(w)

∣∣∣∣
∣∣∣∣∣ 1

N

∑
s

[
∆∗k−1 (Ws)

g(Ws)
− E∗k−1(Ws)

]
Ks(w)

∣∣∣∣∣ (5)

+

∣∣∣∣∣ 1

N

∑
s

[
E∗k−1(w)

〈δ(w)〉P
g(w)

− E∗k−1(Ws)
〈δ(Ws)〉P
g(Ws)

]
Ks(w)

∣∣∣∣∣ (6)

+

∣∣∣∣∣ 1

N

∑
s

εsKs(w)

∣∣∣∣∣ (7)

An induction argument then establishes the required convergence rates for
(4) and (5). The required convergence rate for the term in (6) readily
follows from the uniform bias result in part b). The remaining term in (7) is

uniformly Op

(
N−( 12−rd−

1
m+2)

)
under an argument similar to that for part a)

of Lemma 10.

Proof of Theorem 2. With ∆∗k (v, θ) having the same form as ∆∗k (w)

in Lemma 3 and M̂∗
k (v, θ) ≡ ∆∗

k−1(v,θ)

g(v)
, the proofs for parts a)-c) are identical

to a-c) in Theorem 1 for the nonparametric case.

Proof of Theorem 3. Beginning with the characterization in a), we
must establish the uniform convergence of Â (θ) to A0 (θ) , which will follow

from the uniform convergence of ∇α
θ

[
M̂ik (θ)−Mi (θ)

]
, α = 0, 1, 2, and the

consistency of θ̂. From Lemma 11, with the convergence rate being slowest
for α = 2, convergence follows for r > 0 and

1

2
− r (d+ 2)− 1

m+ 2
> 0⇔ r <

1

2(d+ 2)

m

m+ 2
, (8)

Since m > 4, from A5) : 4/6 < m/(m+ 2) < 1. There then exists ε > 0 such
that

4

6
(1 + ε) <

m

m+ 2
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Therefore, (8) is satisfied with

r <
1

2(d+ 2)

4

6
(1 + ε) =

(1 + ε)

3(d+ 2)
(9)

Proceeding to the "Gradient" component, recall that
√
NĜ (θ0) is given

as:

1√
N

N∑
i=1

[Yi −Mi (θ0)] τ i∇1
θ

[
M̂ik (θ)

]
θ0
αi − (10)

1√
N

N∑
i=1

[
M̂ik (θ0)−Mi (θ0)

]
τ i∇1

θ

[
M̂ik (θ)

]
θ0
αi. (11)

For the term in (10), with εi ≡ Yi −Mi (θ0) we must show

1√
N

N∑
i=1

τ iεiαi

[
∇1
θ

[
M̂ik (θ)

]
θ0
−∇1

θ [Mi (θ)]θ0

]
= op(1),

which follows from an extension of a mean-square convergence argument in
Klein and Shen(2010). From Cauchy Schwarz :

1√
N

N∑
i=1

τ iαi

∣∣∣M̂ik (θ0)−Mi (θ0)
∣∣∣ ∣∣∣∣∇1

θ

[
M̂ik (θ)

]
θ0
−∇1

θ [Mik (θ)]θ0

∣∣∣∣
≤
√
N


√

1
N

∑N
i=1 τ iα

2
i

[
M̂ik (θ0)−Mi (θ0)

]2

×√
1
N

∑N
i=1 τ i

(
∇1
θ

[
M̂ik (θ)

]
θ0
−∇1

θ [Mik (θ)]θ0

)2


From Lemmas 8-9, in order for this expression to be op(1), we must set r
and k such that

[
Op

(
N−2rk

)
+Op

(
N−

1
2

+ rd
2

)]
×[

Op

(
N−2rk

)
+Op

(
N−

1
2

+
r(d+2)

2

)]  = op(N
−1/2) (12)

The conditions in (12) are satisfied with

1

8k
< r <

1

2(d+ 1)
, K >

d+ 2

4
(13)
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For ε > 0 and suffi ciently small, the conditions in (13) and (9) hold with

1

8k
< r <

(1 + ε)

3(d+ 2)
, K >

d+ 2

4
, (14)

which is satisfied under A7a or A7b). . Finally, to establish a), we must set
r and k such that

1√
N

N∑
i=1

τ i

[
M̂ik (θ0)−Mi (θ0)

] ĝ0t − g0t

g0t

∇1
θ [Mik (θ)]θ0 λi (15)

is op(1). Employing Cauchy-Schwarz as above, Lemma 8, and known results
for density estimators, the result follows.
For b), under A7a) for some ε > 0 and arbitrarily small:

1

8k
< r <

(1 + ε)

3(d+ 2)
, K > d+ 3

2
(16)

To complete the proof, note first that this condition in (16) implies that in
(14) . Second, (16) is satisfied by the optimal window r∗ = 1

4k+d
. Finally,

since the semiparametric derivative can be taken as known from Part a) of
Theorem 3, Newey’s residual result can be used to show that the gradient
component in the statement of Theorem 3 given in (1)-(2) is a degenerate U-
statistic, from which b) immediately follows. Klein and Shen(2010) provide
this argument in the single index case under regular kernels. This argument
extends to multiple indices under the recursive estimator.
For c), note first that the condition in (A7b) implies that (8). When

trimming is based in X, Newey’s residual result does not directly apply and
the low order bias must be obtained by under-smoothing and setting r > 1

4k
.

From above, we now require:

1

4k
< r <

(1 + ε)

3(d+ 2)

This interval will be non-empty with k satisfying the restriction in (A7b).
The gradient is then a centered U-statistic, from which (c) follows.
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6.2 Intermediate Lemmas and Proofs

As a first intermediate lemma, we require a standard result on bias expansions
involving the expectation of the product of a function and a kernel. The
following lemma summarizes a well-known result in the literature.

Lemma 1. Let G(w) be a function such that ∇2i
v G(w) is uniformly

bounded for i = 1, ...,m+ 1.

E [G(Wr)Kr (w)]−G(w) =

m∑
i=1

h2i∇2i
v G(w) +O(h2m+2),

The estimator for M(w) requires trimming to control the bias ad-
justment that is evaluated at data points. The lemma below will enable us
to take such trimming as known. The proof of this lemma is based on an
adaptation of arguments in Klein and Shen (2010) and Klein (1993).

Lemma 2: For 0 < δ < 1/2, set the window parameter r, such that
r < 1−2δ

2d
. Denote M̂k(w; τ (q̂x)) as the estimator in D3)-D5), where trimming

based on the estimated quantile vector q̂. Let M̂k(w; τ (qx)) be the esti-
mator for M when trimming is based on the true population quantile, qx.
Define ĝ(w;τ (qx)) and ĝ(w; τ (q̂x)) as the density estimators under known
and estimated trimming respectively. Let:

D(w) =

 ĝ(w; τ (qx))
[
M̂k(w; τ (qx))−Mk(w)

]
−

ĝ(w; τ (q̂x))
[
M̂k(w; τ (q̂x))−Mk(w)

] 
Then,

sup
w
|D(w)| = op

(
N−1/2

)
Proof. As τ (q̂x) = τ (qx) = 1 for k = 1, we begin an induction argu-
ment with k = 2. Let τ ∗ (Xs, q0, q̂) ≡ 1 {Xs ε [C (q0) ∪ C (q̂)]} be a trim-
ming function on the union of estimated and known trimming sets. Since
[τ(Xs, q̂x)− τ(Xs, qx)] τ

∗ (•) = τ(Xs, q̂x)− τ(Xs, qx), we may write:

D(w) =
1

N

∑
s

{
[τ(Xs, q̂x)− τ(Xs, qx)] τ

∗ (Xs, qx, q̂x)
∆1M(w)−∆1M(Ws)

}
k(w,Ws),

∆1M(t) ≡ M̂1(t)−M(t),
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with k(w,Ws) defined in D3). Then, with N an op(1) neighborhood of qx

sup
w
|D(w)| ≤ 2

{
supw,qεN |τ ∗ (x, qx, q) ∆1M(w)| ×

supw,qεN
1
N

∑
s

|τ(Xs, q̂x)− τ(Xs, qx)| τ ∗ (x, qx, q) k(w,Ws)

}
(17)

From well known results in the literature, the first component in (17) is
Op(h

2) + Op

(
N−(1/2−rd)

)
= Op

(
N−δ

)
for r given in the lemma. 6 For

the second component in (17), we bound the absolute difference in indic-
tors by a smooth function. Let the estimation error be given as ej ≡
|q̂x (λj)− qx (λj)| = Op

(
N−1/2

)
and djs ≡ |Xs − qx (λj)| as the distance to

the lower (j = 1) and upper (j = 2) trimming boundaries respectively .Define
the smoothed indicator function:

S(z) ≡
{

1 + exp
[
−N (1/2− ε2 ) (

z +N−(1/2−ε))]}−1

S∗ (ej − djs) ≡ S (ej − djs) + [1− S(0)] , j = 1, 2

Employing an inequality due to Jim Powell and contained Klein (1993), from
Klein(Lemma A, 1993):

|τ (Xs, q̂x)− τ (Xs, qx)| ≤ S∗ (e1 − d1s) + S∗ (e2 − d2s)

Therefore, for the second component of D(w) in (17)

sup
w,qεN

1

N

∑
s

|τ(Xs, q̂x)− τ(Xs, qx)| τ ∗ (x, qx, q) k(w,Ws) (18)

≤ sup
w,qεN

1

N

∑
s

[S∗ (e1 − d1s) + S∗ (e2 − d2s)] τ
∗ (x, qx, q) k(w,Ws) (19)

As the analysis for each of two terms in (19) is the same, we provide the
argument for

sup
w,qεN

D21 ≡ sup
w,qεN

1

N

∑
s

S∗ (e1 − d1s) τ
∗ (Xs, qx, q) k(w,Ws).

Denoting ∇lS∗ as the lth partial derivative of S∗ w.r.t. ej, Taylor expand

6If uniformity holds in all o(1) neighborhoods of qx, it holds in any op(1) neighborhood.
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S∗ (ej − dj) about ej = 0 to obtain:

sup
w,qεN

D21(w) ≤ [1− S(0)]
1

N
sup
w,qεN

∑
s

τ ∗ (x, qx, q) k(w,Ws) + (20)

1

N

L−1∑
l=0

el1 sup
w,qεN

∑
s

∣∣∇tS∗ (−d1s)
∣∣ τ ∗ (x, qx, q) k(w,Ws) +

eL1 sup
w,qεN

1

N

∑
s

∣∣∇LS∗
(
e+
j − ds1

)∣∣ τ ∗ (x, qx, q) k(w,Ws).

For L suffi ciently large and finite, the sup of the absolute value of the last
term is op(N−1/2) due to the factor eL1 . Similarly because of the factor
[1− S(0)] vanishes exponentially, the first term is of this order.
It can be shown that the absolute value of the mth term, 0 ≤ m < L, is

bounded above by:

|ej|m sup
w,qεN

1

N

∑
s

|∇mS∗ (−ds)| τ ∗ (x, qx, q) k(w,Ws) (21)

= |ej|mNm(1/2− ε
2

) sup
w,qεN

1

N

∑
s

B(d1s) |S∗ (−djs)| τ ∗ (x, qx, q) k(w,Ws)

where B is uniformly bounded. The strategy for ordering this term will
depend on the set in which d1s lies. Define bs ≡ 1

{
d1s > 2N−1/2+ε

}
and

bound the sup of the term in (21) by:

op(1)

[
supw,qεN

1
N

∑
s bsB(d1s) |S∗ (−djs)| τ ∗ (x, qx, q) k(w,Ws)+

supw,qεN
1
N

∑
s (1− bs)B(d1s) |S∗ (−djs)| τ ∗ (x, qx, q) k(w,Ws),

]
For the bs − terms, it follows from the definition of S∗ that:

sup
w,qεN

∑
s

bsB(d1s) |S∗ (−d1s)| τ ∗ (x, qx, q) k(w,Ws)

≤ O(1) sup
d
|bsS∗ (−d)| sup

w,qεN

1

N

∑
s

τ ∗ (x, qx, q) k(w,Ws)

≤ O

(
1

1 + exp (N ε/2)

)
Op(1) = op(N

−1/2)
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For the (1− bs)− terms,

supw
1

N

N∑
s=1

(1− bs) |S∗ (−d1s)| τ ∗ (x, qx, q) k(w,Ws) (22)

≤ 1

N

N∑
s=1

(1− bs) sup
d
|S∗ (−d)| sup

w,sqεN
[(1− bs) τ ∗ (x, qx, q) k(w,Ws)](23)

The first term in (23 ) is O
(
N−1/2+ε

)
because:

E (1− bs) = Pr
(
ds < 2N−1/2+ε

)
The second component in (23) is O(1). For the third component in (23),
recall from D3) that

k(w,Ws) ≡ 1 {Zs = z}
d∏
l=1

1

slh
φ

(
xl −Xls

slh

)
By assumption, xl is in the interior of a subset to which τ ∗ restricts Xls. It
then follows that the middle term in (23) is op(N−1/2) because there exists
c > 0 such that |xl −Xls| > c. The kernel then rapidly vanishes on this set.
The result now readily follows for k = 2.
To complete the proof, assume the result holds for k-1 and write

∣∣∣M̂k(w; τ (q̂x))− M̂k(w; τ (qx))
∣∣∣

as:∣∣∣∣ 1

N

∑
s

[τ(Xs, q̂x)− τ(Xs, qx)] τ
∗ (Xs, qx, q̂x)

[
M̂k=1(Ws)− M̂1(Ws)

]
Ks(w)

∣∣∣∣
The argument is now essentially the same as that above.

From Lemma 2, in all subsequent lemmas we will take trimming that
controls the bias adjustment as given. To establish the order of the bias
and to obtain convergence rates, it is useful to employ an expansion that
eliminates estimated denominators. In so doing, we will be able to study
the bias of an estimator that is within op

(
N−1/2

)
of the original estimator

∆k (w)

Lemma 3. Estimated Denominators. With h = O(N−r), assume r <
1
2d
, which is implied by A4). Recalling the definition of g(w) and ĝ(w) in
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D4), let: δ (w) ≡ [g(w)− ĝ(w)] /g(w) and define:

〈δ(w)〉P ≡
1

g(w)

P∑
p=0

δ(w)p,

with P set suffi ciently large to ensure that

sup
e
|δ(w)|P = op

(
N−1/2

)
Define:

∆∗k (w) ≡
{

∆1 (w) = ∆∗1 (w) k = 1

∆∗k−1(w) + 1
N

∑
s

[
∆∗
k−1(Ws)

g(Ws)
〈δ(Ws)〉P + εs

]
Ks(w) k > 1

Then,
sup
w
|∆k (w)−∆∗k (w)| = op(N

−1/2)

Proof. Write:

1

ĝ(w)
=

1

g(w)
+ δ(w)

1

ĝ(w)
=

1

g(w)
+ δ(w)

[
1

g(w)
+ δ(w)

1

ĝ(w)

]
(24)

=
1

g(w)

P∑
p=0

δ(w)p +
1

ĝ(w)
(δ(w))P+1

For infw [g(w)] bounded away from 0, supw |δ(w)| = Op

(
h2 + 1

hd
√
N

)
.

Therefore for h given as above and for P suffi ciently large

sup
w

∣∣∣∣ 1

ĝ(w)
δ(w)P+1

∣∣∣∣ = op(N
−1/2) (25)

Therefore,
1

ĝ(w)
=

1

g(w)
〈δ(w)〉P + op(N

−1/2),

where the op−term is uniform in w. The lemma is now immediate for k = 1.
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For k = 2 and Kst as the kernel function in D3):

∆∗2(w) ≡ ∆∗1(w)− 1

N

∑
s

[
∆∗1(Ws)

g(Ws)
〈δ(Ws)〉P − εs

]
Ks(w)

= ∆∗1(w)− 1

N

∑
s

[
∆∗1(Ws)

ĝ(Ws)
− εs

]
Ks(w) + op(N

−1/2)

=
1

N

∑
s

[
∆∗1(w)

ĝ(w)
− ∆∗1(Ws)

ĝs
+ εs

]
Ks(w) + op(N

−1/2)

=
1

N

∑
s

[
∆1(w)

ĝ(w)
− ∆1(Ws)

ĝs
+ εs

]
Ks(w) + op(N

−1/2)

= ∆2(w) + op(N
−1/2),

where we have employed the expansion above with the op(N−1/2) term being
uniformly of this order in w. Assuming that the result holds for k − 1 and
employing the same arguments as above, it readily follows that the result
holds for stage k.

From the recursion above, Lemma 4 expresses ∆∗k (w) in terms of
first stage estimates, which is useful for studying the order of the bias.

Lemma 4. Characterization. Recalling the definitions of 〈δ(w)〉P and
∆∗k (w) in Lemma 3, there exists integers C1, .., Ck−1 such that for k > 1,
ρ (w) ≡ g(w)/ 〈δ(w)〉P :

∆∗k (w)−∆∗1 (w) = U +
C1

N

∑
i1

∆∗1 (Wi1)

ρ (Wi1)
Ki1 (w) +

C2

O(N2)

∑
i1

∑
i2 6=i1

∆∗1 (Wi2)

ρ (Wi1) ρ (Wi2)
Ki1 (w)Ki1(Wi2) + ...+

Ck−1

O (Nk−1)

∑
i1

....
∑

ik−1 6=ik−2

∆∗1
(
Wik−1

)
k−1∏
l=1

ρ (Wil)

Ki1(w)

k−1∏
l=2

Kil

(
Wik−1

)
,

where E(U |W1, ...,WN) = 0.

Proof. Since

∆∗k (w)−∆∗1 (w) =
[
∆∗k (w)−∆∗k−1 (w)

]
+
[
∆∗k−1 (w)−∆∗k−2 (w)

]
+... [∆∗2 (w)−∆∗1 (w)] ,
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it suffi ces to show that∆∗k (w)−∆∗k−1 (w) has the form required by the lemma.
The lemma is immediate for k = 2. Assuming the result holds for stage k−1,
recall from Lemma 3 that

∆∗k (w)−∆∗k−1 (w) =
1

N

∑
s

[
∆∗k−1 (Ws)

ρ(Ws)
+ εs

]
Ks(w)

Replacing ∆∗k−1 (w) and ∆∗k−1(Ws) with the lemma’s characterization com-
pletes the proof, with U being sums of kernel-weighted ε−terms, all of which
have zero conditional expectation.

Lemma 5 below shows that up to o(N−1/2), the expectation of the product
of kernel terms is equal to the product of their expectations. This result
is important as it provides the basis for showing how the bias decreases over
stages.

Lemma 5. Expectations of Kernel Products. Assume A4) and let gil ≡
g (Wil) and δil ≡ δ (Wil) ≡ [g(Wil)− ĝ(Wil)] /g(Wil). With 〈δil〉P defined in
Lemma 3, for arbitrary L, define:

D ≡ ∆∗1 (Wil)

gil

L∏
l=1

〈δil〉P ,

E∗il ≡ E

[
∆∗1 (Wil)

gil
|Wil

]
, Eil ≡ E [δil |Wil ] .

Then, with trimming taken as known from Lemma 2:

E(D|Wil , l = 1, ..., L) = E∗il

L∏
l=1

〈Eil〉P + o(N−1/2),

〈Eil〉P ≡
P∑
p=1

[Eil ]
p .

Proof. Write:

D ≡
{[

∆∗1 (Wil)

gil
− E∗il

]
+ E∗il

} L∏
l=1

〈{[δil − Eil ] + Eil}〉P
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The conditional expectation of D will contain a finite number of terms, one
of which is

E∗il

L∏
l=1

P∑
p=0

[Eil ]
p

Therefore, the lemma will follow if the expectation of each of the remaining
finite number of terms in D is o(N−1/2). These remaining terms will involve
a product of expectations and centered kernel functions. For any stage k and
an arbitrary T < L, typical terms are given as:[

∆∗1 (Wil)

gil
− E∗il

] T∏
l=1

[ĝil − Eil ] /gil
L∏

l=T+1

[Eil ]
p

E∗il

T∏
l=1

[ĝil − Eil ] /gil
L∏

l=T+1

[Eil ]
p

As the analysis for each of these two typical terms is the same, here we
consider the expectation of the second. With all expectations and index
densities being bounded, it then suffi ces to show that :

E

[
T∏
l=1

[ĝil − Eil ] |Wil , l = 1, ..., T

]
= o(N−1/2)

To prove this result, recall that

ĝil ≡
1

N − 1

∑
jl 6=il

1

hd
f (Wil ,Wjl) .

where f (•) is uniformly bounded. Then, with J as a set of positive from 1
to N excluding {j : j = i1, i2, ..., iT} :

J ≡ {j : j = 1, 2, 3, ..., N} \ {j : j = i1, i2, ..., iL} ,

define:
ĝ∗il ≡

1

N − T
∑
jl ε J

1

hd
f (Wil ,Wjl) .
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Employing this notation, it suffi ces to prove:

a) : E

{
T∏
l=1

[
ĝ∗il − Eil

]
|Wil , l = 1, ..., T

}
= o(N−1/2)

b) : E {∆ | Wil , l = 1, ..., T} = o(N−1/2),

∆ ≡
T∏
l=1

[ĝil − Eil ]−
T∏
l=1

[
ĝ∗il − Eil

]
For a), write the product of sums as a sum of products, where each

product has the following block independent structure. Let I1, ..., IS be
disjoint sets of integers with:

∪Ss=1Is = {il, l = 1, ..., T}

Then, define Block s as:

Bs (Is,Wis) =
∏
ilεIs

1

hd
{f [Wil ,Wjs ]− Eil} , jsεJ .

For j1 εJ , let J2 ≡ J \j1; for j2 εJ2, let J3 ≡ J2\j2. Continuing to
eliminate elements from sets in this manner, for jS−1 εJS−1 let JS ≡ JS\jS−1.
Noting that the blocks are conditionally independent, a typical term in the
expectation in a) then has the form:

1

NS

∑
j1εJ

∑
j2εJ2

...
∑
jSεJS

1

NT−S

S∏
s=1

E [Bs (Is,Wjs) |Wil, l = 1, .., T ] .

When a block only has one member, we will term such a block as a singleton.
For each S, the above expectation will be 0 when there are singleton blocks.
As there will always be singleton blocks when T−S < S, it suffi ces to consider
the case where T−S = S. For this case, we can always construct at least one
configuration with no singletons. The expectation then has a convergence
rate to 0 of

1

NT−Shd(T−S)

This result follows because fWil ,Wjs) is a bounded random variable and

1

NT−S

S∏
s=1

Bs (Is,Wjs) = O

(
1

NT−ShdT )

)
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and in taking the expectation, we lose a factor of hd for each of the S blocks.
Part a) of the lemma will then follow if:

1

NT−Shd(T−S) < N−1/2 ⇔ NT−Shd(T−S) > N1/2

⇔ T − S− rd(T − S) > 1/2

⇔ r <
1

d
− 1

2 (T − S) d

With T − S = S = 1,
1

2d
≤ 1

d
− 1

2 (T − S) d

Therefore with r < 1
2d
(Assumption A ), the result follows.

Turning to b), write:

T∏
l=1

[ĝil − Eil ] =
T∏
l=1

[(
ĝ∗il − Eil

)
+
(
ĝil − ĝ∗il

)]
.

Referring to the statement of b), It then follows that a typical term ∆ is
given as: ∏

it εI1

(
ĝ∗it − Eit

) ∏
irεI2

(
ĝir − ĝ∗ir

)
,

where I1 and I2 are non-empty and non-intersecting sets of integers such
that I1 ∪ I2 = I. With there being Tk elements in Ik and T1 + T2 = T ,
Let I2 [j] refer to the jth integer element of I2.Define W (I1) as the vector
with jth element I1[j], and similarly defineW (I2) . The absolute value of the
expectation of the above typical term is then given as:

∣∣∣∣∣E
[(∏

it εI1

(
ĝ∗it − Eit

) ∏
irεI2

(
ĝir − ĝ∗ir

))
|W (I1) ,W (I2)

]∣∣∣∣∣
≤ E

[∏
it εI1

(
ĝ∗it − Eit

)
|W (I1)

]
O

(
1

Nhd

)T2
The result readily follows form a), the definition of ĝir and the window con-
dition in A4),
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Employing Lemma 5, Lemma 6 provides the basis for how expectations
are updated over stages.

Lemma 6 .Employing notation given in the statement of Lemma 3:

E
[
∆∗k−1 (Ws) 〈δ (Ws)〉P |V

]
= E

[
∆∗k−1 (Ws) |Ws

]
[〈E [δ (Ws)]〉P |Ws]+o

(
N−1/2

)
Proof. The result is immediate for k = 1. For k > 1, from Lemma 4, a
typical term in ∆∗k−1 (Ws) 〈δ (Ws)〉P is given as:

Cj

(N − 1)j

∑
i1

....
∑

ij 6=ij−1

∆∗1(Wi1)
j∏
l=1

〈δ(Wil〉P

g (Wi1) g (Wi2) ...g
(
Wij

)Ki1s

j∏
l=2

Kilil−1

where the integer j < k. The result now follows from Lemma 5

Employing the above lemmas, Lemma 7 obtains a uniform bias rate and
a convergence rate for the proposed estimator.

Lemma 7 With ∆∗k(w) defined as in Lemma 3, Bk (Vt) a uniformly
bounded function, and trimming taken as known under Lemma 2:

a) : sup
w
|E [∆∗k(w)]| = h2kBk (Vt) + o(N−1/2).

b) : |∆∗k(w)| = Op

(
h2k +

1√
Nhd

)
Proof. For a), the result is immediate for k = 1. Assume the result is true
for stage k − 1 so that

E
[
∆∗k−1(w)

]
= h2k−2Bk−1 (w) +O(h2k) + o(N−1/2).

Then, from Lemmas 2 and 6:

E [∆∗k(w)] =
1

N

∑
s

E

 E
[

∆∗
k−1(w)

g(w)
〈δ(w)〉

P

]
−E

[
∆∗
k−1(Ws)

g(Ws)
〈δ(Ws)〉P |Vs

] Ks(w) + o(N−1/2)

=
1

N

∑
s

E

{
h2k−2Ck−1 (w)

−h2k−2Ck−1 (Ws) +O(h2k)

}
Ks(w) + o(N−1/2),
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where Ck−1 is uniformly bounded. Part a) of the Lemma now follows from
Lemma 1.
To prove b), letting E∗k(w) ≡ E

[
∆∗
k−1(w)

g(w)

]
, from Lemma 3, ∆∗k−1(w) has

the following form:[
∆∗k−1 (w)

g(w)
− E∗k−1(w)

]
− (26)

1

N

∑
s

{[
∆∗k−1 (Ws)

gs
− E∗k−1(Ws)

]
〈δ(Ws)〉P
g(Ws)

+ εs

}
P
Ks(w) + (27)

E∗k−1(w)− 1

N

∑
s

[
E∗k−1(Ws)

〈δ(Ws)〉P
g(Ws)

]
Ks(w) (28)

Employing an induction argument, the term in (26) has the required con-
vergence rate For the term in (27), its absolute value is bounded above
by:

sup
w

∣∣∣∣〈δ(w)〉P
g(w)

∣∣∣∣ 1

N

∑
s

∣∣∣∣∆∗k−1 (w)

g(w)
− E∗k−1(w)

∣∣∣∣Ks(w). (29)

From standard convergence results, the first component of () is Op(1) and
the second is Op(1/

√
Nhd) from an induction argument. and standard con-

vergence results. For the term in (28), from the proof of Lemma 3, we may
write it as:

1

N

∑
s

[
E∗k−1(w)

〈δ(w)〉P
g(w)

− E∗k−1(Ws)
〈δ(Ws)〉P
g(Ws)

]
Ks(w) + op(N

−1/2).

The result follows from Part a) and Lemma 3,.

To obtain asymptotic normality in semiparametric models, we require ad-
ditional pointwise and uniform convergence rates. With θ a finite dimensional
parameter vector, recall from D6) that observation s on the index is given
as V (Ws; θ) and that a value for the index is denoted by v(θ) ≡ V (w; θ).
Employing this notation, lemmas 8-11 provide the required additional results
for analyzing a class of estimators for index models.

Lemma 8: Mean-Square Convergence rate for expectations. Referring
to D8), define ∆∗k(V (w; θ0) as in Lemma 3 with V (Ws; θ0) replacing Vs.

sup
v
E
[
∆∗(v)2

]
= O

(
N−4rk

)
+O

(
N−(1−rd)

)
,
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where the sup is taken over v, where v ε Cx
(
qIx
)
≡
{
v : qv

(
λI1
)
< x < qv

(
λI2
) }

from D2).
Proof. As the result is immediate for k = 1, consider case where k > 1.
Letting Vt ≡ V (Wt; θ0) and

uk−1(v, Vs) ≡
[

∆∗k−1(v)

g0(v)
〈δ(v)〉P −

∆∗k−1 (Vs)

g0(Vs)
〈δ(Vs)〉P + εs

]
D(v) ≡ ∆∗k−1(v)

[
1− 〈δ(v)〉P ĝ(v)

g0(v)

]
,

recall that

∆∗k(v) ≡ ∆∗k−1(v)− 1

N

∑
s

[
∆∗k−1 (Vs)

g0(Vs)
〈δ(Vs)〉P − ε

]
Ks(v)s

= D(v) +
1

N

∑
s

uk−1(v, Vs)Ks(v).

Then,

∆∗k(v)2 ≤ 2D2(v) + (30)
2

N2

∑
s

[uk−1(v, Vs)]
2K2

s (v) + (31)

2

N2

∑
s

∑
r 6=s

uk−1(s, t)uk−1(r, t)Kr(v)Ks(v). (32)

Beginning with the term in (40), in an induction argument, it can readily be
shown that it uniformly converges at the required rate. Being a single sum,
it can also be shown that the squared terms in (31) converge in expectation
to 0 faster than the double sum of cross-product terms in (32) Accordingly,
it suffi ces to analyze the cross-product terms.
For the terms in (32), the lemma readily holds for k = 1. Assume that it

holds for k−1, k > 1. It can be shown that all components that depend upon
εs and/or εt either have 0 expectation or have an expectation that vanishes
faster than the rate in the lemma. Letting

u∗s(v) ≡ uk−1(v, Vs)− εs
Es(v) ≡ E [u∗s(v)|Vr, Vs] = E [uk−1(v, Vs)|Vr, Vs] ,
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write the remaining terms as:

T1 ≡
1

O (N2)

∑
s

∑
r 6=s

Er(v) [u∗s(v)− Es(v)]Kr(v)Ks(v) (33)

T2 ≡
1

O (N2)

∑
s

∑
r 6=s

Es(v) [u∗r(v)− Er(v)]KrtKst (34)

T3 ≡
1

O (N2)

∑
s

∑
r 6=s

u∗s(v)u∗r(v)Kr(v)Ks(v) (35)

T4 ≡
1

O (N2)

∑
s

∑
r 6=s

Es(v)Er(v)Kr(v)Ks(v) (36)

From iterated expectations, E(T1) = E(T2) = 0. For T3, let "|•” refer to
conditioning on Vr, Vs. Therefore,

|E(T3|•)| ≤
1

O (N2)

∑
s

∑
r 6=s

|E (u∗s(v)u∗r(v)|•)|Kr(v)Ks(v)

≤ 1

O (N2)

∑
s

∑
r 6=s

E
[
(u∗s(v))2 + (u∗r(v))2 |•

]
Kr(v)Ks(v)

With the lemma holding at stage k-1, it follows that |E(T3|•)| is uniformly
Op

(
N−(1−rd)

)
.

Turning to T4, note that:

Est = E

[
∆∗
ok−1(V0t)

g0(V0t)
〈δ(V0t)〉P−

∆∗
k−1(V0s)

g0(V0s)
〈δ(V0s)〉P |Vr, Vs, Vt

]

=

 E
[

∆∗
ok−1(V0t)

g0(V0t)
〈δ(V0t)〉P |, Vt

]
−

E
[

∆∗
k−1(V0s)

g0(V0s)
〈δ(V0s)〉P |Vs

] + o
(
N−1/2

)
= h2(k−1)τ (Xt, q

c
o) [B (Vt)−B (Vs)] + o

(
N−1/2

)
,

where, with B a uniformly bounded function, the last result follows from
Lemma 7 and its proof. Therefore, up to o

(
N−1/2

)
:

E (T4) = h4(k−1)E

[
[B (v)−B (vs)]×
[B (v)−B (vr)]

Ks(v)Kr(v)

]
= h4(k−1)

∫ ∫ [
[B (v)−B (vs)] [B (v)−B (vr)]×
Ks(v)Kr(v)g(vr)g(vs)dvrdvs

]
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Change the variables of integration to z1 ≡ (vr − v) /h and z2 ≡ (v2 − v) /h.
The result then follows as the double integral is O (h4)

In providing results for a class of semiparametric models, we require a
uniform result on derivatives, which is provided by Lemma 9.

Lemma 9: Mean Square Convergence for First Derivatives. Recalling
that w≡ (x,z) with v (θ)≡ V (w, θ), for x ε Cx

(
qIx
)
≡
{
x : qx

(
λI1
)
< x < qx

(
λI2
) }

from D2).

sup
w
E
[(
∇1
θ [∆k(v(w, θ)]θ0

)2
]

= O
(
N−4rk

)
+O

(
N−(1−r(d+2))

)
Proof. Employing the notation of Lemma 8, ∇1

θ [∆k(v(w, θ)] can be written
as:

∇1
θD(v) +

1

N
∇1
θ

∑
s

uk−1(v, Vs) [Ks(v)]

Similar to lemma 8:[
∇1
θ∆
∗
k(v)

]2 ≤ 2
[
∇1
θD(v)

]2
+ (37)

2

N2
∇1
θ

∑
s

[uk−1(v, Vs)]
2K2

s (v) + (38)

2

N2
∇1
θ

∑
s

∑
r 6=s

uk−1(s, t)uk−1(r, t)Kr(v)Ks(v). (39)

The proof for each of these terms follows the same argument as in Lemma 8.

Lemma 10. Let Xks be the sth observation on the kth exogenous
variable. For a) below, assume A5): E [|Ys|m] = O(1) for m > 4. Let r be
the window parameter and set α = 0, 1, 2. then, for v restricted to a compact
set:

a) : sup
θ

∣∣∣∣ 1
N−1

∑
s Ys∇

α
θ [Ks(v (θ) ; θ)]−

E {Ys∇α
θ [Ks(v (θ) ; θ)]}

∣∣∣∣ = Op

(
N−( m

2(m+2)
−r(α+d))

)
b) : sup

θ

∣∣∣∣ 1
N−1

∑
s∇

α
θ [Ks(v (θ) ; θ)]−

E
{
∇θ
θ [Ks(v (θ) ; θ)]

} ∣∣∣∣ = Op

(
N−( 12−r(α+d))

)
\
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Proof. As the argument for b) is similar to and involves fewer assumptions
than that for a), here we provide the proof for a). Let:

bi =

{
1 : |Ys| > N

1
m+2

0 : otherwise
.

Then, write the term in a) as:

T1−b ≡
1

N

∑
s

(1− bi)Ys∇α
θ [Ks(v (θ) ; θ)]− E {Ys∇α

θ [Ks(v (θ) ; θ)]}+

Tb ≡
1

N

∑
s

biYs∇α
θ [Ks(v (θ) ; θ)]− E {Ys∇α

θ [Ks(v (θ) ; θ)]} .

For T1−b, from standard results in the literature (e.g. see Bhattacharya
(1967), Klein (1993)):

sup
θ
|T1−b − E (T1−b)| = Op

(
N−( 12−r(α+d)− 1

m+2)
)
.\ = Op

(
N−( 1

2(m+2)
−r(α+d))

)
For Tb,noting that the function Ks (V (θ)) incorporates trimming that can
be taken as known (Lemma 2) and that bounds Xs. Then for x restricted to
a compact set, it follows that

sup
θ,s
|∇α

θ [Ks (v (θ))]| = O

(
1

hα+d

)
It then suffi ces to study

Sb ≡
1

hα+d
E [bi |Ys|]

≤ 1

hα+d
E [bi]

1/2E
[∣∣Y 2

s

∣∣]1/2
which follows form Cauchy-Schwarz. For the first of the two components in
the upper bound:

E [bi] ≤ Pr
(
|Ys|m > N

m
m+2

)
≤ N−( m

m+2)E [|Ys|m] = O
(
N−

m
m+2

)
Therefore,

Sb = O
(
N−[ m

2(m+2)
−r(α+d)]

)
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The result now follows.7

Finally, for establishing asymptotic normality, we need a uniform conver-
gence lemma for the estimated mean functions and their first two derivatives.
Lemma 11 provides the required results.

Lemma 11. Assume A5 and that with r as the window parameter:

1/2− r(d+ α)− 1

m+ 2
> 0.

Denote ∇α
θ f (θ) as the αth partial derivative of the function f w.r.t. θ,

with ∇0
θf (θ) ≡ f (θ) . Then recalling that v(θ) ≡ V (w, θ) from D6), for

α = 0, 1, 2 :

sup
w,θ
|d (w, θ)| ≡ op (1) , d (w, θ) ≡ ∇α

θ

[
M̂k (v (θ) ; θ)−M (v (θ) ; θ)

]

Proof. From standard results in the literature (or Lemma 10)„the lemma
is immediate for k − 1. For k > 2, write:

M̂k (v(θ); θ)−M (v(θ); θ) =
1

N

∑{
Ys −

[
M̂k−1 (Vs(θ); θ)−
M̂k−1 (v(θ); θ)

]}
Ks (v(θ); θ)

Differentiating the above expression with

d (w, θ) = d1 (w, θ)− d21 (w, θ) + d22 (w, θ)− d23 (w, θ) + d3 (w, θ) ,

7Thebi indicator was defined to insure that the b-terms and the (1=-b)-terms converge
to zero at the same rate.
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yields:

d1 (w, θ) ≡ 1

N

∑
Ys∇α

θKs (v (θ) ; θ) (40)

d21 (w, θ) ≡ 1

N

∑{
ĝs[M̂k−1(Vs(θ);θ)−M(Vs(θ);θ)]

ĝs

×∇α
θKs (v (θ) ; θ)

}
(41)

d22 (w, θ) ≡ 1

N

∑{
ĝt[M̂k−1(v;θ)−M(v;θ)]

ĝt

×∇α
θKs (v (θ) ; θ)

}
(42)

d23 (w, θ) ≡ 1

N

∑{
[Mk−1 (Vs; θ)−Mk−1 (v; θ)]

×∇α
θKs (v (θ) ; θ)

}
(43)

d3 (w, θ) ≡ 1

N

∑ ∇α
θ

[
M̂k−1 (Vs (θ) ; θ)−
M̂k−1 (v (θ) ; θ)

]
×Ks (v (θ) ; θ)

 (44)

From Lemma 10, the term in (40) uniformly converges to ∇α
θM (v; θ) .

For the terms in (41)-(42), the result holds for k = 1 from Lemma 10.
An induction argument completes the proof. For the term in (43), it can be
shown that its expectation uniformly converges to 0. The result that follows
from the same argument as in Lemma 10.
Turning to the term in (44), decompose it into three terms as in (41)-(43).

Employing Lemma 10, the proof is then essentially the same as that for the
previous three terms.
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