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Abstract

Inference on partially identified models plays an important role in econometrics.

This paper proposes novel Bayesian procedures for these models when the identified set

is closed and convex and so is completely characterized by its support function. We shed

new light on the connection between Bayesian and frequentist inference for partially

identified convex models. We construct Bayesian credible sets for the identified set and

uniform credible bands for the support function, as well as a Bayesian procedure for

marginal inference, where we may be interested in just one component of the partially

identified parameter. Importantly, our procedure is shown to be an asymptotically valid

frequentist procedure as well. It is computationally efficient, and we describe several

algorithms to implement it. We also construct confidence sets for the partially identified

parameter by using the posterior distribution of the support function and show that

they have correct frequentist coverage asymptotically. In addition, we establish a

local linear approximation of the support function which facilitates set inference and

numerical implementation of our method, and allows us to establish the Bernstein-von

Mises theorem of the posterior distribution of the support function.
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1 Introduction

Bayesian partial identification has emerged as an important area of econometrics. In this

paper, we propose a new Bayesian framework for set inferences with a focus on the asymptotic

properties of Bayesian credible sets (BCS) for partially identified models. Generally speaking,

the BCS is a set in the support of the posterior distribution such that the object of interest

lies inside it with high posterior probability. Usual methods for constructing BCS, such as

the highest-posterior-density, would fail, due to the lack of a clear definition of the “posterior

density of a set”. The problem is even more challenging when the set of interest belongs to

a multi-dimensional space.

Moon and Schorfheide (2012) was one of the first papers that constructed the BCS for

the partially identified parameter, denoted by θ in this paper. They impose a prior on θ and

show that when such a prior has a non-degenerate support on the identified set, the BCS

for θ can be strictly smaller than the frequentist confidence set, so the BCS does not have

a correct frequentist coverage about the partially identified parameter even asymptotically.

Their study motivates two important questions:

Question (1) : What about the identified set? More precisely, does the Bayesian

credible set for the identified set have a correct frequentist coverage?

Question (2) : Can we use the posterior distribution of the identified set to construct

a credible set for the partially identified parameter which also has a correct frequentist

coverage?

Our major contribution in this paper is to provide affirmative answers to both these

questions when the identified set is convex. In particular, in answering the second question,

we aim to construct a confidence set for θ using the posterior of the identified set instead of

the posterior of the partially identified parameter, in sharp contrast to Moon and Schorfheide

(2012)’s approach.

To fulfill these goals, we study in detail convex identified sets defined by moment restric-

tions. Because of the convexity of the identified set the major tool in our analysis is the

support function, which has been successfully used in the frequentist literature on partially

identified convex models (e.g., Beresteanu and Molinari (2008); Kaido and Santos (2014)).

Let C be a convex and closed set of interest. Its support function is defined as

SC(ν) := sup
θ∈C

θTν, ‖ν‖ = 1.

Any closed and convex set is uniquely determined by its support function: θ ∈ C if and

only if for all ‖ν‖ = 1, θTν ≤ SC(ν). When the identified set is convex, studying the

support function greatly facilitates our analysis. To take advantages of the support function
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approach, we focus on one-dimensional models and multi-dimensional models with convex

restrictions. Specifically, we assume that the identified set is characterized by (in)equalities

involving a convex function Ψ, and is given by

Θ(φ) := {θ ∈ Θ : Ψ(θ, φ) ≤ 0} (1.1)

where Θ denotes a vector space that contains the unknown set of interest. The function

Ψ, provided by the econometric model, is known up to a finite dimensional parameter φ ∈
Φ ⊂ Rdφ , which is point identified. Models of this type, though rule out some important

cases, are still reasonably general and cover several important models, such as the multi-

dimensional instrumental variable (IV) regression with interval outcomes (e.g., Bontemps

et al. (2011)), two-player entry games, and one-dimensional partially identified models (as

e.g., Imbens and Manski (2004)). Even for these relatively simple models, the Bayesian-

frequentist correspondence on the coverage properties is not sufficiently clear.

1.1 Overview of our results.

We develop a Bayesian procedure for set inferences. Differently from Moon and Schorfheide

(2012), our method does not require a prior on the partially identified parameter. Instead,

the prior is only imposed on the identified set. We can divide our results in two groups: one

concerning the construction of BCS and their coverage properties with the aim of answering

questions (1) and (2), and a second group of results concerning asymptotic properties of the

posterior of the support function.

Coverage properties.

As for question (1) raised above, we propose a simple way to construct a BCS for the set

Θ(φ). An important theoretical result is that the constructed BCS not only has a correct

Bayesian coverage but also covers the true set Θ(φ0) with correct frequentist probability

(asymptotically). Therefore, while Moon and Schorfheide (2012)’s BCS for the partially

identified parameter does not have a correct frequentist coverage, our constructed BCS for

the identified set does.

As for question (2), we also find that the answer is affirmative as long as we use the

posterior of the identified set, instead of the posterior of the partially identified parameter θ,

to construct a credible set for θ. Specifically, we study a Bayesian hypothesis test that tests

whether a fixed θ belongs to the random set Θ(φ) (with respect to the posterior distribution

of the latter). By inverting the Bayesian test statistic, we construct the credible set as the

collection of all the “accepted” θ’s, and show that it also has a desired frequentist coverage

for the partially identified parameter. Therefore, our results complement those of Moon and
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Schorfheide (2012), and provide a complete picture of the connection between Bayes and

frequentist procedures for partially identified convex models.

The intuition behind the difference on BCS’s coverage properties between our results and

those of Moon and Schorfheide (2012) is that priors are imposed on different objects. We

directly impose the prior on the identified set. Because the identified set is “identified”, its

posterior will asymptotically concentrate on a “neighborhood” of the true identified set, re-

sulting in a correct frequentist coverage of the BCS. In sharp contrast, Moon and Schorfheide

(2012) impose the prior directly on the partially identified parameter. Then the posterior

tends to be supported only within the identified set, leading to a smaller nominal frequentist

coverage.

In addition, we also show that it is straightforward to make marginal inferences using our

procedure. This is appealing when we are interested in just one component of the partially

identified parameter.

We emphasize that in this paper we do not aim to compare with frequentist inference

procedures for partially identified models, or claim any advantage of using a Bayesian ap-

proach for set inferences. Instead, we aim to provide a complete picture of the coverage

properties of Bayesian partial identification approaches, based on the support functions and

convex identified sets. In addition, we also aim to provide fast algorithms that can be useful

to Bayesian researchers for studying partially identified models.

Studies on the posterior of the support function.

The support function plays a central role in our analysis. The support function of Θ(φ)

is indexed by φ and we write: Sφ(ν) := SΘ(φ)(ν). We put a prior on Sφ(·) (and on Θ(φ))

via the prior on φ. In multi-dimensional models, the support function may not have a

closed form or may depend on φ in a complicated way. Therefore, it is not immediate to

translate the posterior properties of φ to the posterior of Sφ(·). In this paper we show the

frequentist asymptotic properties of the support function. More precisely, by denoting with

φ0 the true value of φ that generates the data, we show that, for every ν: (i) the posterior

distribution of Sφ(ν) contracts in a neighborhood of Sφ0(ν) at the same rate of contraction of

the posterior of φ; (ii) the posterior distribution of Sφ(ν) converges in total variation towards

a normal distribution (strong Bernstein-von Mises theorem); (iii) the posterior distribution

of the stochastic process Sφ(·) weakly converges towards a Gaussian process (weak Bernstein-

von Mises theorem). In order to show these results we need to assume that the posterior

distribution of the point identified parameter φ has suitable asymptotic properties (which is

well known to be verified in many parametric and semiparametric models). Moreover, we

need to assume that the support function φ 7→ Sφ(ν) can be well approximated by a linear

function of φ in a shrinking neighborhood of φ0: namely, there is a shrinking neighborhood
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B of φ0, and a continuous vector function A(ν) such that uniformly in φ1, φ2 ∈ B,

sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− A(ν)T (φ1 − φ2)
∣∣ = o(‖φ1 − φ2‖), as ‖φ1 − φ2‖ → 0 (1.2)

where Sd denotes the unit sphere in Rd. Roughly speaking, this means that if two sets

are “close”, so should be their support functions. This local linear approximation (LLA)

assumption can be directly verified when the support function admits a closed-form. When

this is not the case, or verification of this assumption is too complicated, we provide primitive

conditions under which (1.2) holds for two cases: (i) the one-dimensional case where the

identified set is a closed interval and (ii) a more general multi-dimensional case. Case (ii)

requires further assumptions and, under these assumptions, we prove that Assumption 4.1

holds by exploiting the fact that Sφ(ν) is the optimal value of an ordinary convex program,

and then using the envelop theorem of Milgrom and Segal (2002). In this case, the particular

form of the vector function A(ν) allows to see that the asymptotic variance of the posterior

distribution of Sφ(ν) achieves the semiparametric efficiency bound for estimating the support

function derived by Kaido and Santos (2014).

The LLA of the support function also allows to considerably simplify computations and

statistical inferences of the support function, especially when the latter is highly nonlinear

in φ, or when its closed form is not available. In particular, when one wants to simulate

from the posterior of the support function, the LLA avoids solving a numerical maximization

problem in each step of the MCMC. With this respect, we introduce an efficient algorithm

to calculate the critical values fast, which is based on Monte Carlo methods.

1.2 Related literature.

In the Bayesian partial identification literature, Moon and Schorfheide (2012) studied

the coverage properties for BCSs of partially identified parameters. Kline and Tamer (forth-

coming) independently wrote a paper that also provides BCS for the identified set that have

the correct frequentist coverage asymptotically.1 They also require the set to depend on a

finite dimensional point-identified parameter φ but, differently from us, they do not discuss

as to extend this assumption to allow for an infinite dimensional φ (see our Remark 5.1).

Their Bayesian procedure differs from ours in that it does not require the convexity of the

identified set and hence is not based on the support function. On the other side, they do

1We would like to mention that the first version of our manuscript was circulated on arXiv in December
2012 under the title “Semi-parametric Bayesian Partially Identified Models based on Support Function”.
This was about the same time of the first circulated version of Kline and Tamer (forthcoming) as mentioned
in their paper.
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not provide a general procedure for computing the critical values which instead have to be

found case by case. Moreover, via the support function, we provide frequentist asymptotic

results for the whole distribution of the identified set and not only for the probabilities of

some specific sets. In our simulation study for missing data we show that the constructed

BCS still has the correct coverage even if the identified set shrinks to a singleton. At the

best of our knowledge, other Bayesian procedures tend to be conservative in this case, see

(Kline and Tamer, forthcoming, Remark 8). Besides, we also study the coverage properties

of the partially identified parameter, and provide an affirmative answer to the previously

raised question (2). In addition, we show that it is straightforward to make marginal in-

ferences using our procedure. Finally, the support function approach is also very attractive

in linear models (e.g., Bontemps et al. (2011)). The (quasi-) Bayesian literature on partial

identification also includes the following contributions whose approaches are substantially

different from our, e.g., Poirier (1998); Liao and Jiang (2010), Florens and Simoni (2011),

Gustafson (2012), Kitagawa (2012), Norets and Tang (2014), Wan (2013), etc.

There is an extensive literature on partially identified models using frequentist approaches.

In addition to the references mentioned above, a partial list includes Manski (2003); Man-

ski and Tamer (2002), Imbens and Manski (2004); Chernozhukov et al. (2007, 2015, 2013),

Beresteanu and Molinari (2008); Beresteanu et al. (2012); Andrews and Guggenberger (2009);

Romano and Shaikh (2010); Andrews and Soares (2010); Canay (2010); Stoye (2009); Rosen

(2008); Bugni (2010); Pakes et al. (2015), among many others. The literature on the sup-

port function approach has also grown in recent years. See, e.g., Mammen et al. (2001),

Beresteanu et al. (2011); Bontemps et al. (2011); Chandrasekhar et al. (2012); Guntuboyina

(2012); Kaido and Santos (2014), among others.

Our results complement the literature on the Bernstein-von Mises theorem and the fre-

quentist coverage probabilities of Bayesian credible sets (see e.g. Severini (1991); Leahu et al.

(2011); Sweeting (2001); Chang et al. (2009), Belloni and Chernozhukov (2009), Rivoirard

and Rousseau (2012), Bickel and Kleijn (2012), Castillo and Rousseau (2015), Kato (2013),

Bontemps (2011), Norets (2015).

The paper is organized as follows. Section 2 presents the model, examples, and discusses

the prior on φ and the assumptions on it. Section 3 constructs Bayesian credible sets and

bands for Θ(φ) and Sφ(ν), respectively, and frequentist confidence sets for θ and provides

the computational MCMC-algorithms to implement this inference. Moreover, it provides

marginal set inference methods for subsets of θ and Θ(φ). Section 4 establishes the con-

nection between Bayesian and frequentist inference by showing the frequentist validity of

our Bayesian procedure. Section 5 demonstrates the LLA of the support function for the

multi-dimensional case. Frequentist asymptotic properties of the posterior of the support
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function are established in Section 6. Numerical simulations are in Section 7 and Section

8 concludes. All the proofs are in a Supplementary Appendix. Throughout the paper, the

prior distribution will be denoted by π while the posterior distribution will be denoted by p.

The argument of these functions will make clear to which variables they refer.

2 General Setup

2.1 The model

Let φ ∈ Φ ⊂ Rdφ be an identifiable parameter, Θ ⊂ Rd and Ψ : Θ × Φ → Rk be a

known and continuous vector-function of (θ, φ) that is convex in θ for every φ ∈ Φ. We are

interested in making inference on the set

Θ(φ) := {θ ∈ Θ : Ψ(θ, φ) ≤ 0} .

We shall assume that Θ(φ) is closed and convex. Therefore, it is completely characterized

by its support function Sφ(·) : Sd → R, defined as, for every φ ∈ Φ (see, e.g. Rockafellar

(1970)):

∀ν ∈ Sd, Sφ(ν) := sup
θ∈Θ

{
νT θ; Ψ(θ, φ) ≤ 0

}
where Sd denotes the unit sphere in Rd. The domain of the support function is restricted to

the unit sphere Sd in Rd since Sφ(ν) is positively homogeneous in ν. The support function

plays a crucial role for our Bayesian inference on Θ(φ). We point out that the characterization

of Θ(φ) through the vector-function Ψ is not necessary for the validity of our general results,

for which only convexity and closedness of the set (plus Assumptions 2.1 and 4.1 below) is

required. However, we characterize the set in this way to be coherent with the representation

of Θ(φ) in Sections 5 where this characterization is required.

Example 2.1 (Interval IV regression). Let (Y, Y1, Y2) be a 3-dimensional random vector

such that Y ∈ [Y1, Y2] with probability one. The random variables Y1 and Y2 are observed

while Y is unobservable. For instance, the Bureau of Labor Statistics collects salary data

from employers as intervals. Assume that

Y = xT θ + ε

where x is a vector of observable regressors. Denote by Z a vector of nonnegative instrumental
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variables such that E(Zε) = 0. Then

E(ZY1) ≤ E(ZY ) = E(ZxT )θ ≤ E(ZY2). (2.1)

This model has been previously considered in Chernozhukov et al. (2007). We denote φ =

(φ1, vec(φ2), φ3) where (φT1 , φ
T
3 ) = (E(ZY1)T , E(ZY2)T ) and φ2 = E(ZxT ). It then follows

from (3.1) that θ belongs to the following set

Θ(φ) = {θ ∈ Θ : Ψ(θ, φ) ≤ 0}, where Ψ(θ, φ) = (φ1 − φ2θ, φ2θ − φ3)T .

�

Example 2.2 (Frontier estimation in finance). Consider the equilibrium price P i
t of a finan-

cial asset i at time t which satisfies the following restriction:

P i
t = Et[Mt+1P

i
t+1], (2.2)

where Mt+1 is the stochastic discount factor (SDF), which is unobservable, and Et is the

conditional expectation given information at time t. Determining the SDF Mt+1 is a crucial

research problem in finance. In many cases, equation (2.2) admits several solutions Mt+1.

Let the mean and variance of Mt+1 be µ and σ2 respectively, assumed to be time-invariant.

Hansen and Jagannathan (1991) showed that every SDF Mt+1 that satisfies (2.2) should

have σ2 ≥ φ1µ
2 − 2φ2µ + φ3, where φ1 = mTΣm, φ2 = mTΣι, φ3 = ιTΣι, ι is a vector of

ones and m and Σ denote, respectively, the mean vector and covariance matrix of (gross)

returns of assets 1, . . . , N (which are estimable from the data of returns). Therefore, we say

“an SDF Mt prices an asset correctly” if its mean and variance, θ := (µ, σ2), belong to the

set:

Θ(φ) = {θ ∈ R× R+; Ψ(θ, φ) ≤ 0} where Ψ(θ, φ) = φ1µ
2 − 2φ2µ+ φ3 − σ2

and φ = (φ1, φ2, φ3)T . Hence, Θ(φ) becomes the object of interest, whose boundary curve:

{θ : Ψ(θ, φ) = 0} is often known as the “frontier”. Statistical inference on Θ(φ) can be very

helpful if one wants to check whether an SDF prices an asset correctly (see e.g. Chernozhukov

et al. (2015); Gospodinov et al. (2010) among others).

We denote by X the observable random variable for which we have n independent and

identically distributed (i.i.d.) observations Dn = {Xi}ni=1. Our model allows an infinite

dimensional nuisance parameter F , which is the distribution of X (DGP, hereafter). We

specify the prior distribution for Θ(φ) and Sφ(·) via the prior specification for φ. We also put
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a nonparametric prior, either on F directly, or on an infinite-dimensional density function.

Importantly, the identified set depends on F only through φ, and thus by “integrating out”

F (or the density function), the posteriors of the identified set Θ(φ) and the support function

Sφ(·) are deduced from the posterior p(φ|Dn). We illustrate below three different scenarios

concerning the knowledge of F , the prior on it and the relation between φ and F .

When illustrating asymptotic properties of our Bayesian procedure we adopt a frequentist

point of view, and denote by F0 the true value of F and by φ0 the true value of φ that generate

the data. Hence, the true set and its support function will be denoted by Θ(φ0) and Sφ0(·),
respectively. Moreover, PDn will denote the probability measure in the frequentist sense (i.e.

based on the true DGP F0).

Nonparametric prior. The likelihood is completely unrestricted and a nonparametric

prior is placed directly on the cumulative distribution function (CDF) F of the data. Since

φ is identifiable, it can be written as an explicit function of F : φ = φ(F ). The prior

distribution for φ is then deduced from the one of F via φ(F ). The Bayesian experiment is

X|F ∼ F, F ∼ π(F ),

where π(F ) denotes a nonparametric prior for F . The likelihood and the posterior of F are

respectively:

ln(F ) :=
n∏
i=1

F (Xi), p(F |Dn) ∝ π(F )ln(F ),

from which we deduce the posterior of φ through φ = φ(F ). For instance, in Example 2.1,

suppose the data X = (ZY T
1 , ZY

T
2 , vec(ZxT )T )T has a multivariate CDF F , then

φ(F ) := E(X) =

∫
xF (x)dx.

Examples of π(F ) include Dirichlet process priors and Polya tree. The case where π(F ) is

a Dirichlet process prior in partially identified models is proposed by Florens and Simoni

(2011).

Semi-parametric prior. Write F = Fφ,η, where η is an infinite dimensional nuisance

parameter that is unknown and that, together with φ, completely characterizes F . Hence,

F ∈ {Fφ,η;φ ∈ Φ, η ∈ P}, where P in an infinite dimensional set. Let π(φ, η) denote the

joint prior on (φ, η). The Bayesian experiment is

X|φ, η ∼ Fφ,η, (φ, η) ∼ π(φ, η).
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Write the likelihood ln(φ, η) :=
∏n

i=1 Fφ,η(Xi). The marginal posterior of φ becomes:

p(φ|Dn) ∝
∫
P
π(φ, η)ln(φ, η)dη.

For instance, in Example 2.1, suppose the data X = (ZY T
1 , ZY

T
2 , vec(ZxT )T )T has a con-

tinuous multivariate density function, we can then consider a “location model” as in Ghosal

et al. (1999b):

X = φ+ u, u ∼ η,

where u is a zero-mean random vector with an unknown density function η. Then the likeli-

hood is given by ln(φ, η) =
∏n

i=1 η(Xi−φ). Examples of the prior on the infinite dimensional

density parameter η includes, e.g., Dirichlet mixture of normals (Ghosal et al. (1999a)) and

random Bernstein polynomials (Walker et al. (2007)).

Parametric prior. The sampling distribution F is known up to a finite dimensional pa-

rameter (φ, η), where η is a nuisance parameter. We may write F = Fφ,η. This is a simple

parametric framework. Let π(φ, η) be a prior on (φ, η) and ln(φ, η) be the likelihood associ-

ated with Fφ,η. Then

p(φ|Dn) ∝
∫
π(φ, η)ln(φ, η)dη.

For instance, in Example 2.1, suppose the data X = (ZY T
1 , ZY

T
2 , vec(ZxT )T )T is normally

distributed. Then we can parametrize it as:

X = φ+ u, u ∼ N(0, η),

for some covariance matrix η. Then ln(φ, η) :=
∏n

i=1 f(Xi;φ, η), where f(·;φ, η) denotes the

multivariate normal density function with mean vector φ and covariance η.

Regardless of the prior specification, since φ is point identified from a frequentist per-

spective, under very mild conditions, it is well known that its posterior asymptotically con-

centrates around a
√
n- neighborhood of the true value φ0, and is asymptotically normally

distributed. We present this well known result in the following assumption without pursuing

its proofs.

We denote by ‖ ·‖TV the total variation (TV) norm, that is, for two probability measures

P and Q,

‖P −Q‖TV := sup
B
|P (B)−Q(B)|

where B is an element of the Borel σ-algebra on which P and Q are defined. Moreover, we
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denote by ψ̃ the (semiparametric) efficient influence function for estimating φ0.

Assumption 2.1. (i) The marginal posterior of φ is such that, for some constant C > 0,

P (‖φ− φ0‖ ≤ Cn−1/2Cn|Dn)→p 1

where Cn = (log n)1/2.

(ii) Let P√n(φ−φ0)|Dn denote the posterior distribution of
√
n(φ− φ0). We assume

‖P√n(φ−φ0)|Dn −N (∆n,φ0 , I
−1
0 )‖TV →p 0

where N denotes the dφ-dimensional normal distribution, ∆n,φ0 := n−1/2
∑n

i=1 I
−1
0 `φ0(Xi),

`φ0 is the semiparametric efficient score function of the model and I−1
0 := E[ψ̃ψ̃T ].

(iii) There exists a regular estimator φ̂ of φ that satisfies

√
n(φ̂− φ0)→d N (0, I−1

0 ).

Remark 2.1. The quantities `φ0 and I0 in the previous assumption have to be calculated

case by case since their precise definition relies on the model under consideration, that is, on

the link between φ and F . Both quantities are well known for many classical problems, see

e.g. Bickel et al. (1993). In regular parametric models, where the likelihood is fully para-

metric, `φ0 and I0 are the usual score function (first derivative of the likelihood) and Fisher

information matrix, respectively. In semiparametric models, the matrix I0 is the semipara-

metric efficient Fisher information matrix, which is implicitly assumed to be nonsingular,

and ψ̃ is the semiparametric efficient influence function for estimating φ0. In many semi-

parametric problems, the dφ-vector `φ0 is given by the first derivative of the log-integrated

likelihood of the model, where the integration is with respect to the nonparametric prior of

the infinite dimensional parameter. A more precise definition of `φ0 and I0 for parametric and

semiparametric models can be found in (van der Vaart, 2002, Definition 2.15) and (Bickel

and Kleijn, 2012, Section 4), respectively.

Assumption 2.1 (i)-(ii) are standard results in (semi) parametric Bayesian literature and

are in general satisfied, under mild restrictions, for both nonparametric and semiparametric

prior on (φ, F ). For nonparametric priors, and φ := φ(F ) then the notation used in part

(i) of this assumption is a shorthand for P (‖φ(F ) − φ(F0)‖ ≤ Cn−1/2(log n)1/2|Dn) →p 1

and similarly for part (ii). In most of the parametric settings, the sequence Cn in Assump-

tion 2.1 (i) can be any diverging sequence so that the log n term is avoided. Instead, in
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the semiparametric setting, the sequence Cn can be any diverging sequence under stronger

primitive conditions, for instance Lemma 6.1 in Bickel and Kleijn (2012) proves Assumption

2.1 (i) for any Cn → ∞. We refer to Belloni and Chernozhukov (2009), Bickel and Kleijn

(2012), and Rivoirard and Rousseau (2012) for primitive conditions for this assumption in

semiparametric models.

Assumption 2.1 (iii) requires the existence of a Gaussian efficient regular estimator. It

holds, under mild conditions, for many estimators such as the posterior mean, mode and the

maximum likelihood estimator.

Remark 2.2. Assumption 2.1 can be weakened by allowing a general limiting distribution

and a rate of convergence different from n−1/2 as long as the two limiting distributions in

Assumption 2.1 (ii) and (iii) are the same. Thus, Assumption 2.1 is a special case of the

following, more general, assumption.

Assumption 2.1′. Let rn be a deterministic sequence converging to zero, rn = o(1).

(i) The marginal posterior of φ is such that, for some constant C > 0,

P (‖φ− φ0‖ ≤ CrnCn|Dn)→p 1

where Cn →∞.

(ii) Let Pr−1
n (φ−φ0)|Dn denote the posterior distribution of r−1

n (φ−φ0) and Q be some probability

distribution. We assume

‖Pr−1
n (φ−φ0)|Dn −Q‖TV →

p 0.

(iii) There exists an estimator φ̂ of φ that satisfies

r−1
n (φ̂− φ0)→d Q,

where Q is the same probability distribution as in (ii).

Under this assumption, all the results of Sections 3-6 still hold with more involved no-

tation and minor changes. In particular, this assumption allows to treat models with non-

regular estimators like the ones in Manski and Tamer (2002) and Chernozhukov et al. (2013).

For simplicity of exposition we present our results and proofs under Assumption 2.1.

3 Bayesian credible sets and credible bands

Our major objective is to conduct Bayesian inference for the unknown set Θ(φ) by con-

structing a Bayesian Credible Set (BCS) for it, and to make a connection with the frequentist
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inference asymptotically. The support function plays a central role in our construction. We

shall also construct a Uniform Bayesian Credible Band (UBCB) for the support function.

For a generic set C, and any ε > 0, define the “ε-expansion” of C to be Cε := {θ : d(θ, C) ≤
ε}, where d(θ, C) := infc∈C ‖θ− c‖ and ‖ · ‖ denotes the Euclidean norm. For a credible level

1− τ , τ ∈ (0, 1), we shall find appropriate critical values ετ and ε̃τ , and construct the BCS

and the UBCB as Θ(φ̂)ετ and {Sφ(·) : Sφ(ν) ∈ [Sφ̂(ν)± ε̃τ ], ∀ν ∈ Sd}, respectively, such that:

Bayesian coverage:

P (Θ(φ) ⊂ Θ(φ̂)ετ |Dn) ≥ 1− τ, (3.1)

and

P

(
sup
‖ν‖=1

|Sφ(ν)− Sφ̂(ν)| ≤ ε̃τ

∣∣∣∣∣Dn

)
≥ 1− τ, (3.2)

where φ̂ is some point estimator of φ. We are particularly interested in the asymptotic

frequentist properties of the constructed BCS and UBCB. Under Assumption 2.1, we prove

in Theorem 4.1 below that our constructed BCS and UBCB satisfy:

Frequentist coverages:

PDn(Θ(φ0) ⊂ Θ(φ̂)ετ ) ≥ 1− τ + oP (1), (3.3)

and

PDn

(
sup
‖ν‖=1

|Sφ0(ν)− Sφ̂(ν)| ≤ ε̃τ

)
≥ 1− τ + oP (1). (3.4)

Hence, both Θ(φ̂)ετ and the set {Sφ(·) : Sφ(ν) ∈ [Sφ̂(ν)± ε̃τ ],∀ν ∈ Sd} also have (asymp-

totically) correct frequentist coverage probabilities. Consequently, our BCS and UBCB are

useful for both Bayesian and frequentist inference. Note that in the Bayesian coverage (3.1),

Θ(φ) is the random set (with respect to the posterior of φ), while Θ(φ̂)ετ is treated as fixed.

On the contrary, in the frequentist coverage (3.3), Θ(φ̂)ετ is the random set (with respect to

the sampling distribution of φ̂), while Θ(φ0) is the true and fixed set object.

Therefore, our result complements the discoveries of Moon and Schorfheide (2012): while

the BCS for the partially identified parameter may not have a correct frequentist coverage,

the BCS for the identified set does. The intuition behind the latter asymptotic equivalence

is that the prior is imposed on the identified set Θ(φ) directly through φ, and because the

identified set is “identified”, the classical large sample Bayesian-frequentist equivalence is

still valid. Thus, its posterior will asymptotically concentrate on a “neighborhood” of the

true identified set, resulting in a correct frequentist coverage of the BCS.

In the contrary, when studying inference for the partially identified parameter, Moon and

13



Schorfheide (2012) placed a prior on the parameter itself with support equal to the identified

set. Then, the posterior tends to be supported only inside the identified set, leading to a

smaller nominal frequentist coverage.

Because of the duality between support function and Hausdorff distance and between

confidence sets and test, our results on UBCB for the support function can be used to test

hypothesis on the identified set Θ(φ0). In particular, the critical value for the UBCB for

the support function, obtained with our procedure described in Section 3.1, can be used to

implement the test based on the Hausdorff distance that was proposed in Beresteanu and

Molinari (2008). Therefore, one of the possible uses of UBCB for the support function is

to construct testing procedures alternative to the ones in Beresteanu and Molinari (2008).

In addition, in Section 3.2 we will show that we can use the critical value of the UBCB to

construct confidence sets for the partially identified parameter θ.

3.1 Critical Values for BCS and UBCB

Recall the definition of Θ(φ̂)ε as the ε-expansion of Θ(φ̂). Here φ̂ can be any regular
√
n-

consistent estimator of the true φ0 that is asymptotically normal. The support function has

the following property: for any ε > 0,

P (Θ(φ) ⊂ Θ(φ̂)ε|Dn) = P

(
sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
≤ ε

∣∣∣∣∣Dn

)
.

Therefore, we can find both the critical values ετ and ε̃τ , used to construct the BCS and the

UBCB, through the posterior of the support function. For τ ∈ (0, 1), let qτ and q̃τ be the

1− τ quantiles of the posterior of

J(φ) :=
√
n sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
and J̃(φ) :=

√
n sup
‖ν‖=1

∣∣∣Sφ(ν)− Sφ̂(ν)
∣∣∣ ,

respectively, so that

P (J(φ) ≤ qτ |Dn) = 1− τ, and P
(
J̃(φ) ≤ q̃τ

∣∣∣Dn

)
= 1− τ.

For these qτ and q̃τ , the following theorem holds.

Theorem 3.1 (Bayesian coverage). Suppose Θ(φ) is convex for every φ in its parameter

space. For every sampling sequence Dn, and any τ ∈ (0, 1),

P
(

Θ(φ) ⊂ Θ(φ̂)qτ/
√
n
∣∣∣Dn

)
= 1− τ, and P

(
sup
‖ν‖=1

∣∣∣Sφ(ν)− Sφ̂(ν)
∣∣∣ ≤ q̃τ√

n

∣∣∣∣∣Dn

)
= 1− τ.

14



In general, calculating the critical values based on Monte Carlo methods relies on eval-

uating the support function. In complex models where Sφ(·) does not have a closed form,

this requires a Monte Carlo procedure as follows. Uniformly generate {νj}j≤G such that

‖νj‖ = 1. In addition, sample {φi}i≤M from the posterior distribution p(φ|Dn) of φ. For

each νj, and for a given estimator φ̂ of φ,

• (outer-loop) Solve an optimization problem to calculate Sφ̂(νj).

• (inner-loop) Solve M optimization problems to calculate Sφi(νj), for every i = 1, ...,M .

Then qτ and q̃τ are respectively calculated as the 1− τ quantiles of{√
nmax

j≤G
(Sφi(νj)− Sφ̂(νj)) : i ≤M

}
, and

{√
nmax

j≤G

∣∣∣Sφi(νj)− Sφ̂(νj)
∣∣∣ : i ≤M

}
.

Generating {νj} allows to approximately solve the “outside” optimization problem “sup‖ν‖=1”

using the outer-loop. But for each νj, the above procedure requires solving M optimization

problems in the inner-loop, which makes the overall computational task very intensive. In-

stead, our Theorem 5.1 below shows that uniformly over φ in a neighborhood of φ̂,

Sφ(ν)− Sφ̂(ν) ≈ λ(ν, φ̂)T∇φΨ(θ∗(ν), φ̂)[φ− φ̂], (3.5)

where: ≈ means “equal up to op(1)”, θ∗(ν) is the optimizer that is obtained when calcu-

lating Sφ̂(ν), λ(ν, φ̂) is the Kuhn-Tucker (KT) vector arising from the calculation of Sφ̂(ν)

as described in (5.1), and ∇φΨ(θ∗(ν), φ̂) is the partial gradient of Ψ with respect to φ.

Importantly, both θ∗ and the KT-vector are automatically obtained in the outer-loop. The

approximation error in (3.5) is smaller than the first-order statistical error n−1/2. As a result,

Sφi(νj) can be approximated by: for θ∗j := θ∗(νj),

Sφi(νj) ≈ Sφ̂(νj) + λ(νj, φ̂)T∇φΨ(θ∗j , φ̂)[φi − φ̂],

avoiding solving M optimization problems in the inner-loop.

We summarize our algorithm for calculating the critical values qτ and q̃τ as follows:

Algorithm 1 (identified set)

1. Fix a prior π(φ), and construct the posterior of φ. Let {φi}i≤M be the MCMC draws

from the posterior of φ. Let φ̂ = 1
M

∑M
i=1 φi. In addition, uniformly generate {νj}j≤G

such that ‖νj‖ = 1 for each j.
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2. (outer-loop): For each j ≤ G, solve the following constrained convex problem

max
θ
νTj θ subject to Ψ(θ, φ̂) ≤ 0

and obtain θ∗j = arg maxθ{νTj θ : Ψ(θ, φ̂) ≤ 0} (if the latter is a set then θ∗j is one

element of this set) and the corresponding KT-vector λ(νj, φ̂). 2

3. (inner-loop): For each i ≤M , let

Ji =
√
nmax

j≤G

{
λ(νj, φ̂)T∇φΨ(θ∗j , φ̂)[φi − φ̂]

}
, J̃i =

√
nmax

j≤G

{
|λ(νj, φ̂)T∇φΨ(θ∗j , φ̂)[φi − φ̂]|

}
.

4. Let qτ and q̃τ respectively be the (1− τ) th quantile of {Ji}i≤M and {J̃i}i≤M .

As a result, for each generated νj, we only need to solve the constraint optimization once

(in the outer-loop for Sφ̂(νj)). The maximizations in the inner-loop are very easy as they

involve optimizations on a finite set j ∈ {1, ..., G}. After obtaining the critical values, we can

further approximate the BCS for the set using a Monte Carlo method: uniformly generate

{θ̃i}i≤B from the space Θ, and approximate Θ(φ̂)qτ/
√
n by:{

θ̃i : d(θ̃i,Θ(φ̂)) ≤ qτ√
n
, i ≤ B

}
.

3.2 Coverage of the partially identified parameter using the pos-

terior distribution

Another important question is whether we can construct a confidence set for the partially

identified parameter θ ∈ Θ(φ) using the posterior distribution of Θ(φ) which has a desired

frequentist coverage. In this subsection we show that the answer is affirmative and we

construct it by using the support function and its Bayesian confidence band. Consider a

Bayesian testing problem

H0(θ) : θ ∈ Θ(φ), (3.6)

for a fixed and known θ ∈ Θ, where Θ(φ) is drawn from the posterior distribution of φ. The

well known duality of Bayesian credible sets and hypothesis tests shows that

inf
θ∈Θ(φ0)

PDn(θ : H0(θ) is “accepted”) ≥ 1− τ. (3.7)

2The Matlab function fmincon provides both the minimizer and the KT-vector.
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Therefore, we can build a Bayesian test statistic, and construct a frequentist confidence set

as the collection of all the accepted θ’s.

Recall that for a fixed θ, H0(θ) is true if and only if θTν ≤ Sφ(ν) for all ‖ν‖ = 1.

Therefore, for a to-be-determined critical value ετ , we can define

Ωτ (φ) :=

{
θ : θTν ≤ Sφ(ν) +

ετ√
n
,∀ ‖ν‖ = 1

}
. (3.8)

Intuitively, θ ∈ Ωτ (φ) means θ is “close” to Θ(φ). In fact, it can be shown that Ωτ (φ) =

Θ(φ)ετ/
√
n. Therefore, we construct a Bayesian test for (3.6) by investigating whether θ is

“posteriorly covered” with a high probability:

accept H0(θ)⇔ P (θ ∈ Θ(φ)ετ/
√
n|Dn) ≥ 1− τ, (3.9)

for the confidence level 1 − τ . Here P (θ ∈ Θ(φ)ετ/
√
n|Dn) is the posterior probability with

respect to the posterior distribution of φ, treating θ as fixed. Combining (3.7)-(3.9), we

construct the frequentist confidence set for θ as:

Ω̂ = {θ ∈ Θ : P (θ ∈ Θ(φ)ετ/
√
n|Dn) ≥ 1− τ},

which depends on the critical value ετ . We will choose ετ = 2q̃τ , where q̃τ is the critical value

for the UBCB for the support function defined in Section 3.1.

Using the results of the Bayesian credible band for the support function, we shall show

in Section 4 that

inf
θ∈Θ(φ0)

PDn

P(θ ∈ Θ(φ)2q̃τ/
√
n
∣∣Dn

)
≥ 1− τ︸ ︷︷ ︸

θ∈Ω̂

 ≥ 1− τ − o(1).

To explain this in words: if we define Ω̂ as the set of all the “accepted” θ’s (covered by

Θ(φ)2q̃τ/
√
n with a posterior probability at least 1− τ), then Ω̂ covers the partially identified

parameter with a sampling (frequentist) probability of at least 1− τ .

The set Ω̂ can be computed very efficiently using the following MCMC-based algorithm.

Algorithm 2 (partially identified parameter)

1. Let {φi}i≤M be the MCMC draws from the posterior of φ. In addition, uniformly

generate {θ̃b}b≤B from the parameter space Θ.
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2. For each b = 1, ..., B and for a τ ∈ (0, 1), if

1

M

M∑
i=1

1

{
d(θ̃b,Θ(φi)) ≤

2q̃τ√
n

}
≥ 1− τ, (3.10)

then accept θ̃b; otherwise discard θ̃b. The critical value q̃τ is obtained in Algorithm 1.

3. Collect all the accepted θ̃b’s as a set Ω̂∗.

We see that (3.10) is an MCMC approximation of the event θ̃b ∈ Ω̂, since:

P
(
θ̃b ∈ Θ(φ)2q̃τ/

√
n
∣∣Dn

)
≈ 1

M

M∑
i=1

1
{
θ̃b ∈ Θ(φi)

2q̃τ/
√
n
}

=
1

M

M∑
i=1

1

{
d(θ̃b,Θ(φi)) ≤

2q̃τ√
n

}
≥ 1−τ.

Therefore, Ω̂∗ is an approximation of Ω̂.

3.3 Marginal set inferences

Suppose we are particularly interested in just one component, θk, of the partially identified

parameter, for some k ≤ d, where d = dim(θ). Our method provides a simple procedure to

construct a BCS for the marginal identified set of θk and a Bayesian credible interval for θk.

For any (d − 1)-dimensional vector θ−k, we use (θk, θ−k) to denote a d-vector, whose k-th

component is θk, and the remaining components are those of θ−k.

Let ek be a vector in Rd with a one in the k-th coordinate and zeros elsewhere. It is easy

to show that (see Appendix A.2) when Θ(φ) is convex, the marginal identified set for θk is:

Θ(φ)k := [θk : there is θ−k such that (θk, θ−k) ∈ Θ(φ)] = [−Sφ(−ek), Sφ(ek)].

Thus, it is straightforward to find the support function for Θ(φ)k: S̃φ(ν) = Sφ(νek), for

ν ∈ {−1,+1}.
Marginal identified set: Let cτ,k be the 1− τ quantile of the posterior of

H(φ) :=
√
nmax
ν=±1

(
Sφ(νek)− Sφ̂(νek)

)
,

that is, P (
√
nmaxν=±1[Sφ(νe)−Sφ̂(νe)] ≤ cτ,k|Dn) = 1−τ. Then, Theorem 3.1 immediately

implies:

P

(
Θ(φ)k ⊂ [−Sφ̂(−ek)−

cτ,k√
n
, Sφ̂(ek) +

cτ,k√
n

]

∣∣∣∣Dn

)
= 1− τ.

Therefore, the interval [−Sφ̂(−ek)− cτ,k√
n
, Sφ̂(ek)+

cτ,k√
n

] is a 1−τ BCS for the marginal identified

18



set of θk.

Marginal partially identified parameter: Similarly to the construction in Section

3.2, the critical value for the marginal confidence interval of θk is also simple to compute.

Let c̃τ,k be the 1− τ quantile of the posterior of

H̄(φ) :=
√
nmax
ν=±1

|Sφ̂(νek)− Sφ(νek)|.

Define

Ω̂k := {θk : P (θk ∈ [−Sφ(−ek)−
2c̃τ,k√
n
, Sφ(ek) +

2c̃τ,k√
n

]|Dn) ≥ 1− τ}.

We shall show in Section 4 that Ω̂k is an asymptotically valid confidence set for the marginal

parameter θk.

Importantly, we directly construct our marginal sets for the individual component instead

of projecting from the set for the full vector of the partially identified parameter. This is an

appealing feature also computationally. Indeed, both H(φ) and H̄(φ) can be approximated

using the local linear approximation derived in Theorem 5.1 below:

H(φ) ≈
√
nmax
ν=±1

{
λ(νek, φ̂)T∇φΨ(θ∗(ν), φ̂)[φ− φ̂]

}
,

H̄(φ) ≈
√
nmax
ν=±1

{
|λ(νek, φ̂)T∇φΨ(θ∗(ν), φ̂)[φ− φ̂]|

}
.

As already stressed in Algorithm 1, thanks to this approximation we do not need to solve an

optimization problem for each value of φ drawn from the posterior of φ. The algorithm below

shows that computing these critical values is straightforward using the MCMC samples.

Algorithm 3 (marginal inference for Θ(φ)k)

1. Let {φi}i≤M be the MCMC draws from the posterior of φ.

2. For ν = ±1, solve the following constrained convex problem

max
θ
νeTk θ subject to Ψ(θ, φ̂) ≤ 0

and obtain θ∗(ν) = arg maxθ{νeTk θ : Ψ(θ, φ̂) ≤ 0} (if the latter is a set then θ∗j is one

element of this set) and the corresponding Kuhn-Tucker vector λ(νek, φ̂) (respectively

for ν = ±1).

3. For each i ≤M , let

Hi =
√
nmax
ν=±1

{
λ(νek, φ̂)T∇φΨ(θ∗(ν), φ̂)[φi − φ̂]

}
,
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H̄i =
√
nmax
ν=±1

{
|λ(νek, φ̂)T∇φΨ(θ∗(ν), φ̂)[φi − φ̂]|

}
.

4. Let cτ,k and c̃τ,k be the (1−τ)-th quantile of {Hi}i≤M and {H̄i}i≤M , respectively. Then

the BCS for Θ(φ)k is

[−Sφ̂(−ek)−
cτ,k√
n
, Sφ̂(ek) +

cτ,k√
n

].

Algorithm 3’ (marginal inference for θk)

1. Obtain c̃τ,k from the above algorithm.

2. Uniformly generate {θ̃b}b≤B from the marginal parameter space of θk.

3. For each b = 1, ..., B, if

1

M

M∑
i=1

1

{
θ̃b ∈ [−Sφi(−ek)−

2c̃τ,k√
n
, Sφi(ek) +

2c̃τ,k√
n

]

}
≥ 1− τ, (3.11)

then set θ∗b := θ̃b; otherwise discard θ̃b.

4. Approximate Ω̂k by the following interval:

[min{θ∗b},max{θ∗b}].

Remark 3.1. Since we only need to find the minimum and the maximum θb such that (3.11)

holds, step 3 of Algorithm 3’ can be simplified and replaced by the following step. Thus, we

do not need to evaluate (3.11) for all the b ≤ B.

Step 3’: Re-arrange θ̃(1) ≤ ... ≤ θ̃(B). Starting from θ(1) to gradually increase, find the

smallest θ(b) such that (3.11) holds, and set it to be min{θ∗b}. Starting from θ(B) to gradually

decrease, find the largest θ(b) such that (3.11) holds, and set it to be max{θ∗b}.

3.4 Connections with frequentist confidence sets

In this subsection, we make a connection, from a computational point of view, between

our constructed BCS and the frequentist confidence set (FCS) constructed based on the

support function. Connections from the asymptotic coverage point of view are made in

Section 4.

The support function is also used in the frequentist literature to construct FCS for the

set. For instance, Beresteanu and Molinari (2008) constructed FCS by:

P (Θ(φ0) ⊂ Θ̂c̄τ ) ≥ 1− τ,
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where Θ̂ is the sample analogue of the true identified set. They proposed a Bootstrap

procedure to simulate the critical value c̄τ : Let {Θ̂i}i≤M be the sample analogues of the

identified set based on the bootstrap samples. Then c̄τ is determined as the (1 − τ)th

quantile of (let SC(·) denote the support function for a generic set C)

{
√
n sup
‖ν‖=1

|SΘ̂i
(ν)− SΘ̂(ν)| : i ≤M}. (3.12)

Computing (3.12) may be difficult without a linear approximation. Kaido and Santos (2014)

derived a linear approximation of SΘ̂i
(ν) − SΘ̂(ν) for moment inequality models, avoiding

solving the optimization in SΘ̂i
for each of the bootstrap sample. Our approach is similar to

theirs when Θ̂i can be parametrized by φ.

The major computational difference between our proposed BCS and Kaido and Santos

(2014)’s FCS for the identified set is that in our procedure, our “sampled” identified sets

{Θ(φi)}i≤M are the MCMC draws from the posterior distribution of φ, while the FCS’s

“sampled” sets {Θ̂i}i≤M are the bootstrap samples from the empirical distribution. The

differences and connections are therefore essentially those between the Bayesian’s MCMC

and the frequentist’s Bootstrap. While both are computationally efficient algorithms and

share many similarities in the current context, the Bayesian approach makes good use of the

prior information of φ, which may be informative in practice.

On the other hand, the proposed confidence set Ω̂ for the partially identified parameter

is computationally different from all the existing frequentist confidence set to the best of our

knowledge. While it is also computationally simple, we do not claim that it is advantegous

over any existing method in the literature. Instead, we use it to clearly show that with

the help of our Bayesian analysis on the support function, a frequentist confidence set for

the partially identified parameter can be also constructed using the posterior distribution of

Θ(φ). This property is both computationally and theoretically attractive, and complements

the Bayesian literature for partially identified models.

4 Frequentist Coverages

We now show that the BCSs and UBCB constructed in Section 3 for both the identified set

and the partially identified parameter, and for the support function, have correct frequentist

coverage probability asymptotically. The general result relies on a local linear expansion of

the support function, which is presented in this section as a high-level condition.

We denote by B(φ0, δ) the closed ball centered on φ0 with radius δ > 0. Recall that

Θ(φ0) denotes the true identified set.
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Assumption 4.1 (Local Linear Approximation (LLA)). There is a continuous vector func-

tion A(ν) such that for

f(φ1, φ2) := sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− A(ν)T (φ1 − φ2)
∣∣ ,

we have, for rn =
√

(log n)/n, as n→∞,

sup
φ1,φ2∈B(φ0,rn)

f(φ1, φ2)

‖φ1 − φ2‖
→ 0.

Theorem 4.1. Suppose Θ(φ) is convex for every φ in its parameter space. Suppose Assump-

tions 2.1 and 4.1 hold. Then, the frequentist coverage probabilities of the BCS and UBCB

constructed in Section 3 satisfy: for any τ ∈ (0, 1) and for qτ and q̃τ as defined in Section

3.1,

(i) PDn

(
Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n
)
≥ 1− τ + oP (1);3

(ii) infθ∈Θ(φ0) PDn

(
θ ∈ Ω̂

)
≥ 1− τ − oP (1), where

Ω̂ = {θ ∈ Θ : P (θ ∈ Θ(φ)2q̃τ/
√
n|Dn) ≥ 1− τ};

(iii) PDn

(
sup‖ν‖=1 |Sφ0(ν)− Sφ̂(ν)| ≤ q̃τ√

n

)
≥ 1− τ + oP (1).

Concerning the subset inference, we have the following result for the asymptotic fre-

quentist coverage of the Bayesian sets: let Θ(φ)k be the marginal identified set for the k-th

component θk of θ, ek be a vector in Rd with a one in the k-th coordinate and zeros elsewhere.

Theorem 4.2. Suppose the assumptions of Theorem 4.1 hold. Then, for any τ ∈ (0, 1) and

for cτ,k and c̃τ,k as defined in Section 3.3,

(i) Bayesian coverage of the marginal identified set: for almost all data Dn,

P

(
Θ(φ)k ⊂ [−Sφ̂(−ek)−

cτ,k√
n
, Sφ̂(ek) +

cτ,k√
n

]

∣∣∣∣Dn

)
= 1− τ ;

(ii) Frequentist coverage of the marginal identified set:

PDn

(
Θ(φ0)k ⊂ [−Sφ̂(−ek)−

cτ,k√
n
, Sφ̂(ek) +

cτ,k√
n

]

)
≥ 1− τ + oP (1);

3The result presented here is understood as: There is a random sequence ∆(Dn) that depends on Dn such

that ∆(Dn) = oP (1), and for any sampling sequence Dn, we have PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) ≥ 1−τ+∆(Dn).
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(iii) Frequentist coverage of the marginal parameter:

inf
θk∈Θ(φ0)k

PDn

(
θk ∈ Ω̂k

)
≥ 1− τ − oP (1),

where Ω̂k =
{
θk : P

(
θk ∈ [−Sφ(−ek)− 2c̃τ,k√

n
, Sφ(ek) +

2c̃τ,k√
n

]
∣∣Dn

)
≥ 1− τ

}
.

Remark 4.1. The results presented here are pointwise and valid for a fixed DGP. In principle

it is possible to achieve the coverage results uniformly over a set of DGPs, allowing sequences

of DGP that converge to the point identification. This is true as long as Assumptions 2.1

and 4.1 hold uniformly in both φ and a class of Θ(φ). However, we expect that it might be

technically difficult to verify the LLA and the Bernstein-von-mises theorem uniformly, and

hence do not pursue them in this paper.

Therefore, it remains to verify the high-level Assumption 4.1. We shall verify this condi-

tion in two setups: (1) in Section 4.1 below, we verify it in the one-dimensional case where the

identified set is a closed interval; (2) in Section 5 below, we verify it in the multi-dimensional

case, where the support function does not necessarily have an analytical form.

4.1 Verifying the LLA in the one-dimensional case

Consider the case

Θ(φ) = [g1(φ), g2(φ)] ⊂ Θ ⊂ R,

where g1, g2 are known functions taking values in R. This is the case for the one-dimensional

partially identified model (e.g., Imbens and Manski (2004)). In particular, we allow supφ |g1(φ)−
g2(φ)| = o(1), and with g1(·) = g2(·) as a special case. Hence, the identified set can shrink

to a singleton.

It is easy to verify that the support function is given by: Sφ(1) = g2(φ), and Sφ(−1) =

−g1(φ). Hence, the critical values are obtained from the posteriors of

J(φ) :=
√
n sup
‖ν‖=1

(
Sφ(ν)− Sφ̂(ν)

)
=
√
nmax{g2(φ)− g2(φ̂), g1(φ̂)− g1(φ)}

and

J̃(φ) :=
√
n sup
‖ν‖=1

|Sφ(ν)− Sφ̂(ν)| =
√
nmax{|g2(φ)− g2(φ̂)|, |g1(φ̂)− g1(φ)|}.

We now provide primitive conditions to verify Assumption 4.1 in this case.
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Assumption 4.2. (i) g1 and g2 are twice differentiable.

(ii) Let H1(φ) and H2(φ) be the Hessian matrices of g1 and g2. Then there is C > 0, so that

supφ∈B(φ0,rn) ‖H1(φ)‖+ supφ∈B(φ0,rn) ‖H2(φ)‖ < C.

We have the following proposition.

Proposition 4.1. In the one-dimensional setup, Assumption 4.2 implies Assumption 4.1.

Remark 4.2. Sometimes the functions g1 and g2 may be only partially known, up to an

additional infinite-dimensional parameter η, representing the unknown (but identifiable) dis-

tribution of the DGP. Then we can write them as g1(φ, η), g2(φ, η), or g1(F ), g2(F ), where

F denotes the data distribution. Our method can be adapted to cover this case as well by

defining φ̃ = (φ, η), and impose a semi-(non) parametric prior on it. When φ̃ is infinite-

dimensional, a LLA similar to that of Assumption 4.1 can still be verified. See Remark 5.1

below for more discussions.

The one-dimensional case, though simple, contains several partially identified models,

and has been extensively studied in the literature. We shall provide a detailed numerical

study of the missing-data model in Section 7. Below, we present a two-player entry game

model, also studied from a Bayesian perspective by Moon and Schorfheide (2012), as an

illustrating example.

4.1.1 A Two-Player Entry Game

We consider the entry game in Ciliberto and Tamer (2009); Moon and Schorfheide (2012),

and show that the marginal identified set for the parameter of interest is a closed interval that

satisfies Assumption 4.2, and thus its support function satisfies the high-level Assumption

4.1 due to Proposition 4.1.

Suppose there are two players: firm 1 and firm 2. Firm j (= 1, 2) makes an entry decision

and either does not enter market i, operates as a monopolist, or operates as a duopolist,

depending on the entry decision of the competing firm. We use the notation of Moon and

Schorfheide (2012) to model the potential monopoly (M) and duopoly (D) profits:

πMij = βj + εij, πDij = βj − γj + εij, j = 1, 2, i = 1, . . . , n.

We observe which firm enters each of the n markets, and use n11, n00, n10, and n01 to denote

the frequency across the n markets of: duopoly, no firm enters, monopoly of firm 1 and

monopoly of firm 2, respectively. In addition, we use φ = [φ10, φ11, φ00], and
∑

ij φij = 1, to

denote the probabilities of observing a monopoly, no entry, or the entry of Firm 1. Then φ
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is point identified, whose maximum likelihood estimator is given by φ̂lm = nlm
n
, l = 0, 1,m =

0, 1. Then, for φ̂ = [φ̂10, φ̂11, φ̂00], we have
√
n(φ̂− φ0)→d N (0, V ), whose covariance matrix

V is easy to obtain.

Assume εij ∼ N(0, 1) and γj ≥ 0, j = 1, 2. The probabilities that firm j in market

i is profitable are: as monopolist P (πMij > 0) = ΦN(βj), and as duopolist P (πDij > 0) =

ΦN(βj − γj) for j = 1, 2, where ΦN denotes the CDF of the standard normal distribution. It

is well known that the pure strategy Nash equilibrium implies:

φ11 = ΦN(β1 − γ1)ΦN(β2 − γ2), φ00 = ΦN(−β1)ΦN(−β2),

φ10 ≥ ΦN(β1)ΦN(−β2) + ΦN(β1 − γ1)(ΦN(β2)− ΦN(β2 − γ2)),

φ10 ≤ ΦN(β1)(1− ΦN(β2 − γ2)) (4.1)

The first two equations imply that β2, γ2 are uniquely determined by φ, β1, γ1. Hence the

free partially identified parameters are (β1, γ1). Then (4.1) defines the joint identified set for

(β1, γ1), given φ.

Suppose, we are interested in the marginal identified set Θ(φ) for θ = β1, which is a com-

mon parameter in the two profit functions. The marginal identified set can be characterized

as:

Θ(φ) = {β1 ∈ Θ : there are γ1, γ2, β2 such that (4.1) hold}

where Θ is a bounded set. Moon and Schorfheide (2012) describe the marginal identified

set using a projection approach. Here, we show that it is a closed interval that satisfies

Assumption 4.2.

We assume P (πDi1 > 0) ∈ [d, d̄] ⊂ (0, 1) with a known parameter space [d, d̄] (e.g., d = ε

and d̄ = 1− ε), and P (πDi2 > 0) < 1 for all i = 1, . . . , n. Then, the following lemma holds.

Lemma 4.1. We have: Θ(φ) = [g1(φ), g2(φ)], where

g1(φ) = Φ−1
N

(
d̄φ10

d̄− φ11

)
, g2(φ) = Φ−1

N

(
φ10 − d+ φ11 + φ00d

φ00 + φ10 − d+ φ11

)
,

and Assumption 4.2 is satisfied.

5 LLA in Multi-Dimensional Case

In this section we verify the LLA condition of Assumption 4.1 in the more complex multi-

dimensional case when the support function does not necessarily have a closed-form. We

allow the set of interest Θ(φ) to be characterized by both equalities and inequalities. More
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precisely, we consider the structure of the identified set given in the following assumption.

For some δ > 0, recall that B(φ0, δ) := {φ ∈ Φ : ‖φ− φ0‖ ≤ δ}.

Assumption 5.1. The identified set Θ(φ) in (1.1) is defined as

Θ(φ) :=

{
θ ∈ Θ : aTi θ + Ψs,i(θ, φ) ≤ 0, i = 1, . . . , k1

and aTi θ + bi(φ) = 0, i = k1 + 1, . . . , k1 + k2

}

where k1+k2 = k, {ai}ki=1 are known d-vectors, {bi(·)}ki=k1+1 are known functions that depend

only on φ and {Ψs,i(·, ·)}k1i=1 are known functions that depend on both θ and φ. Moreover,

(i) there is a δ > 0 such that for all φ ∈ B(φ0, δ) and all i = 1, . . . , k1, the function

θ 7→ Ψs,i(θ, φ) may depend only on a subvector of θ and is strictly convex in this subvector;

(ii) for i = 1, . . . , k1, Ψs,i(θ, φ) is continuous in (θ, φ) and for i = k1 + 1, . . . , k1 + k2, bi(·) is

a continuous real-valued function of φ.

Note that we allow the cases k1 = 0 (equality constraints only) or k2 = 0 (inequality

constraints only). Under this assumption, the first k1 constraints (inequality constraints on

θ) that define the set allow: linear (in θ) constraints-only, strictly convex (in θ) constraints-

only and, the sum of these two types of constraints. On the other hand, we restrict to the

linear (in θ) equality constraints, and admit this as a potential drawback in applications

when the support function does not have a closed form. In these cases, we intend to use

a Lagrange representation of the support function and this is often possible if the equality

constraints are affine functions of θ (see e.g. Rockafellar (1970)).

In the following, we denote by Ψs(θ, φ) := {Ψs,i(θ, φ)}k1i=1 the k1-vector that collects the

k1 functions Ψs,i(θ, φ). Moreover, we denote Ψ(θ, φ) as the k-vector that contains all the

moment functions, that is, Ψ(θ, φ) := ({aTi θ + Ψs,i(θ, φ)}k1i=1, {aTi θ + bi(φ)}ki=k1+1). For each

(θ, φ), define

Act(θ, φ) := {i ≤ k; Ψi(θ, φ) = 0}

as the set of the inequality active constraint indices and equality constraint indices. By

definition, for every θ ∈ Θ(φ) the number of elements in Act(θ, φ) is at least k2.

We make the following further assumptions to derive the LLA condition in Assumption

4.1 for the identified set of Assumption 5.1. Denote by ∇φΨ(θ, φ) the k×dφ matrix of partial

derivatives of Ψ with respect to φ, and by ∇θΨi(θ, φ) the d-vector of partial derivatives of Ψi

with respect to θ for each i ≤ k. Their existence and continuity is assumed in the Assumption

5.4.
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Assumption 5.2. (i) The true parameter value for φ0 is in the interior of Φ;

(ii) The parameter space Θ ⊂ Rd is convex, compact and has nonempty interior (relative to

Rd).

Assumption 5.3. For any θ ∈ Θ(φ0), the gradient vectors {∇θΨi(θ, φ0)}i∈Act(θ,φ0) are lin-

early independent.

Assumption 5.4. There is δ > 0 such that for all φ ∈ B(φ0, δ), we have:

(i) the matrix ∇φΨ(θ, φ) exists and is continuous in (θ, φ) ∈ Θ(φ)×B(φ0, δ);

(ii) Θ(φ) 6= ∅ and Θ(φ) is contained in the interior of Θ (relative to Rd);

(iii) the vector ∇θΨi(θ, φ) exists and is continuous in (θ, φ) ∈ Θ(φ) × B(φ0, δ) for every

i ≤ k.

Consider the ordinary convex problem that defines the support function: Sφ(ν) :=

supθ{νT θ; θ ∈ Θ(φ)} where Θ(φ) is characterized as in Assumption 5.1, and assume that this

optimal value is finite. Assumption 5.3 guarantees: existence of a unique Kuhn-Tucker (KT)

vector for this problem and that the strong duality holds, so that the KT-conditions are

necessary and sufficient optimality conditions. Therefore, under the previous assumptions

and if Sφ(·) <∞, the support function admits a Lagrangian representation, see (Rockafellar,

1970, Theorem 28.2): ∀φ ∈ B(φ0, δ) with δ as in Assumptions 5.1, and ∀ν ∈ Sd

Sφ(ν) = sup
θ∈Θ

{
νT θ − λ(ν, φ)TΨ(θ, φ)

}
, (5.1)

where λ(ν, φ) : Sd ×B(φ0, δ)→ Rk1
+ × Rk2 is a k-vector of KT multipliers. Moreover, define

Ξ(ν, φ) := arg max
θ∈Θ
{νT θ : Ψ(θ, φ) ≤ 0} (5.2)

as the support set of Θ(φ). Then, by definition,

νT θ = Sφ(ν), ∀θ ∈ Ξ(ν, φ)

and the maximizers in (5.2) consist of the boundary points of Θ(φ) at which the set Θ(φ) is

tangent to the hyperplane {θ ∈ Θ; νT θ = Sφ(ν)}.

Discussion of the assumptions. Our imposed assumptions are very similar to those of

Kaido and Santos (2014)’s. Assumption 5.1 is more general in the sense that we allow (linear)

equality constraints while they do not. We also place the same type of restrictions on the

convexity of the maps θ 7→ Ψi(θ, φ), i = 1, . . . , k1. Assumption 5.1 also requires the slopes ai
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of the moment functions to be know. When the slope of a linear constraint is unknown (de-

pending on the unknown distribution of the DGP), there might be no asymptotically linear

regular estimators, leading to a violation of the assumption of existence of an asymptotically

normal estimator for φ0.

Assumption 5.3 requires that the active inequality and equality gradients ∇θΨi(θ, φ0)

be linearly independent, which guarantees that the strong duality holds. Even though the

strong duality can be guaranteed under weaker assumptions (e.g., like the Slater’s condition,

see e.g. (Rockafellar, 1970, Theorem 28.3)), Assumption 5.3 also ensures the uniqueness of

the KT-vector which we need in our proofs. Moreover, as remarked by Kaido and Santos

(2014), it is possible to construct testing procedures to detect cases where Assumption 5.3

does not hold.

Assumption 5.4 (i) and (iii) are used to prove directional differentiability of the function

φ 7→ Sφ(ν). Assumption 5.4 (ii) means that the boundary of Θ(φ) is determined by the

inequalities/equalities and not by the parameter space Θ. Assumptions very similar to

Assumption 5.4 are made also in Kaido and Santos (2014).

5.1 LLA for the support function

Assumptions 5.1-5.4 imply that the support function of the closed and convex set Θ(φ)

admits directional derivatives in φ and that it is differentiable at φ. The next theorem

exploits this fact and states that the support function can be locally approximated by a

linear function of φ establishing, in this way, Assumption 4.1.

Theorem 5.1 (LLA). If Assumptions 5.2, 5.3 hold and Assumptions 5.1 and 5.4 hold with

δ = rn for some rn = o(1), then for all large n, there exist: (i) a real function f(φ1, φ2) defined

for every φ1, φ2 ∈ B(φ0, rn), (ii) a vector function of KT multipliers λ(·, ·) : Sd × Rdφ →
Rk1

+ × Rk2, and (iii) a Borel measurable mapping θ∗(·) : Sd → Θ satisfying θ∗(ν) ∈ Ξ(ν, φ0)

for all ν ∈ Sd, such that :

sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)[φ1 − φ2]
∣∣ = f(φ1, φ2)

and
f(φ1, φ2)

‖φ1 − φ2‖
→ 0

uniformly in φ1, φ2 ∈ B(φ0, rn) as n→∞.

We remark that the functions λ and θ∗ do not depend on the specific choice of φ1 and

φ2 inside B(φ0, rn), but only on ν and the true value φ0. The linear expansion can also be
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viewed as stochastic when φ1, φ2 are interpreted as random variables associated with the

posterior distribution p(φ|Dn). This interpretation is particularly useful to understand the

proofs of Theorems 6.1 and 6.2 below.

The linear approximation given in Theorem 5.1 is particularly helpful to implement our

procedure. In fact, as shown in Section 3 in numerical simulations and implementations,

one can compute the support function by using a simple linear transformation, as stated

in Theorem 5.1, instead of solving an optimization problem which might be challenging in

some cases.

The LLA of the support function provided in Theorem 5.1 is similar to the one proved

in Kaido and Santos (2014) to characterize the influence function of the support function,

and our proof of Theorem 5.1 rests in many places on the proof of Kaido and Santos (2014).

However, there are some differences in the two results: (1) we state this result for every φ

in a shrinking ball centred on the true φ0 while their result is stated at φ̂ (by using our

notation); (2) our LLA is valid on a ball of radius rn, for any rn = o(1), while their result

is established for a rate rn = n−1/2; (3) we establish the LLA of the support function when

the set is more generally characterized by moment inequalities and equalities, while moment

equalities are not allowed in Kaido and Santos (2014). Point (2) is particularly important in

Bayesian analysis as, for asymptotic results, the ball of radius rn must be the ball on which

the posterior distribution of φ puts all its mass as n→∞. The radius rn differs depending

on the model and the prior, and therefore for results as the ones in Theorems 6.2-6.3, it is

important that the LLA holds for all rn = o(1).

Remark 5.1. A local linear approximation similar to the one given in Theorem 5.1 can be

obtained in the more general case where φ is the data distribution, φ := F , if Assumption

2.1 (i)-(ii) is replaced by Assumption 2.1′′ below. In this case, the identified set Θ(φ), as

defined in Assumption 5.1, depends on the unknown distribution φ of X through an index

function that depends on θ, contrarily to the previous case where the index function did not

depend on θ. More precisely, for two known real-valued functions Ψ1
s,i and Ψ2

s,i, the identified

set writes (by omitting the equality constraints for simplicity)

Θ(φ) :=

{
θ ∈ Θ; aTi θ + Ψ1

s,i

(∫
Ψ2
s,i(x, θ)dφ(x)

)
≤ 0, i = 1, . . . , k1

}
where {ai}k1i=1 are as defined in Assumption 5.1 and θ 7→ Ψ1

s,i

(∫
Ψ2
s,i(x, θ)dφ(x)

)
is strictly

convex in θ, for every i = 1, . . . , k1 (or strictly convex in a subvector of θ if it depends only

on this subvector). This case is the general case considered in Kaido and Santos (2014).

With this characterization of Θ(φ) the prior on φ has to be nonparametric. Let us denote

the vectors of indices g(φ, θ) :=
∫

Ψ2
s(x, θ)dφ(x) and g0(θ) := g(φ0, θ) where φ0 = F0.
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Assumption 2.1 (i) and (ii) has to be replaced by the following one:

Assumption 2.1′′. (i) The posterior of φ is such that, for some constant C > 0 and for

every ν ∈ Sd and θ∗(ν) ∈ Ξ(ν, φ0),

P (‖g(φ, θ∗(ν))− g0(φ0, θ∗(ν))‖ ≤ Cn−1/2Cn|Dn)→p 1

where Cn = (log n)1/2.

(ii) For a given ν ∈ Sd, let P√n(g∗−g0)|Dn denote the posterior distribution of
√
n(g(φ, θ∗(ν))−

g0(θ∗(ν))) with θ∗(ν) ∈ Ξ(ν, φ0). We assume that, for every ν ∈ Sd and θ∗(ν) ∈ Ξ(ν, φ0),

‖P√n(g∗−g0)|Dn −N (∆n,g0(ν), I−1
0 (ν))‖TV →p 0

where N denotes the dφ-dimensional normal distribution, ∆n,g0(ν) := n−1/2
∑n

i=1 I
−1
0 (ν)`g0(Xi),

`g0 is the semiparametric efficient score function of the model and I−1
0 (ν) := E[ψ̃(ν)ψ̃(ν)T ].

We remark that ∆n,g0(ν) and I−1
0 (ν) in Assumption 2.1′′ depend on ν. This is because

the index g depends on θ which in turn is taken to be an element of Ξ(ν, φ0). Moreover,

by slightly modifying Assumptions 5.1-5.4 the linear expansion in Theorem 5.1 holds with

∇φΨ(θ∗(ν), φ0)[φ1 − φ2] replaced by

∇Ψ1
s

(∫
Ψ2
s(x, θ∗(ν))dφ0(x)

)[∫
Ψ2
s(x, θ∗(ν))dφ2(x)−

∫
Ψ2
s(x, θ∗(ν))dφ1(x)

]
(5.3)

where θ∗(ν) ∈ Ξ(ν, φ0), and for every probability distribution φ1, φ2 such that g(φi, θ∗(ν)) ∈
B(g0(θ∗(ν)), rn), for i ∈ {1, 2} and ∀ν ∈ Sd. The notation ∇Ψ1

s means the gradient of

the function Ψ1
s(·). This result is obtained by computing the Gâteaux differential of the

functional φ 7→ Ψ1
s

(∫
Ψ2
s(x, θ∗(ν))dφ(x)

)
at φ1 in the direction φ2.

6 Asymptotic properties of the posterior of Sφ(ν)

In this section we state posterior consistency, asymptotic normality and, recover the

concentration rate of the posterior distribution of Sφ(ν). These are known as frequentist

asymptotic properties because they assume the existence of a true value φ0, F0 that gen-

erates the data. These properties for the support function hinge on similar properties for

the posterior distribution of φ. In a semiparametric model where φ is identified, the poste-

rior distribution of φ is known to contract at the parametric rate (or, in some models, at

a parametric rate up to a logarithmic term) and to satisfy the Bernstein-von Mises (BvM)
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theorem under suitable prior conditions. We stress that, even though the asymptotic prop-

erties for the posterior of φ are assumed to hold (Assumption 2.1), recovering the asymptotic

properties for the posterior of Sφ(ν) is not trivial as it could seem. In fact, due to the par-

ticular structure of the mapping between φ and Sφ(ν), the posterior of Sφ(ν) is linked to the

posterior of φ in a complicated way.

The next theorem gives the contraction rate for the posterior of the support function.

Theorem 6.1 (Posterior concentration). Under Assumptions 2.1 (i) and 4.1, for some

C > 0,

P

(
sup
ν∈Sd
|Sφ(ν)− Sφ0(ν)| ≤ C(log n)1/2n−1/2

∣∣∣∣Dn

)
→p 1.

Remark 6.1. The result of Theorem 6.1 holds for both nonparametric and semiparametric

prior on (φ, F ). The concentration rate, as given in the theorem, is nearly parametric:
√

logn
n

and is the same as the rate in Assumption 2.1 (i). When the posterior for φ concentrates

at the parametric rate n−1/2, the same holds for the posterior of the support function. Note

that under stronger primitive conditions, it is possible to replace the rate in Assumption 2.1

(i) and Theorem 6.1 with Cnn
−1/2 for any sequence Cn → ∞ (see also the discussion after

Assumption 2.1). Here, we fix Cn =
√

log n for simplicity. This is common in the posterior

concentration rate literature (see e.g. Ghosal et al. (2000) and Shen and Wasserman (2001)).

For estimation of the identified set, the same rate of convergence
√

logn
n

has been achieved

in the frequentist perspective by Chernozhukov et al. (2007) and Kaido and Santos (2014),

among others.

The next theorem that we state is the BvM theorem for the posterior distribution of the

support function. It establishes convergence, in TV norm, of the posterior of the support

function to a normal distribution as n→∞. This theorem is valid under the assumption that

a BvM theorem holds for the posterior distribution of the identified parameter φ (Assumption

2.1 (ii)). We denote by P√n(Sφ(ν)−Sφ0 (ν))|Dn the posterior distribution of
√
n(Sφ(ν)−Sφ0(ν)).

Theorem 6.2 (BvM). (I) Let Assumptions 2.1 (i)-(ii) and 4.1 hold. Then for any ν ∈ Sd,

‖P√n(Sφ(ν)−Sφ0 (ν))|Dn −N (∆̄n,φ0(ν), Ī−1
0 (ν))‖TV →p 0, (6.1)

as n → ∞, where ∆̄n,φ0(ν) := A(ν)T∆n,φ0, Ī−1
0 (ν) := A(ν)T I−1

0 A(ν) and ν 7→ A(ν) is as

defined in Assumption 4.1.

(II) If, in addition to Assumption 2.1 (i)-(ii), Assumptions 5.2, 5.3 hold and Assump-

tions 5.1 and 5.4 hold with δ = rn =
√

(log n)/n, then (6.1) holds with ∆̄n,φ0(ν) :=
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λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)∆n,φ0, θ∗(ν) ∈ Ξ(ν, φ0) and

Ī−1
0 (ν) := λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)I−1

0 ∇φΨ(θ∗(ν), φ0)Tλ(ν, φ0).

The asymptotic mean and covariance matrix of part (II) of the theorem can be estimated

by replacing φ0 by any consistent estimator φ̂. Thus, θ∗(ν) will be replaced by any element

θ̂∗(ν) ∈ Ξ(ν, φ̂) and an estimate of λ(ν, φ0) will be obtained by numerically solving the

ordinary convex program in (5.1) with φ0 replaced by φ̂.

Remark 6.2. The asymptotic covariance matrix of the posterior distribution may differ in

parts (I) and (II) of Theorem 6.2 depending on the expression of A(ν). Under the assump-

tions of part (II) of the theorem, Kaido and Santos (2014) have derived the semiparamet-

ric efficiency bound for estimating the support function. Thus, under these assumptions,

Bayesian estimation of the support function is asymptotically semiparametric efficient in

the sense of Bickel et al. (1993), since the posterior asymptotic variance Ī−1
0 achieves the

semiparametric efficiency bound derived in Kaido and Santos (2014).

Let C(Sd) be the space of bounded continuous functions on Sd equipped with the supre-

mum norm ‖f‖∞ := supν∈Sd |f(ν)|. When φ is interpreted as a random variable drawn

from its posterior distribution, the support function Sφ(·) is a stochastic process with re-

alizations in C(Sd). For this process, a weak BvM theorem holds with respect to the

weak topology. More precisely, let G be a Gaussian measure on C(Sd) with mean function

∆̄n,φ0(·) = λ(·, φ0)T∇φΨ(θ∗(·), φ0)∆n,φ0 and covariance operator with kernel: ∀ν1, ν2 ∈ Sd

Ī−1
0 (ν1, ν2) = λ(ν1, φ0)T∇φΨ(θ∗(ν1), φ0)I−1

0 ∇φΨ(θ∗(ν2), φ0)Tλ(ν2, φ0).

We then have the following theorem which we directly state under the assumptions of part

(II) of Theorem 6.2. For a set B in C(Sd), denote by ∂B the boundary set of B, namely, the

closure of B minus its interior (with respect to the metric ‖ · ‖∞).

Theorem 6.3 (weak BvM). Let B be the class of Borel measurable sets in C(Sd) such that

G(∂B) = 0. Under the assumptions of Theorem 6.2 (II),

P√n(Sφ(·)−Sφ0 (·))|Dn(B)→p G(B), (6.2)

for all B ∈ B.

We remark that under the weaker assumptions of part (I) of Theorem 6.2 the weak

convergence in (6.2) holds with G a Gaussian measure on C(Sd) with mean function ∆̄n,φ0(·) =

32



A(·)T∆n,φ0 and covariance operator with kernel: ∀ν1, ν2 ∈ Sd

Ī−1
0 (ν1, ν2) = A(ν1)T I−1

0 A(ν2)

where ν 7→ A(ν) is as defined in Assumption 4.1.

7 Simulations

7.1 Missing data

This section illustrates the coverage of the BCS’s constructed in Section 3 in the missing

data problem. Let Y be a binary variable, indicating whether a treatment is successful

(Y = 1) or not (Y = 0). The variable Y is observed subject to missing. We write M = 0

if Y is missing, and M = 1 otherwise. Hence, we observe (M,MY ). The parameter of

interest is θ = P (Y = 1). The identified parameters are denoted by φ1 = P (M = 1)

and φ2 = P (Y = 1|M = 1). Let φ0 = (φ10, φ20) be the true value of φ = (φ1, φ2). Then,

without further assumptions on P (Y = 1|M = 0), θ is only partially identified on Θ(φ) =

[φ1φ2, φ1φ2 + 1− φ1]. The support function is

Sφ(1) = φ1φ2 + 1− φ1, Sφ(−1) = −φ1φ2.

Suppose we observe i.i.d. data {(Mi, YiMi)}ni=1, and define
∑n

i=1Mi = n1 and
∑n

i=1 YiMi =

n2. The likelihood function is given by ln(φ) ∝ φn1
1 (1− φ1)n−n1φn2

2 (1− φ2)n1−n2 .

We place independent beta priors, Beta(α1, β1) and Beta(α2, β2), on (φ1, φ2). Then the

posterior of (φ1, φ2) is a product of Beta(α1 +n1, β1 +n−n1) and Beta(α2 +n2, β2 +n1−n2).

7.1.1 Bayesian credible sets

We now construct the BCS for Θ(φ). The estimator φ̂ is taken to be the posterior mode:

φ̂1 = (n1 + α1 − 1)/(n + α1 + β1 − 2), and φ̂2 = (n2 + α2 − 1)/(n1 + α2 + β2 − 2). Then

J(φ) =
√
nmax

{
φ1φ2 − φ1 − φ̂1φ̂2 + φ̂1,−φ1φ2 + φ̂1φ̂2

}
. Let qτ be the 1− τ quantile of the

posterior of J(φ), which can be obtained by simulating from the Beta distributions. The

1− τ level BCS for Θ(φ) is

Θ(φ̂)qτ/
√
n = [φ̂1φ̂2 − qτ/

√
n, φ̂1φ̂2 + 1− φ̂1 + qτ/

√
n],

which is also the asymptotic 1− τ frequentist confidence set of the true Θ(φ0).

We can also construct the confidence set for θ based on the posterior of φ, using Algorithm
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2. Here we present a simple simulated example, where the true φ is φ0 = (0.7, 0.5). This

implies the true identified interval to be Θ(φ0) = [0.35, 0.65] and about thirty percent of the

simulated data are “missing”. We set α1 = α2 =: α, β1 = β2 =: β in the prior. In addition,

B = 1, 000 posterior draws {φi}Bi=1 are sampled from the posterior Beta distribution. For

each of them, compute J(φi) (resp. J̃(φi)) and set q0.05 (resp. q̃0.05) as the 95% upper

quantile of {J(φi)}Bi=1 (resp. {J̃(φi)}Bi=1) to obtain the critical values. Each simulation is

repeated for 2,000 times.

Table 1 presents the results for different values of α, β and n. We see that the frequentist

coverage probability for the set is close to the desired 95% when sample size increases. This

confirms our Theorem 4.1. In addition, the frequentist coverage of θ is significantly higher

than the nominal level. This result is expected: the critical value for the set is exact, making

the coverage probability approximately equal the nominal level. But the critical value for the

partially identified parameter is conservative, making the coverage probability lower bounded

by the nominal level.

Table 1: Frequentist coverages over 2,000 replications, 1 − τ = 0.95, prior for φ1, φ2 is
Beta(α, β).

PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) infθ∈Θ(φ0) PDn(θ ∈ Ω̂)

α β n = 50 n = 100 n = 500 n = 50 n = 100
1 1 0.929 0.948 0.950 0.988 0.984
1 0.1 0.912 0.950 0.956 0.980 0.984

0.1 1 0.916 0.948 0.950 0.992 0.988
0.1 0.1 0.938 0.944 0.952 0.980 0.980

7.1.2 When the set parameter “shrinks” to a singleton

We now illustrate the case when the identified set “shrinks” to a singleton. Let the true

φ10 be φ10 = 1 − ∆n with ∆n → 0, that is, the probability of missing is close to zero. We

set φ20 = 0.5. This case is interesting because, given that Θ(φ) = [φ1φ2, φ1φ2 + 1 − φ1]

and φ1 represents the probability of “non-missing”, letting the length of the identified set

shrink to zero corresponds to letting φ1, the probability of non-missing, converging to one.

As discussed in Section 4.1, our results still hold when P (Y = 1) is nearly identifiable.

The frequency of coverage over 2,000 replications are summarized in Table 2. The results

continue to be as expected: the BCS with 95% credible level has the coverage probability

for the true set Θ(φ0) close to 0.95 even for ∆n very small. On the other hand, the coverage

of the partially identified parameter is as conservative as in the “nonshrinking” case.
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Table 2: Frequentist coverages under near identifiability, 1 − τ = 0.95, prior for φ1, φ2 is
Beta(α, β).

PDn(Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n) infθ∈Θ(φ0) PDn(θ ∈ Ω̂)

∆n

α β 0.1 0.05 0 0.1 0.05 0
n = 100

1 1 0.945 0.953 0.954 0.990 0.994 0.992
1 0.1 0.934 0.944 0.935 0.986 0.992 0.988

0.1 1 0.952 0.951 0.950 0.990 0.990 0.986
0.1 0.1 0.938 0.936 0.937 0.986 0.982 0.978

n = 500
1 1 0.945 0.949 0.951 0.984 0.990 0.992
1 0.1 0.962 0.941 0.949 0.986 0.986 0.980

0.1 1 0.955 0.945 0.949 0.986 0.990 0.970
0.1 0.1 0.946 0.948 0.956 0.990 0.986 0.974

The length of the true identified set is ∆n. The model achieves identifiability when ∆n = 0.

7.2 Marginal inference for fixed design interval regression

We simulate a fixed design interval regression model. The model is given by linear

constraints

XT (EY1) ≤ XTXθ ≤ XT (EY2),

where X is a n × p fixed design matrix and Y1 and Y2 are n × 1 vectors. Suppose the

full parameter θ is high-dimensional, and we are interested in the first component θ1. Let

φ1 = 1
n
XTEY1 and φ2 = 1

n
XTEY2. Then the identified set is given by {θ : φ1 ≤ 1

n
XTXθ ≤

φ2} = {( 1
n
XTX)−1ζ : φ1 ≤ ζ ≤ φ2}, where we assume 1

n
XTX is nonsingular. Using a similar

argument as in Bontemps et al. (2011), it can be shown that the support function has a

closed form: write φ := (φT1 , φ
T
2 )T ,

Sφ(ν) =
1

2
νT (

1

n
XTX)−1(φ1 + φ2) +

1

2
|νT (

1

n
XTX)−1|(φ2 − φ1),

where the absolute value is taken coordinatewise. The support function is linear in φ and

the LLA (Assumption 4.1) is satisfied with

A(ν)T =
1

2

(
νT (

1

n
XTX)−1 − |νT (

1

n
XTX)−1|, νT (

1

n
XTX)−1 + |νT (

1

n
XTX)−1|

)
.
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7.2.1 Simulation results

In the simulation below, we are interested in the first component θ01 but dim(θ0) > 1. The

true (unknown) distribution for the DGP is Y1i ∼ N (0, 1), Y2i = 5+Y1i and each component

of Xi is generated uniformly from [0, 1]. Define Zji = XiYji, and V = 1
n
XTX. Then

1
n

∑n
i=1 Zji ∼ N (φj,

1
n
V ), where j = 1, 2. We impose a Gaussian prior φ1, φ2 ∼ N (0, Iσ2

0)

where the pre-specified prior variance measure the informativeness of the prior. Then it is

well known that the posterior of φj is also Gaussian with mean σ2
0(σ2

0I + 1
n
V )−1 1

n

∑n
i=1 Zji

and covariance σ2
0(σ2

0I + 1
n
V )−1 1

n
V .

The BCSs are constructed using Algorithms 3’. Because the support function has a

closed form, our algorithms run very fast. The results are reported in Table 4. The coverage

probabilities are generally close to the nominal level. To compare between the two types

of coverages, the coverage of the marginal partially identified parameter is slightly more

conservative. To compare between the prior choices, the less informative prior (larger σ2
0) in

general yields higher frequentist coverage probabilities. This observation is not surprising,

as less informative prior often results in wider credible intervals.

Table 3: Frequentist coverages of the first component over 1,000 replications, 1− τ = 0.95;
the prior variance is σ2

0.

prior variance dim(θ0) n = 50 n = 100 n = 300

PDn(Θ(φ0)1 ⊂ Θ(φ̂)
qτ/
√
n

1 ) 5 2 0.943 0.939 0.950
5 0.925 0.948 0.939
10 0.905 0.938 0.944

infθ1∈Θ(φ0)1 PDn(θ1 ∈ Ω̂1) 2 0.962 0.960 0.955
5 0.947 0.964 0.940
10 0.938 0.952 0.947

PDn(Θ(φ0)1 ⊂ Θ(φ̂)
qτ/
√
n

1 ) 50 2 0.942 0.940 0.953
5 0.945 0.951 0.948
10 0.947 0.954 0.947

infθ1∈Θ(φ0)1 PDn(θ1 ∈ Ω̂1) 2 0.961 0.960 0.959
5 0.955 0.959 0.953
10 0.956 0.965 0.956

8 Discussions

This paper proposes Bayesian inference for partially identified convex models based on

the support function of the identified set. Our results have been described for a closed and
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Table 4: Frequentist coverages of the first component over 1,000 replications, 1− τ = 0.95.

prior variance dim(θ0) n = 50 n = 100 n = 300

PDn(Θ(φ0)1 ⊂ Θ(φ̂)
qτ/
√
n

1 ) 2 0.942 0.940 0.953
5 0.945 0.951 0.948
10 0.947 0.954 0.947

infθ1∈Θ(φ0)1 PDn(θ1 ∈ Ω̂1) 2 0.961 0.960 0.959
5 0.955 0.959 0.953
10 0.956 0.965 0.956

convex identified set characterized by moment inequalities but under the LLA, our results

hold more generally for identified sets characterized in other forms, such as the likelihood

based models, as long as the set is closed and convex.

One of the main contributions of this paper is to shed light on the connection between

Bayesian and frequentist inference for partially identified convex models and complements

the important results in Moon and Schorfheide (2012). While Moon and Schorfheide (2012)

show that a BCS for the partially identified parameter θ does not have a correct frequentist

coverage even asymptotically, we instead construct a BCS for the partially identified set and

a UBCB for the support function and demonstrate that they have asymptotically correct

frequentist coverage. Moreover, we show that one can construct a frequentist confidence set

for the partially identified parameter θ with the desired coverage once a prior is imposed

directly on the identified set. We also describe the computational algorithms to implement

our inference procedures.

While in the paper we use relatively simple assumptions about the prior and posterior of

φ, we discuss how it is possible to modify them in order to deal with models like Manski and

Tamer (2002) and Chernozhukov et al. (2013). Having a finite dimensional φ is not necessary:

an infinite dimensional φ can be allowed in some cases even though a more involved study

of the nonparametric prior of φ would have to be carried out in such situations.

Finally, an important open question that we leave for future research is the uniform valid-

ity of our inference procedure. Our asymptotic coverage results hold under point identifica-

tion since both the asymptotic normality of φ and the LLA of the support function continue

to hold in the point identified case. However, to achieve the coverage results uniformly over

a set of DGPs, allowing sequences of DGP that converge to the point identification, requires

that both the asymptotic normality of φ and the LLA of the support function hold uniformly

in both φ and a large class of DGP. This is technically difficult to verify and it might not

hold in some cases.
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