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THE FACTOR-LASSO AND K-STEP BOOTSTRAP APPROACH FOR

INFERENCE IN HIGH-DIMENSIONAL ECONOMIC APPLICATIONS

CHRISTIAN HANSEN AND YUAN LIAO

Abstract. We consider inference about coefficients on a small number of variables of
interest in a linear panel data model with additive unobserved individual and time specific
effects and a large number of additional time-varying confounding variables. We allow
the number of these additional confounding variables to be larger than the sample size,
and suppose that, in addition to unrestricted time and individual specific effects, these
confounding variables are generated by a small number of common factors and high-
dimensional weakly-dependent disturbances. We allow that both the factors and the
disturbances are related to the outcome variable and other variables of interest. To
make informative inference feasible, we impose that the contribution of the part of the
confounding variables not captured by time specific effects, individual specific effects, or
the common factors can be captured by a relatively small number of terms whose identities
are unknown. Within this framework, we provide a convenient computational algorithm
based on factor extraction followed by lasso regression for inference about parameters of
interest and show that the resulting procedure has good asymptotic properties. We also
provide a simple k-step bootstrap procedure that may be used to construct inferential
statements about parameters of interest and prove its asymptotic validity. The proposed
bootstrap may be of substantive independent interest outside of the present context as
the proposed bootstrap may readily be adapted to other contexts involving inference after
lasso variable selection and the proof of its validity requires some new technical arguments.
We also provide simulation evidence about performance of our procedure and illustrate
its use in two empirical applications.
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1. Introduction

Data in which there are many observable variables available for each observation, i.e.

“high-dimensional data,” are increasingly common and available for use in empirical ap-

plications. Having rich high-dimensional data offers many opportunities for empirical re-

searchers but also poses statistical challenges in that regularization or dimension reduction

will generally be needed for informative data analysis. The success of regularized estimation

for either forecasting or inference using high-dimensional data relies on using a regulariza-

tion device that is appropriate for the type of data at hand. Effective regularization imposes

substantive restrictions in estimation, and the resulting estimates can perform very poorly,

for example suffering from large biases and missing important explanatory power, when

the restrictions provide poor approximations to the underlying data generating mechanism.

It is thus important to employ regularized estimators that accommodate sensible beliefs

about the structure of an underlying econometric model.

Two structures which are common in the econometrics literature are sparse structures

and factor structures. To fix ideas, consider the linear regression model

yi = x′iθ + εi (1.1)

where i ≤ n indexes individual observations, yi is the observed outcome of interest, xi is

a p × 1 vector of observed predictor variables with p � n allowed, and εi is a regression

disturbance. A sparse structure essentially imposes that the number of non-zero elements

in θ is small. Intuitively, the sparse structure relies on the belief that the majority of the

explanatory power in the observed predictor variables concentrates within a small number

of the available variables. Estimators that are appropriate for sparse models, such as the

lasso or variable selection procedures, may perform very poorly when the true model is

“dense” in the sense that there are many non-zero elements in β that are moderate in

magnitude.

A commonly employed version of a linear factor model employs a different structure

where

yi = f ′iξ + εi (1.2)

xi = Λfi + Ui. (1.3)

Here fi denotes a latent K × 1 vector of factors with K � n that are important in

determining both the observed outcome of interest, yi, and the observed p×1, with p� n,

vector of observed predictor variables xi. Within this structure, one may obtain estimates
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of the latent factors and build a model for the outcome given the extracted factors; see,

e.g. Bai (2003), Bai and Ng (2002), Stock and Watson (2002) and Fan et al. (2016). The

basic factor model differs markedly from the sparse linear model (1.1). Importantly, data

generated from model (1.2)-(1.3) would generally result in a dense coefficient vector θ in

the regression of yi onto xi, and sparsity based estimation strategies would tend to perform

poorly as a result. Of course, if the data generated by the sparse model (1.1), common

factors will generally not capture the explanatory power, which loads on a small number

of the raw regressors, and pure factor-based estimation will perform poorly.

In this paper, we propose a simple model that nests both the sparsity-based and factor-

based structures. The model allows for the observed predictors to have a factor structure

but then allows both the factors and the factor residuals, the Ui in equation (1.3), to load

in the outcome equation. That is, we replace (1.2) with

yi = f ′iξ + U ′iθ + εi (1.4)

and impose that θ is sparse. This model allows for the fact that all of the relevant explana-

tory power in the predictors may not be captured entirely by the factors but imposes that

any predictive power not captured by the factors concentrates on only a few elements of

the high-dimensional covariate vector. (1.4) clearly reduces to (1.1) when there is no factor

structure in x and reduces to (1.2) when θ = 0. We note that this model shares much in

common with factor augmented regression models, e.g. Bai and Ng (2006) and Bernanke

et al. (2005), with the key points of departure being that we do not assume the identity

of the additional variables to include in the model is known and that U is not observable.

Hahn et al. (2013) consider a model that shares the essential structure of (1.4) and (1.3)

from a Bayesian standpoint. They show that forecasts obtained from their Bayesian esti-

mator of this model tend to outperform forecasts obtained based on either pure sparsity

or pure factor based models.

The first key contribution of the present paper is offering a practical estimation and

inference procedure that is appropriate for inference in a panel generalization of the model

given by equations (1.4) and (1.3) and providing a formal treatment of the procedure’s

theoretical properties. Specifically, we proceed by first running a factor extraction step

and taking residuals from regressing each observed variable on the estimated factors. Us-

ing these residuals, we then follow the lasso-based estimation and inference procedures of

Belloni et al. (2015). We show that the resulting estimator of parameters of interest speci-

fied ex ante by the researcher is asymptotically normal with readily estimated asymptotic

variance under sensible conditions. These conditions allow for errors in selection of the
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elements of the covariate vector that load after controlling for the factors but maintain

sufficiently strong conditions to allow oracle selection of the number of factors. The theo-

retical analysis is substantially complicated by the fact that factors and factor-residuals are

not observed and must be extracted from the data. The estimation error in this extraction

then enters the second step nonlinear and non-smooth lasso problem. Due to this compli-

cation, the theoretical results in this paper make use of arguments that, to our knowledge,

are not implied by results existing in the current factor modeling literature or the current

lasso literature. These results may be of some interest outside of the context of establishing

the properties of our proposed inferential procedure.

By addressing estimation and inference in an interesting high-dimensional factor aug-

mented regression model appropriate for panel data, our paper contributes to the rapidly

growing literature dealing with obtaining valid inferential statements following regularized

estimation. See, for example, Belloni et al. (2012, 2013a,b, 2014a,b, 2015), Berk et al.

(2013), Chernozhukov et al. (2016), Dezeure et al. (2016), Fan and Li (2001), Fan and Lv

(2011), Farrell (2015), Gautier and Tsybakov (2011), G’Sell et al. (2013), Fithian et al.

(2014), Javanmard and Montanari (2014), Kozbur (2015), Lee and Taylor (2014), Lee et al.

(2016), Lockhart et al. (2014), Loftus and Taylor (2014), Taylor et al. (2014), van de Geer

et al. (2014), Wager and Athey (2015), and Zhang and Zhang (2014) for approaches to

obtaining valid inferential statements in a variety of different high-dimensional settings.

As a second main contribution, we offer a new, computationally convenient bootstrap

method for inference. Specifically, we consider a bootstrap where we apply our main

procedure, including extraction of factors and lasso estimation steps, within each bootstrap

replication. As computation of the lasso estimator within each bootstrap sample may

be demanding, we explicitly consider a k-step bootstrap following Andrews (2002) where

we start at the lasso solution from the full sample and then iterate a numeric solution

algorithm for the lasso estimator for k-steps. We make use of solution algorithms for which

the updates are available in closed form which leads to fast computation. We provide

high-level conditions under which the procedure provides asymptotically valid inference for

parameters of interest and provide specific examples with lower level conditions. The k-step

bootstrap we propose complements other bootstrap procedures that have been proposed

for lasso-based inference, for example, Belloni et al. (2014a), Chatterjee and Lahiri (2011),

Chernozhukov et al. (2013), and Dezeure et al. (2016). In particular, the approach we take

is something of a middle ground between Chernozhukov et al. (2013), which uses resampling

of model scores to avoid recomputation of the lasso estimator, and Dezeure et al. (2016)

which fully recompute the lasso solution within each bootstrap replication. The former
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approach is extremely computationally convenient and asymptotically valid but does not

capture any finite sample uncertainty introduced in the lasso selection, while the latter

may be computationally cumbersome due to fully recomputing the lasso solution within

each iteration. We note that the bootstrap procedure could be easily applied outside of

the specific model considered in this paper and that the technical analysis here is new and

may be of interest outside of the present context.

The remainder of this paper is organized as follows. In Section 2, we describe the

panel factor-lasso model and outline the basic algorithm we will employ for inference.

We present formal results for the proposed procedure in Section 3, providing regularity

conditions under which the estimator of parameters of interest is asymptotically normal

and valid confidence statements may be obtained. Section 4 describes the k-step bootstrap

approach in detail and provides a formal analysis establishing the validity of the resulting

bootstrap inference. Section 5 discusses the factor extraction part of the problem in more

detail and provides examples with accompanying low-level conditions that are sufficient for

the high-level conditions stated in Section 3. We then provide simulation and empirical

examples that motivate the model we consider and illustrate the use of the estimation

procedure in Section 6. Key proofs are collected in an appendix with additional results

provided in a supplementary appendix.

Throughout the paper, we use ‖β‖1 and ‖β‖2 to respectively denote the `1- and `2-

norms of a vector β; use ‖A‖ and ‖A‖F to respectively denote the spectral and Frobenius

norms of a matrix A. In addition, denote by |J |0 as the cardinality of a finite set J . Finally,

for two positive sequences an, bn, we write an � bn if an = O(bn) and bn = O(an).

2. Panel Factor-Lasso Model and Algorithm

2.1. Panel Partial Factor Model. Consider the linear panel model defined by

yit = αdit + ξ′tfi + U ′itθ + gi + νt + εit (2.1)

dit = δ′dtfi + U ′itγd + ζi + µt + ηit (2.2)

Xit = Λtfi + wi + ρt + Uit (2.3)

where i ≤ n indexes cross-sectional observations, t ≤ T indexes time series observations, Xit

are observed potentially confounding variables, and dit is an a priori specified “treatment”
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variable of interest.1 fi is a K × 1 vector of latent factors with time-varying K × 1 factor

loading vectors ξt, δdt and p × K dimensional factor-loading matrix Λt. We will take

asymptotics where dim(Xit) = p → ∞, n → ∞, and T is either fixed or growing slowly

relative to n and p when stating our formal results, and we explicitly allow for scenarios

where p � nT . K is assumed fixed throughout the paper. Our object of interest is the

parameter α on the variable of interest dit. Following Hahn et al. (2013), we refer to the

model (2.1)-(2.3) as the “panel partial factor model” (PPFM).2

In each equation, we also allow for additive unobserved individual effects, (gi, ζi, w
′
i),

and time specific effects, (νt, µt, ρ
′
t), where gi, ζi, νt, and µt are scalars and wi and ρt are

p× 1 vectors. We do not impose structure over the individual or time specific effects and

thus treat them as fixed effects. This treatment differentiates the common factors, fi, from

the additive heterogeneity (gi, ζi, w
′
i) and (νt, µt, ρ

′
t) as we impose that the fi are common

to each observed series with common, time-varying loadings. Term Uit represents the part

of the observed Xit that is orthogonal to the factors and unobserved time and individual

specific heterogeneity. We allow Uit to be correlated to both the outcome and variable

of interest after controlling for the factors and individual and time fixed effects. Because

p � nT , we assume that θ and γd are approximately sparse vectors. We assume that

observed right-hand side variables are strictly exogenous so that E[ηit|Xi1, ..., XiT ] = 0 and

E[εit|Xi1, ..., XiT , di1, ..., diT ] = 0. We will assume that data are iid across i but allow for

dependence across time periods, t. Finally, we note that while we treat the PPFM defined

in (2.1)-(2.3) in the formal analysis, the results clearly apply to models without additive

fixed effects or to a single cross-section.3

As noted in the Introduction, the PPFM generalizes the high-dimensional sparse fixed

effects model examined in Belloni et al. (2015) and conventional large-dimensional factor

models and factor augmented regression models; e.g. Bai and Ng (2006). The PPFM is

also related to, but distinct from, interactive fixed effects models as in, for example, Bai

(2009); Bai and Li (2014), Moon and Weidner (2015a,b), Pesaran (2006) and Su and Chen

1Our results will immediately apply to the case where dit is an r×1 vector with r fixed. The analysis could
also be extended to handle unbalanced panels where observations are missing at random. We omit both
cases for convenience.
2Hahn et al. (2013) consider a similar structure to (2.1)-(2.3) which excludes the individual and time effects
and imposes that the εit are i.i.d. Gaussian innovations. They refer to this model as a partial factor model.
3We consider a cross-sectional instrumental variables version of the model in both a simulation and an
empirical example.
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(2013).4 A simple version of the interactive fixed effects model analogous to (2.1) is

yit = αdit + z′itβ + λtfi + εit.

In this model, zit represents a known, low-dimensional set of variables that must be con-

trolled for in addition to the factors in fi. There appear to be three key distinctions between

the high-dimensional PPFM and interactive fixed effects approaches. First, we relax the

assumption that one knows the exact identity of the variables that should appear in the

model, zit, by allowing for a high-dimensional set of observed potential confounds in Xit.

Second, we allow for the fact that the relevant explanatory power in the predictors may not

be captured entirely by the factors, but impose that any predictive power not captured by

the factors concentrates on only a few elements of the high-dimensional vector U . Third,

we directly extract estimates of the factors and U from X which can proceed even when

T is small. Approaches to estimating the interactive fixed effects structure rely on having

a large number of observations in both the time series and cross-sectional dimensions. We

thus view the PPFM and interactive fixed effects approaches as complementary where one

may prefer one or the other depending on the nature of the data at hand.

2.2. Estimation Algorithm. To estimate α, we begin by taking the within transforma-

tion of all observed variables to remove the fixed effects. To this end, let

z̃it = zit − z̄·t − z̄i· + ¯̄z

for any variable zit where z̄·t = 1
n

∑n
i=1 zit, z̄i· = 1

T

∑T
t=1 zit, and ¯̄z = 1

nT

∑n,T
i=1,t=1 zit. We

can then define a demeaned model as

ỹit = αd̃it + ξ̃′tf̃i + Ũ ′itθ + ε̃it (2.4)

d̃it = δ̃′dtf̃i + Ũ ′itγd + η̃it, (2.5)

X̃it = Λ̃tf̃i + Ũit. (2.6)

After removing the additive unobserved heterogeneity, we estimate the (demeaned) la-

tent factors as well as the (demeaned) idiosyncratic components from the model X̃it =

Λ̃′tf̃i+ Ũit.
5 Let F̂ = (f̂1, ..., f̂n)′ be the n×K matrix of estimated factors. We shall discuss

4See also Bonhomme and Manresa (2015) for a distinct but related approach based on a grouped fixed
effects model.
5We note that recovering the untransformed fi and Uit would only be possible with large n and T due to
the presence of the unrestricted fixed effects. Fortunately, recovering these quantities is unnecessary within
the model with common coefficients θ, γd, and α as only f̃i and Ũit appear in the equations of interest.
This simplification would not generally occur if we allowed heterogeneity in θ, γd, or α over time or across
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some examples of F̂ in Section 5. Given F̂ , we estimate Λ̃t and Ũit by least squares:

Λ̂t =
n∑
i=1

X̃itf̂
′
i(F̂
′F̂ )−1, Ûit = X̃it − Λ̂tf̂i, i ≤ n, t ≤ T. (2.7)

Substituting (2.5) to (2.4), we obtain

ỹit = α(δ̃′dtf̃i + Ũ ′itγd + η̃it) + ξ̃′tf̃i + Ũ ′itθ + ε̃it

:= δ̃′ytf̃i + Ũ ′itγy + ẽit.

Now let Ỹt = (ỹ1t, ..., ỹnt)
′ and D̃t = (d̃1t, ..., d̃nt)

′ denote the vectors of outcome and

treatment variable within each time period t. We next regress Ỹt and D̃t onto the extracted

factors F̂ time period by time period to obtain {δ̂yt}Tt=1 and {δ̂dt}Tt=1 for

δ̂yt = (F̂ ′F̂ )−1F̂ ′Ỹt and δ̂dt = (F̂ ′F̂ )−1F̂ ′D̃t. (2.8)

We then run the lasso with the residuals from each of these factor regressions as dependent

variable and the estimated factor disturbances Ûit as predictors. That is, we obtain

γ̃y = arg min
γ∈Rp

1

nT

T∑
t=1

n∑
i=1

(ỹit − δ̂′ytf̂i − Û ′itγ)2 + κn‖Ψ̂yγ‖1, (2.9)

γ̃d = arg min
γ∈Rp

1

nT

T∑
t=1

n∑
i=1

(d̃it − δ̂′dtf̂i − Û ′itγ)2 + κn‖Ψ̂dγ‖1. (2.10)

where the tuning parameter κn is chosen as, for some c0 > 1 and qn → 0,

κn =
2c0√
nT

Φ−1(1− qn/(2p)), log(q−1
n ) = O(log p) (2.11)

and Ψ̂y and Ψ̂d are diagonal penalty loading matrices. Given the fixed effects panel struc-

ture, we use the clustered penalty loadings of Belloni et al. (2015) which have diagonal

elements defined as

[Ψ̂y]j,j =

√√√√ 1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

Ûit,jÛit′,j êitêit′ (2.12)

[Ψ̂d]j,j =

√√√√ 1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

Ûit,jÛit′,j η̂itη̂it′ (2.13)

individuals, and we would need to consider incidental parameters bias introduced by removing the additive
fixed effects. We leave exploration of this issue to future research.
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where êit is an estimator of ẽit = ỹit − δ̃′ytf̃i − Ũ ′itγy and η̂it is an estimator of η̃it =

d̃it − δ̃′dtf̃i − Ũ ′itγd.
6

For the final step, we adopt the post-double-selection procedure of Belloni et al. (2014b).

Let Ĵ = {j ≤ p : γ̃y,j 6= 0} ∪ {j ≤ p : γ̃d,j 6= 0}, and let Û
it,Ĵ

be a subvector of Ûit whose

elements are {Ûit,j : j ∈ Ĵ}. We then run the regression of ỹit− δ̂′ytf̂i on Û
it,Ĵ

and d̃it− δ̂′dtf̂i
on Û

it,Ĵ
and obtain

γ̂y = (

n∑
i=1

T∑
t=1

Û
it,Ĵ
Û ′
it,Ĵ

)−1
n∑
i=1

T∑
t=1

Û
it,Ĵ

(ỹit − δ̂′ytf̂i), (2.14)

γ̂d = (
n∑
i=1

T∑
t=1

Û
it,Ĵ
Û ′
it,Ĵ

)−1
n∑
i=1

T∑
t=1

Û
it,Ĵ

(d̃it − δ̂′dtf̂i). (2.15)

The final estimator of α is then given by

α̂ = (
n∑
i=1

T∑
t=1

η̂2
it)
−1

n∑
i=1

T∑
t=1

η̂itêit (2.16)

where êit = ỹit − δ̂′ytf̂i − Û ′it,Ĵ γ̂y and η̂it = d̃it − δ̂′dtf̂i − Û ′it,Ĵ γ̂d are the residuals from the

regressions specified in (2.14) and (2.15).

The estimator α̂ can be expressed more compactly in matrix form. Write

Ỹ =


Ỹ1

...

ỸT


nT×1

, D̃ =


D̃1

...

D̃T


nT×1

, Û
Ĵ

=


Û

1,Ĵ
...

Û
T,Ĵ


nT×|Ĵ |0

,

ê =


ê1

...

êT


nT×1

, and η̂ =


η̂1

...

η̂T


nT×1

.

In addition, for a matrix A, define MA = I − A(A′A)−A′, where (A′A)− represents a

generalized inverse of A′A. Then it is straightforward to verify that

ê = M
Û
Ĵ
(IT ⊗MF̂

)Ỹ , and η̂ = M
Û
Ĵ
(IT ⊗MF̂

)D̃

6We obtain êit and η̂it through an iterative algorithm similar to that of Belloni et al. (2014b), which starts
from a preliminary estimate. In addition, we use c0 = 1.1 and qn = .1/ log(n) in the simulation and
empirical examples.
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are the estimated residuals (ẽ′1, ..., ẽ
′
T )′ and (η̃′1, ..., η̃

′
T )′ defined above. Then

α̂ = (η̂′η̂)−1η̂′ê.

Note that the estimator α̂ is numerically equivalent to the coefficient on d̃it in the

regression of ỹit on d̃it, f̂i interacted with time dummy variables, and Û
it,Ĵ

. In Theorem

3.1 of the next section, we verify that inference for α̂ can proceed using the output from

this OLS regression as long as clustered standard errors (e.g. Arellano (1987), Bertrand

et al. (2004), and Hansen (2007)) are used.

The following algorithm summarizes the estimation strategy detailed above.

Algorithm (Factor-Lasso Estimation of α.)

(1) Obtain {f̂i, Ûit}i≤n,t≤T by extracting factors from the model X̃it = Λ̃′tf̃i + Ũit.

(2) For δ̂yt and δ̂dt defined in (2.8), run the cluster-lasso programs (2.9) and (2.10)

to obtain γ̃y and γ̃d.

(3) Obtain the estimator α̂ and corresponding estimated standard error as the coef-

ficient on d̃it− δ̂′dtf̂i and associated clustered standard error from the regression

of ỹit− δ̂′ytf̂i− Û ′it,Ĵ γ̂y on d̃it− δ̂′dtf̂i− Û ′it,Ĵ γ̂d where Û
it,Ĵ

is the subvector of Ûit

whose elements are {Ûit,j : j ∈ Ĵ}.

3. Assumptions and Asymptotic Theory

In this section, we present a set of sufficient conditions under which we establish as-

ymptotic normality of α̂ and provide a consistent estimator of its asymptotic variance.

Throughout we consider sequences of data generating processes (DGPs) where p increases

as n and T increase and where model parameters are allowed to depend on n and T . We

suppress this dependence for notational simplicity. We use the term “absolute constants”

to mean given constants that do not depend on the DGP.

3.1. Regularity Conditions. Write εt = (ε1t, ..., εnt)
′, ηt = (η1t, ..., ηnt)

′, and Ut =

(U ′1t, ..., U
′
nt)
′. Similarly, let εi = (εi1, ..., εiT )′ and ηi = (ηi1, ..., ηiT )′, Ui = (U ′i1, ..., U

′
iT )′.

Our first two conditions collect various restrictions on dependence, tail behavior, and

moments of the unobserved features of the model. We assume there are positive absolute

constants C1, C2 and C3 such that the following assumption holds.
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Assumption 3.1 (DGP). (i) {fi, ηi, εi, Ui}i≤n are independent and identically distributed

across i = 1, 2, ..., n and satisfy

E(ηi|εi, Ui, fi) = 0, E(εi|ηi, Ui, fi) = 0, E(Ui|ηi, εi, fi) = 0.

In addition, given {fi}i≤n, the sequence {Ui, ηi, εi}i≤n,t≤T is also conditionally independent

across i.

(ii) Given {fi}i≤n, the sequence {Ut, ηt, εt}t≤T is stationary across t, and satisfies a

strong-mixing condition. That is, there exists an absolute constant r > 0 such that for all

T ∈ R+,

sup
A∈F0

−∞,B∈F∞T
|P (A)P (B)− P (AB)| ≤ exp(−C1T

r),

where F0
−∞ and F∞T denote the σ-algebras generated by {(Ut, ηt, εt) : −∞ ≤ t ≤ 0} and

{(Ut, ηt, εt) : T ≤ t ≤ ∞} respectively.

(iii) Almost surely,

max
i≤n,m≤p,t≤T

p∑
k=1

T∑
s=1

|E(Uit,k Uis,m|fi, εi, ηi)| < C2.

(iv) For any s > 0, i ≤ n, j ≤ p and k ≤ K,

P (|Uit,j | > s) ≤ exp(−C3s
2), P (|fik| > s) ≤ exp(−C3s

2),

P (|ηit| > s) ≤ exp(−C3s
2), P (|εit| > s) ≤ exp(−C3s

2).

(v) Let θm and γd,m be the mth entries of θ and γd, and λ′tm be the mth row of Λt.

|α|+ max
t≤T

(‖ξt‖+ ‖δdt‖) + max
m≤p

(|θm|+ |γd,m|) + max
m≤p,t≤T

‖λtm‖ < C2.

Assumption 3.1 collects reasonably standard regularity conditions that restrict the de-

pendence across observations and tail behavior of random variables. These conditions

impose that the unobserved variables in the model are cross-sectionally independent, are

weakly dependent and stationary in the time series, and have sub-Gaussian tails. Assump-

tion 3.1.(iii) further imposes weak conditional dependence in the factor residuals, Uit. In

the simple case where Uit is independent of fi, ηi, and εi for all t, this condition reduces

to weak intertemporal correlation and no strong dependence among the columns of Uit.

Importantly, it does not imply that all correlation among the observed Xit is captured by

factors but allows for the presence of a rich covariance structure in the part of Xit that is not
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linearly explained by the factors. The condition also allows for some dependence between

“control” variables Uit and structural unobservables ηi and εi but restricts the magnitude of

any such dependence so that it is asymptotically negligible. Finally, condition (v) requires

that all the low dimensional parameters are well bounded.

Recall that eit = αηit + εit.

Assumption 3.2 (Moment bounds). For m ≤ p, i ≤ n, t ≤ T , define

Wim =
1√
T

T∑
t=1

(Uit,m − Ūi·,m)(eit − ēi·).

There are absolute constants c, C > 0, such that

(i) maxi≤n,m≤pE|Wim|3 ≤ C and c < mini≤n,m≤pEW
2
im ≤ maxi≤n,m≤pEW

2
im < C, and

Var

(
1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)
> c.

(ii) almost surely in F = (f1, ..., fn)′,

max
m≤p,t≤T

1

n

n∑
i=1

E(U8
it,m|F ) < C, max

t≤T

1

n

n∑
i=1

E(e8
it|F ) < C.

Assumption 3.2 collects additional high-level moment bounds. The bounds on mo-

ments of normalized sums in Condition (i) could be established under a variety of suffi-

cient lower level conditions. Condition (ii) places restrictions on the dependence between

{Uit, eit}n,Ti=1,t=1 and {fi}ni=1.

Before stating the next assumption, we decompose the high dimensional coefficients as

γy = γ0
y︸︷︷︸

exactly sparse

+ Ry︸︷︷︸
remainder

and γd = γ0
d︸︷︷︸

exactly sparse

+ Rd︸︷︷︸
remainder

where γ0
y and γ0

d are sparse vectors that approximate the potentially dense true coefficient

vectors γy and γd and Ry and Rd represent approximation errors. Let J = {j ≤ p : γ0
y,j 6=

0} ∪ {j ≤ p : γ0
d,j 6= 0} be the union of the support of the exactly sparse components.

Assumption 3.3 (Rate Conditions). (i) ‖Rd‖1 + ‖Ry‖1 = o(
√

log p
nT ).

(ii) |J |20 log3(p) = O(n).

(iii) |J |20T = o(n). In addition, the number of factors, K, stays constant.
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Assumption 3.3 collects restrictions on the quality of the approximation provided by γ0
y

and γ0
d and rates of growth of model complexity as measured by J and p and sample sizes

in the cross-sectional and time series dimension. Condition (iii) imposes the somewhat

nonstandard requirement that T be much smaller than n. The need for this condition

arises from the fact that we need to obtain high-quality estimates of the idiosyncratic term

in the factor equation, Uit, which depends on accurately estimating both the unknown

factors and the loadings. Estimating the loading matrix Λt well for any given t requires a

relatively large n, and we thus require T to be smaller than n as the number of unknown

loading matrices {Λt}t≤T is O(T ).

Our next assumption restricts the covariance matrix of the within-transformed factor

residuals Ũit.

Assumption 3.4. For any δ ∈ Rp/{0}, write

R(δ) =
δ′ 1
nT

∑n
i=1

∑T
t=1 ŨitŨ

′
itδ

δ′δ
.

Define restricted and sparse eigenvalue constants:

φ(m) = inf
δ∈Rp:‖δJc‖1≤m‖δJ‖1

R(δ),

φmin(m) = inf
δ∈Rp:1≤‖δ‖0≤m

R(δ),

φmax(m) = sup
δ∈Rp:1≤‖δ‖0≤m

R(δ).

(i) (restricted eigenvalue) For any m > 0 there is an absolute constant φ > 0 so that

with probability approaching one,

φ(m) > φ.

(ii) (sparse eigenvalue) There is a sequence of absolute constants lT →∞ and c1, c2 > 0

so that with probability approaching one,

c1 < φmin(lT |J |0) ≤ φmax(lT |J |0) < c2.

Maintaining Assumptions 3.1-3.3, a simple sufficient condition for Assumption 3.4 is

that all the eigenvalues of 1
nT

∑
i

∑
tE(Uit − Ūi,·)(Uit − Ūi·)′ are well bounded. This is a

typical condition in high-dimensional approximate factor models (e.g., Bai (2003); Stock

and Watson (2002)). It ensures that the idiosyncratic components are weakly dependent

and therefore the decomposition X̃it = Λ̃′tf̃i + Ũit is asymptotically identified (as p→∞).
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Finally, we present high-level conditions on the accuracy of F̂ in Assumption 3.5. The

high-level conditions potentially allow for many estimators of the factors, and we verify

that these conditions hold under more primitive assumptions for the case of estimating the

factors using PCA in Appendix C.

Assumption 3.5 (Quality of Factor Estimation in Original Data). Suppose there is an in-

vertible dim(fi)×dim(fi) matrix H with ‖H‖+‖H−1‖ = OP (1), and non-negative sequences

∆F , ∆eg, ∆ud, ∆fum, ∆fe,∆max, so that for z̃it ∈ {ε̃it, η̃it}, w̃tm ∈ {Λ̃′tγd, Λ̃′tγy, δ̃dt, δ̃yt, λ̃tm},
h̃tk ∈ {δ̃dt, δ̃yt, λ̃tk}, and γ ∈ {γd, γy},

max
i≤n
‖f̂i −H ′f̃i‖2 = OP (∆max),

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP (∆2
F )

1

T

T∑
t=1

‖ 1

n

n∑
i=1

(f̂i −H ′f̃i)z̃it‖22 = OP (∆2
fe),

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)z̃itw̃′tm‖F = OP (∆eg),

max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)Ũit,mh̃′tk‖F = OP (∆ud),

max
m≤p,t≤T

‖ 1

n

n∑
j=1

(f̂j −H ′f̃j)Ũjt,m‖2 = OP (∆fum).

These sequences satisfy the following restrictions:

√
nT |J |20∆2

F = o(1), ∆eg = o(
1√
nT

), ∆ud = o(

√
log p

nT
), |J |20

√
log p∆ud = o(1),

∆2
fum = o(

log p

T |J |2 log(pT )
), ∆2

fe = o(
log p

T log(pT )
), ∆2

max = O(log(n)), and

∆2
max|J |20T (λ2

n|J |0 + ∆2
F |J |20 +

|J |0
n

) = o(1).

One of the major technical tasks of this paper is to show that the effects of estimating the

latent factor and idiosyncratic terms are stochastically dominated by the plug-in tuning

parameter κn in (2.11). Since κn �
√

log p
nT , this is a strong requirement, and gives rise

to Assumption 3.5 (and Assumption 4.4 below for the bootstrap sample). Technically,

existing results in the literature on estimating factors models are not directly applicable to

verify these conditions. In Appendix C, we show that

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP (
1

pT
+

1

n2
+

1

nT 2
)
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when f̂t is estimated via PCA. While this result is essentially standard and allows conditions

involving ∆F to be directly verified, however, it does not imply the uniform convergence

condition maxt≤T ‖f̂t − H ′f̃t‖2. Nor is this result sufficient to verify the other stated

conditions because other terms, e.g. ∆eg,∆fum,∆fe, involve “weighted averages” of {f̂i −
H ′f̃i} whose rates of convergence can be derived and shown to be faster than that of

∆F = 1
pT + 1

n2 + 1
nT 2 . For instance, if we use a simple Cauchy-Schwarz inequality to bound

∆ud, we would have

max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i−H ′f̃i)Ũit,mh̃′tk‖2F ≤
1

n

n∑
i=1

‖f̂i−H ′f̃i‖22 max
m,k≤p

1

n

n∑
i=1

‖ 1

T

T∑
t=1

Ũit,mh̃tk‖22.

It can be shown that maxm,k≤p
1
n

∑n
i=1 ‖

1
T

∑T
t=1 Ũit,mh̃tk‖22 = OP ( log p

T ), so this crude bound

gives us ∆ud = ∆F

√
log p
T . Unfortunately, this bound is not sharp enough to verify the

condition ∆ud = o(
√

log p
nT ) unless n = o(pT ). In the special case that T is fixed, requiring

n = o(p) is a restrictive condition. Rather than relying on these crude bounds, we achieve

sharper bounds by directly deriving the rate of convergence for each required term in

Appendix C which relies on some novel technical work. These conditions only require

n = o(p2T ) which provides much more freedom on the ratio n/p.

3.2. Main results. The asymptotic variance of α̂ will depend on the quantities

σηε = Var

(
1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)
and σ2

η =
1

nT

n∑
i=1

T∑
t=1

Var(ηit − η̄i·)

for which

σ̂ηε =
1

nT

n∑
i=1

(
T∑
t=1

η̂itε̂it

)2

and σ̂2
η =

1

nT

n∑
i=1

T∑
t=1

η̂2
it

are natural estimators. Note that σ̂ηε is just the usual clustered covariance estimator with

clustering at the individual level.

Theorem 3.1. Suppose n, p → ∞, and T is either fixed or growing. Under Assumptions

3.1-3.5, √
nTσ−1/2

ηε σ2
η(α̂− α)→d N (0, 1),

In addition, √
nT σ̂−1/2

ηε σ̂2
η(α̂− α)→d N (0, 1).

Corollary 3.1. Let P be a collection of all DGP’s such that the assumptions of Theorem

3.1 hold uniformly over all the DGP’s in P. Let ζτ = Φ−1(1 − τ/2). Then as n, p → ∞,
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and T is either fixed or growing with n, uniformly over P ∈ P,

lim
n,p→∞

P

(
α ∈ [α̂± ζτ√

nT
σ̂1/2
ηε σ̂

−2
η ]

)
= 1− τ.

The main implication of Theorem 3.1 and Corollary 3.1 is that α̂ converges at a
√
nT

rate and that inference may proceed using standard asymptotic confidence intervals and

hypothesis tests. Importantly, the inferential results hold uniformly across a large class

of approximately sparse models which include cases where perfect selection over which

elements of Ũit enter the model is impossible even in the limit. It is also important to

highlight that the conditions on estimation of the factors do rule out the presence of weak

factors, and the inferential results do not hold uniformly over sequences of models in which

perfect selection of the number of factors and fast convergence of the factors and factor

loadings do not hold. The difficulty with handling weak factors arises due to the entry

of the estimation errors of the factors in the cluster-lasso problems (2.9) and (2.10) and

the non-smooth and highly nonlinear nature of this problem. Extending the results to

accommodate the presence of weak factors and imperfect selection of the number of factors

would be an interesting direction for further research.

4. k-Step Bootstrap

In this section, we present a computationally tractable bootstrap procedure that can

be used in lieu of the plug-in asymptotic inference formally presented in Theorem 3.1 and

Corollary 3.1. While well-developed in low-dimensional settings, there are relatively few

formal treatments of bootstrap procedures in high-dimensional settings, though see Chat-

terjee and Lahiri (2011), Chernozhukov et al. (2013), Belloni et al. (2014a), and Dezeure

et al. (2016) for important existing treatments. In the following, we consider a bootstrap

procedure which only approximately solves the cluster-lasso problem within each boot-

strap replication and thus may remain computationally convenient while also intuitively

capturing the sampling variation introduced in the lasso selection.

4.1. The k-Step Bootstrap. Let D∗ = {ỹ∗it, d̃∗it, X̃∗it}i≤n,t≤T denote a sample of bootstrap

data, and let α̂∗ be the estimator obtained by applying the factor-lasso estimator with data

D∗. Let B denote the number of bootstrap repetitions.

A potential computational problem with bootstrap procedures for lasso estimation is that

one needs to solve B lasso problems where B will typically be fairly large. To circumvent
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this problem, we adopt the approach of Andrews (2002) by using the fact that the complete

lasso estimator based on the original data, denoted by γ̃lasso, should be close to the complete

lasso estimator based on bootstrapped data D∗, denoted by γ̃∗lasso. Hence, within each

bootstrap replication, we can use γ̃lasso as the initial value for solving the lasso problem

and iteratively update the estimator for k steps. Denote the resulting k-step bootstrap

lasso estimator by γ̃∗. We simply use γ̃∗ in place of γ̃∗lasso wherever the solution to a

lasso problem shows up in the factor-lasso problem. The main result of this section is

showing that the k-step bootstrap procedure is first-order valid for statistical inference

about α as long as the minimization error after k steps is less than the statistical error (i.e.

oP ∗((nT )−1/2).

The substantive difference between the present context and Andrews (2002) is that An-

drews (2002) makes use of Newton-Raphson updates for the k-steps while face a regularized

optimization problem at each iteration. Tractability relies on the fact that there are a va-

riety of procedures for updating within the lasso problem that are available in closed form.

Using these analytic updates greatly reduces the overall computational task and makes a

k-step bootstrap procedure attractive within the lasso context.

Specifically, consider the following lasso problems on the bootstrap data. Let

γ̃∗y,lasso = arg min
γ∈Rp

L∗y(γ) + κn‖Ψ̂yγ‖1,

γ̃∗d,lasso = arg min
γ∈Rp

L∗d(γ) + κn‖Ψ̂dγ‖1,
(4.1)

where

L∗y(γ) =
1

nT

T∑
t=1

n∑
i=1

(ỹ∗it − δ̂∗
′
ytf̂
∗
i − Û∗

′
it γ)2,

L∗d(γ) =
1

nT

T∑
t=1

n∑
i=1

(d̃∗it − δ̂∗
′
dtf̂
∗
i − Û∗

′
it γ)2.

The definitions of {ỹ∗it, d̃∗it, δ̂∗yt, δ̂∗dt, f̂∗i , Û∗it}i≤n,t≤T will be formally given below. Let γ̃y and

γ̃d be the lasso solutions obtained from the original data. Also, note that we fix the value

of κn and of the penalty loadings Ψ̂y and Ψ̂d to the same values as used to obtain the

solutions γ̃y and γ̃d in the original data.
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Within each bootstrap replication, we then approximately solve the lasso problems (4.1)

by applying the following procedure. The maximum number of steps k to be taken should

be determined on a case-by-case basis according to the available computational capacity.7

Algorithm (k-Step Lasso Iteration.)

Set k to be a pre-determined number of iterations.

(A1) Set l = 0 and initialize at γy,0 = γ̃y, γd,0 = γ̃d.

(A2) Determine one-step iteration mappings Sy,Sd : Rp → Rp. Let

γy,l+1 = Sy(γy,l), γd,l+1 = Sd(γd,l) (4.2)

Set l = l + 1.

(A3) Repeat (A2) until l = k. Let the k-step lasso estimators be

γ̃∗y = γy,k, γ̃∗d = γd,k.

There are a variety of iteration mappings that can be used in Step (A2) of the k-step

lasso problem. A commonly used and simple mapping is the “coordinate descent method,”

also known as the “shooting method,” studied by Fu (1998).8 For solving problem (4.1),

write the solution after the lth iteration as γy,l = (γy,l,1, ..., γy,l,p)
′. The coordinate descent

method updates γy,l+1 by iteratively cycling through all coordinates. Specifically, we solve

the following one-dimensional optimization problem for m = 1, ..., p,

γy,l+1,m = arg min
g∈R

1

nT

∑
i,t

(ỹ∗it − δ̂∗
′
ytf̂
∗
i − Û∗

′

it,m−γy,l+1,m− − Û∗
′

it,m+γy,l,m+ − Û∗it,mg)2

+ κn|Ψ̂y
mg|.

(4.3)

Here m− = {j : j < m}; and γy,l+1,m− and Û∗it,m− are Rm−1 dimensional vectors whose

components are respectively those of {γy,l+1,j : j < m} and {Û∗it,j : j < m}. Similarly,

m+ = {j : j > m}; and γy,l,m+ and Û∗it,m+ are Rp−m dimensional vectors whose components

are respectively those of {γy,l,j : j > m} and {Û∗it,j : j > m}. When m = 1, m− is empty;

7In applications where obtaining the full lasso solution is not too burdensome, one may simply iterate to
convergence.
8Another commonly used iterative scheme that could readily be applied in the present setting is the “com-
posite gradient method” (e.g. Nesterov (2007) and Agarwal et al. (2012)). We choose to focus on the
coordinate descent method as our concrete example as it does not rely on additional tuning parameters and
performed well numerically in preliminary simulation experiments. In addition, coordinate descent requires
weaker regularity conditions than the composite gradient method for our theoretical analysis.
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and when m = p, m+ is empty. In these cases, the corresponding subvectors, γy,l+1,m− and

Û∗it,m− or γy,l,m+ , and Û∗it,m+ , are defined as zero. Note that when γy,l+1,m is being updated

the previous m−1 elements have already been updated, while the remaining p−m elements

are yet to be updated. Thus, γy,l+1,m− is a subvector of γy,l+1, but γy,l,m+ is a subvector of

γy,l. Denote by γ
(m)
y,l+1 := (γy,l+1,m− , γy,l+1,m, γy,l,m+)′ the vector that results immediately

after the mth coordinate has been updated during the (l+ 1)th iteration. When m = p, all

the components have been updated; and we obtain γy,l+1 := γ
(p)
y,l+1.

Importantly, (4.3) is a one-dimensional `1-penalized quadratic problem which has an

analytical solution given by the soft thresholding operation:

γy,l+1,m =

[
sgn

(
1

nT

T∑
i=1

T∑
t=1

Z∗it,l,mÛ
∗
it,m

)]

×

(∣∣∣∣∣ 1

nT

T∑
i=1

T∑
t=1

Z∗it,l,mÛ
∗
it,m

∣∣∣∣∣− 1

2
κnΨ̂y

m

)
+

(
1

nT

T∑
i=1

T∑
t=1

Û∗2it,m

)−1

,

(4.4)

where Z∗it,l,m := ỹ∗it− δ̂∗
′
ytf̂
∗
i − Û∗

′

it,m−γy,l+1,m−− Û∗
′

it,m+γy,l,m+ , (x)+ = max{x, 0}, and sgn(x)

takes the sign of x. Therefore, the mappings in (4.2) are given by

Sy(γy,l) = (γy,l+1,1, ..., γy,l+1,p)
′, where each γy,l+1,m is given in (4.4).

Sd(γd,l) is obviously defined similarly.

With the k-step lasso program defined, we now state the complete algorithm for the

proposed k-step bootstrap procedure. We make use of a wild residual bootstrap to generate

the data at each bootstrap replication.

Algorithm (k-Step Wild Bootstrap.)

Let {f̂i, Ûit, Λ̂t}i≤n,t≤T denote the estimates of the features of the factor model using

the original data. Let α̂, δ̂dt, δ̂yt, γ̂d, γ̂y be the estimated coefficients from the original

data, defined in (2.7) through (2.16). Also, let

ξ̂t = δ̂yt − α̂δ̂dt, t = 1, ..., T, and

θ̂ = γ̂y − α̂γ̂d.

(1) For each i = 1, ..., n, let wxi (x = U, Y,D) be mutually independent random

variables, where {wxi }i≤n are i.i.d. with mean zero and variance one. Let

Ũ∗it = wUi Ûit, η̃∗it = wDi η̂it, ε̃∗it = wYi ε̂it, t = 1, ..., T.
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Define {ỹ∗it, d̃∗it, X̃∗it}t≤T as

ỹ∗it = α̂d̃∗it + ξ̂′tf̂i + Ũ∗
′
it θ̂ + ε̃∗it

d̃∗it = δ̂′dtf̂i + Ũ∗
′
it γ̂d + η̃∗it,

X̃∗it = Λ̂tf̂i + Ũ∗it.

(2) Apply the Factor-Lasso Algorithm to the bootstrap data {ỹ∗it, d̃∗it, X̃∗it}i≤n,t≤T
to obtain an estimated alpha α̂∗ replacing the lasso estimation in Step (2) of the

Factor-Lasso Algorithm with steps (A1)-(A3) from the k-Step Lasso Iteration

defined above.

(3) Repeat the above steps (1)-(2) B times to obtain {α̂∗b}b≤B.

Let q∗τ be the τ th upper quantile of {
√
nT |α̂∗b − α̂|}b≤B, so that

P ∗(
√
nT |α̂∗b − α̂| ≤ q∗τ ) = 1− τ.

Construct the bootstrap confidence interval:[
α̂± q∗τ√

nT

]
.

4.2. Validity of k-Step Bootstrap Confidence Interval. In the following, we present

conditions under which we verify that the bootstrap confidence intervals are asymptotically

valid:

P

(
α ∈

[
α̂± q∗τ√

nT

])
→ 1− τ.

The first assumption imposes high-level conditions that will admit the use of general

updating rules in (4.2) of the k-Step Lasso Iteration. The assumption provides high-level

conditions on the computational properties and sparsity of the solution resulting after

taking k iterations in the solution of the lasso problem. Recall that γ̃∗y = γy,k and γ̃∗d = γd,k.

Assumption 4.1. The following conditions hold for x ∈ {y, d}:
(i) Minimization Error: There is a deterministic sequence an such that an

√
nT = o(1),

and a K0 > 0, such that when k > K0,

L∗x(γ̃∗x) + κn‖Ψ̂xγ̃∗x‖1 ≤ L∗x(γ̃∗x,lasso) + κn‖Ψ̂xγ̃∗x,lasso‖1 +OP ∗(an).
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(ii) Sparsity: |Ĵ∗| = OP ∗(|J |0), where Ĵ∗ = {j ≤ p : γ̃∗dj 6= 0} ∪ {j ≤ p : γ̃∗yj 6= 0}.

Condition (i) requires that the minimization error should be negligible compared to

the statistical error after k iteration steps. Condition (ii) guarantees the sparsity of the

iterated solutions. As a concrete example, we verify both conditions for the coordinate

descent method. We note that, to the best of our knowledge, showing the |J |0-sparsity of

the k-step iterated coordinate descent estimator has not been done previously when p is

potentially much larger than n and may be of some independent interest.

Proposition 4.1. The coordinate descent iteration as given in (4.4) satisfies Assumption

4.1.

We next impose a fairly standard notion of regularity on the high-dimensional component

Ũit which shows up in the infeasible lasso problem with known factors.

Assumption 4.2 (Restricted Strong Convexity). There is a constant c > 0, and a sequence

τn = o(|J |−1
0 ) so that for all δ ∈ Rp,

δ′
1

nT

n∑
i=1

T∑
t=1

ŨitŨ
′
itδ ≥

c

2
‖δ‖22 −OP (τn)‖δ‖21.

This assumption has been discussed by many authors, and various sufficient conditions

have been provided (e.g., Raskutti et al. (2010) and Loh and Wainwright (2015)). The

following lemma provides a simple sufficient condition for both this assumption and the

restricted/sparse eigenvalue assumption.

Lemma 4.1. Suppose Assumption 3.1 holds. Let λ1 ≤ ... ≤ λp be the eigenvalues of
1
nT

∑
i

∑
tE
[
(Uit − Ūi,·)(Uit − Ūi·)′

]
. Suppose for some 0 < c < C,

c < λ1 ≤ λp < C.

Then Assumptions 3.4 and 4.2 are satisfied.

As we described earlier, even if p/n→∞, requiring that the eigenvalues of the population

covariance matrix are well-bounded is not a stringent condition. Note that this condition

is imposed only on the factor-residuals, Uit, and that similar conditions on the population

covariance matrix of factor residuals are typically imposed in the formal analysis of large

approximate factor models.

The following conditions are imposed on the bootstrap weights.
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Assumption 4.3. For x = U, Y,D, Ewxi = 0 and Var(wxi ) = 1. In addition, there exist

L, r > 0, such that for any s > 0, i ≤ n,

P (|wxi | > s) ≤ exp(−Lsr).

The sub-exponential condition for the bootstrap weights enables us to bound many

stochastic processes uniformly in m ≤ p and t ≤ T . In our numerical studies, we follow

Mammen (1993) and use wxi = ζx1,i/
√

2 + ((ζx2,i)
2− 1)/2 where ζx1,i and ζx2,i are independent

standard normals and x ∈ {U, Y,D}.

Finally, we impose further regularity on the quality of estimation of the factors in the

bootstrap data.

Assumption 4.4 (Quality of Factor Estimation in Bootstrap Data). Suppose there is an

invertible dim(fi) × dim(fi) matrix H∗ with ‖H∗‖ + ‖H∗−1‖ = OP ∗(1), and non-negative

sequences ∆∗F , ∆∗eg, ∆∗ud, ∆∗fe, so that for z̃∗it ∈ {η̃∗it, ε̃∗it}, ĝtm ∈ {Λ̂′tγ̂d, Λ̂′tγ̂y, δ̂dt, δ̂yt, λ̂tm},
and ĥtm ∈ {δ̂dt, δ̂yt, λ̂tm},

1

n

n∑
i=1

‖f̂∗i −H∗
′
f̂i‖22 = OP (∆∗2F )

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

z̃∗itĝtm(f̂∗i −H∗f̂i)′‖F = OP ∗(∆
∗
eg)

max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂∗i −H∗
′
f̂i)Ũ

∗
it,mĥ

′
tk‖F = OP (∆∗ud).

These sequences satisfy the following restrictions:

√
nT |J |20∆∗2F = o(1), ∆∗eg = o(

1√
nT

), ∆∗ud = o(

√
log p

nT
), |J |20

√
log p∆∗ud = o(1),

∆∗2F = o(
log p

T log(pT )
), and∆2

max|J |20T∆∗2F = o(1).

As with Assumption 3.5, we show that

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP ∗(
1

pT
+

1

n2
+

1

nT 2
)

when f̂∗t is estimated using PCA in Appendix C which allows direct verification of con-

ditions involving ∆∗F . We handle the remaining terms by directly deriving the rates of

convergences for each required term in Appendix C.
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Under these additional conditions, we are able to verify that the confidence interval

resulting from application the k-step bootstrap procedure has asymptotically correct cov-

erage.

Theorem 4.1. Suppose n, p → ∞, and T is either fixed or growing. Under Assumptions

3.1-3.5 and 4.1-4.4, √
nTσ−1/2

ηε σ2
η(α̂
∗ − α̂)→d∗ N (0, 1).

In addition,

P (
√
nT |α̂− α| ≤ q∗τ )→ 1− τ.

5. Estimating Factors Using Principal Components Analysis

In this section, we discuss estimation of factors and factor residuals using principal com-

ponents (PC).9 We also provide low-level conditions under which the high-level conditions

used in establishing Theorem 3.1 are satisfied for PC.

5.1. Principal Components Estimator. Let

X̃ =


X̃i1 · · · X̃n1

...
...

X̃iT · · · X̃nT


pT×n

, Λ̃ =


Λ̃1

...

Λ̃T


pT×K

, F̃ =


f̃ ′1
...

f̃ ′n


n×K

,

and define Ũ similarly. The matrix form of the factor model is then

X̃ = Λ̃F̃ ′ + Ũ ,

where the individual and time effects have already been removed.

One of the most commonly used factor estimators is based on the PC of the n×n matrix

X̃ ′X̃. Let F̂ denote the n×K matrix of the estimated factors. The columns of F̂ /
√
n are

the eigenvectors of the first K eigenvalues of X̃ ′X̃/(npT ). Let V be the K by K diagonal

matrix consisting of the first K eigenvalues. Then the PC estimator estimates F̃ up to a

K ×K rotation matrix (e.g., Stock and Watson (2002) and Bai (2003)) H defined by

H =
1

npT
Λ̃′Λ̃F̃ ′F̂ V −1.

9We choose to focus on the PC estimator as a concrete example because it is relatively simple and is free
of tuning parameters. One could consider other options which would also satisfy our assumed high-level
conditions. For example, the weighted PC estimator (e.g. Choi (2012); Bai and Liao (2013)), can be more
efficient than the standard PC estimator but requires additional tuning parameters for practical application.
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The factor estimator in the bootstrap sampling space is defined similarly with F̂ ∗ denoting

the n×K matrix of the estimated factors whose columns are
√
n times the first K eigen-

vectors of X̃∗
′
X̃∗/(npT ). Finally, it is important to note that we do not need to estimate

the factors but only need to estimate the space spanned by the factors for Theorem 3.1 to

hold.

5.2. Regularity Conditions. We now present additional regularity conditions which are

sufficient to verify that the PC estimator satisfies the conditions given in Assumption 3.5.

These conditions are standard for high-dimensional approximate factor models.

Assumption 5.1 (Pervasiveness). There are c, C > 0 so that

c <
1

T

T∑
t=1

1

p
Λ̃′tΛ̃t < C.

Assumption 5.1 effectively implies that the factors do not load on a small number of

series but rather are related to a large number of the available X-variables. The use of

this assumption in high-dimensional factor models provides part of the motivation for the

factor-lasso approach where at least some forms of association between factors that are not

pervasive but instead load on only a few elements in X and an outcome can be captured

through the presence of the factor residuals in the equations of interest.

Assumption 5.2 (Second Order Weak Dependence). There is C > 0,

max
mti

T∑
s=1

p∑
v=1

Cov(U2
it,m, U

2
is,v) < C,

max
imstv

T∑
h=1

p∑
l=1

|Cov(Uit,vUis,m, Uih,lUis,m)| < C,

max
i

1

T 2p

∑
m,l≤p

∑
t,s,h,v≤T

Cov(Uit,mUis,m, Uih,lUiv,l) < C,

max
im

1

T 2p

∑
k,l≤p

∑
t,s,h,v≤T

|Cov(Uit,kUis,m, Uih,lUiv,m)| < C.

The left hand side of the third condition equals maxi Var( 1√
p

∑p
m=1(

√
TŪi·,m)2). In ad-

dition, if we ignore the absolute value, then the left hand side of the fourth condition equals

maxim Var( 1√
p(
√
TŪi·,k)(

√
TŪi·,m)). Hence the third condition means that the variance of

the standardized squared average should be bounded, and the fourth condition is slightly



FACTOR-LASSO AND K-STEP BOOTSTRAP 25

stronger than requiring maxim Var( 1√
p(
√
TŪi·,k)(

√
TŪi·,m)) < C. In the special case when

{Ut} is serially independent across t, all of the four conditions in Assumption 5.2 can be

directly verified under various notions of weak cross-sectional dependence.

The following proposition show that the high-level Assumptions 3.5 and 4.4 are satisfied

by the PC estimator.

Proposition 5.1. Further assume |J |40 = o(nT 3), |J |40n = o(p2T ) and |J |20 log n = o(p).

Then Assumptions 3.5 and 4.4 about F̂ and F̂ ∗ are satisfied.

The conditions |J |40n = o(p2T ) and |J |20 log n = o(p) require lower bounds on the growth

of p. These conditions differ from those used in the literature on inference in purely

sparse high-dimensional, e.g. Belloni et al. (2014b), in that lower bounds on p are not

required in the purely sparse setting. These lower bounds arise since accurately estimating

the unknown factors using PCA requires a large number of observed series. Indeed, the

“average rate of convergence” is

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP (
1

n2
+

1

nT 2
+

1

pT
),

where the product pT is the dimension of X̃i. In the special case |J |0 = O(1), these

conditions require

T � n� p2T, log3 p = O(n), and log n = o(p).

The results developed in this paper will thus be inappropriate in settings where p is quite

small relative to n. Of course, in the setting with p small relative to n, a simple approach

is to just use all of the available variables without dimension reduction.

Finally, though we have been assuming the number of factors, K, is known a priori, our

procedure admits data-dependent methods (e.g., Bai and Ng (2002) or Ahn and Horenstein

(2013)) for selecting K. Under mild conditions such as those employed in Bai and Ng (2002)

or Ahn and Horenstein (2013), K̂, the estimator for K, is consistent. All the preceding

results hold can then be shown to hold following first-step estimation of K by conducting

the theoretical analysis conditional upon the event that K̂ = K and then arguing that the

results asymptotically hold unconditionally as P (K̂ = K)→ 1.

6. Numerical Studies and Examples

We now present simulation and empirical results in support of the formal analysis pre-

sented in the previous sections. The first simulation example is based directly on the PPFM
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given in (2.1)-(2.3). The second simulation example is based on a purely cross-sectional

model that allows for instrumental variables estimation of the parameter on an endoge-

nous variable in the presence of a low-dimensional set of instrumental variables (IVs) and

a large number of potential control variables.10 Following the simulation experiments, we

then present results from two empirical applications. In the first, we apply the developed

procedure to estimate the effects of gun prevalence on crime following Cook and Ludwig

(2006) using the data from Belloni et al. (2015). In the second example, we apply the

instrumental variables strategy of Acemoglu et al. (2001) to try to estimate the effect of

institutions on growth.

6.1. Simulation Examples.

6.1.1. Panel Partial Factor Model Simulations. In our first set of simulations, we report

results for estimation and inference on α with data generated according to

yit = αdit + (cξξt)
′fi + U ′it(cθθ) + gi + νt + εit

dit = (cδδdt)
′fi + U ′it(cγγd) + ζi + µt + ηit

Xit = (cΛΛt)fi + wi + ρt + Uit

with n = 100, T = 10, K = 3, and p = 100. We take εit ∼ N(0, 1), ηit ∼ N(0, 1),

and Uit ∼ N(0p,ΣU ) where 0p is a p × 1 vector of zeros, ΣU has (r, s) element given by

[ΣU ][r,s] = .7|r−s|, and εit, ηit, and Uit are i.i.d. over i and t and jointly independent of

each other. We generate unobserved individual-specific and time-specific heterogeneity by

taking n i.i.d. draws, one for each individual, (gi, ζi, wi) ∼ N(0p+2, Ip+2) where Ip+2 is

a (p + 2) × (p + 2) identity matrix and taking T i.i.d. draws, one for each time period,

(νt, µt, ρt) ∼ N(0p+2, Ip+2). The latent factors, fi, are generated as i.i.d. draws from

N(0K , IK). The factor loading vectors ξt and δdt and factor loading matrix Λt are drawn

independently over time with each entry generated as an independent draw from a standard

normal random variable. The individual-specific, time-specific heterogeneity terms and

factor loadings are drawn once, and the same values are used in each simulation replication.

We set the jth entry of θ and γd as θj = γd,j = 1
j2

. cΛ, cδ, cγ , cξ, and cθ are scalars that

are set to alter the relative strength of fi and Uit in each equation. We choose cΛ so that

the average R2 from the p regressions of Xit,j on fi is 0.5. We choose (cδ, cγ) so that the

R2 of the infeasible regression of dit− ζi−µt on (cδδdt)
′fi +U ′it(cγγd) is 0.7 and the factors

10The formal development in the IV case with a small number of instruments is a notationally burdensome
but straightforward extension of the results developed in this paper.
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account for 0%, 25%, 50%, 75%, or 100% of the explanatory power in this regression. We

similarly choose (cξ, cθ) so that the R2 of the infeasible regression of yit −αdit − gi − νt on

(cξξt)
′fi + U ′it(cθθ) is 0.7 and the factors account for 0%, 25%, 50%, 75%, or 100% of the

explanatory power in this regression. Finally, we set α = 1.

We compare the performance of the procedure developed in this paper to several bench-

marks. Because we consider a design with p < nT , ordinary least squares of yit on dit, Xit

and a full set of individual and time dummy variables is feasible (OLS). We also consider

estimating α based on the assumption that confounding is entirely captured by latent fac-

tors. To implement this procedure, we extract factors, f̂i, from X̃it by PCA as discussed

in Section 5. We then regress yit on dit, f̂i interacted with a complete set of time dummy

variables, and a full set of individual and time dummy variables to obtain the estimator

for α (Factor). For our third procedure, we directly apply the fixed effects double-selection

procedure of Belloni et al. (2015) which is appropriate for a sparse high-dimensional model

with fixed effects (Double Selection). We then consider two ad hoc variants of the double-

selection approach. In the first, we extract the first 20 principal components and interact

these with a full set of time dummies. We then apply the fixed effects double-selection

procedure of Belloni et al. (2015) to the data (Y,D,X∗) where X∗ denotes the original X

variables augmented to include the interactions of principal components with time dum-

mies (Double Selection F). The second ad hoc procedure extracts factors from X̃it by PCA.

We then obtain estimates Ûit as in (2.7) and apply the fixed effects double-selection pro-

cedure of Belloni et al. (2015) to the data (Y,D, Û∗) where Û∗ denotes the matrix formed

by combining Û with the interactions of principal components with time dummies (Double

Selection U). Finally, we directly apply the factor-lasso approach outlined in this paper

(Factor Lasso). We use the Ahn and Horenstein (2013) procedure to select the number of

factors to use in obtaining the Factor, Double Selection U, and Factor Lasso results.

Figure 1 gives simulation RMSEs for the estimator of α resulting from applying each

procedure. The RMSEs are truncated at 0.1 for readability of the figure. The most striking

feature of Figure 1 is that only the proposed factor lasso procedure delivers uniformly good

performance regardless of the relative strength of the factors and factor residuals in this

simulation design. Each of the other procedures exhibits behavior that depends strongly on

the exact strength of the factors in the different equations. In terms of RMSE, the factor-

lasso procedure uniformly dominates regular OLS, Double Selection ignoring the factor

structure, and the ad hoc procedure Double Selection F within the design considered.

The factor-lasso estimator of α is outperformed by the pure factor model in the case

where all of the explanatory power in the outcome equation is contained in the factors,
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which corresponds to the case where the pure factor model is correctly specified and there

is no additional confounding based on the factor residuals, and the Double Selection U

procedure when the factors have no explanatory power in the treatment (D) equation but all

explanatory power in the Y equation. It is also important to note that the performance loss

is small in these few cases where the factor lasso is outperformed. A final interesting point to

note is that the conventional lasso-based double selection procedure is outperformed by the

factor lasso even when the factors do not load in either the treatment or outcome equation.

It seems likely that the loss in this case is due to the presence of the factors in the observed

explanatory variables which leads to strong correlation among these variables. This strong

correlation among the X’s is well-known to pose challenges for lasso-type estimators.

We report size of 5% level tests based on standard asymptotic approximations for each

of the six procedures considered in Figure 2 where the sizes are truncated at 0.3 for read-

ability of the figure. In each panel, we report the rejection frequency of the standard t-test

of the null hypothesis that α = 1 with standard errors clustered at the individual level.

The most striking feature of the figure is again the uniformly good performance of tests

based on the proposed factor lasso procedure. Tests based on the factor-lasso procedure

effectively control size, with size ranging between 3.3% and 5.3% across the design pa-

rameters considered in the simulation. This behavior is in sharp contrast to the other

procedures considered which may have large size distortions depending upon exactly how

large the relative contribution of the factors is in the D and Y equations. Importantly,

this good behavior does not come at the cost of using an inferior estimator as evidenced

by the RMSE results.

We conclude this discussion by looking at the performance of the k-step bootstrap. In

Figure 3, we report size of 5% level tests using the factor-lasso estimator and the asymptotic

approximation provided in Theorem 3.1, the k-step bootstrap, and a score bootstrap based

on Belloni et al. (2014a). The k-step bootstrap and asymptotic approximation have similar

performance that keeps size close to the promised level. Interestingly, the score-based

bootstrap that does not reestimate the factors or the lasso parts of the model exhibits mild

size distortions across all of the design settings in this example.

6.1.2. Instrumental Variables Model Simulations. We supplement the simulation results

from the PPFM with additional simulations in a cross-sectional version of the model gen-

eralized to allow for an endogenous variable. Specifically, we generate data from the model

yi = αdi + (cξξ)
′fi + U ′i(cθθ) + ν + εi
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di = πzi + (cδdδd)
′fi + U ′i(cγdγd) + µ+ ηi

zi = (cδzδz)
′fi + U ′i(cγzγz) + ζ + vi

Xi = (cΛΛ)fi + ρ+ Ui

with n = 100, K = 2, and p = 100. Within this model, di is an endogenous variable with

coefficient of interest α and zi is an instrumental variable. We generate εi ∼ N(0, 1) and

ηi ∼ N(0, 1) with E[εiηi] = .8 i.i.d. across i and independent of all other random variables.

We generate i.i.d. draws for Ui as before, and vi ∼ N(0, 1) independently from Ui. We also

generate (ν, µ, ρ, ξ, δd,Λ, cΛ, cγz , cδd , cξ, cθ) as before. We set θ = γd = γz to be vectors with

jth entry given by θj = γd,j = γz,j = 1
j2

. To control the strength of the instrument, we

choose (cδz , cγz) so that the R2 of the infeasible regression of zi−ζ on (cδzδz)
′fi+U ′i(cγzγz)

is 0.7 and the factors account for 50% of the explanatory power in this regression. We set

π so that the fraction of variation accounted for by zi in the regression of di on zi, fi and

Ui is 25%. Finally, we set α = 1.

We again estimate α using six different IV procedures similar to those implemented

in the previous simulation with one exception. As the number of features is equal to the

sample size in these simulations, we consider an infeasible “oracle” estimator that estimates

α from IV regression of yi − (cξξ)
′fi − U ′i(cθθ)− ν on di − (cδdδd)

′fi − U ′i(cγdγd)− µ using

zi − (cδzδz)
′fi − U ′i(cγzγz) − ζ as instrument (Oracle). This estimator provides a type of

best-case benchmark and allows us to ascertain that instruments are strong enough that

the usual asymptotic approximation provides a reasonable approximation in the idealized

scenario where one is able to perfectly remove the effect of confounding from all variables.

Figure 4 gives simulation RMSEs for the estimator of α resulting from applying each

procedure. The RMSEs are truncated at 0.1 for readability of the figure.11 Again, we see

that the factor lasso procedure delivers good performance regardless of the relative strength

of the factors and factor residuals in this simulation design. Each of the other procedures

exhibits behavior that depends strongly on the exact strength of the factors in the different

equations. It might be noted that the dominance of the factor-lasso estimator, in terms

of RMSE, over the “Oracle” procedure is due to the definition of the oracle that we use

which fully removes the variation in each variable due to factors and factor residuals even

in situations in which some of these variables produce no confounding. For example, one

need not remove the variation in the instruments due to the factors in cases where the

11Theoretically, the MSE of the IV estimator does not exist in this context. We report root mean truncated
squared error with a truncation point of 1.
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factors have zero loadings in the outcome equation, but this variation is always removed

due to the way we have defined the oracle model.

We report size of 5% level tests based on standard asymptotic approximations for each

of the six procedures considered in Figure 5 with size truncated at 0.3 for readability of the

figure. In each panel, we report the rejection frequency of the standard t-test of the null

hypothesis that α = 1 using heteroscedasticity robust standard errors. Here, we see that

the only procedure that uniformly controls size is the infeasible oracle. Among the feasible

procedures, the proposed factor lasso approach performs relatively well in keeping size

distortions small across the majority of combinations of relative strengths of the factors.

In this case, we do see that the factor-lasso procedure suffers from reasonably large size

distortions when the factors account for all of the confounding in the outcome equation

and a moderate amount of counfounding in the treatment equation. We also see that the

pure factor model controls size well in this case, but performs very poorly once all variation

in the outcome equation is not due to the factors.

We again conclude by looking at the performance of the k-step bootstrap in Figure 6.

We see that there is a modest, but clearly visible, improvement from using the k-step

bootstrap relative to the asymptotic approximation. The score based bootstrap, on the

other hand, lines up reasonably well with the asymptotic approximation.

6.1.3. Summary of Simulation Results. Overall, the results from the two simulation ex-

periments are supportive of the asymptotic theory. We see that the factor-lasso approach

delivers estimators with good properties relative to other feasible procedures that leverage

either a pure factor structure or a pure sparse structure in partial factor model settings.

We see that both point estimation properties, measured in terms of RMSE, and inferential

quality, as measured by size of tests, are competitive or much better than the other pro-

cedures considered in our simulation design. The results also suggest that the proposed

k-step bootstrap procedure works relatively well and may offer some gains relative to the

asymptotic Gaussian approximation.

6.2. Empirical Examples.

6.2.1. Estimating the Effects of Gun Prevalence on Crime. In this example, we follow

Belloni et al. (2015) who build upon the work of Cook and Ludwig (2006) and attempt to

estimate the effect of gun prevalence on crime in a setting with a high-dimensional set of
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potential controls. As in Belloni et al. (2015), we focus exclusively on trying to measure

the effect of gun prevalence on homicide rates. An important difficulty with estimating

the effect of gun prevalence in the United States is that exact gun-ownership numbers

are difficult to obtain. Due to this difficulty, Cook and Ludwig (2006) use the fraction of

suicides committed with a firearm (abbreviated FSS) within a county to proxy for county-

level gun ownership rates. Cook and Ludwig (2006) provide a series of arguments and

evidence from secondary data sources supporting the claim that FSS provides a useful

proxy for gun ownership. For the analysis in this paper, we simply take it as given that

estimating a causal effect of FSS on crime measures is worthwhile and abstract from any

further measurement or data issues surrounding the use of this proxy.

Both Cook and Ludwig (2006) and Belloni et al. (2015) estimate linear fixed effects

models of the form

log Yit = αlog FSSit−1 +X ′itβ + gi + νt + εit (6.1)

where gi and νt are treated as parameters to be estimated, Xit are control variables, and

Yit is one of three dependent variables: the overall homicide rate within county i in year

t, the firearm homicide rate within county i in year t, or the non-firearm homicide rate

within county i in year t. Cook and Ludwig (2006) use the four variables percent African

American, percent of households with female head, nonviolent crime rates, and percent

of the population that lived in the same house five years earlier as their set of controls

Xit. Belloni et al. (2015) maintain the assumption of approximate sparsity and employ

their variable selection approach using a much larger set of potential controls generated

by taking variables compiled by the US Census Bureau as Xit. Their variables include

county-level measures of demographics, the age distribution, the income distribution, crime

rates, federal spending, home ownership rates, house prices, educational attainment, voting

patterns, employment statistics, and migration rates along with interactions of the initial

(1980) values of all control variables with a linear, quadratic, and cubic term in time.

Rather than adopt the approximately sparse model in (6.1), we employ the PPFM,

(2.1)-(2.3), and factor-lasso approach to estimate α using 909 variables in Xit constructed

as in Belloni et al. (2015).12 The PPFM model seems very appropriate for this data as

it directly incorporates a mechanism to accommodate the concern that there are features

of counties that are not directly observed, the fi, but are related to the evolution of the

outcome and treatment variable of interest, which is captured by the time-varying factor

12The exact identities of the variables are available upon request. The data is from the U.S. Census Bureau
USA Counties Database, http://www.census.gov/support/USACdataDownloads.html.



32 CHRISTIAN HANSEN AND YUAN LIAO

loadings. Obviously, exclusion of these factors would then lead to omitted variables bias in

any estimator of α that fails to capture them. Concern about the existence of such factors

is common in empirical applications involving aggregate panel data.

The key assumption that we leverage to allow us to simply accommodate these latent

factors is that the same correlated unobserved factors that lead to confounding are related

to the evolution of other observed county-level aggregates and that we have access to a

large number of these auxiliary aggregates. While this key assumption is strong, the PPFM

also naturally provides some robustness to the presence of shocks (Uit) that are related to

movements of the observed Xit series as well as movements in the variable of interest

and outcome. Such shocks may be motivated, for example, by the factor structure being

misspecified, by the presence of variables that are not strongly related to factors but are

confounded with the treatment and outcome, and simply by the presence of local shocks

not captured by the factors that are related to the observed series.

We present estimation results in Table 1 with results for each dependent variable pre-

sented across the columns and rows corresponding to different estimation approaches. As

a baseline, we report numbers taken directly from the first row of Table 3 in Cook and

Ludwig (2006) in the first row of Table 1 (“Cook and Ludwig (2006) Baseline”). We report

results obtained from our data the remaining rows.13 For these results, we first report the

point estimate and estimate of the asymptotic standard error obtained by clustering by

county. Immediately below these results, we report the 95% confidence interval obtained

from applying the k-step bootstrap procedure in brackets. The rows labeled “Post Double

Selection” apply the procedure of Belloni et al. (2015). The rows labeled “Factor” are

based on a pure factor model; the rows labeled “Factor-Lasso” use the proposed factor-

lasso procedure. All factors are estimated using PCA and the number of factors is selected

using Ahn and Horenstein (2013).

We see that the estimates and inferential statements produced for the firearm homicide

rate (“Gun”) and the non-firearm homicide rate (“non-Gun”) are broadly consistent with

each other. In all cases, there is a fairly large positive point estimate for the effect on

the firearm homicide rate with corresponding 95% confidence intervals that exclude zero,

suggesting positive association between the used measure of gun prevalence and gun homi-

cides. For the non-firearm homicide rate, all point estimates are negative and modest and

confidence intervals include both positive and negative values. The broad results for the

13All results are based on weighted regression where we weight by the within-county average population
over 1980-1999.
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overall homicide rate (“Overall”) are slightly more mixed. The baseline results for Cook

and Ludwig (2006) and results from a pure factor model suggest a strongly significant,

positive effect of gun prevalence on the overall homicide rate. Assuming sparsity and ap-

plying Belloni et al. (2015) yields a positive estimate of the effect which is statistically

insignificant at the 5% level. Finally, the factor-lasso estimator is similar in magnitude to

the sparsity-based estimator but borderline significant at the 5% level using the bootstrap

confidence interval.

A more interesting comparison can be made by looking more closely and considering

the variable and factor selection results. The “Post Double Selection” procedure ends up

selecting three variables for estimating the effect on overall homicide rates, three variables

for gun homicide rates, and two variables for non-gun homicide rates. The pure factor

model uses one factor. The factor-lasso approach then uses one factor in all cases but

selects eight additional variables for estimating the effect on the overall homicide rate, eight

additional variables for the gun homicide rate, and five additional variables for the non-gun

homicide rate. These results suggest that the “Post Double Selection” and “Factor” results

may be based on models that fail to adequately capture the effect of potential confounds.

We also see that the “Factor” estimates are substantially shifted away from the “Factor

Lasso” estimates relative to standard errors and that the factor-lasso estimates are the

most precise in the sense of having the shortest confidence intervals. Both findings are

consistent with the asymptotic theory and with the simulation results.

6.2.2. Estimating the Effects of Institutions on Output. We revisit the example considered

in Acemoglu et al. (2001). Acemoglu et al. (2001) are interested in the parameter α in a

structural model of the form

log(GDP per capitai) = α(Protection from Expropriationi) + x′iβ + εi

based on aggregate country level data where “Protection from Expropriation” is a measure

of the strength of individual property rights that is used as a proxy for the strength of

institutions and xi is a set of variables that are meant to control for geography. Acemoglu

et al. (2001) adopt an IV strategy where they instrument for institution quality using early

European settler mortality to estimate α as institutions are clearly potentially endogenous.

They point out that their instrument would be invalid if there were other factors that are

highly persistent and related to the development of institutions within a country and to the

country’s GDP. A leading candidate for such a factor that they discuss is geography. To

address this possibility, Acemoglu et al. (2001) control for the distance from the equator
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in their baseline specifications and consider different sets of geographic controls such as

continent dummies within their robustness checks.14

There are, of course, many other ways to measure geography besides distance to the

equator or continent where a country is found. Rather than ex ante choose a small number

of variables to proxy for geography, we put a large number of variables that potentially

capture geography in xi and then use the data to reduce dimension. Specifically, we

consider dummies for Africa, Asia, North America, and South America as well as longitude,

renewable water, land boundary, land area, amount of coastline, territorial seas, amount

of arable land, average temperature, average high temperature, average low temperature,

average precipitation, elevation of highest point, elevation of lowest point, fraction of area

that is low-lying, latitude, and spherical distance from London.

We adapt the analysis of Acemoglu et al. (2001) to the present setting by considering

estimation of a partial factor instrumental variables model

log(GDP per capitai) = α(Protection from Expropriationi) + f ′iξ + U ′iθ + εi

Protection from Expropriationi = πEarly Settler Mortalityi + f ′iδd + U ′iγd + ηi

Early Settler Mortalityi = f ′iδz + U ′iγz + vi

xi = Λfi + Ui

using our 20 geography measures as xi and the 64 countries from the original Acemoglu

et al. (2001) data. The factor-lasso approach seems quite sensible in this setting. Each of

the observed geography measures could reasonably be taken as a noisy proxy for a country’s

geography. This relationship is likely to be complicated and uneven with the chief features

leading to association between the geography proxies plausibly being only weakly related to

the notions of geography that are important predictors of mortality and institutions. The

factor-lasso approach, by allowing a small number of elements of Ui to enter the equation

of interest in addition to any common geography factors, readily accommodates this latter

possibility in a parsimonious, data-dependent way.

We report estimation results for the first stage coefficient on the instrument in Table

2. We report results from the factor-lasso approach in the row “Factor-Lasso”. For com-

parison, we also report results from a few natural alternative models. The row labeled

“Latitude” uses the single variable distance from the equator to control for geography as

in the baseline results from Acemoglu et al. (2001). We report results from applying OLS

14E.g. Acemoglu et al. (2001) Table 4.
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using all 20 available geographic controls without dimension reduction in the row labeled

“All Controls.” We apply the double selection approach of Belloni et al. (2014b) which

would be appropriate if the relationship between geographic controls and the variables of

interest were well-approximated by a sparse linear model in “Double Selection.” Finally,

“Factor” reduces dimension through positing a conventional factor model. All factors are

estimated using PCA with number of factors selected by applying the procedure from Ahn

and Horenstein (2013).

The first-stage results using only the latitude control suggest there is a fairly strong

relationship between the instrument and endogenous variable if latitude is a sufficient con-

trol for geography. The first stage F-statistic using just latitude is 10.9 which many would

take to indicate that the instrument is sufficiently strong to identify the effect of interest.15

The results change in a potentially substantive way after allowing for the possibility that

geography is not adequately captured by latitude. For each of the remaining approaches

considered, the first-stage F-statistic drops substantially below 10, with all methods be-

sides applying the pure factor model returning first-stage coefficients that are statistically

insignificant at the 5% level.

One might dismiss the lack of significance after including all controls without dimension

reduction as it seems likely that a model with 20 covariates in addition to the variables

of interest and only 64 observations is overfit. The next strongest result is from the pure

factor model which makes use of a single extracted component and produces a first-stage

F-statistic of 7.5. As evidenced in the simulation example, inference results based on a pure

factor model may be highly misleading when elements of Ui also have explanatory power. It

is then interesting that the double-selection approach and the factor-lasso approach deliver

almost identical results indicating a weak association between the endogenous variable and

instrument after controlling parsimoniously for geography. The double-selection procedure

selects four variables16, and the factor-lasso approach uses one factor and two additional

variables.17 One might take this to mean that the four variables selected in the double-

selection procedure approximately capture the same information as the single factor and

two variables used in the factor-lasso results. In either case, the results suggest that, at

best, identification of the structural effect of institutions as measured by “Protection from

15A benchmark that is commonly used in the applied literature to assess whether there is sufficient variation
in the instrument to identify the effect of interest is to compare the first stage F-statistic to 10, with smaller
values indicating weak identification.
16These variables are the Africa dummy, average temperature, average high temperature, and amount of
arable land.
17The two selected variables in addition to the factor are the Africa and Asia dummies.
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Expropriation” using settler mortality as instrument is weak after geography is controlled

for in a parsimonious, data-dependent way. Given this apparent weak identification, we do

not report second stage estimates of the structural effect.18

6.2.3. Summary of Empirical Examples. We believe the two empirical examples illustrate

the potential applicability of partial factor models and the associated factor-lasso approach

in applied economics. The model provides a natural generalization to standard factor mod-

els and sparse high-dimensional models and seems appropriate for many economic appli-

cations, especially those that make use of aggregate panel or cross-sectional data. The

results in the first example based on Cook and Ludwig (2006) roughly line up with the

original results, though they demonstrate the potential for efficiency gains from adopt-

ing the methods developed in this paper. In the second example, we draw substantively

different conclusions about the strength of identification than one would draw following

the approach in Acemoglu et al. (2001) due to the ability to control more flexibly for the

leading candidate for confounding. Overall, the results suggest that application of the pro-

posed methods may usefully complement the sensitivity analyses performed in empirical

economics and also have the potential to strengthen the plausibility of any conclusions

drawn.

Appendix A. Proof of Theorem 3.1 and Corollary 3.1

Define (KT )× 1 matrices Ξ̃ = (ξ̃′1, ..., ξ̃
′
T )′ and ∆̃d = (δ̃′d1, ..., δ̃

′
dT )′. Note that

Ỹ = D̃α+ (IT ⊗ F̃ )Ξ̃ + Ũθ + ε̃

D̃ = (IT ⊗ F̃ )∆̃d + Ũγd + η̃.

Note that η̂ = MÛĴ
(IT ⊗MF̂ )D̃. Hence,

α̂ = (η̂′η̂)−1η̂′MÛĴ
(IT ⊗MF̂ )Ỹ

= α+ (η̂′η̂)−1η̂′MÛĴ
(IT ⊗MF̂ )[(IT ⊗ F̃ )Ξ̃ + Ũθ + ε̃]

= α+ (η̂′η̂)−1(η̂ − η̃)′MÛĴ
(IT ⊗MF̂ )ε̃+ (η̂′η̂)−1η̃′MÛĴ

(IT ⊗MF̂ )ε̃

+(η̂′η̂)−1η̂′MÛĴ
(IT ⊗MF̂ F̃ )Ξ̃ + (η̂′η̂)−1η̂′MÛĴ

(IT ⊗MF̂ )Ũθ.

Note that η̃′MÛĴ
(IT ⊗MF̂ )ε̃ = η̃′ε̃− η̃′(IT ⊗ PF̂ )ε̃− η̃′PÛĴ ε̃+ η̃′PÛĴ

(IT ⊗ PF̂ )ε̃. Hence,

√
nT

(
1

nT
η̂′η̂

)
(α̂− α) =

1√
nT

η̃′ε̃+

6∑
i=1

Ai (A.1)

18We note that it would be straightforward to adapt the weak-identification robust procedure of Cher-
nozhukov and Hansen (2008) to the present setting. We do not pursue this extension for brevity.
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where

A1 =
1√
nT

(η̂ − η̃)′MÛĴ
(IT ⊗MF̂ )ε̃, A2 =

1√
nT

η̂′MÛĴ
(IT ⊗MF̂ F̃ )Ξ̃

A3 = − 1√
nT

η̃′(IT ⊗ PF̂ )ε̃, A4 =
1√
nT

η̂′MÛĴ
(IT ⊗MF̂ )Ũθ

A5 = − 1√
nT

η̃′PÛĴ
ε̃, A6 =

1√
nT

η̃′PÛĴ
(IT ⊗ PF̂ )ε̃ = 0.

We shall prove that Ai = oP (1) for i = 1, ..., 6 and 1
nT η̂

′η̂ − 1
nT η̃

′η̃ = oP (1). So

η̂ = MÛĴ
(IT ⊗MF̂ )D̃ = MÛĴ

(IT ⊗MF̂ )((IT ⊗ F̃ )∆̃d + Ũγd + η̃)

= MÛĴ
(IT ⊗MF̂ F̃ )∆̃d +MÛĴ

(IT ⊗MF̂ )Ũγd +MÛĴ
(IT ⊗MF̂ )η̃.

Using the fact that MF̂ F̂ = 0, it can be proven that

1√
nT

(η̂ − η̃) =
1√
nT

MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d

+
1√
nT

MÛĴ
(IT ⊗MF̂ )Ũγd

− 1√
nT

PÛĴ
η̃ − 1√

nT
MÛĴ

(IT ⊗ PF̂ )η̃.

(A.2)

In the subsequent subsections, we provide bounds for Ai for i = 1, ..., 6 and for 1√
nT
‖η̂ − η̃‖2.

A.1. Bounding η̂ − η̃. Write

ψn := κn|J |1/20 + ‖Ry‖1 + ∆F |J |0 +

√
|J |0
n
. (A.3)

Proposition A.1. 1√
nT
‖η̂ − η̃‖2 = OP (ψn).

Proof. Note that ‖∆̃d‖2 = O(
√
T ). Hence by Lemma G.1,

‖ 1√
nT

MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d‖2 ≤ OP (1)

1√
nT
‖F̃H − F̂‖F ‖∆̃d‖2 = OP (∆F )

‖ 1√
nT

MÛĴ
Ũγd‖2 = OP

(
κn|J |1/20 + ‖Ry‖1 + ∆F |J |0 +

√
|J |0
n

)
,

‖ 1√
nT

MÛĴ
(IT ⊗ PF̂ )Ũγd‖2 ≤ ‖

1√
nT

(IT ⊗ PF̂ )Ũγd‖2 = OP

(√
|J |0
n

+ ∆F |J |0

)
,

‖ 1√
nT

MÛĴ
(IT ⊗ PF̂ )η̃‖2 ≤ ‖

1√
nT

(IT ⊗ PF̂ )η̃‖2 = OP

(
1√
n

+ ∆F

)
,

‖ 1√
nT

PÛĴ
η̃‖2 = OP

(√
|J |0

log p

nT

)
.
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Hence, equation (A.2) implies 1√
nT
‖η̂ − η̃‖2 = OP (ψn). �

A.2. Showing A1, A3, A5, A6 = oP (1). By equation (A.2), Lemma F.2, PÛĴ
(IT ⊗ PF̂ ) = 0, and

noting that PÛĴ
MÛĴ

= 0, we can show that

A1 =
1√
nT

(η̂ − η̃)′MÛĴ
(IT ⊗MF̂ )ε̃

= ε̃′
1√
nT

MÛĴ
(IT ⊗MF̂ )Ũγd + ε̃′

1√
nT

MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d.

It then follows from Lemma G.3 (i)(v) that A1 = oP (1).

We can also immediately apply Lemma G.3 (iii) to establish that A3 = oP (1).

Also, it follows from Lemma G.1 (iv) that

|A5| =
∣∣∣∣ 1√
nT

η̃′PÛĴ
ε̃

∣∣∣∣ ≤ √nT ∥∥∥∥ 1√
nT

PÛĴ
ε̃

∥∥∥∥
2

∥∥∥∥ 1√
nT

PÛĴ
η̃

∥∥∥∥
2

= OP

(
|J |0 log p√

nT

)
= oP (1)

since |J |20 log2 p = o(nT ).

Finally, it follows immediately from Lemma F.2 that A6 = 0. �

A.3. Showing A2 = oP (1). By (A.2),

A2 =
1√
nT

η̂′MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)Ξ̃

=
1√
nT

η̃′MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)Ξ̃ (A.4)

+ Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d (A.5)

− Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗ PF̂ )η̃ (A.6)

+ Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗MF̂ )Ũγd. (A.7)

It follows from Lemma G.3(i) that (A.4) is oP (1). By the Cauchy-Schwarz inequality and under

the assumption that
√
nT∆2

F = o(1), (A.5) is bounded by

|Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d|

≤ 1√
nT

max
G=Ξ̃,∆̃d

‖G′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )MÛĴ

‖22

≤ 1√
nT

max
G=Ξ̃,∆̃d

‖G′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )‖22

≤ 1√
nT

max
gt=ξ̃t,δ̃dt

∑
t

‖g′tH
′−1(F̃H − F̂ )′MF̂ ‖

2
2
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≤ OP (

√
T√
n

)‖F̃H − F̂‖2F = OP (
√
nT∆2

F ) = oP (1).

Term (A.6) equals

− 1√
nT

Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )MÛĴ

(IT ⊗ PF̂ )η̃

= − 1√
nT

Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )(IT ⊗ PF̂ )η̃ = 0

where the first equality is due to PÛĴ
(IT ⊗ PF̂ ) = 0 and the second equality is due to MF̂PF̂ = 0

and the fact that the kronecker product satisfies (A⊗B)(C ⊗D) = AC ⊗BD.

Finally, using MF̂PF̂ = 0 and PÛĴ
(IT ⊗ PF̂ ) = 0, (A.7) equals

Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗MF̂ )Ũγd

= Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
Ũγd

− Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
(IT ⊗ PF̂ )Ũγd

= Ξ̃′(IT ⊗H
′−1(F̃H − F̂ )′MF̂ )

1√
nT

MÛĴ
Ũγd

= oP (1)

(A.8)

where the last equality follows from Lemma G.3 (vi).

Hence, A2 = oP (1). �

A.4. Showing A4 = oP (1).

A4 =
1√
nT

η̂′MÛĴ
(IT ⊗MF̂ )Ũθ

=
1√
nT

η̃′MÛĴ
(IT ⊗MF̂ )Ũθ (A.9)

+
1√
nT

θ′Ũ ′(IT ⊗MF̂ )MÛĴ
(IT ⊗MF̂ )Ũγd (A.10)

+
1√
nT

θ′Ũ ′(IT ⊗MF̂ )MÛĴ
(IT ⊗MF̂ (F̃H − F̂ )H−1)∆̃d. (A.11)

It follows from Lemma G.3 (iii) that term (A.9) is oP (1).

By Lemma G.1 (i) and (ii), we can bound term (A.10) by

1√
nT

θ′Ũ ′(IT ⊗MF̂ )MÛĴ
(IT ⊗MF̂ )Ũγd
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≤
√
nT max

g=θ,γd

∥∥∥∥ 1√
nT

MÛĴ
(IT ⊗MF̂ )Ũg

∥∥∥∥2

2

≤ 2
√
nT max

g=θ,γd

∥∥∥∥ 1√
nT

MÛĴ
Ũg

∥∥∥∥2

2

+ 2
√
nT max

g=θ,γd

∥∥∥∥ 1√
nT

(IT ⊗ PF̂ )Ũg

∥∥∥∥2

2

≤
√
nTOP

(
‖Ry‖21 + κ2

n|J |0 + |J |20∆2
F +

|J |0
n

)
= oP (1),

under the assumption
(
κ2
n|J |0 + ‖Ry‖21 + ∆2

F |J |20 + |J|0
n

)√
nT = o(1).

The same argument as that employed in the bound given by equation (A.8) yields that term

(A.11) is oP (1). �

A.5. Proof of Theorem 3.1. (i) Write ιit := (ηit − η̄i·)2.

Step 1: Show | 1
nT η̂

′η̂ − 1
nT

∑
itEιit| = oP (1).

It follows from Proposition A.1 that | 1
nT η̂

′η̂ − 1
nT η̃

′η̃| = oP (1). Also,

1

nT
η̃′η̃ =

1

nT

∑
i,t

η̃2
it =

1

nT

∑
i,t

(ηit − η̄i·)2 − 1

T

∑
t

η̄2
·t + ¯̄η2.

We have that E
[

1
T

∑
t η̄

2
·t
]

= 1
T

∑
t

1
n2

∑
iE
[
η2
it

]
= O(1/n) and that ¯̄η2 = oP (1). Hence,

1

nT
η̃′η̃ =

1

nT

∑
it

(ηit − η̄i·)2 + oP (1) =
1

nT

∑
it

ιit + oP (1).

Note that

Var(
1

nT

∑
it

ιit) =
1

n2T 2

∑
i

Var(
∑
t

ιit) = O(1/n).

Hence, | 1
nT

∑
it ιit −

1
nT

∑
itEιit| = oP (1). We then have

| 1

nT
η̃′η̃ − 1

nT

∑
it

Eιit| = oP (1), | 1

nT
η̂′η̂ − 1

nT

∑
it

Eιit| = oP (1), (A.12)

and 1
nT η̂

′η̂ is bounded away from zero.

Let zn,i = 1√
T

∑
t(ηit− η̄i·)(εit− ε̄i·), bn =

[
Var( 1√

n

∑
i zn,i)

]−1/2

, and xn,i = bnzn,i. In addition,

let s2
n =

∑
i Var(xn,i) =

∑
i Var(zn,i)b

2
n = n.

Step 2: Show bn√
nT
η̃′ε̃ = 1

sn

∑
i xn,i + oP (1).
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Note that

E

(
1

T

∑
t

η̄·tε̄·t

)2

=
1

T

∑
t

1

n

∑
i

1

n

∑
j

1

T

T∑
s=1

1

n

n∑
l=1

1

n

n∑
v=1

Eηlsεvsηitεjt

=
∑
t

1

n4

∑
i

1

T 2

T∑
s=1

Eηisεisηitεit

+
1

T

∑
t

1

n4

∑
i

∑
j 6=i

1

T

T∑
s=1

EηjsεjtEεisηit

+
1

T

∑
t

1

n4

∑
i

∑
j 6=i

1

T

T∑
s=1

EηisηitEεjsεjt

+
1

T

∑
t

1

n4

∑
i

1

T

T∑
s=1

∑
l 6=i

Eηlsεlsηitεit

+
1

T

∑
t

1

n4

∑
i

∑
j 6=i

1

T

T∑
s=1

Eηjsεjsηitεjt

= O

(
1

n2

)
.

(A.13)

We have E[zn,i] = 0. We also have, under our assumptions, Var(zn,i) and bn bounded away from

both zero and infinity uniformly in i. Then

bn√
nT

η̃′ε̃ =
bn√
nT

∑
it

(ηit − η̄i·)(εit − ε̄i·)−
bn
√
nT

T

∑
t

η̄·tε̄·t + bn
√
nT ¯̄η¯̄ε

=
1

sn

∑
i

xn,i + oP (1).

Step 3: Apply the CLT.

We now verify the Lindeberg condition for the triangular array {xn,i}. For any ε > 0,

E

(
1

n

∑
i

x2
n,i1{|xn,i| > ε

√
n}

)
≤ E

[
1

n

∑
i

x2
n,i

]
= 1.

Hence by the dominated convergence theorem,

s−2
n

∑
i

E
[
x2
n,i1{|xn,i| > εsn}

]
= E

(
1

n

∑
i

x2
n,i1{|xn,i| > ε

√
n}

)
→ 0.

This implies, by the Lindeberg central limit theorem,

bn√
nT

η̃′ε̃→d N (0, 1).
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In the previous subsections, we have proven Ai = oP (1) for i = 1, ..., 6. Hence, it follows from

(A.1) that
√
nT ( 1

nT η̂
′η̂)(α̂− α) = 1√

nT
η̃′ε̃+ oP (1). In addition,

bn|(
1

nT
η̂′η̂ − 1

nT

∑
i,t

E[ιit])
√
nT (α̂− α)|

≤ bn|
1

nT
η̂′η̂ − 1

nT

∑
i,t

E[ιit]|(
1

nT
η̂′η̂)−1| 1√

nT
η̃′ε̃+ oP (1)|

= oP (1).

Therefore,

σ−1/2
ηε σ2

η

√
nT (α̂− α) = bn

1

nT

∑
i,t

E[ιit]
√
nT (α̂− α)

= bn
1

nT
η̂′η̂
√
nT (α̂− α) + oP (1)

=
bn√
nT

η̃′ε̃+ oP (1)→d N (0, 1).

(ii) To verify normality with the estimated asymptotic variance, we need to prove consistency

of σ̂ηε and σ̂2
η. We have previously shown | 1

nT η̂
′η̂ − 1

nT

∑
i,tE[ιit]| = oP (1) which establishes

consistency of σ2
η = 1

nT

∑
i,tE[ιit]. Hence, it remains to prove σ̂ηε − σηε = oP (1). Recall that

σηε = Var

(
1√
nT

n∑
i=1

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)
.

Step 1: Bound ∆1 := σ̂ηε − 1
nT

∑n
i=1(

∑T
t=1 η̃itε̃it)

2. We have

∆1 =
1

nT

n∑
i=1

( T∑
t=1

η̂itε̂it

)2

−

(
T∑
t=1

η̃itε̃it

)2


=
1

nT

n∑
i=1

[
T∑
t=1

(η̂itε̂it + η̃itε̃it)

][
T∑
t=1

(η̂itε̂it − η̃itε̃it)

]

=
1

nT

n∑
i=1

[
T∑
t=1

(η̂itε̂it − η̃itε̃it)

]2

(A.14)

+
2

n

n∑
i=1

(
1

T

T∑
t=1

η̃itε̃it

)
T∑
s=1

(η̂isε̂is − η̃isε̃is). (A.15)

By Lemma G.4, term (A.14) is oP (1).

For term (A.15), we have

E

[
1

n

∑
i

| 1
T

T∑
t=1

η̃itε̃it|2
]

= E

[
1

n

∑
i

| 1
T

T∑
t=1

(ηit − η̄·t)(εit − ε̄·t)− (η̄i· − ¯̄η)(ε̄i· − ¯̄ε)|2
]
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= O(
1

T
).

since the process {(ηt, εt)}+∞t=−∞ satisfies the strong mixing condition with exponential tails. Thus

by Cauchy-Schwarz,[
1

n

n∑
i=1

(
1

T

T∑
t=1

η̃itε̃it)

T∑
s=1

(η̂isε̂is − η̃isε̃is)

]2

≤

[
1

n

n∑
i=1

(
1

T

T∑
t=1

η̃itε̃it)
2

][
1

n

n∑
i=1

(

T∑
s=1

(η̂isε̂is − η̃isε̃is))2

]

≤ OP
(

1

T

)
1

n

n∑
i=1

(
T∑
s=1

(η̂isε̂is − η̃isε̃is)

)2

= oP (1).

This result then implies ∆1 = oP (1).

Step 2: Bound ∆2 := 1
nT

∑n
i=1(

∑T
t=1 η̃itε̃it)

2 − 1
nT

∑n
i=1(

∑T
t=1(ηit − η̄i·)(εit − ε̄i·))2.

Note that

T∑
t=1

η̃itε̃it =

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)−
T∑
t=1

η̄·t(εit − ε̄·t)−
T∑
t=1

ηitε̄·t + T ¯̄η(ε̄i· − ¯̄ε) + T η̄i·¯̄ε︸ ︷︷ ︸
Bi

.

and that 1
T

∑T
t=1(ηit − η̄i·)(εit − ε̄i·) = 1

T

∑T
t=1 ηitεit − η̄i·ε̄i·.

Hence,

1

nT

n∑
i=1

(

T∑
t=1

η̃itε̃it)
2 =

1

nT

n∑
i=1

(

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·) +Bi)
2

=
1

nT

n∑
i=1

(

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·))2 +
1

nT

n∑
i=1

B2
i

+
2

nT

n∑
i=1

Bi

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·).

Note that [
1

nT

n∑
i=1

Bi

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

]2

≤ 1

nT

∑
i

B2
i

1

n

∑
i

(
1√
T

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)2
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=
1

nT

∑
i

B2
iOP

(
1

n

∑
i

Var(
1√
T

T∑
t=1

(ηit − η̄i·)(εit − ε̄i·))

)

=
1

nT

∑
i

B2
iOP (σηε).

Therefore, |∆2| ≤ 1
nT

∑
iB

2
i + ( 1

nT

∑
iB

2
i )1/2OP (1). It suffices to prove 1

nT

∑
iB

2
i = oP (1). In

fact, 1
nT

∑
iB

2
i ≤ C

∑4
l=1 Āl for a constant C > 0 and

Ā1 =
1

nT

n∑
i=1

(
T∑
t=1

ηitε̄·t

)2

, Ā2 =
1

nT

n∑
i=1

(
T∑
t=1

η̄·t(εit − ε̄·t)

)2

,

Ā3 =
T

n
¯̄ε2

n∑
i=1

η̄2
i·, Ā4 =

T

n
¯̄η2

n∑
i=1

(ε̄i· − ¯̄ε)2.

where each Āl = OP (EĀl). We then have

EĀ1 =
1

n3T

n∑
j=1

n∑
i=1

n∑
m=1

T∑
s=1

T∑
t=1

Eηitεjtηisεms =
1

n3T

n∑
i=1

T∑
s=1

T∑
t=1

Eηitεitηisεis

+
1

n3T

n∑
i=1

∑
j 6=i

T∑
s=1

T∑
t=1

EηitηisEεjsεjt = O

(
T

n

)
= o(1).

Similarly, EĀ2 = o(1). In addition, ¯̄ε2 = OP (n−1) and ¯̄η2 = OP (n−1), so Ā3 and Ā4 are each

OP (T/n) = oP (1). Combining verifies that

∆2 :=
1

nT

n∑
i=1

(
T∑
t=1

η̃itε̃it

)2

− 1

nT

n∑
i=1

(
T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)2

= oP (1). (A.16)

Step 3: Bound ∆3 := 1
nT

∑n
i=1(

∑T
t=1(ηit − η̄i·)(εit − ε̄i·))2 − σηε.

Note that σηε = E

[
1
nT

∑n
i=1

(∑T
t=1(ηit − η̄i·)(εit − ε̄i·)

)2
]
, and let

zn,i =
1√
T

∑
t

(ηit − η̄i·)(εit − ε̄i·).

Then ∆3 = 1
n

∑n
i=1(z2

n,i − Ez2
n,i). Because 1

n

∑
i Var(z2

n,i) = O(1), we have

E∆2
3 = Var(∆3) = Var

(
1

n

∑
i

z2
n,i

)
=

1

n2

∑
i

Var(z2
n,i) = o(1), (A.17)

which implies

∆3 :=
1

nT

n∑
i=1

(
T∑
t=1

(ηit − η̄i·)(εit − ε̄i·)

)2

− σηε = oP (1). (A.18)

Combining the above three steps, we reach |σ̂ηε − σηε| = oP (1). �
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Proof of Corollary 3.1 Given Theorem 3.1, the corollary follows from the same argument as

that of Corollary 1 (i) of Belloni et al. (2014b). We thus refer to Belloni et al. (2014b) for details.

�

Appendix B. Convergence of the k-step bootstrap lasso

In this section, we obtain the statistical convergence rate (in OP∗) of the k-step bootstrap lasso

estimators γ̃∗d γ̃
∗
y . We focus on γ̃∗y , as the proof of γ̃∗d is similar. Recall that

L∗y(γ) =
1

nT

T∑
t=1

n∑
i=1

(ỹ∗it − δ̂∗
′

ytf̂
∗
i − Û∗

′

it γ)2,

γ̃∗y,lasso = arg min
γ∈Rp

L∗y(γ) + κn‖Ψ̂yγ‖1. (B.1)

and that

γ̂y = the post-lasso estimator based on the original data

γ̃∗y = the k-step lasso estimator based on the bootstrap data

γ̃∗y,lasso = the lasso estimator based on the bootstrap data

if a complete lasso program is carried out.

In particular, γ̂y is used as the coefficient when generating the bootstrap data.

We divide the proof into three subsections. Section B.1 proves the statistical convergence of

‖γ̃∗y,lasso − γ̂y‖1 in the bootstrap sampling space. Section B.2 quantifies the computational error

‖γ̃∗y − γ̃∗y,lasso‖1 and shows that the computational error of the k-step lasso is negligible using

the assumed high-level conditions on the iterative scheme Sy(·). Section B.3 verifies the high-level

conditions for the coordinate descent, or “shooting”, method (Fu (1998); Kadkhodaie et al. (2014)).

We employ the usual definition of oP∗(1) and OP∗(1). We say that a sequenceX∗n in the bootstrap

sampling space is oP∗(1) if for any ε, δ > 0,

P{P ∗(|X∗n| > ε) > δ} → 0,

and that X∗n = OP∗(1) if for any δ > 0, there is M > 0, such that

P{P ∗(|X∗n| > M) > δ} → 0.

B.1. The convergence of lasso on bootstrap data. The main result in this subsection is the

following proposition.

Proposition B.1. ‖γ̃∗y,lasso − γ̂y‖1 = OP∗(κn|J |0).
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Proof. Recall that F̂ , δ̂yt, and γ̂y respectively denote the estimated factors, the estimator of δyt,

and the post-lasso estimator of γy using the original data. We also have that Ũ∗t denotes the wild

bootstrapped idiosyncratic term in the factor equation and that the following relations hold:

Ỹ ∗t = F̂ δ̂yt + Ũ∗t γ̂y + ẽ∗t , ẽ∗t = ε̃∗t + η̃∗t α̂. (B.2)

In addition, recall that δ̂∗yt and Û∗t denote the estimates obtained from the bootstrap data. Define

M∗t = F̂ δ̂yt − F̂ ∗δ̂∗yt + (Ũ∗t − Û∗t )γ̂y, ∆∗γ = γ̂y − γ̃∗y,lasso. (B.3)

By definition, L∗y(γ̃∗y,lasso) + κn‖Ψ̂yγ̃∗y,lasso‖1 ≤ L∗y(γ̂y) + κn‖Ψ̂yγ̂y‖1, which implies

1

nT

T∑
t=1

(
‖Û∗t ∆∗γ‖22 + 2(ẽ∗

′

t +M∗
′

t )Û∗t ∆∗γ

)
+ κn‖Ψ̂yγ̃∗y,lasso‖1 ≤ κn‖Ψ̂yγ̂y‖1. (B.4)

By Lemma H.4 and κn = 2c0√
nT

Φ−1(1− qn/(2p)) for some c0 > 1,

| 1

nT

T∑
t=1

2(ẽ∗
′

t +M∗
′

t )Û∗t ∆∗γ |

≤ ‖ 1

nT

T∑
t=1

2ẽ∗
′

t Ũ
∗
t Ψ̂y−1‖∞‖Ψ̂y∆∗γ‖1 + (‖ 1

nT

T∑
t=1

2ẽ∗
′

t (Û∗t − Ũ∗t )‖∞

+ ‖ 1

nT

T∑
t=1

2M∗
′

t Û
∗
t ∆∗γ‖∞)‖Ψ̂y∆∗γ‖1 max

m
Ψ̂y
m

≤

[
2√
nT

Φ−1(1− qn
2p

)(1 + oP∗(1)) + oP∗

(√
log p

nT

)]
‖Ψ̂y∆∗γ‖1

≤ (c0 + 1)√
nT

Φ−1

(
1− qn

2p

)
‖Ψ̂y∆∗γ‖1

=
c0 + 1

2c0
κn‖Ψ̂y∆∗γ‖1.

with P ∗ approaching one. Equation (B.4) then implies, for the support set Ĵ of γ̂y,

1

nT

T∑
t=1

‖Û∗t ∆∗γ‖22 +
c0 − 1

2c0
κn‖(Ψ̂y∆∗γ)Ĵc‖1 ≤ κn‖(Ψ̂

y∆∗γ)Ĵ‖1
3c0 + 1

2c0
. (B.5)

Hence, ‖(∆∗γ)Ĵc‖1 ≤ c‖(∆
∗
γ)Ĵ‖1 for some c > 0. This also implies for some generic C > 0, ‖∆∗γ‖21 ≤

C‖∆γ,Ĵ‖
2
1 ≤ C‖∆∗γ‖22OP (|J |0) as |Ĵ |0 = OP (|J |0).

We can now apply Lemma H.4 to obtain

1

nT

T∑
t=1

‖Û∗t ∆∗γ‖22 ≥
1

nT

T∑
t=1

‖Ũt∆∗γ‖22 − ‖∆∗γ‖22oP∗(1).
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In addition, the sparse-eigenvalue condition implies the restricted eigenvalue condition: For any

m > 0, there is φ > 0, so that, for |Ĵ | = OP (|J |0), with probability arbitrarily close to one,

inf
δ∈Rp:‖δĴ‖1≤m‖δĴc‖1

δ′ 1
nT

∑n
i=1

∑T
t=1 ŨitŨ

′
itδ

δ′δ
≥ φ.

Hence 1
nT

∑T
t=1 ‖Û∗t ∆∗γ‖22 ≥ φ‖∆∗γ‖22/2.

1

nT

T∑
t=1

‖Û∗t ∆∗γ‖22 = OP∗(κ
2
n|J |0), ‖∆∗γ‖1 = OP∗(κn|J |0). (B.6)

�

B.2. The computational error of the k-step lasso. The main result in this subsection is the

following proposition.

Proposition B.2. (i) ‖γ̃∗y − γ̃∗y,lasso‖1 ≤ c‖γ̂y − γ̃∗y,lasso‖1 +OP∗
(
an
κn

+
√
an|J |0

)
for some c > 0.

(ii) ‖γ̂y − γ̃∗y‖1 = OP∗
(
κn|J |0 + an

κn
+
√
an|J |0

)
,

(iii) 1
nT

∑T
t=1 ‖Û∗t (γ̂y − γ̃∗y)‖22 = OP∗(κ

2
n|J |0 + an).

Proof. (i) We apply Lemma B.1 below. Note that condition (B.7) in this lemma is satisfied under

Assumption 4.1 with bn = OP∗(an). Hence applying Lemma B.1 with γ = γ̃∗y immediately implies

the result.

(ii) The conclusion follows immediately from part (i) and Proposition B.1.

(iii) By equation (B.8) given below in the proof of Lemma B.1 with bn = OP∗(an),

2

nT

∑
it

‖Û∗it(γ̃∗y − γ̃∗y,lasso)‖22 = OP∗(an).

Hence by (B.6), 1
nT

∑T
t=1 ‖Û∗t (γ̂y − γ̃∗y)‖22 ≤ OP∗(κ2

n|J |0 + an). �

Lemma B.1. For each γ, suppose for some bn (either stochastic or deterministic),

L∗(γ) + κn‖Ψ̂γ‖1 ≤ L∗(γ̃∗lasso) + κn‖Ψ̂γ̃∗lasso‖1 + bn, (B.7)

then

‖γ − γ̃∗lasso‖1 ≤ C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 +
bn
κn

+OP∗(
√
bn|J |0),

‖γ − γ̃∗lasso‖2 ≤ b1/2n + oP∗
(
|J |−1/2

0

)(
C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 +

bn
κn

)
.

Proof. We prove for L∗ = L∗y. The case with L∗ = L∗d follows by the same argument.

Step 1: Show ‖∆‖22 ≤ OP∗(bn) + ‖∆‖21oP∗(|J |−1
0 ). Here ∆ = γ − γ̃∗y,lasso.
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Since L∗y(γ) is quadratic, for any γ1, γ2,

L∗y(γ1)− L∗y(γ2) = (γ1 − γ2)′∇L∗y(γ2) + (γ1 − γ2)′∇2L∗y(γ2)(γ1 − γ2),

where

∇L∗y(γ2) = − 2

nT

T∑
t=1

n∑
i=1

Û∗it(ỹ
∗
it − δ̂∗

′

ytf̂
∗
i − Û∗

′

it γ2),

∇2L∗y(γ2) =
2

nT

T∑
t=1

n∑
i=1

Û∗itÛ
∗′
it .

Now let γ1 = γ, and γ2 = γ̃∗y,lasso. Condition (B.7) then implies

∆′
2

nT

T∑
t=1

n∑
i=1

Û∗itÛ
∗′
it ∆ ≤ bn + κn‖Ψ̂yγ̃∗y,lasso‖1 − κn‖Ψ̂yγ‖1 −∆′∇L∗y(γ̃∗y,lasso)

≤ bn (B.8)

where, to establish the last inequality, we used κn‖Ψ̂yγ̃∗y,lasso‖1 − κn‖Ψ̂yγ‖1 −∆′∇L∗y(γ̃∗y,lasso) ≤ 0

which follows due to the first order condition of (B.1) and the convexity of ‖.‖1. (See the proof of

Lemma 11 of Agarwal et al. (2012).)

We now establish a lower bound for the left hand side of (B.8).

∆′
2

nT

T∑
t=1

n∑
i=1

Û∗itÛ
∗′
it ∆ =

2

nT

T∑
t=1

‖Û∗t ∆‖22

≥(a) 2

nT

T∑
t=1

‖Ũt∆‖22 − ‖∆‖21oP∗(|J |−1
0 )

≥(b) c‖∆‖22 − ‖∆‖21oP∗(|J |−1
0 )

where (a) follows from (H.16) and (b) follows from Assumption 4.2. Substituting this lower bound

in for the left-hand-side of (B.8) then yields

‖∆‖22 ≤ bn + ‖∆‖21oP∗(|J |−1
0 ). (B.9)

Step 2: Show ‖∆‖1 ≤ OP∗(bn/κn) + ‖(γ̂y − γ̂∗y,lasso)Ĵ‖1 + ‖∆‖2OP (
√
|J |0).

We re-visit the proof of Proposition B.1. Note that (B.5) implies, for some c > 0,

κn‖(γ̂y − γ̃∗y,lasso)Ĵc‖1 ≤ κn‖(γ̂y − γ̃
∗
y,lasso)Ĵ‖1c.

The same argument also applies using γ in place of γ̃∗y,lasso due to Condition (B.7), yielding

κn‖(γ̂y − γ)Ĵc‖1 ≤ κn‖(γ̂y − γ)Ĵ‖1c+ bn.

Adding these two inequalities and using the triangle inequality, we have

‖(∆)Ĵc‖1 ≤ ‖(γ̂y − γ̃
∗
y,lasso)Ĵc‖1 + ‖(γ̂y − γ)Ĵc‖1
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≤ ‖(γ̂y − γ̃∗y,lasso)Ĵ‖1c+ ‖(γ̂y − γ)Ĵ‖1c+
bn
κn

≤ 2c‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 + ‖(∆)Ĵ‖1c+
bn
κn

≤ 2c‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 + ‖(∆)Ĵ‖2c
√
|Ĵ |0 +

bn
κn
.

We then obtain

‖∆‖1 ≤ ‖(∆)Ĵc‖1 + ‖(∆)Ĵ‖1

≤ 2c‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 + ‖∆‖2OP∗(
√
|J |0) +

bn
κn
.

(B.10)

Step 3: Complete the proof. Substituting (B.10) in for the right-hand-side of (B.9) gives

‖∆‖22 ≤ bn + oP∗(|J |−1
0 )

(
C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 +

bn
κn

)2

+ ‖∆‖22oP∗(1),

yielding ‖∆‖22 ≤ bn + oP∗(|J |−1
0 )

(
C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 + bn

κn

)2

, and thus

‖∆‖2 ≤ b1/2n + oP∗(|J |−1/2
0 )

(
C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 +

bn
κn

)
.

Substituting this bound back in for ‖∆‖2 in (B.10) then yields

‖∆‖1 ≤ C‖(γ̂y − γ̃∗y,lasso)Ĵ‖1 +
bn
κn

+OP∗(
√
bn|J |0). (B.11)

�

B.3. Verifying Assumption 4.1. We now prove Proposition 4.1, which states that the shooting

method of Fu (1998) satisfies Assumption 4.1.

We make use of the following lemma in proving Lemma B.3.

Lemma B.2. Recall that γ̂ denotes the post-lasso estimator using the original data and γ∗lasso
denotes the lasso estimator using the bootstrap data. We have that

0 ≤ L∗(γ̂) + κn‖Ψ̂γ̂‖1 − (L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1) = OP∗(κ
2
n|J |0). (B.12)

Proof. The first inequality follows from the definition of γ̂∗lasso.

We now show the equality. Note that for each γ,

L∗(γ) =
1

nT

T∑
t=1

(
‖Û∗t (γ̂ − γ)‖22 + ‖M∗t + ẽ∗t ‖22 + 2(ẽ∗

′

t +M∗
′

t )Û∗t (γ̂ − γ)
)

+ κn‖Ψ̂yγ‖1
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where M∗t and ẽ∗t are defined in the proof of Proposition B.1. Hence by Proposition B.1 and Lemma

H.4,

L∗(γ̂) + κn‖Ψ̂γ̂‖1 − (L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1)

= κn‖Ψ̂yγ̂‖1 − κn‖Ψ̂γ̂∗lasso‖1

− 1

nT

T∑
t=1

(
‖Û∗t (γ̂ − γ̂∗lasso)‖22 + 2(ẽ∗

′

t +M∗
′

t )Û∗t (γ̂ − γ̂∗lasso)
)

≤ κn‖Ψ̂y(γ̂ − γ̂∗lasso)‖1 + ‖ 2

nT

T∑
t=1

(ẽ∗
′

t +M∗
′

t )Û∗t ‖∞‖γ̂ − γ̂∗lasso‖1

≤ OP∗(κn)‖γ̂ − γ̂∗lasso‖1 = OP∗(κ
2
n|J |0).

�

Lemma B.3. For the shooting method, (i) L∗(γl) + κn‖Ψ̂γl‖1 ≤ L∗(γl−1) + κn‖Ψ̂γl−1‖1.
(ii) L∗(γ̃∗) + κn‖Ψ̂γ̃∗‖1 ≤ L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1 +OP∗(κ

2
n|J |0).

(iii) |Ĵ∗|0 = OP∗(|J |0).

Proof. Write γl = (γl,1, ..., γl,p)
′, where γl can be either γd,l or γy,l, to denote the solution after the

lth iteration. Note that γk = γ̃∗ is the k-step lasso estimator.

(i) For the shooting method, each γl,m for m ≤ p is defined as

γl,m = arg min
g

1

nT

∑
i,t

(ỹ∗it − δ̂∗
′

ytf̂
∗
i − Û∗

′

it,m−γl,m− − Û
∗′
it,m+γl−1,m+ − Û∗it,mg)2 + κn|Ψ̂mg|.

As is discussed in Section 4.1, after the mth element is updated in the lth iteration, the vector

becomes γ
(m)
l := (γl,m− , γl,m, γl−1,m+)′, where m− = {j : j < m}, and m+ = {j : j > m}; γl,m−

represents the subvector of γl whose indices are in m− and γl−1,m+ represents the subvector of γl−1

whose indices are in m+. With this notation, after the (m − 1)th element is updated in the lth

iteration, the current solution vector is γ
(m−1)
l = (γl,(m−1)− , γl,m−1, γl−1,(m−1)+)′. This vector can

be rearranged as

(γl,(m−1)− , γl,m−1, γl−1,(m−1)+)′ = (γl,m− , γl−1,m, γl−1,m+)′.

It can be seen that the loss function is non-increasing after the mth element is updated:

L∗(γ(m)
l ) + κn‖Ψ̂γ(m)

l ‖1
= L∗((γl,m− , γl,m, γl−1,m+))

+ κn‖Ψ̂m−γl,m−‖1 + κn|Ψ̂mγlm|+ κn‖Ψ̂m+γl−1,m+‖1
≤ L∗((γl,m− , γl−1,m, γl−1,m+))

+ κn‖Ψ̂m−γl,m−‖1 + κn|Ψ̂mγl−1,m|+ κn‖Ψ̂m+γl−1,m+‖1
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= L∗((γl,(m−1)− , γl,m−1, γl−1,(m−1)+))

+ κn‖Ψ̂(m−1)−γl,(m−1)−‖1 + κn|Ψ̂m−1γlm−1|+ κn‖Ψ̂(m−1)+γl−1,(m−1)+‖1

= L∗(γ(m−1)
l ) + κn‖Ψ̂γ(m−1)

l ‖1.

Note that γ
(p)
l = γl. Hence by (B.12) in Lemma B.2,

L∗(γl) + κn‖Ψ̂γl‖1 ≤ L∗(γ(1)
l ) + κn‖Ψ̂γ(1)

l ‖1 ≤ L
∗(γ

(p)
l−1) + κn‖Ψ̂γ(p)

l−1‖1

= L∗(γl−1) + κn‖Ψ̂γl−1‖1.

(ii) From (i), L∗(γk) + κn‖Ψ̂γk‖1 ≤ L∗(γ0) + κn‖Ψ̂γ0‖1 = L∗(γ̂) + κn‖Ψ̂γ̂‖1. In addition, by

(B.12) in Lemma B.2,

L∗(γ̂) + κn‖Ψ̂γ̂‖1 − (L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1) = OP∗(κ
2
n|J |0)

for γ̂ and γ∗lasso respectively denoting the completed lasso estimator (as opposed to the k-step lasso

solution) using the original data and the bootstrap data. Note that κ2
n|J |0

√
nT = o(1) and γk = γ̃∗,

so

L∗(γ̃∗) + κn‖Ψ̂γ̃∗‖1 ≤ L∗(γ̂) + κn‖Ψ̂γ̂‖1

≤ L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1 + oP∗((nT )−1/2)

which verifies Assumption 4.1(i).

(iii) We now focus on the k-step lasso estimator γk = γ̃∗ and let γk,m denote its mth element.

By the KKT condition, if γk,m 6= 0, then

−κnΨ̂msgn(γk,m) =
2

nT

∑
it

Û∗it,m(ỹ∗it − δ̂∗
′

ytf̂
∗
i − Û∗

′

it,m−γk,m− − Û
∗′
it,m+γk−1,m+ − Û∗it,mγk,m)

=
2

nT

∑
it

Û∗it,m(ỹ∗it − δ̂∗
′

ytf̂
∗
i − Û∗

′

it γ
(m)
k )

=
2

nT

∑
it

Û∗it,m(M∗it + ẽ∗it + Û∗
′

it (γ̂ − γ(m)
k )) (B.13)

where γ
(m)
k := (γk,m− , γk,m, γk−1,m+)′, and M∗it, ẽ

∗
it are respectively defined in (B.2)(B.3). Let

Û∗
it,Ĵ∗

denote the subvector of Û∗it, consisting of {Û∗it,m : γk,m 6= 0,m ≤ p} = {Û∗it,m : m ∈ Ĵ∗}.
Then the vector form of (B.13) is

−κnΨ̂(Ĵ∗)sgn(γk,m : m ∈ Ĵ∗) =
2

nT

∑
it

Û∗
it,Ĵ∗

(M∗it + ẽ∗it) +A,
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where (without loss of generality, we assume {m ≤ p : γk,m 6= 0} = {1, ..., |Ĵ∗|0})

A =


2
nT

∑
it Û
∗
it,1Û

∗′
it (γ̂ − γ(1)

k )
...

2
nT

∑
it Û
∗
it,|Ĵ∗|0

Û∗
′

it (γ̂ − γ(|Ĵ∗|0)
k )

 =


2
nT Û

∗′
1 Û

∗(γ̂ − γ(1)
k )

...
2
nT Û

∗′
|Ĵ∗|0

Û∗(γ̂ − γ(|Ĵ∗|0)
k )



=


(γ̂ − γ(1)

k )′ 2
nT Û

∗′ 0 · · · 0

0
. . .

0 · · · (γ̂ − γ(|Ĵ∗|0)
k )′ 2

nT Û
∗′




Û∗1
...

Û∗
|Ĵ∗|0

 :=
2

nT
BÛĴ∗ .

Therefore

κn‖Ψ̂(Ĵ∗)‖2 ≤ max
j
| 2

nT

∑
it

Û∗it,j(M
∗
it + ẽ∗it)|

√
|Ĵ∗|0 + ‖ 2√

nT
B‖‖ 1√

nT
ÛĴ∗‖. (B.14)

Note that here the norm in both ‖ 2√
nT
B‖ and ‖ 1√

nT
ÛĴ∗‖ is the operator norm and we have used

the inequality ‖BÛĴ∗‖2 ≤ ‖B‖‖ÛĴ∗‖.

Now by (H.14),

1

nT
‖Û∗

Ĵ∗
‖2 ≤ 2

nT
‖Ũ∗

Ĵ∗
‖2 +

2

nT
‖Û∗

Ĵ∗
− Ũ∗

Ĵ∗
‖2

≤ 2φmax(|Ĵ∗|0) +
2

nT

T∑
t=1

n∑
i=1

∑
m∈Ĵ∗

(Û∗it,m − Ũ∗it,m)2

≤ 2φmax(|Ĵ∗|0) +OP∗(∆
∗2
F +

log(pT )

n
)|Ĵ∗|0, and

1

nT
‖B‖2 = max

m∈Ĵ∗

4

nT
‖Û∗(γ̂ − γ(m)

k )‖2

≤ 8

nT
‖Û∗(γ̂ − γ̃∗lasso)‖22 + max

m∈Ĵ∗

8

nT
‖Û∗(γ̃∗lasso − γ

(m)
k )‖22

≤ OP∗(κ2
n|J |0).

(B.15)

where 1
nT ‖Û

∗(γ̂ − γ̃∗lasso)‖22 = OP∗(κ
2
n|J |0) follows from (B.6). To show

max
m∈Ĵ∗

8

nT
‖Û∗(γ̃∗lasso − γ

(m)
k )‖22 = OP∗(κ

2
n|J |0),

we note that part (i) and (B.12) demonstrate

L∗(γ(m)
k ) + κn‖Ψ̂γ(m)

k ‖1 ≤ L∗(γ0) + κn‖Ψ̂γ0‖1

= L∗(γ̂) + κn‖Ψ̂γ̂‖1 ≤ L∗(γ̂∗lasso) + κn‖Ψ̂γ̂∗lasso‖1 +OP∗(κ
2
n|J |0).

Thus, the same argument as used in equation (B.8) leads to

max
m∈Ĵ∗

8

nT
‖Û∗(γ̃∗lasso − γ

(m)
k )‖22 ≤ OP∗(κ2

n|J |0).
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By Lemma H.4, maxj | 2
nT

∑
it Û
∗
it,j(M

∗
it+ ẽ∗it)| = oP∗(κn) and κn‖Ψ̂(Ĵ∗)‖2 ≥ cκn. Hence, (B.14)

and (B.15) imply

κ2
n|Ĵ∗|0 ≤ (Cφmax(|Ĵ∗|0) +OP∗(∆

∗2
F +

log(pT )

n
)|Ĵ∗|0)κ2

n|J |0.

We thus obtain exactly the same inequality as given (D.3). The rest of the proof then follows from

the same argument as used to show Proposition D.1 (ii). We conclude |Ĵ∗|0 = OP∗(|J |0) which

verifies Assumption 4.1(ii). �

The following lemma is useful to uniformly bound terms in the bootstrap sampling space.

Lemma B.4. Suppose the following conditions hold:

(i) {Zijm} is a sequence of random variables in the original sampling space, satisfying

max
m≤p,i≤n

1

n

n∑
j=1

Z2
ijm = OP (a2

n)

for some deterministic sequence an > 0.

(ii) {X∗i , Y ∗i }i≤n is an i.i.d. sequence in the bootstrap sampling space such that {X∗i } is independent

of {Y ∗i }, EX∗i = EY ∗i = 0, and Var∗(Xi) < C and Var∗(Yi) < C for a constant C > 0 where C is

non-random in both the original and bootstrap sampling space.

(iii) Both X∗i and Y ∗i are sub-exponential random variables satisfying Assumption 3.1 (iv).

Then for any ε1, ε2 > 0, there is a Cε1,ε2 > 0 such that

P

P ∗
max
m≤p

∣∣∣∣∣∣ 1

n2

∑
i,j≤n

X∗i Y
∗
j Zijm

∣∣∣∣∣∣ > 2anC
√
Cε1,ε2 log p log(pn)

n

 > ε1

 < ε2.

Thus maxm≤p | 1
n2

∑
i,j≤nX

∗
i Y
∗
j Zijm| = OP∗

(
an
√

log p log(np)

n

)
.

Proof. By condition (i), for any δ > 0, there is Cδ > 0 such that with probability at least 1− δ the

event Aδ := {maxm≤p,i≤n
1
n

∑n
j=1 Z

2
ijm < a2

nCδ} holds.

Let V ∗ = maxmi | 1n
∑
j Y
∗
j Zijm|. Define W ∗im = X∗i

1
n

∑
j Y
∗
j Zijm and Y ∗ = {Y ∗i }i≤n. Since

{X∗i } and {Y ∗i } are independent, then on the event Aδ,

max
m,i

1

n

∑
j

Var∗(Y ∗j Zijm) = max
m,i

1

n

∑
j

Z2
ijm Var(Y ∗j )

< a2
nCCδ

max
m

1

n

∑
i

Var∗(W ∗im|Y ∗) = max
m

1

n

∑
i

 1

n

∑
j

Y ∗j Zijm

2

Var∗(X∗i )

≤ CV ∗2.

(B.16)



54 CHRISTIAN HANSEN AND YUAN LIAO

In the bootstrap sampling space (BSS), {Y ∗j Zijm}j≤n is independent across j and E∗Y ∗j Zijm = 0.

By the Bernstein inequality, for y = (2a2
nCCδ log(pn)/n)1/2,

P ∗(V ∗ > y)1{Aδ} ≤ pnmax
m,i

P ∗

| 1
n

∑
j

Y ∗j Zijm| > y

 1{Aδ}

≤ exp

(
log(pn)− ny2

maxm,i
1
n

∑
j Var∗(Y ∗j Zijm)

)
1{Aδ}

≤ exp

(
log(pn)− ny2

a2
nCCδ

)
= (pn)−1.

(B.17)

In the BSS, {W ∗im}i≤n is independent across i conditional on Y ∗. By (B.16) and the Bernstein

inequality, for x = y
√

2C log p
n =

2anC
√
Cδ log p log(pn)

n ,

P ∗(max
m≤p
| 1
n

∑
i

W ∗im| > x|Y ∗)1{V ∗ < y}

≤ pmax
m

P ∗

(
| 1
n

∑
i

W ∗im| > x|Y ∗
)

1{V ∗ < y}

≤ exp

(
log p− nx2

maxm
1
n

∑
i Var∗(W ∗im|Y ∗)

)
1{V ∗ < y}

≤ exp

(
log p− nx2

CV ∗2

)
1{V ∗ < y}

≤ exp

(
log p− nx2

Cy2

)
= p−1.

(B.18)

Let EY ∗ denote the expectation operator with respect to the marginal distribution of Y ∗ in the

bootstrap sampling space; i.e., EY ∗ is the conditional distribution of Y ∗ given the original data.

By the law of iterated expectations, EY ∗ [P ∗(·|Y ∗)] = P ∗(·). We then have

P ∗

max
m≤p
| 1

n2

∑
i,j≤n

X∗i Y
∗
j Zijm| > x


≤ P ∗

max
m≤p
| 1

n2

∑
i,j≤n

X∗i Y
∗
j Zijm| > x

 1{Aδ}+ 1{Acδ}

= P ∗

(
max
m≤p
| 1
n

∑
i

W ∗im| > x

)
1{Aδ}+ 1{Acδ}

= EY ∗P
∗

(
max
m≤p
| 1
n

∑
i

W ∗im| > x|Y ∗
)

1{Aδ}+ 1{Acδ}
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≤(a) EY ∗P
∗

(
max
m≤p
| 1
n

∑
i

W ∗im| > x|Y ∗
)

1{V ∗ < y}1{Aδ}+ EY ∗1{V ∗ ≥ y}1{Aδ}+ 1{Acδ}

≤(b) p−1 + P ∗(V ∗ ≥ y)1{Aδ}+ 1{Acδ}

≤(c) p−1 + (pn)−1 + 1{Acδ},

where we used P ∗(·|Y ∗) ≤ P ∗(·|Y ∗)1{V ∗ < y}+ 1{V ∗ ≥ y} in (a), (B.18) in (b), and (B.17) in (c).

Because P (Acδ) ≤ δ, taking the expectation with respect to the distribution of the original data on

both sides yields

EP ∗(max
m≤p
| 1

n2

∑
i,j≤n

X∗i Y
∗
j Zijm| > x) ≤ p−1 + (pn)−1 + δ.

For any ε1, ε2 > 0, let δ = ε1ε2/2, and call Cδ in x to be Cε1,ε2 . By the Markov Inequality, we then

have

P

P ∗(max
m≤p
| 1

n2

∑
i,j≤n

X∗i Y
∗
j Zijm| > x) > ε1

 ≤ 1

ε1
(p−1 + (pn)−1 + δ)

≤ ε1ε2/2 + δ

ε1
= ε2.

�

Appendix C. Verifying Conditions for Estimating the Factors

This section verifies Assumptions 3.5 and 4.4 when factors are estimated using PCA.

C.1. Proof of Proposition 5.1 (for F̂ using the original data). (i) By Assumption 5.1, it can

be shown that ‖H‖ = OP (1) = ‖V −1‖. In addition, we have the following identity:

f̂i −H ′f̃i = V −1
5∑
l=1

Ail,
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where

Ai1 =
1

pTn

n∑
j=1

f̂j

T∑
t=1

(Ũ ′itŨjt − U ′itUjt),

Ai2 =
1

pTn

n∑
j=1

f̂j

T∑
t=1

(U ′itUjt − EU ′itUjt),

Ai3 =
1

pTn

n∑
j=1

f̂j

T∑
t=1

EU ′itUjt,

Ai4 =
1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
tŨit,

Ai5 =
1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′i Λ̃
′
tŨjt.

(C.1)

Each term can be written in the form Ail = 1
pTn

∑n
j=1 f̂j

∑T
t=1Bijt,l. By Cauchy-Schwarz,

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP (1)

5∑
l=1

1

n

n∑
i=1

‖Ail‖22

≤ OP (1)
1

n2

n∑
i=1

n∑
j=1

(
1

pT

T∑
t=1

Bijt,l

)2

.

(C.2)

We bound the terms in (C.2) in Lemmas J.1 and J.2 below. Then, applying the bounds in Lemmas

J.1 and J.2 and using T = o(n), we have

1

n

n∑
i=1

‖f̂i −H ′f̃i‖22 = OP (∆2
F ), ∆2

F =
1

n2
+

1

nT 2
+

1

pT
.

It is then straightforward to verify that |J |20∆2
F = o

(√
1
nT

)
holds when |J |40 = o(nT 3), |J |40n =

o(p2T ), |J |20
√

log p log(pT ) = o(n), and |J |20T = o(n). For example, to show |J |20
√

log p log(T ) =

o(n), note that |J |0 = o(
√
n/(log p)) and |J |0 = o(

√
n/T ) implies

|J |20
√

log p log(T ) = o(n log T
√

log p/
√
T log p) = o(n).

(ii) We now verify that we can produce sequences ∆eg so that ∆eg = o
(

1√
nT

)
. First, note that

we can set gtm ∈ {γ′dΛ̃t, λ̃tm, δ̃t} in applying Lemma C.2, each of which yields ωn = O(|J |20) for ωn

defined in Lemma C.2. It then follows from Lemma C.2 that we can take ∆eg = ( 1√
npT

+ 1
n )|J |0 so

that ∆eg = o
(√

1
nT

)
, given T |J |20 = o(n) and |J |20 = o(p). Note that |J |20 = o(p) is implied by the

assumption that |J |40n = o(p2T ).
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(iii) By Lemma J.5, we take ∆fum = 1
n + 1

T
√
n

+ 1
T
√
p +

√
log(pT )
npT , and ∆2

fe = 1
n2 + 1

Tpn . We then

have

max
s≤T,m≤p

| 1
n

n∑
i=1

(H
′
f̃i − f̂i)Ũis,m| = OP (∆fum)

and

1

T

T∑
t=1

‖ 1

n

n∑
i=1

ẽit(f̂i −H ′f̃i)‖22 = OP (∆2
fe).

Then, it is straightforward to check ∆2
fum = o

(
log p

T |J|2 log(pT )

)
and ∆2

fe = o
(

log p
T log(pT )

)
.

(iv) By Lemma C.3, we can define ∆ud = 1√
n

√
log(pT )
nT +

√
log p
nT ( 1√

pT
+ 1

T
√
n

) + 1
pT . Given

|J |40n = o(p2T ) and |J |40 = o(nT 3), it is straightforward to verify that ∆ud = o

(√
log p
nT

)
and

|J |20
√

log p∆ud = o(1). This result follows by verifying
√

log p
nT

1√
pT
|J |20
√

log p = o(1) which can be

shown by noting that |J |40n = o(p2T ) implies |J0|2 = o(p
√
T/n) and that |J |20 log(p) = o(n). Thus,

because log2 p = o(n),(√
log p

nT

|J |20
√

log p√
pT

)2

=
log2 p|J |40
npT 2

= o

(
log(p)pn

√
T

npT 2
√
n

)
= o

(
log(p)

√
T

T 2
√
n

)
= o(1).

(v) First, by Lemma C.1, we can take ∆max = 1√
n

+
√

logn
Tp . Also ∆2

F = 1
n2 + 1

nT 2 + 1
pT .

This implies ∆2
F |J |20 + |J|0

n = O
(
|J|0
n +

|J|20
nT 2 +

|J|20
pT

)
. In addition, κ2

n|J |0
√
nT = o(1) and ‖Ry‖21 =

o
(

log p
nT

)
imply λ2

n|J |0 + ‖Ry‖21 = O
(

1√
nT

)
. Hence with the conditions |J |40 = o(nT 3), |J |40n =

o(p2T ), we have

λ2
n|J |0 + ‖Ry‖21 + ∆2

F |J |20 +
|J |0
n

= O

(
1√
nT

)
.

Thus, in order to verify ∆2
max|J |20T (λ2

n|J |0 + ‖Ry‖21 + ∆2
F |J |20 + |J|0

n ) = o(1), it suffices to verify(
1

n
+

log n

Tp

)
|J |20T

1√
nT

= o(1),

which holds given the conditions |J |20T = o(n) and |J |20 = o(p). Note that |J |20 = o(p) is implied by

|J |40n = o(p2T ). �

Lemma C.1. maxi ‖f̂i −H ′f̃i‖2 = OP

(
1√
n

+
√

logn
Tp

)
:= OP (∆2

max).

Proof. We first bound maxi
1
pT

∑
tm U

2
it,m and maxi ‖ 1

pT

∑T
t=1 Λ̃′tUit‖2. Since

max
i

Var

(
1

p

∑
m

U2
it,m

)
= O(p−1),
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we have

max
i

1

pT

∑
tm

U2
it,m ≤ max

i
| 1
T

∑
t

(
1

p

∑
m

U2
it,m − E

1

p

∑
m

U2
it,m)|+ max

itm
EU2

it,m

= OP

(√
log n

pT
+ 1

)
by the Bernstein inequality for strong mixing sequences.

For the kth row λ̃′tk of Λ̃′t,

max
itk

Var

(
1

p
λ̃′tkUit

)
=

1

p2
λ̃tk,mλ̃tk,l

∑
m,l

EUit,mUit,l

≤ O
(

1

p

)
max
itm

∑
l

|EUit,mUit,l|

= O

(
1

p

)
.

Employing the Bernstein inequality for weakly dependent data (e.g., Merlevède et al. (2011)), we

then have

max
i
‖ 1

pT

T∑
t=1

Λ̃′tUit‖2 ≤ OP

(√
log n

T

)√
max

i≤n,k≤K,t≤T
Var

(
1

p
λ̃′tkUit

)

= OP

(√
log n

Tp

)
.

(C.3)

Now, maxi ‖f̂i −H ′f̃i‖2 ≤
∑3
l=1Gl where each Gl is defined and bounded below. Specifically,

G1 = max
i
‖ 1

pTn

T∑
t=1

Ũ ′it

n∑
j=1

Ũjtf̂j‖2

≤ max
i
‖ 1

pTn

T∑
t=1

U ′it

n∑
j=1

Ũjtf̂j‖2 + max
i
‖ 1

pTn

T∑
t=1

Ū ′·t

n∑
j=1

Ũjtf̂j‖2

≤

(
2 max

i

1

pT

∑
tm

U2
it,m + 2

1

pT

∑
tm

Ū2
·t,m

)1/2
 1

pT

∑
tm

‖ 1

n

∑
j

Ũjt,mf̂j‖22

1/2

= OP

((√
log n

pT
+ 1

)(
1

T
√
p

+
1√
n

))
by equation (C.6) given below in Lemma C.2.

G2 = max
i
‖ 1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
tŨit‖2
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≤ OP (1) max
i
‖ 1

pT

T∑
t=1

Λ̃′tUit‖2 +OP (1)‖ 1

pT

T∑
t=1

Λ̃′tŪ·t‖2

= OP

(√
log n

Tp

)
by (C.3). Finally,

G3 = max
i
‖ 1

pTn

T∑
t=1

f̃ ′i Λ̃
′
t

n∑
j=1

Ũjtf̂
′
j‖2

≤ max
i
‖f̃i‖2‖

1

pTn

T∑
t=1

Λ̃′t

n∑
j=1

Ũjtf̂
′
j‖F

≤ OP (
√

log n)‖ 1

pTn

T∑
t=1

Λ̃′t

n∑
j=1

Ũjtf̃
′
j‖F

+OP (
√

log n)‖ 1

pTn

T∑
t=1

Λ̃′t

n∑
j=1

Ũjt(f̂j −H ′f̃j)′‖F

= OP

(√
log n

pTn

)
+OP (

√
log n∆F )

 1

n

∑
j

‖ 1

pT

∑
t

Λ̃′tŨjt‖22

1/2

= OP

(√
log n

pTn
+ ∆F

√
log n

pT

)
.

Hence, maxi ‖f̂i −H ′f̃i‖2 = OP

(
1√
n

+
√

logn
Tp

)
. �

Lemma C.2. Let {zit} be a random sequence with E(zit|ft, Ut) = 0 and Var(zit) > 0. In addition,

let {gtm} be a deterministic sequence of vectors with a fixed dimension, m ≤ p. Then for z̃it =

zit − z̄i· − z̄·t + ¯̄z, and ωn = maxm≤p
1
T

∑T
t=1 ‖gtm‖22,

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

gtmz̃it(f̂i −H ′f̃i)′‖F = OP

(
1√
npT

+
1

n

)
ω1/2
n .

Proof. It follows from equation (C.1) that

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

gtmz̃it(f̂i −H ′f̃i)′‖F ≤
3∑
l=1

C̄lOP (1),

where each term C̄l is defined and bounded in below.

C̄1 = max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

f̂j

T∑
s=1

Ũ ′isŨjsz̃itg
′
tm‖F
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≤ max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

(f̂j −H ′f̃j)
T∑
s=1

Ũ ′isŨjsz̃itg
′
tm‖F

+OP (1) max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

f̃j

T∑
s=1

Ũ ′isŨjsz̃itg
′
tm‖F

≤ (xnωn)1/2

( 1

npT
‖Ũ‖2F

)1/2

OP (∆F ) +OP (1)(
1

pT

∑
s

‖ 1

n

n∑
j=1

f̃jŨ
′
js‖2F )1/2


= (xnωn)1/2OP (∆F +

1√
n

)

= ω1/2
n OP

(
1√
npT

+
1

n

)
.

where xn = 1
pT 2

∑T
t=1

∑T
s=1 ‖

1
n

∑n
i=1 z̃itŨis‖22 = OP ( 1

n ) and ωn = maxm≤p
1
T

∑T
t=1 ‖gtm‖22. Next,

C̄2 = max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

f̂j

T∑
s=1

f̃ ′jΛ̃
′
sŨisz̃itg

′
tm‖F

≤ OP (ω1/2
n )

(
1

T

T∑
t=1

‖ 1

pT

1

n

n∑
i=1

T∑
s=1

Λ̃′sŨisz̃it‖22

)1/2

= OP

(
ω1/2
n

1√
npT

)
by Lemma J.3). Finally,

C̄3 = max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

f̂j

T∑
s=1

f̃ ′i Λ̃
′
sŨjsz̃itg

′
tm‖F

≤ max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

(f̂j −H ′f̃j)
T∑
s=1

f̃ ′i Λ̃
′
sŨjsz̃itg

′
tm‖F

+OP (1) max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

1

pTn

n∑
j=1

f̃j

T∑
s=1

f̃ ′i Λ̃
′
sŨjsz̃itg

′
tm‖F

≤ (ωncn)1/2

OP (∆F )(
1

n

∑
j

‖ 1

pT

T∑
s=1

Λ̃′sŨjs‖22)1/2 +OP (1) max
m≤p
‖ 1

pTn

n∑
j=1

T∑
s=1

Λ̃′sŨjsf̃
′
j‖F


= ω1/2

n OP

(
1√
npT

+
1

n

)
where cn = 1

T

∑T
t=1 ‖

1
n

∑n
i=1 f̃iz̃it‖22 = OP ( 1

n ). Therefore,

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

gtmz̃it(f̂i −H ′f̃i)′‖F = OP

(
1√
npT

+
1

n

)
ω1/2
n .
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�

Lemma C.3. Let {gtk : k ≤ p} be a deterministic sequence of vectors of fixed dimension with

maxtk ‖gtk‖2 = O(1), and let g̃tk = gtk − 1
T

∑
t gtk. Then

max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)Ũit,mg̃′tk‖F = OP

(
1√
n

√
log(pT )

nT
+

√
log p

nT
(

1√
pT

+
1

T
√
n

) +
1

pT

)
:= OP (∆ud).

Proof. First, note that
∑
t g̃tk = 0. Hence,

max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)Ũit,mg̃′tk‖F

≤ max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)Uit,mg̃′tk‖F (C.4)

+ ‖ 1

n

n∑
i=1

(f̂i −H ′f̃i)‖2 max
m,k≤p

‖ 1

T

T∑
t=1

Ū·t,mg̃
′
tk‖F . (C.5)

Term (C.5) is OP

(
∆F

√
log p
nT

)
. Term (C.4) is bounded by

∑7
l=1 Cl, where each Cl is defined and

bounded blow.

First, note that applying Lemma J.5 gives

1
√
p

 1

T

∑
t

‖ 1

n

∑
j

f̂jŨ
′
jt‖2F

1/2

≤ 2
√
p

 1

T

∑
t

‖ 1

n

∑
j

(f̂j −H ′f̃j)Ũ ′jt‖2F

1/2

+
2
√
p

 1

T

∑
t

‖ 1

n

∑
j

H ′f̃jŨ
′
jt‖2F

1/2

= OP

(
1

n
+

1

T
√
n

+
1

T
√
p

+

√
log(pT )

npT
+

1√
n

)

= OP (
1

T
√
p

+
1√
n

) and

max
tl
‖ 1

n

n∑
j=1

f̂jŨjt,l‖2 = OP

(√
log(pT )

n
+

1

T
√
p

)
.

(C.6)

We then have, up to an ‖V −1‖ = OP (1) term,

C1 = max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

Ũ ′jt(Ũit − Uit)Uis,mg̃′sk‖F
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= max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

Ũ ′jtŪ·tUis,mg̃
′
sk‖F (because

1

T

∑
t

Ũjt = 0)

≤

 1

T

∑
t

‖ 1

n

∑
j

f̂jŨ
′
jt‖2F

1/2(
1

T

∑
t

‖Ū·t‖22

)1/2

max
mk
‖ 1

nTp

n∑
i=1

T∑
s=1

Uis,mg̃
′
sk‖2

= OP

(
1

T
√
p

+
1√
n

)
1√
n

√
log p

nT

= OP

(
1

T
√
pn

+
1

n

)√
log p

nT
.

C2 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

Ũ ′jt(UitUis,m − EUitUis,m)g̃′sk

∥∥∥∥∥∥
F

≤

 1

T

∑
t

‖ 1

n

∑
j

f̂jŨ
′
jt‖2F

1/2

max
mkt
‖ 1

nTp

n∑
i=1

T∑
s=1

(UitUis,m − EUitUis,m)g̃′sk‖F

= OP

(
1

T
√
p

+
1√
n

)(√
log(pT )

nT

)
(C.7)

using Lemma J.4.

C3 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

Ũ ′jt(EUitUis,m)g̃′sk

∥∥∥∥∥∥
F

≤ max
itm

T∑
s=1

p∑
l=1

|(EUit,lUis,m)|max
sk
‖g̃sk‖2

1

pT
max
tl
‖ 1

n

n∑
j=1

f̂jŨjt,l‖2

= OP

(
1

pT

)
OP

(√
log(pT )

n
+

1

T
√
p

)
.

C4 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
t(Ũit − Uit)Uis,mg̃′sk

∥∥∥∥∥∥
F

= max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
tŪ·tUis,mg̃

′
sk

∥∥∥∥∥∥
F

(because
∑
t

Λ̃t = 0)

≤ OP (1)

∥∥∥∥∥ 1

pT

T∑
t=1

Λ̃′tŪ·t

∥∥∥∥∥
2

max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

Uis,mg̃
′
sk

∥∥∥∥∥
2
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= OP

(
1√
npT

)√
log p

nT
.

C5 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
t(UitUis,m − EUitUis,m)g̃′sk

∥∥∥∥∥∥
F

≤ OP (1) max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pT

T∑
t=1

Λ̃′t(UitUis,m − EUitUis,m)g̃′sk

∥∥∥∥∥
F

= OP

(√
log p

npT 2

)
(C.8)

using the same proof as that of Lemma J.4 (ii).

C6 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′jΛ̃
′
t(EUitUis,m)g̃′sk

∥∥∥∥∥∥
F

≤ OP (1) max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pT

T∑
t=1

Λ̃′t(EUitUis,m)g̃′sk

∥∥∥∥∥
F

= OP

(
1

pT

)
.

C7 = max
m,k≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂j

T∑
t=1

f̃ ′i Λ̃
′
tŨjtUis,mg̃

′
sk

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥ 1

pTn

n∑
j=1

T∑
t=1

f̂jŨ
′
jtΛ̃t

∥∥∥∥∥∥
2

max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

f̃iUis,mg̃
′
sk

∥∥∥∥∥
F

≤ OP

(√
log p

nT

)‖ 1

pTn

n∑
j=1

T∑
t=1

f̃jŨ
′
jtΛ̃t‖2 + ‖ 1

n

n∑
j=1

(f̂j −H ′f̃j)Ũjt,m‖2


= OP

(√
log p

nT

)(
1

n
+

1

T
√
n

+
1

T
√
p

+

√
log(pT )

npT

)
.

Combining the above, we reach

max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
t=1

(f̂i −H ′f̃i)Ũit,mg̃′tk

∥∥∥∥∥
F

= OP

(
1√
n

√
log(pT )

nT
+

√
log p

nT
(

1√
pT

+
1

T
√
n

+ ∆F ) +
1

pT

)
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= OP

(
1√
n

√
log(pT )

nT
+

√
log p

nT
(

1√
pT

+
1

T
√
n

) +
1

pT

)
.

�

C.2. Proof of Proposition 5.1 (for F̂ ∗ using the bootstrap data). (i) Similar to (C.1), it

can be proven that there is ‖H∗‖ = OP∗(1) and ‖V ∗−1‖ = OP∗(1)such that

f̂∗i −H∗
′
f̂i = V ∗−1

4∑
l=1

A∗il,

where

A∗i1 =
1

pTn

n∑
j=1

f̂∗j

T∑
t=1

(Ũ∗
′

it Ũ
∗
jt − E∗Ũ∗

′

it Ũ
∗
jt), A∗i2 =

1

pTn

n∑
j=1

f̂∗j

T∑
t=1

E∗Ũ∗
′

it Ũ
∗
jt,

A∗i3 =
1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′jΛ̂
′
tŨ
∗
it, A∗i4 =

1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′i Λ̂
′
tŨ
∗
jt.

(C.9)

We first treat A∗i2 −A∗i4. Because Ũ∗it and Ũ∗jt are independent if i 6= j, we have

1

n

∑
i

‖A∗i2‖22 =
1

n

∑
i

‖ 1

pTn

n∑
j=1

f̂∗j

T∑
t=1

E∗Ũ∗
′

it Ũ
∗
jt‖22

=
1

n

∑
i

‖ 1

pTn
f̂∗i

T∑
t=1

E∗Ũ∗
′

it Ũ
∗
it‖22

= OP∗

(
1

n2

)
.

By Lemma J.7, 1
n

∑
i ‖A∗i3‖22 + 1

n

∑
i ‖A∗i4‖22 = OP∗(∆

2
F ). Hence

4∑
l=2

1

n

∑
i

‖A∗il‖22 = OP∗(∆
2
F ). (C.10)

Now we bound 1
n

∑n
i=1 ‖A∗i1‖22. A preliminary rate is provided by Lemma J.6 where we have

that
1

n

n∑
i=1

‖A∗i1‖22 = OP∗

(
∆2
F +

1

n

)
.

However, this rate is not sharp due to the OP∗(n
−1) term and can be improved. Specifically, the

proof of Lemma J.6 (iii) uses a Cauchy-Schwarz inequality and is not sharp for terms involving

E [U ′itUjt]. To see this intuitively, consider a simple example where we bound

1

n

n∑
i=1

‖ 1

nTp

n∑
j=1

T∑
t=1

fjEU
′
itUjt‖22.
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Since Uit and Ujt are independent when i 6= j, this term may be simplified to

1

n

n∑
i=1

‖ 1

nTp

T∑
t=1

fiEU
′
itUit‖22 = OP

(
1

n2

)
.

In contrast, using the Cauchy-Schwarz inequality gives

1

n

n∑
i=1

‖ 1

nTp

n∑
j=1

T∑
t=1

fjEU
′
itUjt‖22 ≤

1

n

∑
j

‖f̂j‖22
1

n2

∑
j

n∑
i=1

(
1

Tp

T∑
t=1

EU ′itUjt

)2

= OP

(
1

n

)
.

Lemma J.6 (iii) does provide a useful preliminary rate to build upon. Applying Lemma J.6 (iii)

and (C.10), we obtain a preliminary rate

1

n

n∑
i=1

‖f̂∗i −H∗
′
f̂i‖22 = OP∗

(
∆2
F +

1

n

)
.

Our goal is to remove the term 1
n through improving the bound for 1

n

∑n
i=1 ‖A∗i1‖22. By the triangle

inequality,

1

n

n∑
i=1

‖A∗i1‖22 ≤
2

n

n∑
i=1

∥∥∥∥∥∥ 1

pTn

n∑
j=1

H∗
′
f̂j

T∑
t=1

(Ũ∗
′

it Ũ
∗
jt − E∗Ũ∗

′

it Ũ
∗
jt)

∥∥∥∥∥∥
2

2

+
2

n

n∑
i=1

∥∥∥∥∥∥ 1

n

n∑
j=1

(f̂∗j −H∗
′
f̂j)

1

pT

T∑
t=1

(Ũ∗
′

it Ũ
∗
jt − E∗Ũ∗

′

it Ũ
∗
jt)

∥∥∥∥∥∥
2

2

≤(a) OP∗(∆
2
F ) +OP∗(∆

2
F )

1

n2

∑
ij

(
1

pT

T∑
t=1

(Ũ∗
′

it Ũ
∗
jt − E∗Ũ∗

′

it Ũ
∗
jt)

)2

= OP∗(∆
2
F )

where in (a) we used Lemma J.8 and the last equality follows from (J.5). Hence combining with

(C.10), we have 1
n

∑n
i=1 ‖f̂∗i −H∗

′
f̂i‖22 = OP∗(∆

2
F ). Thus, we have ∆∗F = ∆F .

(ii) We now verify the conditions in Assumption 4.4:
√
nT |J |20∆∗2F = o(1), ∆∗eg = o( 1√

nT
),

∆∗ud = o(
√

log p
nT ), |J |20

√
log p∆∗ud = o(1), ∆∗2F = o( log p

T log(pT ) ), and ∆2
max|J |20T∆∗2F = o(1).

∆∗F : We have previously proven that ∆2
F = 1

n2 + 1
nT 2 + 1

pT . In addition, Lemma C.1 gives

∆max = 1√
n

+
√

logn
Tp . Hence it is straightforward to verify the required conditions involving ∆∗F ,

given the assumption that |J |20 log n = o(p).
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∆∗ud: ∆∗ud is defined in Lemma C.5 which gives ∆∗ud = bn + ∆ud for

bn =
1

T

√
log p log(np)

np
+

√
log n

npT
+

log p

n
√
T

+
1

pT
+

√
log p

npT
+

√
log p

n
+

√
|J |0
nT

+

√
|J |0
npT

.

In the proof of Proposition 5.1, we verified ∆ud = o

(√
log p
nT

)
and |J |20

√
log p∆ud = o(1). It

is also straightforward to verify that bn = o

(√
log p
nT

)
and that |J |20

√
log pbn = o(1) given that

log n = o(p), |J |40n = o(p2T ), |J |20 log3 p = o(n), and |J |40 = o(nT 3). In particular, we need to verify

|J |50 log p
(

1
n2T 2 + 1

npT

)
= o(1). To verify this condition, we use |J |40n = o(p2T ) and |J |40 = o(nT 3)

to show

|J |50 log p

(
1

n2T 2
+

1

npT

)
= |J |30 log p

(
|J |20
n2T 2

+
|J |20n1/2

n3/2pT

)
= o(1)|J |30 log p

(
n1/2T 3/2

n2T 2
+

pT 1/2

n3/2pT

)
= o(1)

|J |30 log p

n3/2T 1/2

= o(1)(
|J |0 log p

n1/2
)3 = o(1).

∆∗eg: Note that for ĝtm ∈ {Λ̂′tγ̂d, Λ̂′tγ̂y, δ̂dt, δ̂yt, λ̂tm}, we have

ω∗n = max
m≤p

1

T

T∑
t=1

‖ĝtm‖22 = OP (|J |20).

Hence by Lemma C.4, ∆∗2eg =
(

1
n2 + logn

npT + logn
n2T 2 + log1/2 n

n2T 1/2

)
|J |20. Given |J |20 log n = o(p) and

|J |20T = o(n), it is then straightforward to verify ∆∗2eg = o
(

1
nT

)
which follows by verifying

|J|20 logn
nT =

o(1). To see
|J|20 logn
nT = o(1), note that we have, by |J |4/30 = o(n1/3T ),

|J |20 log n

nT
=
|J |2/30 |J |

4/3
0 log n

nT
= o(1)

|J |2/30 n1/3T log n

nT
= o(1)

|J |2/30 log n

n2/3
= o(1).

�

Lemma C.4. In the bootstrap sampling space, let z̃∗it = ẑitw
Z
i where {wZi }ni=1 are i.i.d. with mean

zero and bounded variance and independent of {wUi } and ẑit = η̂it or ẑit = ε̂it. In addition, let

{ĝtm} be a deterministic sequence (in the bootstrap sampling space) of vectors with a fixed dimension,

m ≤ p. Then for ω∗n = maxm≤p
1
T

∑T
t=1 ‖ĝtm‖22,

max
m≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
t=1

ĝtmz̃
∗
it(f̂

∗
i −H∗

′
f̂i)
′

∥∥∥∥∥
2

F

= OP∗

(
1

n2
+

log n

npT
+

log n

n2T 2
+

log1/2 n

n2T 1/2

)
ω∗n

where the term OP∗
(

1
n2 + logn

npT + logn
n2T 2 + log1/2 n

n2T 1/2

)
ω∗n defines ∆∗2eg.
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Proof. It follows from (C.9) that

max
m≤p
‖ 1

nT

n∑
i=1

T∑
s=1

z̃∗is(f̂
∗
i −H∗

′
f̂i)ĝ

′
sm‖F ≤

3∑
l=1

C̄lOP (1),

where each term C̄l is defined and bounded below.

First, we have

C̄1 = max
m≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

z̃∗is
1

pTn

n∑
j=1

f̂∗j

T∑
t=1

Ũ∗
′

it Ũ
∗
jtĝ
′
sm

∥∥∥∥∥∥
F

≤

 1

pT

∑
t

‖ 1

n

n∑
j=1

f̂∗j Ũ
∗′
jt ‖2F

1/2(
1

T 2p

∑
s,t

‖ 1

n

n∑
i=1

z̃∗isŨ
∗
it‖22

)1/2

ω∗1/2n

= OP∗

(
∆F +

1√
n

)
1√
n
ω∗1/2n

= ω1/2
n OP∗

(
1√
npT

+
1

n

)
,

where we used

1

pT

∑
t

‖ 1

n

n∑
j=1

f̂∗j Ũ
∗′
jt ‖2F ≤ OP∗(∆2

F ) +OP∗(1)
1

pT

∑
t

‖ 1

n

n∑
j=1

f̂jŨ
∗′
jt ‖2F

= OP∗

(
∆2
F +

1

n

)
,

1

T 2p

∑
s,t

‖ 1

n

n∑
i=1

z̃∗isŨ
∗
it‖22 =

1

T 2p

∑
s,t

‖ 1

n

n∑
i=1

ẑisw
Z
i w

U
i Ûit‖22

= OP∗

(
1

n

)
,

(C.11)

and ∆F = ∆∗F .

For the second term, we have by Lemma J.8 that

C̄2 = max
m≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

z̃∗is
1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′jΛ̂
′
tŨ
∗
itĝ
′
sm

∥∥∥∥∥∥
F

≤ OP∗(ω∗1/2n )

(
1

T

T∑
s=1

‖ 1

pTn

n∑
i=1

T∑
t=1

Λ̂′tŨ
∗
itz̃
∗
is‖22

)1/2

= OP∗

(√
log n

npT
+

√
log n

nT
+

1

n
+

1

n
(
log n

T
)1/4

)
ω∗1/2n .
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Finally,

C̄3 = max
m≤p

∥∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

z̃∗is
1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′i Λ̂
′
tŨ
∗
jtĝ
′
sm

∥∥∥∥∥∥
F

≤

(
1

T

T∑
s=1

(
1

n

n∑
i=1

z̃∗isf̂
′
i)

2

)1/2

ω∗1/2n

∥∥∥∥∥∥ 1

nTp

n∑
j=1

T∑
t=1

f̂∗j Λ̂′tŨ
∗
jt

∥∥∥∥∥∥
2

= OP∗

(
ω∗1/2n

1√
n

)(
∆2
F +

√
∆2
F log n

n

)
where we used Lemma H.1 to obtain 1

T

∑
t ‖

1
n

∑n
i=1 z̃

∗
itf̂i‖22 = OP∗

(
1
n

)
.

Combining the above, we have

max
m≤p
‖ 1

nT

n∑
i=1

T∑
t=1

ĝtmz̃
∗
it(f̂

∗
i −H∗

′
f̂i)
′‖2F = OP∗

(
1

n2
+

log n

npT
+

log n

n2T 2
+

log1/2 n

n2T 1/2

)
ω∗n.

�

Lemma C.5. For ĥtk ∈ {δ̂yt, δ̂dt, λ̂tk}, we have

max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
t=1

(f̂∗i −H∗
′
f̂i)Ũ

∗
it,mĥ

′
tk

∥∥∥∥∥
F

≤ OP∗
(

1

T

√
log p log(np)

np
+

√
log n

npT
+

log p

n
√
T

+
1

pT
+

√
log p

npT
+

√
log p

n
+

√
|J |0
nT

+

√
|J |0
npT

)
+OP∗(∆ud)

for ∆ud defined as in Lemma C.3. The term on the right-hand-side of the inequality defines ∆∗ud.

Proof. We have maxm,k≤p ‖ 1
nT

∑n
i=1

∑T
s=1(f̂∗i − H∗

′
f̂i)Ũ

∗
is,mĥ

′
sk‖F ≤

∑5
l=1Dl, where each Dl is

defined and bounded below.

D1 = max
m,k≤p

∥∥∥∥∥∥ 1

T

T∑
t=1

1

n

n∑
j=1

f̂∗j Ũ
∗′
jt

1

nTp

n∑
i=1

T∑
s=1

(Ũ∗itŨ
∗
is,m − E∗Ũ∗itŨ∗is,m)ĥ′sk

∥∥∥∥∥∥
F

≤

 1

T

T∑
t=1

‖ 1

n

n∑
j=1

f̂∗j Ũ
∗′
jt ‖22

1/2

× max
m,k≤p

(
1

T

T∑
t=1

‖ 1

nTp

n∑
i=1

T∑
s=1

(Ũ∗itŨ
∗
is,m − E∗Ũ∗itŨ∗is,m)ĥ′sk‖2F

)1/2

= OP∗

(√
log(pT )

n
(
log n log(pT )

n
+

log(np)

T
)

)(
∆F +

1√
n

)
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where we used Lemma J.8 and equation (C.11) from the proof of Lemma C.4 which gives

1

pT

∑
t

‖ 1

n

n∑
j=1

f̂∗j Ũ
∗′
jt ‖2F ≤ OP∗

(
∆2
F +

1

n

)
.

Next,

D2 = max
m,k≤p

∥∥∥∥∥∥
p∑
l=1

1

T

T∑
t=1

1

pn

n∑
j=1

f̂∗j Ũ
∗′
jt,l

1

nT

n∑
i=1

T∑
s=1

E∗(Ũ∗it,lŨ
∗
is,m)ĥ′sk

∥∥∥∥∥∥
F

≤ max
tl

∥∥∥∥∥∥ 1

n

n∑
j=1

f̂∗j Ũ
∗′
jt,l

∥∥∥∥∥∥
2

max
m,k≤p

1

pT

p∑
l=1

T∑
t=1

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

E∗(Ũ∗it,lŨ
∗
is,m)ĥ′sk

∥∥∥∥∥
F

= OP∗

(√
log(pT )

n
+ ∆F

)(
∆F +

√
log(pT ) log p

n
+

√
log(pT )

nT

)

where we used Lemma J.8 and maxmt ‖ 1
n F̂
∗′Ũ∗t,m‖2 = OP∗

(√
log(pT )

n + ∆F

)
due to Lemma H.1.

We then have

D3 = max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′jΛ̂
′
t(Ũ
∗
itŨ
∗
is,m − E∗Ũ∗itŨ∗is,m)ĥ′sk‖F

≤ OP∗(1) max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pT

T∑
t=1

Λ̂′t(Ũ
∗
itŨ
∗
is,m − E∗Ũ∗itŨ∗is,m)ĥ′sk‖F

= OP∗

(√
log p

n
(
log n log(pT )

n
+

log(np)

T
)∆2

F

)
by Lemma J.8. We also have

D4 = max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pTn

n∑
j=1

f̂∗j

T∑
t=1

f̂ ′jΛ̂
′
tE
∗Ũ∗itŨ

∗
is,mĥ

′
sk‖F

≤ OP∗(1) max
m,k≤p

‖ 1

nT

n∑
i=1

T∑
s=1

1

pT

T∑
t=1

Λ̂′tE
∗Ũ∗itŨ

∗
is,mĥ

′
sk‖F

= OP∗

(
1

pT
+

√
log p

npT
+

√
log p

n
+

√
|J |0
nT

+

√
|J |0
npT

)
+OP∗(∆ud)

where the inequality follows from Lemma J.9 (iii). Finally,

D5 = max
m,k≤p

∥∥∥∥∥∥ 1

pTn

n∑
j=1

f̂∗j

T∑
t=1

Λ̂′tŨ
∗
jt

1

nT

T∑
s=1

n∑
i=1

f̂iŨ
∗
is,mĥ

′
sk

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥ 1

pTn

n∑
j=1

f̂∗j

T∑
t=1

Λ̂′tŨ
∗
jt

∥∥∥∥∥∥
2

max
m,k≤p

∥∥∥∥∥ 1

nT

T∑
s=1

n∑
i=1

f̂iŨ
∗
is,mĥ

′
sk

∥∥∥∥∥
F
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=(a) OP∗

(
∆2
F +

√
∆2
F log n

n

)
max
m,k≤p

∥∥∥∥∥ 1

nT

T∑
s=1

n∑
i=1

f̂iŨ
∗
is,mĥ

′
sk

∥∥∥∥∥
F

= OP∗

(
∆2
F +

√
∆2
F log n

n

)
where equality (a) results by applying Lemma J.8 (iii). Note that the upper bound achieved in the

last equality is not sharp but is sufficient to verify Assumptions about ∆∗ud.

Combining the above terms, we reach

max
m,k≤p

∥∥∥∥∥ 1

nT

n∑
i=1

T∑
s=1

(f̂∗i −H∗
′
f̂i)Ũ

∗
is,mĥ

′
sk

∥∥∥∥∥
F

= OP∗

(√
log(pT )

n
(
log n log(pT )

n
+

log(np)

T
)

)(
∆F +

1√
n

)

+OP∗

(√
log(pT )

n
+ ∆F

)(
∆F +

√
log(pT ) log p

n
+

√
log(pT )

nT

)

+OP∗(∆ud + ∆F

√
log n

n
) +OP∗

(
∆F

√
log p

n
(
log n log(pT )

n
+

log(np)

T
)

)

+OP∗

(
1

pT
+

√
log p

npT
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where ∆ud is defined as in Lemma C.3. �
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Figure 1. This figure shows the simulation RMSE of each of the estimators described
in the text for estimating the coefficient of interest in a panel partial factor model. RMSE
(truncated at 0.1) is shown in the vertical axis. The horizontal axes give the fraction of the
explanatory power in an infeasible regression of Y on factors and factor residuals, “%Y,”
and the fraction of the explanatory power in an infeasible regression of D on factors and
factor residuals, “%D,” where the infeasible regressions are described in the text.
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Figure 2. This figure shows the simulation size of 5% level tests based on each of
the estimators described in the text for the PPFM. Size (truncated at 0.3) is shown in
the vertical axis. The horizontal axes give the fraction of the explanatory power in an
infeasible regression of Y on factors and factor residuals, “%Y,” and the fraction of the
explanatory power in an infeasible regression of D on factors and factor residuals, “%D,”
where the infeasible regressions are described in the text.
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Figure 3. This figure shows the simulation size of 5% level tests based on the factor-
lasso estimator in the PPFM and the asymptotic Gaussian approximation, the k-step
bootstrap, and a score based bootstrap. Size is shown in the vertical axis. The horizontal
axes give the fraction of the explanatory power in an infeasible regression of Y on factors
and factor residuals, “%Y,” and the fraction of the explanatory power in an infeasible
regression of D on factors and factor residuals, “%D,” where the infeasible regressions are
described in the text.
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Figure 4. This figure shows the simulation RMSE of each of the estimators described
in the text for estimating the coefficient of interest in an IV partial factor model. RMSE
(truncated at 0.1) is shown in the vertical axis. The horizontal axes give the fraction of the
explanatory power in an infeasible regression of Y on factors and factor residuals, “%Y,”
and the fraction of the explanatory power in an infeasible regression of D on factors and
factor residuals, “%D,” where the infeasible regressions are described in the text.
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Figure 5. This figure shows the simulation size of 5% level tests based on each of the
estimators described in the text for the IV partial factor model. Size (truncated at 0.3) is
shown in the vertical axis. The horizontal axes give the fraction of the explanatory power
in an infeasible regression of Y on factors and factor residuals, “%Y,” and the fraction
of the explanatory power in an infeasible regression of D on factors and factor residuals,
“%D,” where the infeasible regressions are described in the text.
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Figure 6. This figure shows the simulation size of 5% level tests based on the factor-
lasso estimator in the IV partial factor model and the asymptotic Gaussian approximation,
the k-step bootstrap, and a score based bootstrap. Size is shown in the vertical axis. The
horizontal axes give the fraction of the explanatory power in an infeasible regression of
Y on factors and factor residuals, “%Y,” and the fraction of the explanatory power in
an infeasible regression of D on factors and factor residuals, “%D,” where the infeasible
regressions are described in the text.
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Table 1. Estimates of the Effect of Gun Prevalence on Homicide Rates

Overall Gun non-Gun
Cook and Ludwig (2006) Baseline 0.086 (0.038) 0.173 (0.049) -0.033 (0.040)
Post Double Selection 0.062 (0.042) 0.138 (0.059) -0.055 (0.042)

[-0.019,0.143] [0.036,0.240] [-0.139,0.029]
Factor 0.104 (0.043) 0.210 (0.064) -0.022 (0.040)

[0.019,0.189] [0.097,0.323] [-0.099,0.055]
Factor-Lasso 0.069 (0.036) 0.167 (0.046) -0.048 (0.040)

[0.000,0.138] [0.078,0.256] [-0.128,0.032]

This table presents estimates of the effect of gun ownership on homicide rates for a panel of 195 US
Counties over the years 1980-1999. The columns “Overall”, “Gun”, and “non-Gun” respectively report
the estimated effect of gun prevalence on the log of the overall homicide rate, the log of the gun homicide
rate, and the log of the non-gun homicide rate. Each row corresponds to a different specification as
described in the text. In each specification, the outcome corresponding to the column label is regressed on
lagged log(FSS) (a proxy for gun ownership) and additional covariates as described in the text. Each
specification includes a full set of year and county fixed effects. Standard errors clustered by county are
provided in parentheses. k-step bootstrap 95% confidence intervals are given in brackets.
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Table 2. Estimates of the First-Stage Relationship between Settler Mortality and
Protection from Expropriation

π̂ Estimated s.e. Bootstrap C.I.
Latitude -0.549 (0.166) [-0.851,-0.246]
All Controls -0.218 (0.168) [-0.778,0.341]
Double Selection -0.364 (0.178) [-0.885,0.158]
Factor -0.475 (0.173) [-0.880,-0.070]
Factor-Lasso -0.353 (0.183) [-0.708.0.002]

This table presents estimates of the coefficient on the instrument (Settler Mortality) in the first-stage
regression of the endogenous variable from the Acemoglu et al. (2001) example (Protection from
Expropriation) on the instrument and geographic controls using different methods. The row labeled
“Latitude” uses the single variable distance from the equator to control for geography. “All Controls” uses
all 20 geographic controls without dimension reduction. “Double Selection” uses the approach of Belloni
et al. (2014b) to select important controls from among the 20 potential geography measures. “Factor”
reduces dimension through positing a conventional factor model. “Factor-Lasso” makes use of the
approach developed in this paper. Point estimates from each method are provided in the column “π̂” and
the associated estimated asymptotic standard errors are given in “Estimated s.e.”. The k-step bootstrap
95% confidence interval is reported in “Bootstrap C.I.”.
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