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THE FACTOR-LASSO AND K-STEP BOOTSTRAP APPROACH FOR
INFERENCE IN HIGH-DIMENSIONAL ECONOMIC APPLICATIONS

CHRISTIAN HANSEN AND YUAN LIAO

ABSTRACT. We consider inference about coefficients on a small number of variables of
interest in a linear panel data model with additive unobserved individual and time specific
effects and a large number of additional time-varying confounding variables. We allow
the number of these additional confounding variables to be larger than the sample size,
and suppose that, in addition to unrestricted time and individual specific effects, these
confounding variables are generated by a small number of common factors and high-
dimensional weakly-dependent disturbances. We allow that both the factors and the
disturbances are related to the outcome variable and other variables of interest. To
make informative inference feasible, we impose that the contribution of the part of the
confounding variables not captured by time specific effects, individual specific effects, or
the common factors can be captured by a relatively small number of terms whose identities
are unknown. Within this framework, we provide a convenient computational algorithm
based on factor extraction followed by lasso regression for inference about parameters of
interest and show that the resulting procedure has good asymptotic properties. We also
provide a simple k-step bootstrap procedure that may be used to construct inferential
statements about parameters of interest and prove its asymptotic validity. The proposed
bootstrap may be of substantive independent interest outside of the present context as
the proposed bootstrap may readily be adapted to other contexts involving inference after
lasso variable selection and the proof of its validity requires some new technical arguments.
We also provide simulation evidence about performance of our procedure and illustrate
its use in two empirical applications.
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1. INTRODUCTION

Data in which there are many observable variables available for each observation, i.e.
“high-dimensional data,” are increasingly common and available for use in empirical ap-
plications. Having rich high-dimensional data offers many opportunities for empirical re-
searchers but also poses statistical challenges in that regularization or dimension reduction
will generally be needed for informative data analysis. The success of regularized estimation
for either forecasting or inference using high-dimensional data relies on using a regulariza-
tion device that is appropriate for the type of data at hand. Effective regularization imposes
substantive restrictions in estimation, and the resulting estimates can perform very poorly,
for example suffering from large biases and missing important explanatory power, when
the restrictions provide poor approximations to the underlying data generating mechanism.
It is thus important to employ regularized estimators that accommodate sensible beliefs

about the structure of an underlying econometric model.

Two structures which are common in the econometrics literature are sparse structures

and factor structures. To fix ideas, consider the linear regression model
v =200+ ¢ (1.1)

where ¢ < n indexes individual observations, y; is the observed outcome of interest, x; is
a p x 1 vector of observed predictor variables with p > n allowed, and ¢; is a regression
disturbance. A sparse structure essentially imposes that the number of non-zero elements
in @ is small. Intuitively, the sparse structure relies on the belief that the majority of the
explanatory power in the observed predictor variables concentrates within a small number
of the available variables. Estimators that are appropriate for sparse models, such as the
lasso or variable selection procedures, may perform very poorly when the true model is
“dense” in the sense that there are many non-zero elements in S that are moderate in

magnitude.

A commonly employed version of a linear factor model employs a different structure

where
yi = fi& +e (1.2)
x; =Af; + Uj;. (13)
Here f; denotes a latent K x 1 vector of factors with K < n that are important in

determining both the observed outcome of interest, y;, and the observed p x 1, with p > n,

vector of observed predictor variables x;. Within this structure, one may obtain estimates
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of the latent factors and build a model for the outcome given the extracted factors; see,
e.g. [Bai (2003), |Bai and Ng| (2002)), Stock and Watson| (2002)) and [Fan et al.| (2016]). The
basic factor model differs markedly from the sparse linear model . Importantly, data
generated from model — would generally result in a dense coeflicient vector 6 in
the regression of y; onto x;, and sparsity based estimation strategies would tend to perform
poorly as a result. Of course, if the data generated by the sparse model (/1.1), common
factors will generally not capture the explanatory power, which loads on a small number
of the raw regressors, and pure factor-based estimation will perform poorly.

In this paper, we propose a simple model that nests both the sparsity-based and factor-
based structures. The model allows for the observed predictors to have a factor structure
but then allows both the factors and the factor residuals, the U; in equation , to load
in the outcome equation. That is, we replace with

yi = fiE+ U + ¢ (1.4)

and impose that 0 is sparse. This model allows for the fact that all of the relevant explana-
tory power in the predictors may not be captured entirely by the factors but imposes that
any predictive power not captured by the factors concentrates on only a few elements of
the high-dimensional covariate vector. clearly reduces to when there is no factor
structure in x and reduces to (|1.2) when # = 0. We note that this model shares much in
common with factor augmented regression models, e.g. Bai and Ng (2006) and Bernanke
et al.| (2005), with the key points of departure being that we do not assume the identity
of the additional variables to include in the model is known and that U is not observable.
Hahn et al.| (2013) consider a model that shares the essential structure of and
from a Bayesian standpoint. They show that forecasts obtained from their Bayesian esti-
mator of this model tend to outperform forecasts obtained based on either pure sparsity
or pure factor based models.

The first key contribution of the present paper is offering a practical estimation and
inference procedure that is appropriate for inference in a panel generalization of the model
given by equations and and providing a formal treatment of the procedure’s
theoretical properties. Specifically, we proceed by first running a factor extraction step
and taking residuals from regressing each observed variable on the estimated factors. Us-
ing these residuals, we then follow the lasso-based estimation and inference procedures of
Belloni et al.| (2015). We show that the resulting estimator of parameters of interest speci-
fied ex ante by the researcher is asymptotically normal with readily estimated asymptotic
variance under sensible conditions. These conditions allow for errors in selection of the
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elements of the covariate vector that load after controlling for the factors but maintain
sufficiently strong conditions to allow oracle selection of the number of factors. The theo-
retical analysis is substantially complicated by the fact that factors and factor-residuals are
not observed and must be extracted from the data. The estimation error in this extraction
then enters the second step nonlinear and non-smooth lasso problem. Due to this compli-
cation, the theoretical results in this paper make use of arguments that, to our knowledge,
are not implied by results existing in the current factor modeling literature or the current
lasso literature. These results may be of some interest outside of the context of establishing
the properties of our proposed inferential procedure.

By addressing estimation and inference in an interesting high-dimensional factor aug-
mented regression model appropriate for panel data, our paper contributes to the rapidly
growing literature dealing with obtaining valid inferential statements following regularized
estimation. See, for example, Belloni et al| (2012} 2013alb] [2014alb, [2015), Berk et al|
(2013)), |Chernozhukov et al| (2016), Dezeure et al.| (2016)), |[Fan and Li (2001)), Fan and Ly
(2011), [Farrell (2015), Gautier and Tsybakov| (2011)), |G’Sell et al.| (2013), Fithian et al.|
(2014)), Javanmard and Montanari (2014), Kozbur| (2015)), |Lee and Taylor| (2014)), |Lee et al.|
(2016), Lockhart et al. (2014)), [Loftus and Taylor| (2014)), Taylor et al.| (2014), van de Geer|
et al| (2014), Wager and Athey (2015)), and Zhang and Zhang (2014) for approaches to
obtaining valid inferential statements in a variety of different high-dimensional settings.

As a second main contribution, we offer a new, computationally convenient bootstrap
method for inference. Specifically, we consider a bootstrap where we apply our main
procedure, including extraction of factors and lasso estimation steps, within each bootstrap
replication. As computation of the lasso estimator within each bootstrap sample may

be demanding, we explicitly consider a k-step bootstrap following |Andrews| (2002)) where

we start at the lasso solution from the full sample and then iterate a numeric solution
algorithm for the lasso estimator for k-steps. We make use of solution algorithms for which
the updates are available in closed form which leads to fast computation. We provide
high-level conditions under which the procedure provides asymptotically valid inference for
parameters of interest and provide specific examples with lower level conditions. The k-step
bootstrap we propose complements other bootstrap procedures that have been proposed
for lasso-based inference, for example, Belloni et al. (2014a)), Chatterjee and Lahiri (2011)),
\Chernozhukov et al|(2013]), and Dezeure et al. (2016). In particular, the approach we take
is something of a middle ground between Chernozhukov et al.| (2013]), which uses resampling

of model scores to avoid recomputation of the lasso estimator, and |Dezeure et al.| (2016])

which fully recompute the lasso solution within each bootstrap replication. The former
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approach is extremely computationally convenient and asymptotically valid but does not
capture any finite sample uncertainty introduced in the lasso selection, while the latter
may be computationally cumbersome due to fully recomputing the lasso solution within
each iteration. We note that the bootstrap procedure could be easily applied outside of
the specific model considered in this paper and that the technical analysis here is new and

may be of interest outside of the present context.

The remainder of this paper is organized as follows. In Section we describe the
panel factor-lasso model and outline the basic algorithm we will employ for inference.
We present formal results for the proposed procedure in Section |3, providing regularity
conditions under which the estimator of parameters of interest is asymptotically normal
and valid confidence statements may be obtained. Section [4| describes the k-step bootstrap
approach in detail and provides a formal analysis establishing the validity of the resulting
bootstrap inference. Section [5| discusses the factor extraction part of the problem in more
detail and provides examples with accompanying low-level conditions that are sufficient for
the high-level conditions stated in Section We then provide simulation and empirical
examples that motivate the model we consider and illustrate the use of the estimation
procedure in Section [f] Key proofs are collected in an appendix with additional results

provided in a supplementary appendix.
Throughout the paper, we use ||3||1 and ||3||2 to respectively denote the ¢1- and /o-
norms of a vector f; use ||A|| and ||A||r to respectively denote the spectral and Frobenius

norms of a matrix A. In addition, denote by |J|o as the cardinality of a finite set J. Finally,

for two positive sequences a,,, b,, we write a,, < by, if a,, = O(b,) and b, = O(ay).

2. PANEL FACTOR-LASSO MODEL AND ALGORITHM

2.1. Panel Partial Factor Model. Consider the linear panel model defined by

yir = ady + & fi + ULO + gi + v + €3t (2.1)
dit = Ogp fi + Ujpya + Ci + e + nit (2.2)
X =Mfi+w; +pr + Uy (2-3)

where ¢ < n indexes cross-sectional observations, t < T' indexes time series observations, X;;

are observed potentially confounding variables, and d;; is an a priori specified “treatment”
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variable of interestH fi is a K x 1 vector of latent factors with time-varying K x 1 factor
loading vectors &, 04 and p x K dimensional factor-loading matrix A;. We will take
asymptotics where dim(X;;) = p — oo, n — oo, and T is either fixed or growing slowly
relative to n and p when stating our formal results, and we explicitly allow for scenarios
where p > nT. K is assumed fixed throughout the paper. Our object of interest is the
parameter « on the variable of interest d;;. Following Hahn et al. (2013), we refer to the

model (2.1))-(2.3) as the “panel partial factor model” (PPFM)H

In each equation, we also allow for additive unobserved individual effects, (g;, ;,w}),
and time specific effects, (v, ut, p;), where g;, ¢;, v, and p; are scalars and w; and p; are
p x 1 vectors. We do not impose structure over the individual or time specific effects and
thus treat them as fixed effects. This treatment differentiates the common factors, f;, from
the additive heterogeneity (g;, (i, w}) and (v, pt, p;) as we impose that the f; are common
to each observed series with common, time-varying loadings. Term U represents the part
of the observed X;; that is orthogonal to the factors and unobserved time and individual
specific heterogeneity. We allow Uy to be correlated to both the outcome and variable
of interest after controlling for the factors and individual and time fixed effects. Because
p > nT', we assume that 6 and 74 are approximately sparse vectors. We assume that
observed right-hand side variables are strictly exogenous so that E[n;|X;1, ..., X;7] = 0 and
Elei| X, ..., Xiry di1, .., dip] = 0. We will assume that data are iid across 7 but allow for
dependence across time periods, t. Finally, we note that while we treat the PPFM defined
in - in the formal analysis, the results clearly apply to models without additive
fixed effects or to a single cross—sectionﬁ

As noted in the Introduction, the PPFM generalizes the high-dimensional sparse fixed
effects model examined in Belloni et al. (2015) and conventional large-dimensional factor
models and factor augmented regression models; e.g. Bai and Ng| (2006). The PPFM is
also related to, but distinct from, interactive fixed effects models as in, for example, [Bai
(2009); Bai and Li (2014), Moon and Weidner| (2015alb)), [Pesaran| (2006) and |Su and Chen

LOur results will immediately apply to the case where d;; is an r X 1 vector with r fixed. The analysis could
also be extended to handle unbalanced panels where observations are missing at random. We omit both
cases for convenience.

2Hahn et al.| (2013) consider a similar structure to — which excludes the individual and time effects
and imposes that the €;+ are i.i.d. Gaussian innovations. They refer to this model as a partial factor model.
3We consider a cross-sectional instrumental variables version of the model in both a simulation and an
empirical example.
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(2013)E| A simple version of the interactive fixed effects model analogous to (2.1 is
yit = adit + 2, B + M fi + €.

In this model, z;; represents a known, low-dimensional set of variables that must be con-
trolled for in addition to the factors in f;. There appear to be three key distinctions between
the high-dimensional PPFM and interactive fixed effects approaches. First, we relax the
assumption that one knows the exact identity of the variables that should appear in the
model, z;, by allowing for a high-dimensional set of observed potential confounds in Xj.
Second, we allow for the fact that the relevant explanatory power in the predictors may not
be captured entirely by the factors, but impose that any predictive power not captured by
the factors concentrates on only a few elements of the high-dimensional vector U. Third,
we directly extract estimates of the factors and U from X which can proceed even when
T is small. Approaches to estimating the interactive fixed effects structure rely on having
a large number of observations in both the time series and cross-sectional dimensions. We
thus view the PPFM and interactive fixed effects approaches as complementary where one
may prefer one or the other depending on the nature of the data at hand.

2.2. Estimation Algorithm. To estimate «, we begin by taking the within transforma-
tion of all observed variables to remove the fixed effects. To this end, let

Zit =2t — 24— Z. + 2

; 5, — 1 n - | T . > 1 n,T .
for any variable z;; where Zy = = > """ | Zit, Zi. = 7 ) 4 Zit, and Z = % Zi:u:l zit. We
can then define a demeaned model as

it = ady + & f; + ULO + & (2.4)
div = 8l fi + Ulyya + i (2.5)
Xit = Mo fi + Uy (2.6)

After removing the additive unobserved heterogeneity, we estimate the (demeaned) la-
tent factors as well as the (demeaned) idiosyncratic components from the model Xy =
AL fi+ Uit Let F = (f1,--- fn)" be the n x K matrix of estimated factors. We shall discuss

4See also Bonhomme and Manresa, (2015) for a distinct but related approach based on a grouped fixed
effects model.

5We note that recovering the untransformed f; and U;; would only be possible with large n and T due to
the presence of the unrestricted fixed effects. Fortunately, recovering these quantities is unnecessary within
the model with common coefficients 0, v4, and a as only fl and ﬁit appear in the equations of interest.
This simplification would not generally occur if we allowed heterogeneity in 6, v4, or o over time or across
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some examples of F in Section E Given F\, we estimate At and []}t by least squares:

~ ~

ZXJ R, Uy=Xu—MNfi, i<n, t<T. (2.7)

Substituting (2.5) to , we obtain
Uit = (S(Iitfl + Ulva + Tiie) + §1fi + U0 + &
= tfz Uy + €it-
Now let ¥; = (§igy .., i)’ and D; = (dy,...,dn;)" denote the vectors of outcome and
treatment variable within each time period ¢t. We next regress fft and Dt onto the extracted
factors F time period by time period to obtain {8}, and {64 )7, for
6y = (F'F)"'F'Y, and 64 = (F'F)"'F'D;. (2.8)

We then run the lasso with the residuals from each of these factor regressions as dependent
variable and the estimated factor disturbances U;; as predictors. That is, we obtain

4 = arg min ﬁ Z Z Jit — Oy fi — Uy)® + |21, (2.9)
t=1 i=1
- Jd
Fa = arg min ; ; it = Sufi = Uin)* + a2 1. (2.10)

where the tuning parameter s, is chosen as, for some ¢y > 1 and ¢, — 0,

20 411 - gu/(2p)), log(a;") = Ologp) (2.11)

vnT

and U¥ and U9 are diagonal penalty loading matrices. Given the fixed effects panel struc-

Rp =

ture, we use the clustered penalty loadings of Belloni et al.| (2015) which have diagonal

elements defined as

R 1 n T T R R
(5 = \| = DY Ui Ui jeutin (2.12)
\ i=1 t=1t'=1
R 1 n T T R R
(W95 = T D0 Ui Ui it (2.13)
=1 t=1t¢'=1

individuals, and we would need to consider incidental parameters bias introduced by removing the additive
fixed effects. We leave exploration of this issue to future research.
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where e;+ is an estimator of €; = i — yt fZ — th/y and 7;; is an estimator of 7j; =

dit — tfz_ n'}/d ﬂ

For the final step, we adopt the post-double-selection procedure of [Belloni et al.| (2014b)).
Let J = {1 <p:3y; #0}U{j <p:qq; # 0}, and let ﬁit 5 be a subvector of U;; whose
elements are {ﬁ,t jiJE J }. We then run the regression of g;; — yt f, on U 7 and dit A(’ﬁﬁ

on U and obtain

T

3

ZZ it,J u&J IZZ 7(Git = 0y fi), (2.14)
=1 t=1 =1 t=1
n - N n T R ~ L
=0 Z Uit,ﬂ]z‘/t,f)_l > Uiy, 5(dit = 041 fi)- (2.15)
i=1 t=1 i=1 t=1
The final estimator of « is then given by
n T
szt lzz%@‘t (2.16)
=1 t=1 =1 t=1
where €;; = it — ytf i~ Yy Wy and Ty = diy — 5 tf — ﬁl’t ‘ﬁd are the residuals from the

regressions specified in (]2.14[) and ([2.15).

The estimator & can be expressed more compactly in matrix form. Write

Y1 Dl Ul,f
v=| . D=| : i ,
% D U, - -
nTx1 T) nrx1 1.7/ nTx| 7)o
€1 m
e= ,and =
5 -
T nTx1 T nTx1

In addition, for a matrix A, define My = [ — A(A’A)~ A’, where (A’A)~ represents a
generalized inverse of A’A. Then it is straightforward to verify that

&= M (Ir ® Mp)Y, and 7 = Mp (It ® Mz)D

6We obtain e;t and 7;; through an iterative algorithm similar to that of |Belloni et al.| (2014b)), which starts
from a preliminary estimate. In addition, we use ¢g = 1.1 and ¢, = .1/log(n) in the simulation and
empirical examples.
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are the estimated residuals (€}, ..., &/)" and (7}, ..., 7})" defined above. Then

& = @) e

Note that the estimator & is numerically equivalent to the coefficient on di in the
regression of i on dy, f; interacted with time dummy variables, and ﬁit 7. In Theorem
of the next section, we verify that inference for @ can proceed using the output from
this OLS regression as long as clustered standard errors (e.g. Arellano (1987), Bertrand

et al.| (2004), and [Hansen (2007)) are used.

The following algorithm summarizes the estimation strategy detailed above.

Algorithm (Factor-Lasso Estimation of «.)

(1) Obtain {ﬁ, ﬁit}ign,th by extracting factors from the model X;; = Mfl + Uyy.

(2) For 25\yt and gdt defined in , run the cluster-lasso programs and
to obtain 7, and 7.

(3) Obtain the estimator & and corresponding estimated standard error as the coef-
ficient on dj; — gfﬁﬁ and associated clustered standard error from the regression
of yi — g;tﬁ — ﬁi’tj‘y\y on dj; — ;5:’#]/‘; — fji/t,f;y\d where fjit,j is the subvector of Uy
whose elements are {ﬁz‘t,j jeJ).

3. ASSUMPTIONS AND ASYMPTOTIC THEORY

In this section, we present a set of sufficient conditions under which we establish as-
ymptotic normality of @ and provide a consistent estimator of its asymptotic variance.
Throughout we consider sequences of data generating processes (DGPs) where p increases
as n and T increase and where model parameters are allowed to depend on n and 7. We
suppress this dependence for notational simplicity. We use the term “absolute constants”
to mean given constants that do not depend on the DGP.

3.1. Regularity Conditions. Write ¢, = (e1,...,ent)', m = (Mt, ..oy nt)’, and Up =
(Uiys .-, Uyy)' . Similarly, let €; = (€1, ..., &) and n; = (i1, ..., mir)’, Ui = (U}, ..., Ulp)'.

Our first two conditions collect various restrictions on dependence, tail behavior, and
moments of the unobserved features of the model. We assume there are positive absolute
constants C, Ce and C3 such that the following assumption holds.
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Assumption 3.1 (DGP). (i) {fi,ni,€i,U;}i<n are independent and identically distributed
across i = 1,2,...,n and satisfy

E(nilei, Us, fi) =0,  E(elni, Ui, fi) =0,  E(Ui|ms, €, fi) = 0.

In addition, given { fi}i<n, the sequence {U;,mi, € }i<n <1 is also conditionally independent

across 1.

(i1) Given {fi}i<n, the sequence {Ug,m, € }e<t is stationary across t, and satisfies a
strong-mixing condition. That is, there exists an absolute constant r > 0 such that for all
TcRT,

sup  |P(A)P(B) — P(AB)| < exp(—CiT"),
AeFO _ ,BeF¥
where FO o and F° denote the o-algebras generated by {(Up,mi, ) : —oo < t < 0} and
{(Ug,mey€e0) : T < t < o0} respectively.

(iii) Almost surely,

p T
zgng%ﬁth;; |E(Uit,k Uismlfis€ismi)| < Ca.
=1 s=

(iv) For any s >0,i<mn, j<pandk <K,

P(|Uir ;| > s) < exp(=C35°), P(|fir] > 5) < exp(—C3s?),
P(|nit] > s) < exp(—Cng), P(lei] > s) < exp(—CgsZ).

(v) Let 0, and yam be the m™ entries of 0 and v4, and N, be the m'™ row of A;.

el + max(li&ell + 10ae)) + max((m| + [raml) + max A < Ca.

Assumption [3.1] collects reasonably standard regularity conditions that restrict the de-
pendence across observations and tail behavior of random variables. These conditions
impose that the unobserved variables in the model are cross-sectionally independent, are
weakly dependent and stationary in the time series, and have sub-Gaussian tails. Assump-
tion (iii) further imposes weak conditional dependence in the factor residuals, Uy. In
the simple case where U;; is independent of f;, 7;, and ¢; for all ¢, this condition reduces
to weak intertemporal correlation and no strong dependence among the columns of Uj.
Importantly, it does not imply that all correlation among the observed X;; is captured by
factors but allows for the presence of a rich covariance structure in the part of X;; that is not
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linearly explained by the factors. The condition also allows for some dependence between
“control” variables U;; and structural unobservables 7; and €; but restricts the magnitude of
any such dependence so that it is asymptotically negligible. Finally, condition (v) requires
that all the low dimensional parameters are well bounded.

Recall that e;; = ang + €.

Assumption 3.2 (Moment bounds). Form <p,i <n,t <T, define

T
1 _
= No E (Uit,m — Ui.m) (€it — €i.).
=1

There are absolute constants c,C > 0, such that
(Z) maX;<n m<p E|VV1m’3 S C andc < mini<n m<p EW2 S maXi<n m<p Eme < C, and

( ZZ (mit — 7. ) (€it — .)>>c.

=1 t=1
(i) almost surely in F = (f1, ..., fn),

max ZE tm|F <C, maX—ZE eS|F) <

m<p,t<T n

Assumption collects additional high-level moment bounds. The bounds on mo-
ments of normalized sums in Condition (i) could be established under a variety of suffi-
cient lower level conditions. Condition (ii) places restrictions on the dependence between

{Uit’eit}?éji,tzl and {f;};,.

Before stating the next assumption, we decompose the high dimensional coefficients as

0 0
=7 + By and = g+ [fa
exactly sparse  remainder exactly sparse ~ remainder

where *yg and 73 are sparse vectors that approximate the potentially dense true coeflicient
vectors 7, and 4 and R, and R, represent approximation errors. Let J = {j < p: 727 j =+
0yu{j<p: 'ygj # 0} be the union of the support of the exactly sparse components.

Assumption 3.3 (Rate Conditions). (i) ||Rqll1 + || Ryll1 = o(4/ lzg:;rp)

(ii) |73 1og*(p) = O(n).

(i4i) | J|2T = o(n). In addition, the number of factors, K, stays constant.
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Assumption collects restrictions on the quality of the approximation provided by 78
and ’yg and rates of growth of model complexity as measured by J and p and sample sizes
in the cross-sectional and time series dimension. Condition (iii) imposes the somewhat
nonstandard requirement that 7" be much smaller than n. The need for this condition
arises from the fact that we need to obtain high-quality estimates of the idiosyncratic term
in the factor equation, U;;, which depends on accurately estimating both the unknown
factors and the loadings. Estimating the loading matrix A; well for any given t requires a
relatively large n, and we thus require T to be smaller than n as the number of unknown
loading matrices {A¢}i<r is O(T).

Our next assumption restricts the covariance matrix of the within-transformed factor
residuals Uit.

Assumption 3.4. For any 6 € RP/{0}, write

1 T 7 7
‘erT Z?:l Zt:l UitUz‘/tfs
o'

Define restricted and sparse eigenvalue constants:

R(6) =

m = 1nf R 5 9

?( ) SERP:||6 e |1 <m||6 |11 ©)
min = inf R(d ’
Gmin(1) 5eRP1<]6]l0<m ©)

d)max(m) = sup R(6>
SERP:1<||6lo<m

(i) (restricted eigenvalue) For any m > 0 there is an absolute constant ¢ > 0 so that
with probability approaching one,
(ii) (sparse eigenvalue) There is a sequence of absolute constants lp — oo and c1,cq > 0

so that with probability approaching one,

c1 < Omin(I7]J0) < Gmax(lr|J|0) < ca.

Maintaining Assumptions a simple sufficient condition for Assumption is
that all the eigenvalues of &= >, >, E(Uy — U;.)(Uy — U;.)" are well bounded. This is a
typical condition in high-dimensional approximate factor models (e.g., Bai (2003); |Stock
and Watson (2002))). It ensures that the idiosyncratic components are weakly dependent

and therefore the decomposition X;; = INXQ f; + Uy is asymptotically identified (as p — 00).
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Finally, we present high-level conditions on the accuracy of F in Assumption The

high-level conditions potentially allow for many estimators of the factors, and we verify
that these conditions hold under more primitive assumptions for the case of estimating the
factors using PCA in Appendix [C]
Assumption 3.5 (Quality of Factor Estimation in Original Data). Suppose there is an in-
vertible dim( f;) xdim(f;) matriz H with |H||+||H || = Op(1), and non-negative sequences
AF, Aeg, Aud; Afum; Afe, Amax, SO thatfor Zit € {g’ita ﬁz‘t}; Wim, € {f\;'yd, /N\;’yy, Sdt; Syt, S\tm},
iltk € {Sdtagyta ;\tk}y and v € {v4, W},

1 ~ 2
T SO (i — H' fi)zull3 = Op(AT,)
t=1 =1
1 n T
— fi = H' i)zt ||lr = Op(Ac
gml%;anT;;(f fi) Zit Wi, || P p( g)a
1 n T
N ! FNTT 71 o
nax ||ﬁ ; tz:;(fz‘ — H' i) Uit mhig || F = Op(Aua),
1 n

max ||= Y (fi — H' [;)Ujtmll2 = Op(A pum).

These sequences satisfy the following restrictions:
VATITRAL = 0(1), Avy = o(—=), Aua = o(r/ 2ELY. | 712+/Tog pAua = o(1)
0°2F )y Beg ST’ ud nT 0 gPRud )
log p 2 log p 2
___er —o(—5F A
TP log(T) 7 = “ Tlog(py” S
) =o(1).

|10
n

One of the major technical tasks of this paper is to show that the effects of estimating the

latent factor and idiosyncratic terms are stochastically dominated by the plug-in tuning

parameter k, in (2.11). Since k, < \/% , this is a strong requirement, and gives rise

to Assumption 3.5 (and Assumption below for the bootstrap sample). Technically,

existing results in the literature on estimating factors models are not directly applicable to

verify these conditions. In Appendix [C] we show that

A% =o = O(log(n)), and

A2 TRTO2] |0 + AL +

1 e~ -~ N 1 1 1
- _H 2 =0p(— + —
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when ft is estimated via PCA. While this result is essentially standard and allows conditions
involving Ar to be directly verified, however, it does not imply the uniform convergence
condition max;<7 ||f; — H'fi|la. Nor is this result sufficient to verify the other stated
conditions because other terms, e.g. Acy, A pym, Aye, involve “weighted averages” of {ﬁ —
H fZ} Whose rates of convergence can be derived and shown to be faster than that of
Ap = pT +.3 —|— . For instance, if we use a simple Cauchy-Schwarz inequality to bound
Ayd, wWe Would have

1N - . 1N 1 -
—E § —H F< = Ifi-H A = =Y Uiemball3.
ninl?ngnT fz it,m k:”F =7 2 Hfz szQ 75’112(1)” 2 ”T £ it,m tkH2

i=1 t=1

It can be shown that max,, <, = 31, || 7 S Uit mher |3 = Op(lo%p), so this crude bound

gives us Ayg = Ap lo%. Unfortunately, this bound is not sharp enough to verify the

condition A,y = o(\/%) unless n = o(pT). In the special case that T is fixed, requiring
n = o(p) is a restrictive condition. Rather than relying on these crude bounds, we achieve
sharper bounds by directly deriving the rate of convergence for each required term in
Appendix [C] which relies on some novel technical work. These conditions only require
n = o(p?>T) which provides much more freedom on the ratio n/p.

3.2. Main results. The asymptotic variance of & will depend on the quantities

Ope = ( Z Z Mie — 7i-) (€it — )) and op = Z ZVar Mit — 7i-)

=1 t=1 i=1 t=1
for which
1 n T 2
~ ~ o~ ~2 _
SRS MY IRTIE TS » o
=1 \t=1 =1 t=1

are natural estimators. Note that 7, is just the usual clustered covariance estimator with
clustering at the individual level.

Theorem 3.1. Suppose n,p — oo, and T is either fized or growing. Under Assumptions

[7.1H3.5,
\/nTagﬁl/QJ%(& —a) =T N(0,1),
In addition,

VTG, 526 — a) =4 N(0,1).

Corollary 3.1. Let P be a collection of all DGP’s such that the assumptions of Theorem
hold uniformly over all the DGP’s in P. Let (; = ® (1 —7/2). Then as n,p — oo,



16 CHRISTIAN HANSEN AND YUAN LIAO

and T is either fized or growing with n, uniformly over P € P,

. ~ C‘r ~1/2~-2 _
n,lp}gloop<a€ [ai\/ﬁane UT] ] =1-r

The main implication of Theorem and Corollary is that @ converges at a v/nT
rate and that inference may proceed using standard asymptotic confidence intervals and
hypothesis tests. Importantly, the inferential results hold uniformly across a large class
of approximately sparse models which include cases where perfect selection over which
elements of Uy enter the model is impossible even in the limit. It is also important to
highlight that the conditions on estimation of the factors do rule out the presence of weak
factors, and the inferential results do not hold uniformly over sequences of models in which
perfect selection of the number of factors and fast convergence of the factors and factor
loadings do not hold. The difficulty with handling weak factors arises due to the entry
of the estimation errors of the factors in the cluster-lasso problems and and
the non-smooth and highly nonlinear nature of this problem. Extending the results to
accommodate the presence of weak factors and imperfect selection of the number of factors

would be an interesting direction for further research.

4. k-STEP BOOTSTRAP

In this section, we present a computationally tractable bootstrap procedure that can
be used in lieu of the plug-in asymptotic inference formally presented in Theorem and
Corollary While well-developed in low-dimensional settings, there are relatively few
formal treatments of bootstrap procedures in high-dimensional settings, though see |Chat-
terjee and Lahiri (2011)), Chernozhukov et al. (2013), Belloni et al.| (2014a), and [Dezeure
et al. (2016) for important existing treatments. In the following, we consider a bootstrap
procedure which only approximately solves the cluster-lasso problem within each boot-
strap replication and thus may remain computationally convenient while also intuitively
capturing the sampling variation introduced in the lasso selection.

4.1. The k-Step Bootstrap. Let D* = {y},, th, X{}}ign,th denote a sample of bootstrap
data, and let @* be the estimator obtained by applying the factor-lasso estimator with data
D*. Let B denote the number of bootstrap repetitions.

A potential computational problem with bootstrap procedures for lasso estimation is that
one needs to solve B lasso problems where B will typically be fairly large. To circumvent
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this problem, we adopt the approach of Andrews| (2002]) by using the fact that the complete
lasso estimator based on the original data, denoted by J;4ss0, should be close to the complete
lasso estimator based on bootstrapped data D*, denoted by 7/ .. . Hence, within each
bootstrap replication, we can use 4550 as the initial value for solving the lasso problem
and iteratively update the estimator for k steps. Denote the resulting k-step bootstrap
lasso estimator by ¥*. We simply use 4* in place of 7; .., wherever the solution to a
lasso problem shows up in the factor-lasso problem. The main result of this section is
showing that the k-step bootstrap procedure is first-order valid for statistical inference
about « as long as the minimization error after k steps is less than the statistical error (i.e.

op+((nT)~1/?).

The substantive difference between the present context and |Andrews| (2002) is that |An-
drews| (2002) makes use of Newton-Raphson updates for the k-steps while face a regularized
optimization problem at each iteration. Tractability relies on the fact that there are a va-
riety of procedures for updating within the lasso problem that are available in closed form.
Using these analytic updates greatly reduces the overall computational task and makes a
k-step bootstrap procedure attractive within the lasso context.

Specifically, consider the following lasso problems on the bootstrap data. Let

:Y;,lasso = arg '?Elﬁ{fl’ ﬁZ(’Y) + Hn|’qu7‘|17
’72,161530 = arg min EZ(’Y) + HTLH\I}d’YHh
YERP

where

yzt U )

a\H

s ||M:

i

— S = Ui ).

@\H

t=1 i=

—_

The definitions of {gi%, %, 5%,
44 be the lasso solutions obtained from the original data. Also, note that we fix the value

8, [, U Yicna<r will be formally given below. Let , and

of Kk, and of the penalty loadings ¥ and U7 to the same values as used to obtain the

solutions 7, and 74 in the original data.
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Within each bootstrap replication, we then approximately solve the lasso problems (4. 1))
by applying the following procedure. The maximum number of steps k to be taken should
be determined on a case-by-case basis according to the available computational capacityﬂ

Algorithm (k-Step Lasso Iteration.)

Set k to be a pre-determined number of iterations.

(A1) Set I =0 and initialize at vy,0 = 7y, V4,0 = Fa-
A2) Determine one-step iteration mappings S,, Sg : RP — RP. Let
P ppIngs oy

Yyi1 = Sy(Wi), Va1 = Sa(vap) (4.2)

Set | =1+1.
(A3) Repeat (A2) until [ = k. Let the k-step lasso estimators be

Yy = Vyko  Vad = Vdk-

There are a variety of iteration mappings that can be used in Step (A2) of the k-step
lasso problem. A commonly used and simple mapping is the “coordinate descent method,”
also known as the “shooting method,” studied by [Fu (1998)E| For solving problem ,
write the solution after the I iteration as Yyi = (V115 - Yy1p) - The coordinate descent
method updates 7,41 by iteratively cycling through all coordinates. Specifically, we solve
the following one-dimensional optimization problem for m =1, ..., p,

~

1 * N 755! ! *
_ : ~ 2
Vo l+1m = ArEMIN o > (G = oS = Uiy Wisrm= = Ut Yyt = Uit m)

it (4.3)
+ Kn|\1j%ng|
Here m™ = {j : j < m}; and 7, ;41 ,,,- and ﬁ; o are R™~! dimensional vectors whose

components are respectively those of {v, ;11 : j < m} and {(7;:] : j < m}. Similarly,

mt ={j:j>m};and Vy,l,m+ and U;;er are RP™™ dimensional vectors whose components

are respectively those of {v,;;:j > m} and {(7;;]

:j > m}. When m =1, m™ is empty;
"In applications where obtaining the full lasso solution is not too burdensome, one may simply iterate to
convergence.

8 Another commonly used iterative scheme that could readily be applied in the present setting is the “com-
posite gradient method” (e.g. [Nesterov| (2007) and |Agarwal et al. (2012)). We choose to focus on the
coordinate descent method as our concrete example as it does not rely on additional tuning parameters and
performed well numerically in preliminary simulation experiments. In addition, coordinate descent requires
weaker regularity conditions than the composite gradient method for our theoretical analysis.
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and when m = p, m™ is empty. In these cases, the corresponding subvectors, Vy,l+1,m~ and
(A]i?m, OT Yy 1.m+, and U;fym“ are defined as zero. Note that when 7, ;41 », is being updated
the previous m—1 elements have already been updated, while the remaining p —m elements
are yet to be updated. Thus, 7, ;41 ,,~ is a subvector of v, 11, but 7, ; ,,+ is a subvector of
Yy,1- Denote by 71%21 = (Vyi+1m—» Vy,l+1ms Yy m+) the vector that results immediately
after the m'™" coordinate has been updated during the (I 4 1) iteration. When m = p, all

the components have been updated; and we obtain v, ;41 := 715’? 41

Importantly, (4.3)) is a one-dimensional ¢;-penalized quadratic problem which has an
analytical solution given by the soft thresholding operation:

T T
1 ~
Yy l+1m = !59” (nT Z Z Z'Zf,l,m z‘i,m)

i=1 t=1
P 44
1 * TT* 1 Y 1 75%2
(LS i - L) (S E)
=11t=1 + i=1 t=1

where Z}, ) = 05— 05 ST = Uy - Yy tm= — Ul s Yyl (x)4+ = max{z,0}, and sgn(z)
takes the sign of x. Therefore, the mappings in (4.2)) are given by

/
)

Sy(1y1) = (W i41,15 - Vyda1,p) s Where each vy 111, is given in (4.4)).

Sa(74,) is obviously defined similarly.

With the k-step lasso program defined, we now state the complete algorithm for the
proposed k-step bootstrap procedure. We make use of a wild residual bootstrap to generate
the data at each bootstrap replication.

Algorithm (k-Step Wild Bootstrap.)

Let {ﬁ, (7“, Kt}ign,tST denote the estimates of the features of the factor model using
the original data. Let @, 04, dyt,Vd, 7y be the estimated coefficients from the original

data, defined in (2.7) through (2.16[). Also, let
gg = gyt—agdt, t= 1,...,T, and

= Ty — Qg

(1) For each i = 1,...,n, let w’ (x = U,Y, D) be mutually independent random

variables, where {w{ }i<,, are i.i.d. with mean zero and variance one. Let

ko U7T ~x __ D= ~ __ Y~ _
w=w; Uy, T =wy nie, € =w; €, t=1,..T.
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Define {§%, d%, X i<t as
= ady + &+ UL 0+ &,
diy = Sgefi + Uiy A+
X5 =Nfi + Uj.

(2) Apply the Factor-Lasso Algorithm to the bootstrap data {7}, J;‘t,)?;},-gnvtg
to obtain an estimated alpha a* replacing the lasso estimation in Step (2) of the
Factor-Lasso Algorithm with steps (A1)-(A3) from the k-Step Lasso Iteration
defined above.

(3) Repeat the above steps (1)-(2) B times to obtain {&;} }y<p.

Let ¢* be the 7' upper quantile of {vnT|@; — @|}»<p, so that
P*(VnT|ay —a|<qf)=1-r7.

Construct the bootstrap confidence interval:

=)

4.2. Validity of k-Step Bootstrap Confidence Interval. In the following, we present

conditions under which we verify that the bootstrap confidence intervals are asymptotically

Placlaz o)) o1er

The first assumption imposes high-level conditions that will admit the use of general
updating rules in (4.2]) of the k-Step Lasso Iteration. The assumption provides high-level
conditions on the computational properties and sparsity of the solution resulting after

valid:

taking k iterations in the solution of the lasso problem. Recall that 75 = v, and 77 = V4 k-

Assumption 4.1. The following conditions hold for x € {y, d}:
(i) Minimization Error: There is a deterministic sequence a, such that ap,vnT = o(1),
and a Ko > 0, such that when k > K,

ﬁ;(;}d/;) + ’%NH\IJI:Y:zt”l < L;(&;,lasso) + HnH\IIx:Y;,lassoHl + Op- (an)
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(ii) Sparsity: | 7| = Op-(|J]o), where J* = {j < p: 73 #0}U{j < p: 7, # O},

Condition (i) requires that the minimization error should be negligible compared to
the statistical error after k iteration steps. Condition (ii) guarantees the sparsity of the
iterated solutions. As a concrete example, we verify both conditions for the coordinate
descent method. We note that, to the best of our knowledge, showing the |.J|p-sparsity of
the k-step iterated coordinate descent estimator has not been done previously when p is
potentially much larger than n and may be of some independent interest.

Proposition 4.1. The coordinate descent iteration as given in satisfies Assumption

71

We next impose a fairly standard notion of regularity on the high-dimensional component

U;; which shows up in the infeasible lasso problem with known factors.

Assumption 4.2 (Restricted Strong Convexity). There is a constant ¢ > 0, and a sequence
o = 0(|J|g 1) so that for all § € RP,

n T
1 ~ - c
o= DD Uulid = 51815 — Op(m) 613
i=1 t=1

This assumption has been discussed by many authors, and various sufficient conditions
have been provided (e.g., Raskutti et al. (2010) and Loh and Wainwright| (2015))). The
following lemma provides a simple sufficient condition for both this assumption and the
restricted /sparse eigenvalue assumption.

Lemma 4.1. Suppose Assumption holds. Let A1 < ... < A, be the eigenvalues of
LSS E (U — Ui ) (U — U)'). Suppose for some 0 < ¢ < C,

C<)\1§>\p<0.

Then Assumptions and[{.3 are satisfied.

As we described earlier, even if p/n — 0o, requiring that the eigenvalues of the population
covariance matrix are well-bounded is not a stringent condition. Note that this condition
is imposed only on the factor-residuals, U, and that similar conditions on the population
covariance matrix of factor residuals are typically imposed in the formal analysis of large
approximate factor models.

The following conditions are imposed on the bootstrap weights.
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Assumption 4.3. For x = U,Y,D, Ew} = 0 and Var(w?) = 1. In addition, there exist
L,r >0, such that for any s >0, i < n,

P(wf| > 5) < exp(—Ls").

The sub-exponential condition for the bootstrap weights enables us to bound many
stochastic processes uniformly in m < p and t < T. In our numerical studies, we follow
Mammen| (1993) and use wf = Cﬁi/\/i‘F ((¢3;)% —1)/2 where ({; and (3 ; are independent
standard normals and x € {U,Y, D}.

Finally, we impose further regularity on the quality of estimation of the factors in the
bootstrap data.

Assumption 4.4 (Quality of Factor Estimation in Bootstrap Data). Suppose there is an
invertible dim(f;) x dim(f;) matriz H* with ||[H*|| + ||[H*7Y|| = Op~(1), and non-negative
sequences A%, Azg, A%y A%, so that for z € {1}y, €4}, Gum € {Kﬁd,ﬁﬁyﬁdt,gyt,itm},
and iALtm € {gdt, Syt )\tm};

1 . T o *
- Z i = H* fill5 = Op(AF)
1=1

n T
1 o _H = Op+ (A
mg)pf”nT ;;zztgtm fz) HF Op ( )
n T
max [ >3~ H Bl = Or(3)

These sequences satisfy the following restrictions:

I~ " 1 " /logp
|J|0AF = o(1), Aegzo(ﬁ)’ wd = 0( ‘J|0\/10g ALq=o(1)

1
AR = o(ﬂ), andA>

STAG =

As with Assumption we show that
Ll
n2  nT?

LS F - IR = O (- )

n pT

when ]?t* is estimated using PCA in Appendix |C| which allows direct verification of con-
ditions involving A%. We handle the remaining terms by directly deriving the rates of
convergences for each required term in Appendix [C|
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Under these additional conditions, we are able to verify that the confidence interval
resulting from application the k-step bootstrap procedure has asymptotically correct cov-

erage.

Theorem 4.1. Suppose n,p — oo, and T is either fixed or growing. Under Assumptions

and
VnTo, Mol (@ —a) =% N(0,1).

In addition,
P(WnTla—a|<q¢)—1-—1.

5. ESTIMATING FACTORS USING PRINCIPAL COMPONENTS ANALYSIS
In this section, we discuss estimation of factors and factor residuals using principal com-
ponents (PC)H We also provide low-level conditions under which the high-level conditions

used in establishing Theorem [3.1] are satisfied for PC.

5.1. Principal Components Estimator. Let

X - Xm Ay fi
X=1: : , A= , F=1: :
\ . .« .. % A ~/

XZ XnT pT'xn AT pTxK fn nx K

and define U similarly. The matrix form of the factor model is then
X =AF'+7T,
where the individual and time effects have already been removed.

One of the most commonly used factor estimators is based on the PC of the n x n matrix
X'X. Let F denote the n x K matrix of the estimated factors. The columns of F /\/n are
the eigenvectors of the first K eigenvalues of X’X /(npT). Let V be the K by K diagonal
matrix consisting of the first K eigenvalues. Then the PC estimator estimates F up to a
K x K rotation matrix (e.g., Stock and Watson| (2002) and Bai (2003])) H defined by

1 + o e~
H=—MANAFFV L
npT’

9We choose to focus on the PC estimator as a concrete example because it is relatively simple and is free
of tuning parameters. One could consider other options which would also satisfy our assumed high-level
conditions. For example, the weighted PC estimator (e.g. |Choi| (2012); Bai and Liao| (2013))), can be more
efficient than the standard PC estimator but requires additional tuning parameters for practical application.
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The factor estimator in the bootstrap sampling space is defined similarly with P denoting
the n x K matrix of the estimated factors whose columns are y/n times the first K eigen-
vectors of X* X*/(npT). Finally, it is important to note that we do not need to estimate
the factors but only need to estimate the space spanned by the factors for Theorem to
hold.

5.2. Regularity Conditions. We now present additional regularity conditions which are
sufficient to verify that the PC estimator satisfies the conditions given in Assumption
These conditions are standard for high-dimensional approximate factor models.

Assumption 5.1 (Pervasiveness). There are ¢,C > 0 so that

11
—N"ZANA < C.
C<T;p t <

Assumption [5.1] effectively implies that the factors do not load on a small number of
series but rather are related to a large number of the available X-variables. The use of
this assumption in high-dimensional factor models provides part of the motivation for the
factor-lasso approach where at least some forms of association between factors that are not
pervasive but instead load on only a few elements in X and an outcome can be captured
through the presence of the factor residuals in the equations of interest.

Assumption 5.2 (Second Order Weak Dependence). There is C > 0,

maXZZCOV itmo wv)<C,

mti
s= 111 1

maXZZ|COV ztv is,m; zhlUlsm)|<C

imstv
h=1Il=1

1
mlax TT Z Z COV Uz’t,mUis,m7 Uih,l Uiv,l) < C?
m,I<pt,s,h,v<T

max Z Z |COV it, kUzs ms UzhlUw m)‘ <C.
k,l<pt,s,h,o<T

The left hand side of the third condition equals max; Var(% P (NTUim)?). In ad-
dition, if we ignore the absolute value, then the left hand side of the fourth condition equals
max;m, Var( (\F Ui.k)(WTU;.1)). Hence the third condition means that the variance of
the standardlzed squared average should be bounded, and the fourth condition is slightly



FACTOR-LASSO AND K-STEP BOOTSTRAP 25

stronger than requiring max;,, Var(%(ﬁUi.yk)(ﬁUi.,m)) < C. In the special case when
{U;} is serially independent across ¢, all of the four conditions in Assumption can be
directly verified under various notions of weak cross-sectional dependence.

The following proposition show that the high-level Assumptions [3.5]and [4.4] are satisfied
by the PC estimator.

Proposition 5.1. Further assume |J|§ = o(nT?), |J|¢n = o(p?T) and |J|3logn = o(p).
Then Assumptions and@ about F' and F* are satisfied.

The conditions |J|n = o(p?T) and |J|3logn = o(p) require lower bounds on the growth
of p. These conditions differ from those used in the literature on inference in purely
sparse high-dimensional, e.g. [Belloni et al.| (2014b)), in that lower bounds on p are not
required in the purely sparse setting. These lower bounds arise since accurately estimating
the unknown factors using PCA requires a large number of observed series. Indeed, the

“average rate of convergence” is

1~ + . 1 1 1
SN - H i = 0p(—5 + g + —
where the product pT is the dimension of X;. In the special case |J|g = O(1), these

conditions require
T < n < p*T, log®>p = O(n), and logn = o(p).

The results developed in this paper will thus be inappropriate in settings where p is quite
small relative to n. Of course, in the setting with p small relative to n, a simple approach
is to just use all of the available variables without dimension reduction.

Finally, though we have been assuming the number of factors, K, is known a priori, our
procedure admits data-dependent methods (e.g.,|Bai and Ng| (2002) or Ahn and Horenstein
(2013)) for selecting K. Under mild conditions such as those employed in Bai and Ng| (2002])
or |Ahn and Horenstein| (2013)), K , the estimator for K, is consistent. All the preceding
results hold can then be shown to hold following first-step estimation of K by conducting
the theoretical analysis conditional upon the event that K = K and then arguing that the
results asymptotically hold unconditionally as P(I? =K)— 1

6. NUMERICAL STUDIES AND EXAMPLES

We now present simulation and empirical results in support of the formal analysis pre-
sented in the previous sections. The first simulation example is based directly on the PPFM
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given in —. The second simulation example is based on a purely cross-sectional
model that allows for instrumental variables estimation of the parameter on an endoge-
nous variable in the presence of a low-dimensional set of instrumental variables (IVs) and
a large number of potential control variablesm Following the simulation experiments, we
then present results from two empirical applications. In the first, we apply the developed
procedure to estimate the effects of gun prevalence on crime following |(Cook and Ludwig
(2006) using the data from Belloni et al| (2015). In the second example, we apply the
instrumental variables strategy of |Acemoglu et al.| (2001) to try to estimate the effect of
institutions on growth.

6.1. Simulation Examples.

6.1.1. Panel Partial Factor Model Simulations. In our first set of simulations, we report
results for estimation and inference on o with data generated according to

yit = oy + (ce&e) fi + Uy (o) + gi + vt + €t
dit = (cs0ar)' fi + Ujy(cyva) + G + we + it
Xit = (eal\r) fi + wi + pr + Us

with n = 100, T = 10, K = 3, and p = 100. We take ¢; ~ N(0,1), n;y ~ N(0,1),
and Uy ~ N(0p,Xy) where 0, is a p x 1 vector of zeros, ¥y has (r,s) element given by
vl = m=sland e, ni, and Uy are i.i.d. over ¢ and t and jointly independent of
each other. We generate unobserved individual-specific and time-specific heterogeneity by
taking n i.i.d. draws, one for each individual, (g;, (i, w;) ~ N(Opt2, Ipy2) where I,yo is
a (p+2) x (p+ 2) identity matrix and taking 7T i.i.d. draws, one for each time period,
(e, pit, pt) ~ N(Opt2,Ip12). The latent factors, f;, are generated as i.i.d. draws from
N(0g, Ix). The factor loading vectors & and d4 and factor loading matrix A; are drawn
independently over time with each entry generated as an independent draw from a standard
normal random variable. The individual-specific, time-specific heterogeneity terms and

factor loadings are drawn once, and the same values are used in each simulation replication.

1
j2
are set to alter the relative strength of f; and Uj;; in each equation. We choose ¢ so that

We set the ' entry of # and 7,4 as 0; =74 = 53- ca, Cs5, Cy, C¢, and ¢y are scalars that

the average R? from the p regressions of Xit,j on f; is 0.5. We choose (cs,cy) so that the
R? of the infeasible regression of d;z — ¢; — pt on (csdar)’ fi + U}, (cyva) is 0.7 and the factors

10The formal development in the IV case with a small number of instruments is a notationally burdensome
but straightforward extension of the results developed in this paper.
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account for 0%, 25%, 50%, 75%, or 100% of the explanatory power in this regression. We
similarly choose (05, ) so that the R? of the infeasible regression of y;; — ad; — g; — vy on
(ce&) fi + Ul (cgf) is 0.7 and the factors account for 0%, 25%, 50%, 75%, or 100% of the
explanatory power in this regression. Finally, we set a = 1.

We compare the performance of the procedure developed in this paper to several bench-
marks. Because we consider a design with p < nT’, ordinary least squares of y;; on d;;, Xt
and a full set of individual and time dummy variables is feasible (OLS). We also consider
estimating « based on the assumption that confounding is entirely captured by latent fac-
tors. To implement this procedure, we extract factors, ﬁ, from X;; by PCA as discussed
in Section [5} We then regress y;; on dg, ﬁ interacted with a complete set of time dummy
variables, and a full set of individual and time dummy variables to obtain the estimator
for a (Factor). For our third procedure, we directly apply the fixed effects double-selection
procedure of Belloni et al.| (2015) which is appropriate for a sparse high-dimensional model
with fixed effects (Double Selection). We then consider two ad hoc variants of the double-
selection approach. In the first, we extract the first 20 principal components and interact
these with a full set of time dummies. We then apply the fixed effects double-selection
procedure of Belloni et al. (2015) to the data (Y, D, X*) where X* denotes the original X
variables augmented to include the interactions of principal components with time dum-
mies (Double Selection F). The second ad hoc procedure extracts factors from X;; by PCA.
We then obtain estimates (A]it as in and apply the fixed effects double-selection pro-
cedure of Belloni et al.| (2015) to the data (Y, D, U*) where U* denotes the matrix formed
by combining U with the interactions of principal components with time dummies (Double
Selection U). Finally, we directly apply the factor-lasso approach outlined in this paper
(Factor Lasso). We use the Ahn and Horenstein| (2013)) procedure to select the number of
factors to use in obtaining the Factor, Double Selection U, and Factor Lasso results.

Figure [1] gives simulation RMSEs for the estimator of a resulting from applying each
procedure. The RMSEs are truncated at 0.1 for readability of the figure. The most striking
feature of Figure[I]is that only the proposed factor lasso procedure delivers uniformly good
performance regardless of the relative strength of the factors and factor residuals in this
simulation design. Each of the other procedures exhibits behavior that depends strongly on
the exact strength of the factors in the different equations. In terms of RMSE, the factor-
lasso procedure uniformly dominates regular OLS, Double Selection ignoring the factor
structure, and the ad hoc procedure Double Selection F within the design considered.
The factor-lasso estimator of « is outperformed by the pure factor model in the case
where all of the explanatory power in the outcome equation is contained in the factors,



28 CHRISTIAN HANSEN AND YUAN LIAO

which corresponds to the case where the pure factor model is correctly specified and there
is no additional confounding based on the factor residuals, and the Double Selection U
procedure when the factors have no explanatory power in the treatment (D) equation but all
explanatory power in the Y equation. It is also important to note that the performance loss
is small in these few cases where the factor lasso is outperformed. A final interesting point to
note is that the conventional lasso-based double selection procedure is outperformed by the
factor lasso even when the factors do not load in either the treatment or outcome equation.
It seems likely that the loss in this case is due to the presence of the factors in the observed
explanatory variables which leads to strong correlation among these variables. This strong
correlation among the X'’s is well-known to pose challenges for lasso-type estimators.

We report size of 5% level tests based on standard asymptotic approximations for each
of the six procedures considered in Figure [2| where the sizes are truncated at 0.3 for read-
ability of the figure. In each panel, we report the rejection frequency of the standard t-test
of the null hypothesis that &« = 1 with standard errors clustered at the individual level.
The most striking feature of the figure is again the uniformly good performance of tests
based on the proposed factor lasso procedure. Tests based on the factor-lasso procedure
effectively control size, with size ranging between 3.3% and 5.3% across the design pa-
rameters considered in the simulation. This behavior is in sharp contrast to the other
procedures considered which may have large size distortions depending upon exactly how
large the relative contribution of the factors is in the D and Y equations. Importantly,
this good behavior does not come at the cost of using an inferior estimator as evidenced
by the RMSE results.

We conclude this discussion by looking at the performance of the k-step bootstrap. In
Figure[3, we report size of 5% level tests using the factor-lasso estimator and the asymptotic
approximation provided in Theorem the k-step bootstrap, and a score bootstrap based
on Belloni et al. (2014a)). The k-step bootstrap and asymptotic approximation have similar
performance that keeps size close to the promised level. Interestingly, the score-based
bootstrap that does not reestimate the factors or the lasso parts of the model exhibits mild

size distortions across all of the design settings in this example.

6.1.2. Instrumental Variables Model Simulations. We supplement the simulation results
from the PPFM with additional simulations in a cross-sectional version of the model gen-
eralized to allow for an endogenous variable. Specifically, we generate data from the model

yi = ad; + (ce€)' fi + Uj(col) + v + €



FACTOR-LASSO AND K-STEP BOOTSTRAP 29

di = 7z + (¢5,04) fi + Ui (cyyva) + 1o+ ni
Ri = (Céz‘szyfi + Uz'/(c"/z’}’z) +C+v;
Xi=(eAN)fi+p+ Ui

with n = 100, K = 2, and p = 100. Within this model, d; is an endogenous variable with
coefficient of interest o and z; is an instrumental variable. We generate €; ~ N (0, 1) and
n; ~ N(0,1) with E[e;n;] = .8 i.i.d. across i and independent of all other random variables.
We generate i.i.d. draws for U; as before, and v; ~ N(0, 1) independently from U;. We also
generate (v, i1, p, &, 04, A, ca, ¢y, 5,5 Ce, Co) as before. We set § = ~4 = 7, to be vectors with
4% entry given by 0; = vaj; = V25 = %2 To control the strength of the instrument, we
choose (cs,, ¢, ) so that the R? of the infeasible regression of z; — ¢ on (cs,6,)" fi + Ul (. 72)
is 0.7 and the factors account for 50% of the explanatory power in this regression. We set
7 so that the fraction of variation accounted for by z; in the regression of d; on z;, f; and
U; is 25%. Finally, we set o = 1.

We again estimate o using six different IV procedures similar to those implemented
in the previous simulation with one exception. As the number of features is equal to the
sample size in these simulations, we consider an infeasible “oracle” estimator that estimates
a from IV regression of y; — (c¢§)' fi — Ul (cot) — v on di — (c5,04)' fi — Ul (cy,va) — o using
zi — (¢5,02) fi — Ul(cy.72) — ¢ as instrument (Oracle). This estimator provides a type of
best-case benchmark and allows us to ascertain that instruments are strong enough that
the usual asymptotic approximation provides a reasonable approximation in the idealized
scenario where one is able to perfectly remove the effect of confounding from all variables.

Figure [ gives simulation RMSEs for the estimator of « resulting from applying each
procedure. The RMSEs are truncated at 0.1 for readability of the ﬁgureﬂ Again, we see
that the factor lasso procedure delivers good performance regardless of the relative strength
of the factors and factor residuals in this simulation design. Each of the other procedures
exhibits behavior that depends strongly on the exact strength of the factors in the different
equations. It might be noted that the dominance of the factor-lasso estimator, in terms
of RMSE, over the “Oracle” procedure is due to the definition of the oracle that we use
which fully removes the variation in each variable due to factors and factor residuals even
in situations in which some of these variables produce no confounding. For example, one

need not remove the variation in the instruments due to the factors in cases where the

11rl’heoretically7 the MSE of the IV estimator does not exist in this context. We report root mean truncated
squared error with a truncation point of 1.
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factors have zero loadings in the outcome equation, but this variation is always removed
due to the way we have defined the oracle model.

We report size of 5% level tests based on standard asymptotic approximations for each
of the six procedures considered in Figure 5| with size truncated at 0.3 for readability of the
figure. In each panel, we report the rejection frequency of the standard t-test of the null
hypothesis that o = 1 using heteroscedasticity robust standard errors. Here, we see that
the only procedure that uniformly controls size is the infeasible oracle. Among the feasible
procedures, the proposed factor lasso approach performs relatively well in keeping size
distortions small across the majority of combinations of relative strengths of the factors.
In this case, we do see that the factor-lasso procedure suffers from reasonably large size
distortions when the factors account for all of the confounding in the outcome equation
and a moderate amount of counfounding in the treatment equation. We also see that the
pure factor model controls size well in this case, but performs very poorly once all variation
in the outcome equation is not due to the factors.

We again conclude by looking at the performance of the k-step bootstrap in Figure [6]
We see that there is a modest, but clearly visible, improvement from using the k-step
bootstrap relative to the asymptotic approximation. The score based bootstrap, on the
other hand, lines up reasonably well with the asymptotic approximation.

6.1.3. Summary of Simulation Results. Overall, the results from the two simulation ex-
periments are supportive of the asymptotic theory. We see that the factor-lasso approach
delivers estimators with good properties relative to other feasible procedures that leverage
either a pure factor structure or a pure sparse structure in partial factor model settings.
We see that both point estimation properties, measured in terms of RMSE, and inferential
quality, as measured by size of tests, are competitive or much better than the other pro-
cedures considered in our simulation design. The results also suggest that the proposed
k-step bootstrap procedure works relatively well and may offer some gains relative to the
asymptotic Gaussian approximation.

6.2. Empirical Examples.

6.2.1. FEstimating the Effects of Gun Prevalence on Crime. In this example, we follow
Belloni et al. (2015 who build upon the work of |Cook and Ludwig (2006) and attempt to
estimate the effect of gun prevalence on crime in a setting with a high-dimensional set of
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potential controls. As in Belloni et al.| (2015), we focus exclusively on trying to measure
the effect of gun prevalence on homicide rates. An important difficulty with estimating
the effect of gun prevalence in the United States is that exact gun-ownership numbers
are difficult to obtain. Due to this difficulty, Cook and Ludwig (2006) use the fraction of
suicides committed with a firearm (abbreviated FSS) within a county to proxy for county-
level gun ownership rates. |Cook and Ludwig (2006 provide a series of arguments and
evidence from secondary data sources supporting the claim that FSS provides a useful
proxy for gun ownership. For the analysis in this paper, we simply take it as given that
estimating a causal effect of FSS on crime measures is worthwhile and abstract from any
further measurement or data issues surrounding the use of this proxy.

Both |Cook and Ludwig| (2006) and Belloni et al.| (2015) estimate linear fixed effects
models of the form

log Yy = alog FSS;;_1 + X/,8+ gi +vi + € (6.1)

where g; and v, are treated as parameters to be estimated, X;; are control variables, and
Y;: is one of three dependent variables: the overall homicide rate within county 4 in year
t, the firearm homicide rate within county ¢ in year ¢, or the non-firearm homicide rate
within county 7 in year t. |(Cook and Ludwig (2006) use the four variables percent African
American, percent of households with female head, nonviolent crime rates, and percent
of the population that lived in the same house five years earlier as their set of controls
Xjt. Belloni et al. (2015) maintain the assumption of approximate sparsity and employ
their variable selection approach using a much larger set of potential controls generated
by taking variables compiled by the US Census Bureau as X;;. Their variables include
county-level measures of demographics, the age distribution, the income distribution, crime
rates, federal spending, home ownership rates, house prices, educational attainment, voting
patterns, employment statistics, and migration rates along with interactions of the initial
(1980) values of all control variables with a linear, quadratic, and cubic term in time.

Rather than adopt the approximately sparse model in , we employ the PPFM,
—, and factor-lasso approach to estimate o using 909 variables in X;; constructed
as in [Belloni et al. (2015)H The PPFM model seems very appropriate for this data as
it directly incorporates a mechanism to accommodate the concern that there are features
of counties that are not directly observed, the f;, but are related to the evolution of the
outcome and treatment variable of interest, which is captured by the time-varying factor

12The exact identities of the variables are available upon request. The data is from the U.S. Census Bureau
USA Counties Database, http://www.census.gov/support/USACdataDownloads.html.
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loadings. Obviously, exclusion of these factors would then lead to omitted variables bias in
any estimator of « that fails to capture them. Concern about the existence of such factors
is common in empirical applications involving aggregate panel data.

The key assumption that we leverage to allow us to simply accommodate these latent
factors is that the same correlated unobserved factors that lead to confounding are related
to the evolution of other observed county-level aggregates and that we have access to a
large number of these auxiliary aggregates. While this key assumption is strong, the PPFM
also naturally provides some robustness to the presence of shocks (Uy) that are related to
movements of the observed Xj;; series as well as movements in the variable of interest
and outcome. Such shocks may be motivated, for example, by the factor structure being
misspecified, by the presence of variables that are not strongly related to factors but are
confounded with the treatment and outcome, and simply by the presence of local shocks

not captured by the factors that are related to the observed series.

We present estimation results in Table [1| with results for each dependent variable pre-
sented across the columns and rows corresponding to different estimation approaches. As
a baseline, we report numbers taken directly from the first row of Table 3 in [Cook and
Ludwig| (2006)) in the first row of Table 1 (“Cook and Ludwig (2006) Baseline”). We report
results obtained from our data the remaining rowsH For these results, we first report the
point estimate and estimate of the asymptotic standard error obtained by clustering by
county. Immediately below these results, we report the 95% confidence interval obtained
from applying the k-step bootstrap procedure in brackets. The rows labeled “Post Double
Selection” apply the procedure of [Belloni et al. (2015). The rows labeled “Factor” are
based on a pure factor model; the rows labeled “Factor-Lasso” use the proposed factor-
lasso procedure. All factors are estimated using PCA and the number of factors is selected
using |Ahn and Horenstein| (2013).

We see that the estimates and inferential statements produced for the firearm homicide
rate (“Gun”) and the non-firearm homicide rate (“non-Gun”) are broadly consistent with
each other. In all cases, there is a fairly large positive point estimate for the effect on
the firearm homicide rate with corresponding 95% confidence intervals that exclude zero,
suggesting positive association between the used measure of gun prevalence and gun homi-
cides. For the non-firearm homicide rate, all point estimates are negative and modest and
confidence intervals include both positive and negative values. The broad results for the

L3 A1l results are based on weighted regression where we weight by the within-county average population
over 1980-1999.
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overall homicide rate (“Overall”) are slightly more mixed. The baseline results for |Cook
and Ludwigl (2006) and results from a pure factor model suggest a strongly significant,
positive effect of gun prevalence on the overall homicide rate. Assuming sparsity and ap-
plying Belloni et al. (2015) yields a positive estimate of the effect which is statistically
insignificant at the 5% level. Finally, the factor-lasso estimator is similar in magnitude to
the sparsity-based estimator but borderline significant at the 5% level using the bootstrap
confidence interval.

A more interesting comparison can be made by looking more closely and considering
the variable and factor selection results. The “Post Double Selection” procedure ends up
selecting three variables for estimating the effect on overall homicide rates, three variables
for gun homicide rates, and two variables for non-gun homicide rates. The pure factor
model uses one factor. The factor-lasso approach then uses one factor in all cases but
selects eight additional variables for estimating the effect on the overall homicide rate, eight
additional variables for the gun homicide rate, and five additional variables for the non-gun
homicide rate. These results suggest that the “Post Double Selection” and “Factor” results
may be based on models that fail to adequately capture the effect of potential confounds.
We also see that the “Factor” estimates are substantially shifted away from the “Factor
Lasso” estimates relative to standard errors and that the factor-lasso estimates are the
most precise in the sense of having the shortest confidence intervals. Both findings are
consistent with the asymptotic theory and with the simulation results.

6.2.2. Estimating the Effects of Institutions on Output. We revisit the example considered
in |Acemoglu et al. (2001). |Acemoglu et al. (2001) are interested in the parameter « in a
structural model of the form

log(GDP per capita;) = a(Protection from Expropriation;) + z}8 + ¢;

based on aggregate country level data where “Protection from Expropriation” is a measure
of the strength of individual property rights that is used as a proxy for the strength of
institutions and x; is a set of variables that are meant to control for geography. |Acemoglu
et al. (2001) adopt an IV strategy where they instrument for institution quality using early
European settler mortality to estimate « as institutions are clearly potentially endogenous.
They point out that their instrument would be invalid if there were other factors that are
highly persistent and related to the development of institutions within a country and to the
country’s GDP. A leading candidate for such a factor that they discuss is geography. To
address this possibility, |Acemoglu et al.| (2001) control for the distance from the equator
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in their baseline specifications and consider different sets of geographic controls such as
continent dummies within their robustness checks[t]

There are, of course, many other ways to measure geography besides distance to the
equator or continent where a country is found. Rather than ez ante choose a small number
of variables to proxy for geography, we put a large number of variables that potentially
capture geography in x; and then use the data to reduce dimension. Specifically, we
consider dummies for Africa, Asia, North America, and South America as well as longitude,
renewable water, land boundary, land area, amount of coastline, territorial seas, amount
of arable land, average temperature, average high temperature, average low temperature,
average precipitation, elevation of highest point, elevation of lowest point, fraction of area
that is low-lying, latitude, and spherical distance from London.

We adapt the analysis of |Acemoglu et al.| (2001) to the present setting by considering
estimation of a partial factor instrumental variables model

log(GDP per capita;) = a(Protection from Expropriation;) + f/¢ + U8 + ¢;
Protection from Expropriation; = wEarly Settler Mortality; + f/0q + Ulya + ni
Early Settler Mortality; = /6, + Ulv, + v;
i =Afi +U;

using our 20 geography measures as x; and the 64 countries from the original [Acemoglul
et al.| (2001) data. The factor-lasso approach seems quite sensible in this setting. Each of
the observed geography measures could reasonably be taken as a noisy proxy for a country’s
geography. This relationship is likely to be complicated and uneven with the chief features
leading to association between the geography proxies plausibly being only weakly related to
the notions of geography that are important predictors of mortality and institutions. The
factor-lasso approach, by allowing a small number of elements of U; to enter the equation
of interest in addition to any common geography factors, readily accommodates this latter
possibility in a parsimonious, data-dependent way.

We report estimation results for the first stage coefficient on the instrument in Table
We report results from the factor-lasso approach in the row “Factor-Lasso”. For com-
parison, we also report results from a few natural alternative models. The row labeled
“Latitude” uses the single variable distance from the equator to control for geography as
in the baseline results from Acemoglu et al.| (2001)). We report results from applying OLS

14E.g. Acemoglu et al.| (2001]) Table 4.
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using all 20 available geographic controls without dimension reduction in the row labeled
“All Controls.” We apply the double selection approach of Belloni et al. (2014b) which
would be appropriate if the relationship between geographic controls and the variables of

b

interest were well-approximated by a sparse linear model in “Double Selection.” Finally,
“Factor” reduces dimension through positing a conventional factor model. All factors are
estimated using PCA with number of factors selected by applying the procedure from [Ahn

and Horenstein, (2013]).

The first-stage results using only the latitude control suggest there is a fairly strong
relationship between the instrument and endogenous variable if latitude is a sufficient con-
trol for geography. The first stage F-statistic using just latitude is 10.9 which many would
take to indicate that the instrument is sufficiently strong to identify the effect of interestﬁ
The results change in a potentially substantive way after allowing for the possibility that
geography is not adequately captured by latitude. For each of the remaining approaches
considered, the first-stage F-statistic drops substantially below 10, with all methods be-
sides applying the pure factor model returning first-stage coefficients that are statistically
insignificant at the 5% level.

One might dismiss the lack of significance after including all controls without dimension
reduction as it seems likely that a model with 20 covariates in addition to the variables
of interest and only 64 observations is overfit. The next strongest result is from the pure
factor model which makes use of a single extracted component and produces a first-stage
F-statistic of 7.5. As evidenced in the simulation example, inference results based on a pure
factor model may be highly misleading when elements of U; also have explanatory power. It
is then interesting that the double-selection approach and the factor-lasso approach deliver
almost identical results indicating a weak association between the endogenous variable and
instrument after controlling parsimoniously for geography. The double-selection procedure
selects four Variableﬂ, and the factor-lasso approach uses one factor and two additional
Variablesm One might take this to mean that the four variables selected in the double-
selection procedure approximately capture the same information as the single factor and
two variables used in the factor-lasso results. In either case, the results suggest that, at
best, identification of the structural effect of institutions as measured by “Protection from
157 benchmark that is commonly used in the applied literature to assess whether there is sufficient variation
in the instrument to identify the effect of interest is to compare the first stage F-statistic to 10, with smaller
values indicating weak identification.
16These variables are the Africa dummy, average temperature, average high temperature, and amount of

arable land.
TThe two selected variables in addition to the factor are the Africa and Asia dummies.
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Expropriation” using settler mortality as instrument is weak after geography is controlled
for in a parsimonious, data-dependent way. Given this apparent weak identification, we do
not report second stage estimates of the structural effect@

6.2.3. Summary of Empirical Fxamples. We believe the two empirical examples illustrate
the potential applicability of partial factor models and the associated factor-lasso approach
in applied economics. The model provides a natural generalization to standard factor mod-
els and sparse high-dimensional models and seems appropriate for many economic appli-
cations, especially those that make use of aggregate panel or cross-sectional data. The
results in the first example based on |(Cook and Ludwig| (2006 roughly line up with the
original results, though they demonstrate the potential for efficiency gains from adopt-
ing the methods developed in this paper. In the second example, we draw substantively
different conclusions about the strength of identification than one would draw following
the approach in |Acemoglu et al.| (2001)) due to the ability to control more flexibly for the
leading candidate for confounding. Overall, the results suggest that application of the pro-
posed methods may usefully complement the sensitivity analyses performed in empirical
economics and also have the potential to strengthen the plausibility of any conclusions
drawn.

APPENDIX A. PROOF OF THEOREM [3.1] AND COROLLARY 3.1

Define (KT) x 1 matrices Z = (£}, ...,&;)" and Ay = (8, ..., 0yp)’. Note that

= Da+(Ir@F)Z+U60+¢
= (Ir® F)Ag+ Urya + ).

o <

Note that ) = My_(Ir ® Mﬁ)f). Hence,
J

a = @) Mg (Ir © Mp)Y
= a+ @t MA (IT®M (I ® F)Z +U9+6]
= a+(ﬁﬁ)*1( )MA (IT®MA) ')~ Mg (Ir @ Mp)é

+@n) ' Mg (IT®M )=+ (7'7) ' Mg (IT®M )Ub.

Note that n’MA (Ir ® Mp)é =i/é —if (Ir @ Pp)é—17 PA E+17' Py (IT ® Pg)é. Hence,
1 1 0
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VT (77 ) (@ =) = —=i ; (A1)

18We note that it would be straightforward to adapt the weak-identification robust procedure of |Cher-
nozhukov and Hansen| (2008) to the present setting. We do not pursue this extension for brevity.
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where
1 1 -
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We shall prove that A; = op(1) for i = 1,...,6 and -7/ — -5=77'7 = op(1). So
no= M (
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In the subsequent subsections, we provide bounds for A; for i =1, ...,6 and for \/%Hﬁ— 7|2
A.1. Bounding 77 — 7. Write
1/2 |J\0
Y =kl Il Byl + AplJlo + 4/ = (A.3)

Proposition A.1. \/%Hﬁ— N2 = Op(¥n).

Proof. Note that ||Agll2 = O(VT). Hence by Lemma
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Hence, equation l) implies \/%Hﬁ— 7l = Op(¢y,). A

A.2. Showing A, A3, A5, A¢ = op(1). By equation 1' Lemma Py (IT ® Pp) = 0, and

noting that Py Mg
J J

= 0, we can show that

o ~
A = @(U—U)IMQ;(ITQ@MJE)E 1
= T o, UIr @ Mg )U’Yd+€/ﬁMﬁj(IT®M§(FH—F\)H_1)Ad.

It then follows from Lemma[G.3| (i)(v) that A1 = op(1).

We can also immediately apply Lemma (iil) to establish that Az = op(1).

Also, it follows from Lemma [G.1] (iv) that

401 = | oz

nPA

1 -
vnT Pﬁf g

2

since |J|2log? p = o(nT).

Finally, it follows immediately from Lemma [F.2] that A¢ = 0. W

A.3. Showing A4, = op(1). By (A.2),

1
vnT
1
vV nT

Ay =

- , - ~ 1 - ~
+E(Ir @ H (FH - F)'Mp)—==Mp (It © Mp(FH - F)H~

—E(Ir o H YFH - F)Mp)——

W Mg (It @ Mp(FH — F)H™")

[1]x

[I]l

i My (Ir © Mp(FH — F)H ™)

\/ﬁ

\/7 U (IT@P)

- , ~ ~ 1 .
+Z2(Ir®H YFH — F)/Mﬁ)iMﬁj(IT ® Mz)Unq.

It follows from Lemma m

vnT

the assumption that vnTA% = o(1 ) is bounded by

|='(Ir © H Y (FH — F)Mp)——

\/7 U
g\/%(;:i |G' (I © H'~N(FH — F) M) My |3
S\/%G:é”é |G (Ir ® H ~N(FH — FY Mp)|3
S\/% s ol “UFH -~ FY Mg

(Ir ® Ma(FH — FYH™

(A.4)
HA, (A.5)
(A.6)

(A7)

that ( is op(1). By the Cauchy-Schwarz inequality and under

YA
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< op<g>||ﬁﬂ—ﬁ||% = Op(VnTAR) = op(1).

Term ({A.6)) equals
1 ~ 1, = o~ ~
—ﬁ:’(h“ ®H ~(FH - F)/Mﬁ)Mﬁf(IT ® Pg)i
1 - RPN S .
=~ gporoH Y(FH — F)'Mg)(Ir ® Pg)ij =0

where the first equality is due to Py (I ® Pg) = 0 and the second equality is due to MzPg = 0
J
and the fact that the kronecker product satisfies (A ® B)(C ® D) = AC ® BD.

Finally, using M 7Pz = 0 and Pﬁj(IT ® Pgs) =0, 1D equals
E'(Ir® H Y(FH - F)' M) (It ® Mz)Urq

1
vnT

- / . ~ 1
= —1

Mﬁj 0’)/(1

1
M
vnT Ys

== (Ir®H Y(FH - F) Mj)

Mﬁj 0’)/(1

j(IT ® Pp)Una (A-8)

1
vnT

=E(Ir @ H YFH—F)' M)

=op(1)
where the last equality follows from Lemma (vi).

Hence, A2 = op(1). R

A.4. Showing Ay = op(1).

1 ~
Ay = ﬁﬁMﬁj(IT ® Mﬁ)U@
— L J

1 ~ -
+ ﬁG’U’(ITQ@Mﬁ)Mﬁj(IT ®Mﬁ)U'yd (A.lO)

1 - - ~
+ ﬁe’U’(IT ® Mp)Mg (I ® Mp(FH — F)H HA,. (A.11)

It follows from Lemma [G.3] (iii) that term (A.9) is op(1).
By Lemma[G.1] (i) and (ii), we can bound term (A.10) by

1 -~ ~
ﬁe’U'(IT ® Mp)Mg_(Ir © Mg)U7a
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2

1 N
<VnT max ||—Mz (It @ Ms)U
o 9=0,7a \/ﬁ Uf( T F) g 2
1 2
< 2vnT max U +2\/ Tmax —(r ® Pz)U
9=0,7a \/7 UA g =0,7a \/ﬁ( r U9 9

J
< ViTOp (I} + k21710 + 305 + ' ) =orw),

under the assumption ( 2|00 + [|Ry |17 + AZIJ|Z2 + |J|°) vnT = o(1).

The same argument as that employed in the bound given by equation (A.8) yields that term

(A1) is op(1). W

A.5. Proof of Theorem (3.1 -. ) Write 1y := (e — ;)2

Step 1: Show |nT7] n— ,LT > it Brit] = op(1).

It follows from Proposition that |- — L'l = op(1). Also,
1 1 _
e _ 2 | =2
nTUW— Tznzt 72% —fzt:ﬂt‘H?
We have that E [+ >, 7%] = 7 >, = >, E [n%] = O(1/n) and that 72 = op(1). Hence,
1 1
et —_— . —_m- 2 [ — .
o= ﬁ;(nzt :.)” +op(l) = nT;LZt+0P(1)
Note that 1
Var(ﬁ %: Lit) = 2T2 ZVar ;th O(1/n).
Hence, |2 ", tit — =5 > Brir] = op(1). We then have

~’ﬁ—fZEL,t|_0p : |f”A—7ZEM|_OP (A.12)

and - 7) 7 is bounded away from zero.

—1/2
Let Zn,ig = % Et (nzt - ﬁi-)(eit - éiv)7 bn |:V8I(T Ez Zn,z):|

let s2 = > Var(z,) =Y, Var(z, ;)b2 = n.

, and x, ; = bp2zy,,;. In addition,

Step 2: Show —2-7é = L 37 2, + op(1).
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Note that

n

1 S T B B T AN LN
E <T2ﬁ-t€-t> fzﬁzﬁzfzﬁ EZEnlsevsnitejt
t t i j

s=1 =1 v=1

T
Z % Z % Z En;s€isnis€it
t7 Z A ZZ Z EnjsejiEeisni

i jF£e s=1

T Z TL4 Z Z Z EnzsnztEejsejt (A13)

i jFEe s=1

T Z n4 Z Z Z Enlselsnztezt

s= ll;éz

T Z n4 ZZ ZEnjeejenvtejt

e s=1
1
0<n2).

We have E|z, ;] = 0. We also have, under our assumptions, Var(z, ;) and b, bounded away from
both zero and infinity uniformly in ¢. Then

bn . b, B _ bV nT o __
€= g it — i) (€6 — €.) — E €4 + b, VnIne
nTn \/’I’LiT — (77t Ui )( t ) T - T.t€.¢ n
1
= — E ZTni +op(1)
Sn 4

Step 3: Apply the CLT.

We now verify the Lindeberg condition for the triangular array {x, ;}. For any ¢ > 0,

1 1
E|= 2 \|znil > <E|= 2 | =1.
(A attlnt > v ) <130,

Hence by the dominated convergence theorem,

S;QZE |wn] > esn}] = < ch x| > Eﬁ}) =0

This implies, by the Lindeberg central limit theorem,

bn ~/~ d
€ —=*N(0,1).
Wil (0.1)
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In the previous subsections, we have proven A; = op(1) for ¢ = 1,...,6. Hence, it follows from

1} that \/ﬂT(ﬁﬁﬁ)(@ — a) = \/%ﬁ’é'—i— op(1). In addition,
bn\( ZE% T(@— a)|

1 1 1
<bn —q'n— E i 1 1
< ba| 11’0 nT; [l | (=) Irne+op( )|
=op(1).

Therefore,

1/2 2\/ T(@—a)=0b, ZEL“: — )

= bn—ﬁﬁ\/nT(a —a)+op(1)
nT
b

— \/%ﬁlg-‘r op(1) =% N(0,1).

(ii) To verify normality with the estimated asymptotic variance, we need to prove consistency
PN

of 5,c and 52. We have previously shown | L' — =37, Eleie]| = op(1) which establishes
consistency of 02 = = > it Eleit]. Hence, it remains to prove o, — oy = op(1). Recall that

_Var(rzz;;nlt i) (€ — )>

Step 1: Bound Ay := 5y — = Z?:l(ztll fit€it)?. We have

n

L& [/ T 2 T 2
Ay = nT (Z Azt@t) - (Z ﬁzt%t)
= t=1
1 n [T T
=T Z Z(mt@t + ﬁitgit)] lZ(tht - nztezt)‘|
n =1 Lt=1 t=1
1 n [T 2
== Z(ﬁita‘t - ﬁitgit)] (A.14)
= =S

n T
+ %Z <;“ Z ﬁitgit) Z(ﬁisas - 'Fh'sgis)- (A.15)

For term (A.15), we have

T
% Z |% Zf]itgitP Z |* Z (nit — 0¢) (e — €4) — (M. — 1) (€. — §)|2
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1
=0(=).
(1)

since the process {(n, €;)};°° ., satisfies the strong mixing condition with exponential tails. Thus
by Cauchy-Schwarz,

T 2
[711 Z (% Zﬁitét) Z(ﬁisa—s - ﬁisés)]

1.1 & -
- (fz~it€zt ‘| [ Z Z Nis€is — Tis€is)) ‘|

s=1

1 1 n T 2
S OP T E Z (Z(ﬁzsas - f]zsés))

s=1

This result then implies Ay = op(1).

Step 2: Bound A := - Z?:l(ZtT:l iin)? — = Z?:l(ztll(mt — i) (€t — €.))%.
Note that

T
§ nztezt - E 771t - 771 €zt - 6
t=1

HMH

T
€it — €.4) — Z Nit€.s +Tn(€. —€) + Th.€.
t=1

B;

and that & Zt 1 (i — i) (e — &.) = Tzf 1 Nit€it — Ti-E..

Hence,
1 I
nT ;(; i€i)* = — ; tzl nit — i) (€r — €.) + B;)?
:nT;tzln”*m (611‘ nTZBZ
TZB Z Mt — )(Eit—gi.).
Note that
1 & T 2
nT Z B; Z it — i) (€4 — gl)]
i=1 t=1

5/~

T 2
Z Nit — 6zt E ))

t=1

1 1
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T
= niT ;BEOP (711 ;Var(\lﬁ g Nit — i) (€3¢ — Q)))

1
= > B}Op(oye).

Therefore |As| < TE B? 4+ (-5 3, B)'/20p(1). 1t suffices to prove -5 3. B? = op(1). In
fact, = >, B? < CY ), A fora constant C >0 and

2 2
Al = nT;<th€t> ) nT;(Zﬂt Ezt6t> )
1213 = E=2;ﬁz‘2-v A4:::2;(€i'_:

where each A; = Op(EA;). We then have

n T T n

BA = =SS S S Bracisems =

]lzlmleltl

n3T
n3T Z > Z ZEmtmsEegseﬁ =0 (T> = o(1).

i=1 j#i s=11t=1

T T
Z Z Enit€einiseis

i=1 s=1t=1

Similarly, EAs = o(1). In addition, € = Op(n~!) and 7> = Op(n~1), so A3 and A4 are each
Op(T/n) = op(1). Combining verifies that

Ag = % Z (Z nltezt> % Z (Z Nit — elt 6 )) = OP(l)' (A16)

Step 3: Bound Az := ﬁ E?:l(ZtT:l(mt — i) (€t — €))% — oye.
1 n T 2
Note that ope = E | 25> (Zt:1(77it — ;) (et — Ei.)) , and let
= e — e — &)
i = ——= it — 1) (€ir — €.).
mn,t \/T it i it 1
2 ;). Because £ 3 Var(22 ;) = O(1), we have

1
EA2 = Var(A3) = Var ( Zzn Z) =2 Z‘Var(ziyi) =o(1), (A.17)

which implies

3= % Z (Z Nit — i) (€t — €z>> — ope = op(1). (A.18)

=1 \t=1

Combining the above three steps, we reach |6, — oye| = op(1). B
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Proof of Corollary Given Theorem the corollary follows from the same argument as
that of Corollary 1 (i) of [Belloni et al.| (2014b). We thus refer to Belloni et al.| (2014b) for details.
|

APPENDIX B. CONVERGENCE OF THE k-STEP BOOTSTRAP LASSO

In this section, we obtain the statistical convergence rate (in Op«) of the k-step bootstrap lasso

estimators 7 7,. We focus on 7y, as the proof of 7 is similar. Recall that

t=1 i=1
Yy lasso arg 3&%& Ly(y) + [T (B.1)
and that
7y = the post-lasso estimator based on the original data
5/; = the k-step lasso estimator based on the bootstrap data

= the lasso estimator based on the bootstrap data
if a complete lasso program is carried out.

In particular, 7, is used as the coefficient when generating the bootstrap data.

We divide the proof into three subsections. Section proves the statistical convergence of

||’~Y;,lasso — Ayll1 in the bootstrap sampling space. Section quantifies the computational error

||’~V; - ’ﬁ,lasso||1 and shows that the computational error of the k-step lasso is negligible using
the assumed high-level conditions on the iterative scheme Sy(-). Section verifies the high-level
conditions for the coordinate descent, or “shooting”, method (Ful (1998)); Kadkhodaie et al.| (2014)).

We employ the usual definition of op« (1) and Op«(1). We say that a sequence X;: in the bootstrap
sampling space is op-(1) if for any £,0 > 0,
P{P*(|X;| >¢) >d} =0,
and that X} = Op+(1) if for any § > 0, there is M > 0, such that

P{P*(|X;| > M) > é} — 0.

B.1. The convergence of lasso on bootstrap data. The main result in this subsection is the

following proposition.

Proposition B.1. |9, 1,5, — Wylli = Op«(kn|J]o)-
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Proof. Recall that F , gyt7 and 7, respectively denote the estimated factors, the estimator of dy,

and the post-lasso estimator of v, using the original data. We also have that l~]t* denotes the wild

bootstrapped idiosyncratic term in the factor equation and that the following relations hold:

Y = Fé, +UR, + 6, & =& +ia.

(B.2)

In addition, recall that th and [AI* denote the estimates obtained from the bootstrap data. Define

‘]\4;< = Féyt F §;t + ( Ut ) Yy> A: = a@/ - :Y;,lasso'

By definition, £3(7; j4550) + nn||\fly’y;lasso||1 < L;(3y) + Fon||®¥F, |1, which implies

T
1 73 x * ~x! */\TT* * Ty~ * Ty~
72 ”Ut A'y“%+2(et +Mt )Ut A"/ +Hn||\1]y’7y,lasso||1 S'%NH\IIy’YyHl
nT p

By Lemmaand Fop = %@‘1(1 — qn/(2p)) for some ¢y > 1,
1 T ’ AN
I~ > 2(e + M7 )UFA
t=1
< 1 a ~x' e Ty—1 TU A * 1 a ~x! (7T 7%
> Hﬁ;%t Uy o [loo [ Aw||1+<”ﬁ;2et (U = U)o

T
1 ' Tk A * T * T
= D020 T A ) [0 A5 | ma B,
t=1

IN

|DYA* |y

2 In logp
ﬁ‘l’ (1- %)(1 +op+(1)) + op- ( T )

<O e (1 £2) jinas),

1
O |TYAL .
2co

with P* approaching one. Equation 1' then implies, for the support set J of Ay

*Z 1T &35+

3co+1
260 '

nII(‘PyA )gellt < rn[[(WPAZ) 5l

(B.3)

(B.4)

(B.5)

Hence, [[(AZ) 7 ]l1 < ¢l[(A%)5]l1 for some ¢ > 0. This also implies for some generic C' > 0, ||AZ[|7 <

A, 51} < CA3I30R(|]0) as |Tlo = Op(I]o)-

We can now apply Lemma to obtain

T T
1 Frx A % * %
—= > U7 A% > ZnUtA 13— 1143 500+ (1).
t=1 t=1
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In addition, the sparse-eigenvalue condition implies the restricted eigenvalue condition: For any
m > 0, there is ¢ > 0, so that, for |.J| = Op(|J|o), with probability arbitrarily close to one,

5/ﬁ Z?:l ZtT:1 Uitf]{t‘s

> Q.
SERP: |16 ][1 <m |8 5¢ 1 ) -
Hence b S U7 A%]13 > ¢l A% [3/2
1 &~
T Z U AL]3 = Op-(k21T]0), 1A% ]1 = Op=(knl o). (B.6)
t=1

B.2. The computational error of the k-step lasso. The main result in this subsection is the
following proposition.

Proposition B.2. (i) ||7; = 7; jassollt < €Wy — 75 1assollt +Op+ (Zf + an|J\0) for some ¢ > 0.

(id) 13y = 5l = Op- (Kl Tlo + 2= + v/au T ).

T Frs (2~ ~ %
(i1) 5 >0t 10 Ay = 35)13 = Op= (57| T]o + an).

Proof. (i) We apply Lemma below. Note that condition (B.7) in this lemma is satisfied under
Assumption with b, = Op+(a,,). Hence applying Lemma with v = 4, immediately implies
the result.

(ii) The conclusion follows immediately from part (i) and Proposition
(iii) By equation (B.8) given below in the proof of Lemma with b, = Op«(ay,),

2 I3% [~ % ~ %
ﬁ Z ||Uzt(’}/y - Vy,lasso)”% = Op-~ (an)
it

T Tk (2 ~ok
Hence by (B.6), & >0, 107Gy — ;)13 < Op-(521]o + a,). W
Lemma B.1. For each v, suppose for some by, (either stochastic or deterministic),
£*(7> + Kn||\11’7||1 S E*(:Yl*asso) + K’n”\llﬁ/l*assonl + bn’ (B7)

then

- o bn T
||'Y - Vlassonl < CH(’Y.U - ’Yy,lasso)j\Hl +—+ OP*( bTLlJ‘O)’

Rn

~ % —1/2 ~ ~ % bn
||Fy - 7[(1550”2 < b}z/2 +op~ (|J|O / ) (CH(/Y.U - Wy,lasso)j\Hl + K’,) :

Proof. We prove for £L* = L7. The case with £* = L follows by the same argument.

Step 1: Show [|A|2 < Op-(by) + | A[20p-(

‘]‘(71) Here A = Y- ;y;,lasso'
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Since E;('y) is quadratic, for any 71, yo,

Ly(n1) = Ly(v2) = (m = 72) VL (72) + (11 —72) V2L (72) (11 = 72),

where

VL (72) = _TTZ U3 (i — — U} ),
1i=1

t=

T n
* 2 * A*
V2£ (72) 7T Eﬁ 5_ UiUis -
Now let y1 =7, and 72 =9, ,55,- Condition (B.7) then implies

2 - gy Ty~ % *
/7T Z Z UitUit A < bn + /in”\:[ly’}/y,lasso”l K’TIH\IIy’ynl - A VL (IYy lasso)
t=1 =1

< by (B.8)

where, to establish the last inequality, we used nn||\fly'~y;lasso\|1 ko[ WYy |y — AV L oWy tasso) < 0
which follows due to the first order condition of (B.1)) and the convexity of ||.|[1. (See the proof of
Lemma 11 of |Agarwal et al.| (2012).)

We now establish a lower bound for the left hand side of (B.8).
2 T n § D) T . )
722 ztUzt = TZ”UtAHZ
t=1 i—1 t=1

T
2 -~ _
v Y NGALE —lIAlRor- (1]5)
t=1

>O A3~ AlRop- (17151

where (a) follows from (H.16) and (b) follows from Assumption Substituting this lower bound
in for the left-hand-side of (B.8|) then yields

IA]3 < b + Al Fop- (1[5 ). (B.9)

Step 2: Show [[A[ly < Op«(bn/kn) + (Vg = 7} 1ass0) 71 + 181206 (V[ o)

We re-visit the proof of Proposition Note that (B.5)) implies, for some ¢ > 0,

R””(?y - :}/;,lasso)fc 1< KYLH(?@; - ’?;,lasso)f”lc'

The same argument also applies using v in place of ’?Z,lasso due to Condition , yielding
ull Gy =) 72111 < nll Gy = 1) 7l + b

Adding these two inequalities and using the triangle inequality, we have

1A) 7llr < 1y = g tasso) el + 1 Gy = V) 5 llx
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~ . ~ b
<10 = Fy.asso) 7llie + 1y =) slle + =

~ o b
< QCH(’Y.U - ’Yy,lasso)f”l + ”(A)leC + K‘,i
n

~ ~ % T bn
< 2¢l(y = Fytasso) 7l + [1(A) 7llze/ [ T]o + -

‘We then obtain
[A[lL < [[(A) 7l + 11[(A) 5l
by (B.10)

< 2c|(Vy = Ay tasso) 7l + 1AI20P- (V[ T]0) + —=

n

Step 3: Complete the proof. Substituting (B.10) in for the right-hand-side of gives

A3 < b + 0p=(

. SO b \?
154 (CIG) = Fisas) sl + 2 )+ 18Top- (1)

2
vielding [|A[§ < by +0p-(1151) (Cll Gy = 7 tasso) 7l + £2) ", and thus

~1/2 ~ b,
181 < 8+ 0p-(15"7%) (CIG, = Fisas) sl + 22).

Substituting this bound back in for ||All; in (B.10]) then yields

~ s bn
1Al < Cll(y = Vyaasso) 7l + = + O+ (v/bul Tlo)- (B.11)

B.3. Verifying Assumption [4.1] We now prove Proposition [£.I} which states that the shooting
method of |[Fu (1998) satisfies Assumptlon

We make use of the following lemma in proving Lemma

Lemma B.2. Recall that 5 denotes the post-lasso estimator using the original data and v},

denotes the lasso estimator using the bootstrap data. We have that
0 < L) + #nl[ WAt = (£* Flasso) + finl[PAassollt) = Op+ (573]7]0). (B.12)
Proof. The first inequality follows from the definition of 7}, ...

We now show the equality. Note that for each ~,

T
1 * ~x' $ \NTT* T
f—TZ(wt = DG+ M5 + &3+ 2@ + MT; (7 =) + kal T71
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where M} and €} are defined in the proof of Proposition Hence by Proposition and Lemma

[H.4
L5A) + £nl[ 7 = (£ Viasso) + #nllVassoll1)

= &l 1 = Fn [ W01

T
]_ = ~ . ~x! AN ~ ~
= =~ (107 = Fianso) I3 + 26+ 3)07 (5 = Ao
t=1
T
Ty~ Sk 2 ~s/ N ~ Sk
< K”ﬂ”‘l/y(’y - ,Ylasso)Hl + Hﬁ Z(et + Mt )Ut ||OO||’Y - Wlasso”]-
t=1

< Op+ (k)7 = Flassollt = Op= (k7] |o).
|
Lemma B.3. For the shooting method, (i) £*(v) + rinl|%yill1 < L£*(Yi—1) + Fnl|¥vi1 1.

(i) £ (7) + 8l 87 |1 < L Gasso) + Al ol + O (521 T]o)-
(1) | J*|o = Op=(|J]o).

Proof. Write v, = (Y1, .-, 71,p)s where 7, can be either v4; or v, ;, to denote the solution after the
lth

iteration. Note that v, = 4* is the k-step lasso estimator.
(i) For the shooting method, each 7, for m < p is defined as

1 * o Tx 7y’ Iy’ 7k T
. . 2
Yi,m = arg mgln nT E (Ui — 5ytfi - Uit,mf'Yl,m* - Uz’t,m+7l—1,m+ - Uit,mg) + Kn | Umgl-
it

As is discussed in Section after the m'™® element is updated in the I'® iteration, the vector

becomes %(m) = (Yom—»Vom> Vi—1,m+)’» where m~ = {j : j < m}, and mt={j:j>m}k Vi~

represents the subvector of ; whose indices are in m™ and ;_ ,,+ represents the subvector of v;_

whose indices are in m™. With this notation, after the (m — 1) element is updated in the [*!

iteration, the current solution vector is ’yl(m_l) = (V,(m=1)=> Mym—1, 7l—1,(m_1)+)l. This vector can

be rearranged as
(’Yl,(m—l)* y Viym—1; ’Yl—l,(m—l)*)/ = (’Yl,m* y Vi—1,m; 'Yl—l,m*)/'
It can be seen that the loss function is non-increasing after the m' element is updated:
£ (0™) + 0™
= ‘C*((’yl,m_ » V,ms 7171,771‘*'))
+ KﬂH\I/mffyl,mf ||1 + Kn|\llmr}/lm| + “{n||\IIWL+’)/I—1,mJr Hl
< ‘C*((’W,m* ; Yi—1,m; ’Ylfl,er))
+ En Y= Ym= 11+ EnYmYi—tm| + En Y+ Yi—1,m+ 11
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= L((V,tm=1)» Ym—1>Vi—1,(m—1)+))
+ Bl 1)~V ome1)- I+ Fnl e 1Yim—1] + £nl| ¥ om0+ Y1, (m-1)+ 1
* m—1 m—1

= L0 ) + TV

Note that ,Yl(p) = ;. Hence by 1' in Lemma
L5(0) + fn | Tll1 < L5 + k|87 )||1 < L) + kn 99 11
= L*(-1) + Kl Tyi-1]1-

(i) From (i), E*(’m) + bl Bl < L£5(0) + Knl 0]l = L*(A) + #al|¥F]1. In addition, by
(B:12) in Lemma[B.2]
‘C*( ) + K’n”\lp}/‘h - (‘C*(’nasso) + "ﬁ"n”‘lla;casso”l) =Op-+ (HEL|J|O)

for 4 and 5, ,,, respectively denoting the completed lasso estimator (as opposed to the k-step lasso
solution) using the original data and the bootstrap data. Note that x2|.J|ov/nT = o(1) and v = 7%,

SO
LF) + mal[ 95 < L7(R) + wal Y71
<r* (Vlasso) + RnH\Ijal*assoHl +op-= ((nT)il/Q)

which verifies Assumption i).

(iii) We now focus on the k-step lasso estimator v, = ¥* and let 7, denote its mth element.
By the KKT condition, if v ., # 0, then

~ 7

_Hnwmsgn(,yk’m> - TIT Z it,m yzt - 6;;th* - U;;&,m*/yhm’ - Uv;;ﬁ,m*f)/k—l,m+ - Uiﬂ;‘/,m/yk’m>
2 * ~ %
= ﬁ Z Uzt m(yzt tf - t Vl(cm))

2 * * ~% T3k~ m
= g 2 Ui (M4 85+ 0 3 =%") (B.13)

where 7,(6 m . = (Ye,m—> Vkms Vi— 1m+)', and M}, Zt are respectively defined in . Let

U’; 7. denote the subvector of Um consisting of { wom  Yeom 7 0,m < p} = { itom P E J*}

Then the vector form of (B.13) is

—hn W (T)sgn(yem 1 m € J7) = — Z 7 (MG + &) + A,
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where (without loss of generality, we assume {m < p: vyt # 0} = {1, ..., 17*o})

* * Frx! Trx (2 1
nT Z’Lt Uzt lU’Lt (’Y F)/IE; )) anUl U (ry_,y](c ))
A = _ :
* J* -~ 7 PN 7
XU it 7 |0Uzt F =71y Uﬁ\ T*(3 — A7 lo)y
(Plo)y 2 7 Fe s
F=n ) gU U,
Therefore

KJnH‘I’(J*)II2<maX|*Z ity (Miy + €3t) \/lJ*\oJrIIFBHHF 7l (B.14)

Note that here the norm in both || FB | and ||—A= ey A* is the operator norm and we have used

the inequality ||BU 7 ll2 < ||B||||U .

Now by (HL.14),
*HU* 1 + *IIU* —-U% P

< 2¢max |J ‘ TZZ Z 1tm 1t m)2

t=1 i= lmGJ*

< 2¢>max<|f*\o> +Op-(ag + BPT)

T3 7

==, (B.15)

1 m
B = max 17~ )P

meJ* T

| A

* 8 * m
7HU ('Y Wlasso)HQ + max FHU (Wlasso ’Vl(c ))Hg

meJ*

< OP* (K’n|‘]|0)
where ﬁ”fj*(ﬁ — Aeso) I3 = Op«(k2]J|o) follows from . To show

8 A m
max — 0" Fasso = ") = Op- (521]0),

meJ*
we note that part (i) and (| - ) demonstrate
L ™) + kal 2™ 1 < £7(0) + Rl 0l
= [’*(fy\) + "{n”\Il;y\Hl < L* (vlasso) + "{n”\II:y\fasso”l + OP* (KJ%|J|O)
Thus, the same argument as used in equation (B.8) leads to
W < Op- (R o).

8
max —— ”U* (Vl*asso
meJ* N
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By Lemma max; |2 >, U‘;‘M(Mt +é%)| = op+(ky) and K| [ (J*)||2 > crip. Hence, (B.14)

and (BT5) imply

IPADEANS

1 T
K217l < (Cua(17]0) + O (A7 + 2EET)

We thus obtain exactly the same inequality as given (D.3). The rest of the proof then follows from
the same argument as used to show Proposition (if). We conclude \j*|0 = Op+(|J|o) which
verifies Assumption ii). m

The following lemma is useful to uniformly bound terms in the bootstrap sampling space.

Lemma B.4. Suppose the following conditions hold:

(1) {Zijm} is a sequence of random variables in the original sampling space, satisfying

§ 2
max =
m<p,i<n N zym n)

for some deterministic sequence a,, > 0.

(11) { X7, Y }i<p is an i.i.d. sequence in the bootstrap sampling space such that {X}} is independent
of {Y;*}, EX} = EY;* =0, and Var*(X;) < C and Var*(Y;) < C for a constant C > 0 where C is
non-random in both the original and bootstrap sampling space.

(11i) Both X} and Y are sub-ezponential random variables satisfying Assumption (iv).

Then for any 1,2 > 0, there is a C,, ., > 0 such that

Z XEY} Zim 2(1nC\/C,51,€2 log plog(pn)
n

P max

"2 > &1 < €9.
m<p [N

4,j<n

n

1 an+/log plog(np)
Thus maXm,<p |ﬁ Zi,jgn Xl*}/j*szml = Op- < .

Proof. By condition (i), for any ¢ > 0, there is Cs > 0 such that with probability at least 1 — J the
event As := {max;,<p i<n H Z Z2 < a2Cs} holds.

ijm
Let V* = max,; |+ > Y Zijm|. Define W7, = Xy > Y Zijy and Y* = {Y;"};<p. Since
{X;} and {Y;*} are independent, then on the event As,

1 * *
max — Z Var* (Y} Zijm) = max Z iim Var(Y,

m,i N

< an005
2 (B.16)

mgx% ZVar Wi Y™) = max — Z Z Y*Zijm | Var*(X))
i

< CVv*2,
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In the bootstrap sampling space (BSS), {Y}Zijm}j<n is independent across j and E*Y}*Z;jm = 0.
By the Bernstein inequality, for y = (2a2CCslog(pn)/n)*/?,

* * 1 *
P*(V* > y)1{As} < pnnrlnaZxP |ﬁ E Y Zijm| >y | HAs}
' j

2
y (B.li)
< ex lo p V !

€ p( g( n) maxm,i% § j ar*(Yj*Zijm)> { 6}

ny2 1
< exp | log(pn) — 200, )~ (pn)~.

In the BSS, {W},}i<n is independent across ¢ conditional on Y*. By (B.16) and the Bernstein
inequality, for = y,/ QCg’gP _ 20.0VCs :’gplog(p”),

pr (maX\*ZW{'Lnl > [y )V <y}

m<p N

1
< pmax P* <nZWZ";n| > x|Y*> HV* <y}

2

nx
< 1 HY* < (B.18)
< exp (ogp o L3, Var (Wi*m|Y*)) { y}

2
< exp (logp CV*2> HV* <y}

na? 1
<exp logfv—CT/2 =p .

Let Ey- denote the expectation operator with respect to the marginal distribution of Y* in the
bootstrap sampling space; i.e., Ey« is the conditional distribution of Y* given the original data.
By the law of iterated expectations, Fy« [P*(:]Y™*)] = P*(-). We then have

* * 7
P rnrqlg)pd— g XY Zijm| >
,5<n

< p* max|— N XY Zigm| > x| 1{As} + 1{A§}

,7<n

— p* <maxZW;:n| > a:) 1{As} + 1{A§}

* 1 * *
= Ey«P <r£g§|nZWim| > z|Y > 1{As} + 1{A5}
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1
<@ py.p* <m§x|n S Wl > xY*) H{V* <y} 1{As} + Ey-1{V* > y}1{As} + 1{AS}
m=p -

<O p~t+ P(V* > y)1{As} + 1{A5)
<@ p7t (o)~ + 1{45),
where we used P*(-|Y™*) < P*(-|[Y*)1{V* <y} + 1{V* > y} in (a), (B.18) in (b), and (B.17)) in (c).

Because P(A§) < ¢, taking the expectation with respect to the distribution of the original data on
both sides yields

* 1 * Yk —1 —1
EP (ﬂgﬁ‘ﬁ Z; XY/ Zijm| >x) <p~" + (pn)”" +4.
2,JSN
For any 1,62 > 0, let § = e162/2, and call Cs in z to be Cg, ¢,. By the Markov Inequality, we then
have

* 1 *\k 1 —1 —1
p|pP (ggﬁ\ﬁi;j{ﬁj Zim| > @) > &1 | £ —(7' + ()T +9)
< E1€2/2—|—5 _

S = ¢&2.
€1

APPENDIX C. VERIFYING CONDITIONS FOR ESTIMATING THE FACTORS

This section verifies Assumptions [3.5] and [£.4 when factors are estimated using PCA.

C.1. Proof of Proposition (for F using the original data). (i) By Assumption it can
be shown that |[H|| = Op(1) = ||[V7!||. In addition, we have the following identity:

5
fi—H'f;i=VY" Ag,
=1
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where

An = an Zf] Z Uz/t ~]t Ui/tth)a

1 —~
Ajp = lﬁ gfy g(Uz’/tth - EUiltth)a

Az = anny ZEU& it (C.1)

= t=1

1 ~ I
Ay = Iﬂ;fjgf;A;Uﬁ,
n T s

Each term can be written in the form A;; = pT% 2?21 fj Zthl Biji,;. By Cauchy-Schwarz,

I~ » . I
Y- Hfill3 = 0p<1>Z ~ > lAal
i=1 =1 i

(C.2)

We bound the terms in (C.2)) in Lemmas and |J.2| mbelow. Then, applying the bounds in Lemmas
and and using T = o(n), we have

1 1 1

1 " " 1 F N2 2 2
EZ‘Ifi_HfiHQ_OP(AF)a AF—E“FW—FE.

i=1

It is then straightforward to verify that |J|3A% = o (Uﬁ) holds when |J|§ = o(nT?), |J|in =
o(p*T), |J|3\/logplog(pT) = o(n), and |J|3T = o(n). For example, to show |J|2/logplog(T) =
o(n), note that |J|o = o(y/n/(logp)) and |J|o = o(y/n/T) implies

|J|21/log plog(T) = o(nlog T\/logp/+/T logp) = o(n)

(ii) We now verify that we can produce sequences A.g so that A.y = o (ﬁ) First, note that
we can set g, € {’yé[\t, Aems St} in applying Lemma each of which yields w,, = O(|J|3) for w,
defined in Lemma It then follows from Lemma that we can take A,y = ( \/nl}TT + )| J]o so
that A,y = o0 (\/>> , given T|J|2 = o(n) and |J|2 = o(p). Note that |J|3 = o(p) is implied by the
assumption that |J|3n = o(p?T).
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(iii) By Lemma we take A pym = %4’ Txl/ﬁJrT%/ﬁJm/bi;%ﬂ, and A?e = #+%pn. We then

have

max |*Z<Hlfz fz) zsm|_OP(Afum)

s<T,m<p n
i=1

and
TZH*Z% — H'R)IE = 0p(a3,).

Then, it is straightforward to check Afum = (m) and A?ce =o0 (%) .

(iv) By Lemma we can define A,q = ﬁ\/ logn(gT) + lz%rp(ﬁ + %ﬁ) + - Given
|J|gn = o(p*T) and |J|§ = o(nT?), it is straightforward to verify that A,q = o (\/logp> and

nT

|J[3v/Tog pAug = o(1). This result follows by verifying /= log p \/ﬁ|J\2\/logp = o(1) which can be
shown by noting that |J|gn = o(p*T) implies |Jo|> = o(p T/n) and that |J|2log(p) = o(n). Thus,

because log? p = o(n),

logp |J[gv/Tog p ’ _ log? p|J |3 _ log(p)pnv/T _, log(p)V'T —o(l)
nT  /pT npT? npT?\/n T2\/n '

(v) First, by Lemma we can take Apax = ﬁ + lng”. Also AZ = # + n;—‘g + p%'

P
This implies A% |J|3 + |‘;|° =0 (“QO L"T'g + MO) . In addition, k2|J|ovnT = o(1) and ||R,||? =
0 (hfp) imply A2|J|o + ||Ry3 = (\/%) Hence with the conditions |J|3 = o(nT?), |J|{n =

o(p*T), we have

Jlo 1
N2\ Jlo + [|R, |12 + AZ%|T 1710 —O( )
210 + IRy I3 |J13 + oo

Thus, in order to verify A2, |JIZT(\2|J|o + || RylI3 + AZ|J|2 + ‘Jlo) = o(1), it suffices to verify

1 logn> 1
-+ J =o0(1),
(5 + S0 ) BT = o)

which holds given the conditions |J|2T = o(n) and |J|3 = o(p). Note that |J|3 = o(p) is implied by
[Tlon = o(p°T). W

Lemma C.1. max; ||fz H’f1||2—0p (f—i_\/@) = O0p(A2,,).

1 2 L T 7 :
Proof. We first bound max; o7 >, Us n, and max; || 57 >,y AiUi|[2. Since

maxVar( Z Ztm) (p™h),
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we have

1 1 1 1
i p — ) i P ) P - , itm )

t m

logn
= 1
Op ( o + )

by the Bernstein inequality for strong mixing sequences.

For the k'™ row X}, of A},

1- 1+ ~
Hilgngar (p)‘;,kUit> = ?/\tk,mktkvl ZEUit,mUit,l
m,l

1
<ol T
<0 (p> max % |EUit m Ui,

-o(2)

Employing the Bernstein inequality for weakly dependent data (e.g., [Merlevede et al.| (2011)), we
then have

T
1 < logn 1-
— AUyl <0 V -\ U;
m?XHpT t; tUitll2 < Op ( T ) \/ign’%a%7tST ar (p e t)

~ o, (ﬁ)

Now, max; ||ﬁ — H'ﬂ-”g < Z?Zl G; where each Gy is defined and bounded below. Specifically,

T n
1 - S
G1 = max || —— g U/ g Ui fill2
i |an P it = VAZN} ||

T n T n
1 -~ 1 _ N
< max ||]ﬂ D UL Uhilla + max Hm UL Uikl
t=1  j=1 t=1  j=1
1 1 12 1 1 v
2 72 7 12
e S D SRERS 9L I P ES oL T
tm tm tm 7

(5 1) (7 - )

by equation ((C.6|) given below in Lemma

1 N o
G2 = miaXHm ij > ATl
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T
/ 1 A TT
< 0p(1 )maXH—E A Uill2 + Op(1 7§ jA,U

t=1
logn
by (C.3)). Finally,
1 _ n
Gg—maXHiz A Z tf 2

< max | fiz H—ZA Z Ujefillr
j:

T n
1 -
< Op(\/logn)| nz Z Ujifille

p t=1

+0p(/logn) ||—Z Ul = H G

llogn 1 1 -
logn logn
an

Hence max; ||f7, Hfz”Q—OP <f+ /IOTgpn

Lemma C.2. Let {z;:} be a random sequence with E(z;t|ft,U:) = 0 and Var(z;:) > 0. In addition,
let {gim} be a deterministic sequence of vectors with a fized dimension, m < p. Then for Z; =

Zit — Zio — Z4 + Z, and wy, = MaXm<p % Zthl lgem I3,

1/2

_ 1 1
— mZi(fi—H' f)||p =0 — ) wl/2,
mgﬁllnTZth Zie(f f)'llr P( TpTJrn)w”

i=1 t=1

Proof. Tt follows from equation (C.1)) that

3
T SIS 2

i=1 t=1

where each term C; is defined and bounded in below.

n

T
G = max H,TT Z Z Tn Z £33 ULU;sZagimlle

i=1 t= 1 j=1 s=1
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~

1 1/2
< (@an)'/? (||U|%) Op(Ar) + Op(1 ZH*ZJ% 22

Jr
VnpT
where z, = pT2 Et 1 Zs s i thUw||2 = OP(l) and wy, = Maxm<p % E?:l [|geml|3- Next,
1 n T 1 n T
~ L L N NI TT. 5
Co = m<p HnT ;; pTn ; J ;fj UisZitGum || F

n T 1/2
1 11 vy
<0r (3 Tl s Y Kl

by Lemma . Finally,

T
Cg-%}%ﬁ”ﬁzszan ;Z AUjsZirgionll P

=1 t=1

n T
1 1
< (wncn)l/Z OP AF nZ”p ZA/ _79” )1/2+0P( )HlaX”anZZ jqf ||F
J j=1s=1
1 1
U2 1
20 (G 3)

T z o
where ¢, = £, [ 30 fiZull3 = Op(L). Therefore,

) L
T m~Zi —H'f) = = 1/2.
E&%;f”nTZth Z(fi— H'F) | op(m+n>wn

=1 t=1
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|

Lemma C.3. Let {gu :

k < p} be a deterministic sequence of vectors of fixred dimension with
maxy ||gikll2 = O(1), and let G, = g

— % > ¢ gk Then
n T

,’g}ggpnﬁlz:Z(f Hfz) ztmgtkHF—OP <\/»\/0gp \/ng( ) )

=1 t=1 VT " Tvn " pT
= Op(Aud).
Proof. First, note that ), s = 0. Hence
1 n T
max [ S (fo = H' ) UiemGil 2
z:l t=1
1 n T
< n?;?é,”?;;“ H' fz) it mgtk”F (04)
J RN
+Hﬁ Z(f’_H )2 max ||*ZUtm9tk||F (C.5)
i=1

Term 1' is Op (AF l‘:lng). Term 1} is bounded by Zl 1 C1, where each C is defined and
bounded blow.

First, note that applying Lemma gives

1/2 1/2
2 (1 L=~  a -
7 TZH ng | = | 7 2 S - O
1/2
2
+— ZwZHfj &
t
C.6)
B 1 1 1 log(pT) 1 (
_Op(nJrT\/ﬁJrTﬁJr T +\/ﬁ>
1 1
_Op(m+7)and
1 T 1
max||*2fj Jtl||2_OP( Oggj) T\/;T)>
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n T

n T
:%nl?é(pH ZZT;]? g(j UtUis mdss || P (because fgﬁ 0)

IN

1/2
ZII*Z]Z tF) U-t%) maXII Uzs a2

mk
1151

_0 1 logp

T f f nl
_ 1 1 log p
=Op (T‘/pn + n) nT -~

1 n T 1 noo_ T
CQ = max |(|—= Z Z v 7 Z U/ (Uz Uis,m - EUztUls,’m)ggk
hS N .

1 I 270 1 C.7
72l S5 rgfg\lnTpZZ Uism = BUsUiom)iille (O

-on (g2 ) (40

using Lemma [J-4]

IN

n T n T
1 1 - B )
CB = max s Z Z T Z f] Z ]/t(EUztUzs,m)g;k
m,k<p | nT = pT'n = po
( a F
T p
< %XZ;;| EUsy Use )| max||gsk||27 Inax||
1 log( T) 1
(i) ( "1
Cy = max i zn: o VUsa i
: m,k<p nT — 1t Zt is,mYsk
- F

Uis,mdu||  (because Z Ay =0)
t
F

~/
Uzs mgsk

22

1 n

= s, | o 22 o
T

T

2
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1 log p
=0 .
r ( in) nT

F
1< 1 &
Y ~/
<Op(1) max |3 > — > A (UitUism — EUiUss )i
i=1 s=1 t=1 F
log p
=0
using the same proof as that of Lemma (ii)
1 n T 1 n T
= E— A» FIA7 . . ~/
06 — 7571]52(1] nT Z Z an Z fj Z j t(EUztUzs,m)gsk
i=1 s=1 j=1 t=1 F
1 n T 1 T
< - - A/ 7T ~/
Op(1 anI,lI?<p nT Z Z oT Z AN (EUitUss,m) sk
i=1 s=1 t=1 F
1
=0p|— ).
"’ (pT>
n 1 n_oo L
Cr = — INU;:Uss md.
I - o F
1 n T n T
T X r ~/
LSS | e [ 30 o
j=1t=1 9 i=1 s=1 F
log p 1T S - o, - 1 < .~
<Op |/ I—== Y FiUG A2+ 1= D (Fi = H [)TUjemll
nT pin j=1t=1 j=1
_0 log p 1 n 1 1 log(pT)
P nT J\n " Ty Typ npT

Combining the above, we reach

n T
1 N r i ~
ﬁ Z Z(fl - H/fi)Uit,mgék

i=1 t=1

max
m,k<p

F

B 1 [log(pT) logp, 1 1 1
_OP<¢E\/ nT +\/nT(\/ﬁ+T\/ﬁ+AF)+pT>

63
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log(pT) logp, 1 1 1
‘Of’(f\/ \/ S T\/ﬁ)+pT>'

C.2. Proof of Proposition (for F* using the bootstrap data). (i) Similar to (C.1)), it
can be proven that there is |[H*|| = Op«(1) and ||[V*~1|| = Op«(1)such that

J/C;*_H*/ft Ve 1ZA1Z7

where - T
* 1 - Tx T’ Tk s 77k TTx * 1 - Tx * T Tk *
Af = o E ; E (U} U —F U U V), Al = Tn g j E E*U; th’
pincT T4 L |
(C.9)
1 noo_ T o 1 LN T N~ ~
* * * * * TA! TT%
Azd = 771 E j g ]/'A;fUzh i4 Tn J Z ZAt Jt
p j=1 t=1 p Jj=1 t=1

We first treat A%, — A%,. Because U} and f]’-*t are independent if 7 # j, we have

*ZIIA I3 = ZII Zf ZE A TATE

T

1 ~

=N f Y BT,
n ||anf’L e it ’Lt||2

By Lemma[l7] £ 57, |A5]3 + 1 32, 453 = Op-(A%). Hence
4

S ST ALR = O (8F). (C.10)

=2 A

Now we bound =37 | [|A%||3. A preliminary rate is provided by Lemma where we have

that
1 « 1
— A2 =0p- [ AZ + = ).
n ;:1 1471115 P ( rt n)

However, this rate is not sharp due to the Op-(n~!) term and can be improved. Specifically, the
proof of Lemma (iii) uses a Cauchy-Schwarz inequality and is not sharp for terms involving
E[U],Uj]. To see this intuitively, consider a simple example where we bound

n n T
Pl 3OS HEULU .
=1

j=1t=1
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65

Since U;; and Uy, are independent when ¢ # 7, this term may be simplified to

Ien, 1 & 1
o Z ”TTp ZfiEUi/tUitH% =0p (nQ> :
=1 =1

In contrast, using the Cauchy-Schwarz inequality gives

. Z ||7 ZZfJEUz/t Jt||2

]1t1

<

or(2)

2
1 1 "1 &
AT (szE ;tth>

Lemma (iii) does provide a useful preliminary rate to build upon. Applying Lemma (iii)

and ((C.10), we obtain a preliminary rate

1 . s « T2 2 1
W I iRl = 0p (854 1)

Our goal is to remove the term

inequality,

n T

onA B2y anZH* 5 Y050,

i=1 t=1

n

Z

a1
Hf37

;

<@ Op. (A (AZ)
OP( F)+OP( n Z

ij

= Op-(A%)

3=

L through improving the bound for 2 3" | || A% 3. By the triangle

2
- B*U; U},)
2
2

Z (Uz*t U;t —E" (7':;5 ﬁft)
t=1

~

2

T 2
ZU;; Uy, — E*U;, sz>>

where in (a) we used Lemma and the last equality follows from (J.5). Hence combining with

(C-10), we have L 57 || —

(ii) We now verify the conditions in Assumption
ALa = 0(\/ 12ng)7 | 7[3VIog Ay = o(1), AR = of

logp )
T log(pT)

A%

Amax = \/‘ +
given the assumptlon that |J|2logn = o(p).

We have previously proven that A% = % +

log, n

H*'ﬁ||§ = Op~(AZ). Thus, we have A%

nT?2

— Ap.

VAT|TRAR = o(1), AL, = oS

,and AZ |J]RATAR = o(1).

+ piT. In addition, Lemma gives

. Hence it is straightforward to verify the required conditions involving A%,
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A, A% is defined in Lemma [C.5 which gives A%, = by, + Ayq for

b — L [logplog(np) logn+10gp log x/log Vo [l
"or np npT pT nT npT"

In the proof of Proposition we verified Ayq = o (y/%”) and |J|2vIogpAug = o(1). Tt

is also straightforward to verify that b, = o (\/lflng) and that |J|2y/logpb, = o(1) given that

logn = o(p), |J|an = o(p ) |J\O log® p = o(n), and |J|§ = o(nT?). In particular, we need to verify
|.7]3 log p (# + 11) ) . To verify this condition, we use |J|gn = o(p?>T) and |J|§ = o(nT?)
to show

L IR 1Jnt?
5 [ [
81080 (g + o ) = R losn (Lo + 290
1/2T3/2 T1/2
_ 3 n p
o R1osp (" + Fier )

7[5 log p
=of )n3/2T1/2

= o) T0EP s _ o)

~

A%,: Note that for i, € {KﬁdJ/iﬁy,gdt,gyt, Atm }, we have

T
1
XTZ |9tm||2 OP(|J\ )-
t=1

Hence by Lemma , Az2 = (L 4 loem lc;gTT; 4 logfn )|J|0 Given |J[]3logn = o(p) and

n2 npT n2T1/2

| JI3T = o(n), it is then straightforward to verify AsZ = o (-4 ) which follows by verifying M =

o(1). To see I‘]I‘i# = 0(1), note that we have, by \J|g/3 = o(n'/3T),
|J|2/‘rg|J|4/3 logn |J|§/3n1/3Tlogn \J|2/3 logn

|73 logn _ B B B
T T =o(1) T = 0(1)7712/3 =o(1).

Lemma C.4. In the bootstrap sampling space, let Z%, = ZiywZ where {w?}"_, are i.i.d. with mean
zero and bounded variance and independent of {wY} and Zyy = Wi or Zy = €. In addition, let
{Gim } be a deterministic sequence (in the bootstrap sampling space) of vectors with a fized dimension,

m < p. Then for w}, = maXp<p Z?,l ||fq\tm|\%7

*/ 1 logn logn log'*n §
nTZngmzwf ~H" fi) —OP* <+ gn  oen | 08 w

< n?2  npl  n2T2  p2T1/2 | °"
1=

max
m<p

where the term Op« (% + 125; + lgn + 1°§T1/2 ) wy, defines A%2
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Proof. Tt follows from (C.9) that

3

i=1 s=1

where each term C) is defined and bounded below.

First, we have

i=1 s=1 j=1  t=1 »
" 1/2 N 1/2
1 1 ! 1 1 ~
< — g — E U™ [ — ZxU* 2 *1/2
pT - ”'fl -_1fj ]tHF (sz — H’I’L < Zis zt|2> Wy
J= S, 1=
1 1
= o (Ap L) Ly
i ( r ﬁ) 0
1 1
= J120,. 4+ =

where we used

2 S FT I < 0p(83) + 01 —ZH—ZfJU;nF

1
= Op- (A2F+ ) ,

Tizpz‘lﬁ SU;;5H2 T2 ZH Zzzsw wUU’Lt”Q

s,t i=1 i=1

o (2).
n

and AF = A}
For the second term, we have by Lemma that

T

i=1 s=1 Jj=1 t=1

67

(C.11)
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Finally,

where we used Lemmato obtain & >, (|2 >0, 7 £il2 = Op- ().

Combining the above, we have

o 1 logn  logn logl/2 n .
max|| Zzgtmzzt f -H fz) % = Op- <n2 npT + n2T2 + n2T1/2 “n

m<
=P zltl

Lemma C.5. For ﬁtk € {Syt,ﬁdt,&k}, we have

TZTZZf _H*fl ztm

=1 t=1

max
m,k<p

F

<0 (1\/logplog(np) \/logn logp logp \/log \/IJ\o J|0>
S Ups T + +

np npT pT in nT npT
+ Op= (Aud)
for Ayq defined as in Lemma @ The term on the right-hand-side of the inequality defines A7 .

Proof. We have max,, x<p ||$ Z?:l Zzzl(f* H* fi) is, mhlskHF < Zl 1 Dy, where each D is
defined and bounded below.

T n
Dl:f??}’?%(p %Z%Z}: U /nTpZZ U:; ;;‘m E*U Uz*sm) /sk

F

1 T 1 n T 1/2
* TT% kT TH Tk / 2
X nI’LI,lI?%(p (T ; Hm ‘ Z(U’LtU’LS m —F U Uzs m) sk”F>

— Op. (\/logS)T) (lognlzg(pT) N log;np))) (AF N \}ﬁ)
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where we used Lemma and equation (C.11]) from the proof of Lemma which gives
1 | 1
IS RO < 0p (834 1)),
t j=1

Next,

IA
LB
~Q

"
S|
NE
S
S5
3
ol
AN
|~
M

F

~ O < loggﬂ’) N AF> (AF N \/10g(pnT) logp N \/bg(pT))

nT

where we used Lemma and max,,; ||%]/5*/U;‘m||2 = Op- <\/ log(pT) pT + AF> due to Lemma

We then have

n T n T
1 1 x N K TT% KT TR Tk I
D3 - g}l?gp”ﬁ ZZan ij Zf A (UztUzs m —-E U U’LS m) sk:”F
i=1 s=1 j=1 t=1
1 n T 1 T .
/ * Tk KTTH T T I
S OP*(I) T}Pg‘gp |ﬁZZ7ZAt(UztUzsm E U Uzs m) sk”F

— Op (\/logp(lognlog(pT) N log;np))A%)

n n

by Lemma [J.8] We also have

n T n T
1 AA * *
D4 - T}Lrlk,‘aé(p” ZZPTTL Z ]A Uzt zsmhskHF
=1 s=1 j= t=1
1 n T 1 T
< Ope(V) max 17303 5 > ME TR0 ol

i=1 s=1 t=1

_ 1 logp  Vlogp | /IJlo |/]o

F
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=@ 0 A2+\/7A%logn - ET En R0s W

o P F n n?}l?gp nT g et -is,m sk
AZ1

= Op- (A%+ \/Fnog”>

where equality (a) results by applying Lemma (iii). Note that the upper bound achieved in the

F

last equality is not sharp but is sufficient to verify Assumptions about A¥ .

Combining the above terms, we reach

7}31132{[7 TLT;;f _H*fZ is,m .
_ Op. (\/logng)(lognlzg(pT) N log;np))) (AF N \}ﬁ)
+ Op- ( erﬁ)JFAF) (AF+ \/log(pf)longr\/logn(;T))

logn lo log nlog(pT log(n,
+ Op+(Aud + Arpy & )+0P*< F\/ Sp( 5 ng(p )+ g;p)))

1 lo v/1o vavi J
+OP*<pT+ &P ngp+ o o ||°>

npT

np npT"  n \F pT nT npT

- 1 [logplog(np) logn  logp . logp \/log \/IJ\o [0
= Op-~ T + + +

+ OP* (Aud)
where A,  is defined as in Lemma [C.3] B
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FIGURE 1. This figure shows the simulation RMSE of each of the estimators described
in the text for estimating the coefficient of interest in a panel partial factor model. RMSE
(truncated at 0.1) is shown in the vertical axis. The horizontal axes give the fraction of the
explanatory power in an infeasible regression of Y on factors and factor residuals, “%Y,”
and the fraction of the explanatory power in an infeasible regression of D on factors and
factor residuals, “%D,” where the infeasible regressions are described in the text.
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FIGURE 2. This figure shows the simulation size of 5% level tests based on each of
the estimators described in the text for the PPFM. Size (truncated at 0.3) is shown in
the vertical axis. The horizontal axes give the fraction of the explanatory power in an
infeasible regression of Y on factors and factor residuals, “%Y,” and the fraction of the
explanatory power in an infeasible regression of D on factors and factor residuals, “%D,”
where the infeasible regressions are described in the text.
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FIGURE 3. This figure shows the simulation size of 5% level tests based on the factor-
lasso estimator in the PPFM and the asymptotic Gaussian approximation, the k-step
bootstrap, and a score based bootstrap. Size is shown in the vertical axis. The horizontal
axes give the fraction of the explanatory power in an infeasible regression of Y on factors
and factor residuals, “%Y,” and the fraction of the explanatory power in an infeasible
regression of D on factors and factor residuals, “%D,” where the infeasible regressions are
described in the text.
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FIGURE 4. This figure shows the simulation RMSE of each of the estimators described
in the text for estimating the coefficient of interest in an IV partial factor model. RMSE
(truncated at 0.1) is shown in the vertical axis. The horizontal axes give the fraction of the
explanatory power in an infeasible regression of Y on factors and factor residuals, “%Y,”
and the fraction of the explanatory power in an infeasible regression of D on factors and
factor residuals, “%D,” where the infeasible regressions are described in the text.
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FIGURE 5. This figure shows the simulation size of 5% level tests based on each of the
estimators described in the text for the IV partial factor model. Size (truncated at 0.3) is
shown in the vertical axis. The horizontal axes give the fraction of the explanatory power
in an infeasible regression of Y on factors and factor residuals, “%Y,” and the fraction
of the explanatory power in an infeasible regression of D on factors and factor residuals,
“%D,” where the infeasible regressions are described in the text.
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FIGURE 6. This figure shows the simulation size of 5% level tests based on the factor-
lasso estimator in the IV partial factor model and the asymptotic Gaussian approximation,
the k-step bootstrap, and a score based bootstrap. Size is shown in the vertical axis. The
horizontal axes give the fraction of the explanatory power in an infeasible regression of
Y on factors and factor residuals, “%Y,” and the fraction of the explanatory power in
an infeasible regression of D on factors and factor residuals, “%D,” where the infeasible
regressions are described in the text.
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TABLE 1. Estimates of the Effect of Gun Prevalence on Homicide Rates

Cook and Ludwig (2006) Baseline
Post Double Selection

Factor

Factor-Lasso

Overall Gun non-Gun
0.086 (0.038) 0.173 (0.049) -0.033 (0.040)
0.062 (0.042) 0.138 (0.059) -0.055 (0.042)
[-0.019,0.143]  [0.036,0.240] -0.139,0.029]
0.104 (O 043) 0.210 (0.064) -0.022 (0.040)
[0.019,0.189] [0.097,0.323] [-0.099,0.055]
0.069 (0.036)  0.167 (0.046)  -0.048 (0.040)
[0.000,0.138] [0.078,0.256] [-0.128,0.032]

This table presents estimates of the effect of gun ownership on homicide rates for a panel of 195 US
Counties over the years 1980-1999. The columns “Overall”,
the estimated effect of gun prevalence on the log of the overall homicide rate, the log of the gun homicide
rate, and the log of the non-gun homicide rate. Each row corresponds to a different specification as
described in the text. In each specification, the outcome corresponding to the column label is regressed on
lagged log(FSS) (a proxy for gun ownership) and additional covariates as described in the text. Each
specification includes a full set of year and county fixed effects. Standard errors clustered by county are
provided in parentheses. k-step bootstrap 95% confidence intervals are given in brackets.

4(Gun77

, and “non-Gun” respectively report
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TABLE 2. Estimates of the First-Stage Relationship between Settler Mortality and
Protection from Expropriation

T Estimated s.e. Bootstrap C.I.
Latitude -0.549 (0.166) [-0.851,-0.246]
All Controls -0.218 (0.168) [-0.778,0.341]
Double Selection -0.364 (0.178) [-0.885,0.158]
Factor -0.475 (0.173) [-0.880,-0.070]
Factor-Lasso -0.353 (0.183) [-0.708.0.002]

This table presents estimates of the coefficient on the instrument (Settler Mortality) in the first-stage
regression of the endogenous variable from the |Acemoglu et al.| (2001) example (Protection from
Expropriation) on the instrument and geographic controls using different methods. The row labeled
“Latitude” uses the single variable distance from the equator to control for geography. “All Controls” uses
all 20 geographic controls without dimension reduction. “Double Selection” uses the approach of [Belloni
et al.| (2014Db) to select important controls from among the 20 potential geography measures. “Factor”
reduces dimension through positing a conventional factor model. “Factor-Lasso” makes use of the
approach developed in this paper. Point estimates from each method are provided in the column “7” and
the associated estimated asymptotic standard errors are given in “Estimated s.e.”. The k-step bootstrap
95% confidence interval is reported in “Bootstrap C.I.”.
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