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1. Introduction

Agent-based models (ABM) have attracted much attention in economics and finance in

recent years (Hommes, 2006; LeBaron and Tesfatsion, 2008; Stiglitz and Gallegati, 2011) as

they describe the reality better than simplified models of traditional economics and finance.

The crucial innovation lies in assuming a boundedly rational economic agent (Simon, 1955;

Sargent, 1993) instead of a perfectly rational representative agent with homogeneous ex-

pectations (Muth, 1961; Lucas, 1972). In these models, agents make decisions without

utility maximization but usually using simple heuristics. The resulting systems are usually

driven endogenously, i.e. without exogenous shocks forcing the dynamics.

In finance, the founding contributions were laid by Brock and Hommes models (Brock

and Hommes, 1997, 1998) characteristic by strategy-switching agents and possible bifur-

cation dynamics. Essential contributions to the topic are the early papers of Lux and

Marchesi (1999) and Kaizoji (2000) who introduce a possibility of generating the returns-

like series from simple models based on interactions between multiple agents. They both

serve as a starting point to an important branch of the ABMs which is based on a paral-

lel between between ferromagnetism and market dynamics, i.e. the Ising model adjusted

for financial economics. In the models, economic agents participating in the market are

spins of a magnet. In the same way as the spins, the agents are influenced by (make their

decisions based on) their neighbors, or agents with similar beliefs, but also by the overall

market sentiment and activity. The novel model of Bornholdt (2001) combining the stan-

dard Ising model from physics with an additional term reminiscent of the minority game,

i.e. the tendency of agents of leaning away from the majority opinion when the major-

ity prevails too much, has been shown to successfully mimic the basic financial stylized

facts such as no serial correlation of returns, persistence and clustering of volatility, and

non-Gaussian distribution of returns. Kaizoji et al. (2002) expand the model of Bornholdt

(2001) by four additional parameters to allow for simulation of the traded volume through

the balance between supply and demand. Implications for bull and bear markets together

with bubbles occurrence is discussed there as well.

These founding papers have led to various adjusted and generalized models trying

mainly to fit the market data or mimic the stylized facts. Sornette and Zhou (2006) build

a model with external news and expectations of the agents, who are able to adjust their

expectations through learning. Their model is able to generate fat-tailed returns with ex-

ponentially decaying serial correlation structure, aggregate normality, volatility clustering

and power-law decaying serial correlation as well as specific multi-fractal properties. Com-
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pared to the basic model of Bornholdt (2001) with two parameters, the model of Sornette

and Zhou (2006) uses seven. Zhou and Sornette (2007) present further results of the same

model with a more direct connection to behavioral finance as the agents are allowed to

be not fully rational. Yang et al. (2006) utilize a similar model and try to explain the

dynamics of the KOSPI stock market. They show that one of the parameters is directly

proportional to the tail index of the distributions with power-law tails. However, it is not

clear whether this holds for reasonable values of other parameters as well.

Queiros et al. (2007) present a model combining the ideas of Lux and Marchesi (1999),

Bornholdt (2001) and Sornette and Zhou (2006), explicitly including a term depending

on magnetization. Even though the model is able to produce most of the stylized facts,

it is not able to replicate the important features of volatility – clustering and power-law

autocorrelation decay. Sieczka and Holyst (2008) expand the model of Kaizoji et al. (2002)

by allowing the agents to take three instead of standard two positions – in addition to “buy”

and “sell”, there is also a possibility to stay inactive. The model is able to reproduce many

stylized facts but the ones connected to volatility. Denys et al. (2013) further enhance the

model of Sieczka and Holyst (2008) by having opinions in their willingness to buy or sell

which are only then translated into actual buying or selling actions. This opinion dynamics

enters the neighbor interactions part of the model. Even thought the main motivation of

the paper is to correct the Sieczka and Holyst (2008) study, this enhanced model still

does not mimic the power-law decay in the volatility autocorrelation function. The idea of

opinion forming in the financial Ising models is further developed in Krause and Bornholdt

(2012) where the volatility clustering is obtained.

Krawiecki (2009) enriches the Ising-type models with a random organic network struc-

ture. Through three uniformly distributed random variables and three parameters, the

model replicates the basic stylized facts even for volatility. Krause and Bornholdt (2013)

move towards a macroscopic model using the original microscopic model of Bornholdt

(2001) and Takaishi (2015) generalizes the whole framework for multiple assets showing

that cross-correlated assets can be generated. However, other stylized facts are not covered

in detail.

For a detailed treatment and history of the Ising-type models in financial economics

together with other agent-based models, we suggest the current treatment of the topic by

Sornette (2014).

There are at least three interesting outcomes that can be inferred from the review

above. First, the results and ability of models to recover the financial stylized facts are
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often very sensitive to the parameters choice. Only a narrow range of parameters’ values

yields reasonable results and the models usually break down in a sense that they converge

to a very stable magnetization and thus price which results in zero returns. Second, ma-

jority of papers dealing with financial Ising-type models focus primarily on retrieving the

stylized facts of returns and volatility (and sometimes traded volume) and touch the inter-

pretation of parametric values only on surface. And third, vast majority of the reviewed

models are not able to outperform the original Bornholdt (2001) model in the sense of the

stylized facts coverage. Note that all the expanded models add more parameters and often

random variables to the basic model, yet there are not able to outperform the basic model

significantly.

We contribute to the topical literature by inspecting the implications of the financial

Ising model towards capital markets efficiency. We focus on the model parameters and

how they influence returns dynamics in the optics of the efficient market hypothesis. The

attention is given to finding a combination of parameters which yields an efficient market

or dynamics close to it. We thus take the question “What combination of parameters

yields returns and volatility mimicking the stylized facts?” as studied and answered in

enough detail in the reviewed papers, implying that the structure and construction of the

models are reasonable, and we focus on the question “What combination of parameters

yields returns consistent with the efficient market hypothesis?”. We show that the effects of

parameters are more complicated than one might expect and their influence is apparently

non-linear with a special role of the critical temperature of the system and we discuss the

implications for foundations of the efficient market hypothesis.

2. Ising model for financial markets

As a representative of the agent-based models applied to finance and financial eco-

nomics, we opt for a simple Ising model adjusted for financial markets as proposed by

Bornholdt (2001). There are two main reasons why this specific model is chosen. First,

the model is able to mimic the most important stylized facts of financial returns. And sec-

ond, the model has only two parameters which allows for a straightforward interpretation

of the outcomes without a need for additional restrictions.

2.1. Model basics

The model builds on a combination of the standard Ising model of ferromagnetism with

local field interactions (Ising, 1925) and a minority game behavior of market agents (Arthur,
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1994; Challet and Zhang, 1997). Financial market is represented by a square lattice (usually

with torus-like neighborhoods) with a side of N , i.e. with N2 elements representing market

agents. These elements are referred to as spins due to their magnetization of either +1

or −1. This spin orientation is translated into a financial market as either a buy or a sell

signal (decision), respectively. The spin orientation of agent i for a time period t is labelled

as Si(t). For each agent i, the local field hi(t) for a time period t is defined as

hi(t) =
N∑
j=1

JijSj(t)− αCi(t)
1

N

N∑
j=1

Sj(t). (1)

The first term is defined as a local Ising Hamiltonian with neighbor interactions Jij. This is

the reference to the standard Ising model. In the economic interpretation, this represents

the potential herding behavior as agents are influenced by their closest neighbors and

they might thus tend together potentially forming speculative bubbles. The second term

represents the global coupling as it depends on the total magnetization of the system

M(t) ≡ 1
N

∑N
j=1 Sj(t) at time t with sensitivity α. From the economic perspective, this

term is a built-in minority game. For α > 0, there is a tendency to go against the overall

magnetization and thus against the whole market dynamics. The strategy spin Ci(t) allows

for deviations from the minority game behavior of spin i, i.e. Ci(t) is not necessarily equal to

one. On the one hand, Ci = −1 implies that the agents align with the total magnetization

so that they follow the market trend. Such agents are usually referred to as the trend

followers or chartists. On the other hand, Ci = 1 suggests the minority game behavior of

the agents as they oppose the sign of the total magnetization. These agents are standardly

referred to as the fundamentalists.

The price and returns dynamics of the system is extracted directly from the magneti-

zation dynamics so that

logP (t) = M(t) ≡ 1

N

N∑
j=1

Sj(t),

r(t) = ∆M(t) = M(t)−M(t− 1). (2)

The logic behind such representation is based on taking the positive spins as demand and

the negative spins as supply. Their sum, i.e. the difference between demand and supply,

is taken as excess demand so that the difference between two consecutive excess demand

5



is a change in price of an asset (Bornholdt, 2001; Kaizoji et al., 2002; McCauley, 2009)1.

Orientation of the spin i at time t + 1 is given by the heat-bath dynamics transition

function as

Si(t+ 1) = +1 with p = [1 + exp(−2βhi(t))]
−1

Si(t+ 1) = −1 with 1− p, (3)

which is directly connected to Eq. 1 with an additional sensitivity β, which is parallel

to the inverse temperature of the original Ising model, i.e. β = 1
T

, and it is essential as

it controls the responsiveness of the spin change probability to the local field hi(t). The

inverse temperature determines the system regime – either paramagnetic or ferromagnetic

in the original Ising model terminology. For the paramagnetic phase with under-critical

β < βC = 1
TC

(i.e. over-critical T > TC where C stands for “critical” or “Curie”), the model

dynamics leads to the paramagnet which is characteristic by erratic behavior. Reversely

for the ferromagnetic phase with over-critical β (under-critical temperature T ), the model

converges to a stable state as a ferromagnet2.

2.2. Agent types and strategy spins

These two types of behavior can be easily inferred from the heat-bath dynamics in

Eq. 3. For the paramagnetic regime, the transition function is rather flat so that the

spin probability depends on the local field hi(t) only weakly. Decreasing β then leads to

a weakening local interactions effect. For β close to zero (infinite temperatures), the spin

change is completely random with probability 1
2
. For the ferromagnetic regime, the local

interactions become more dominant forming large clusters of oriented spins, one of which

eventually dominates and leads the stable state of the model with |M(t)| ≈ 1. Kramers

and Wannier (1941) show that for the original Ising model, i.e. with α = 0, the critical

temperature is equal to TC = 2
ln(1+

√
2)
≈ 2.269 which gives βC = 1

TC
≈ 0.441.

The strategy term Ci(t) is given as a general term in Eq. 1 which can be further

1More precisely, the return is a function of the difference between magnetizations (if we elaborate on
the excess demand interpretation of McCauley (2009)). We stick to the more prevalent view of returns as
differences between the magnetizations without further adjustments to keep the results and interpretations
comparable with other studies on the topic.

2Note that there is no noise term added in the whole dynamics and decision making of agents as
described in Eqs. 1-3. This distinguishes the financial Ising model from other financial ABMs which
usually utilize exogeneous shocks to the system. The Ising model here is able to produce the market-like
dynamics endogenously.
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specified. A popular choice is to highlight the minority game behavior of the spin by

allowing the strategy to change with respect to the total magnetization and the spin’s

own orientation. This specification also allows for more strategy types. Bornholdt (2001)

proposes the following dynamics:

Ci(t+ 1) = −Ci(t) if αSi(t)Ci(t)
N∑
j=1

Sj(t) < 0 (4)

The practical implications of such rule are the following. The second term of the local

field (Eq. 1) of all majority agents (who are Ci(t) = 1) has an opposite sign compared to

the total magnetization. This forces the agents to swap their strategy. Similarly for the

minority agents (with Ci(t) = −1), the second term of the local field has the same sign as

the total magnetization, which forces them to change their strategy as well. As the total

magnetization M(t) is a part of the second term of the local field, the tendency towards

switching strategies strengthen with the total magnetization deviating from zero, which

is a parallel to the equilibrium price of the asset. The further the magnetization (price)

deviates from zero (equilibrium) the more agents will oppose it. In practice, this protects

the model from deviating towards ±1 and stabilizing there while still remaining well in the

logic of how the market works and how the agents behave.

A simple alternative is to have the strategy spin update immediately, which reduces

the local field equation to

hi(t) =
N∑
j=1

JijSj(t)− αSi(t)

∣∣∣∣∣ 1

N

N∑
j=1

Sj(t)

∣∣∣∣∣ , (5)

i.e. it does not depend on the strategy of any spin at all. The second term thus motivates

an agent to change its spin orientation (i.e. the minority game behavior) with an increasing

absolute value of magmetization |M(t)|.

3. Efficient market hypothesis

Efficient market hypothesis (EMH) has been a cornerstone of modern financial eco-

nomics for decades. Even though its validity has been challenged on many fronts, it still

remains the firm theoretical basis of the financial economics theory (Cont, 2001; Malkiel,

2003). In the fundamental paper, Fama (1970) summarizes the empirical validations of the

theoretical papers of Fama (1965) and Samuelson (1965). The theory is revised and made
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clearer in Fama (1991).

From mathematical standpoint, the historical papers (Fama, 1965; Samuelson, 1965)

are more important as they provide specific model forms of an efficient market. Specifically,

Fama (1965) connects the (logarithmic) price process of an efficient market to a random

walk and Samuelson (1965) specifies it as a martingale. Implications for the statistical

properties of the returns process of the efficient market are straightforward. For the for-

mer, the returns are expected to be serially uncorrelated and follow the Gaussian (normal)

distribution, which implies independence. For the latter, only the serial uncorrelatedness is

implied. We thus have two straightforward implications of the market efficiency – (asymp-

totically) normally distributed (for the random walk definition) and serially uncorrelated

(for both random walk and martingale definitions) returns.

In what follows, we focus on the ability of the financial Ising model to generate returns

which would be considered as the returns of the efficient market in the sense of the efficient

market hypothesis. We thus approach the model from a different perspective than majority

of other studies which focus on its ability to mimic the stylized facts about returns and

volatility. Our interest lays in inspecting how the parameters of the model interact with

the assumptions of Gaussian distribution and serial uncorrelatedness of returns. As the

parameters represent local and global coupling of agents, one might expect that none of

these are essential for market efficiency (but rather on the contrary).

4. Simulation setting

We are interested in the ability of the Ising model defined between Eqs. 1-5 to meet the

criteria attributed to the efficient capital market, i.e. normality and serial uncorrelatedness

of returns. To test these, we use the Jarque-Bera test (Jarque and Bera, 1981) and Ljung-

Box test (Ljung and Box, 1978), respectively.

There are two crucial parameters in the model – α and β – which can influence the

prices and returns dynamics emerging from the model. We vary these two parameters and

study how it influences the rejection rate of normality and uncorrelatedness with respective

tests. In other words, we are interested in a proportion of times these tests reject (with a

significance level of 0.90) market efficiency of series generated by the financial Ising model

with specified parameters. Based on findings of previous research (Bornholdt, 2001), we

manipulate α between 0 and 15 with a step of 1 and β between 0 and 4 with a step of

0.25. We fix the time series length to T = 1000 and the number of agents in the market to

N2 = 252 = 625. The neighborhood influence Jij is set equal to 1 for the nearest neighbors
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and the spin’s own position (five spins in total), and 0 otherwise. For each setting, we

perform 100 simulations3. Two specifications are studied – Model I given by Eq. 5, i.e.

with instant strategy spin decision, and Model II given by Eq. 1, i.e. with standard variable

strategy spins.

5. Results and discussion

We examine the effect of different combinations of parameters α and β on the returns

generated from the Ising model, namely its two local field specifications given by Eq. 5

(Model I) and Eq. 1 (Model II). The former model is a simplified version which attributes

a global minority game behavior on all agents (for α > 0) whereas the latter one allows

the agents to switch their global strategy between the minority game and trend following.

Both models keep their local interactions so that their decision is influenced by their nearest

neighbors (for β > 0). For both models and their specifications given by the parameter

setting, we run 100 simulations and for each, we test whether the generated returns are

serially correlated and distributed according to the Gaussian distribution. Fig. 1 illustrates

the results for the “no autocorrelation” null hypothesis of the Ljung-Box test and Fig. 2

shows the results for the “Gaussian” null hypothesis of the Jarque-Bera test for both

models4. For both tests, we present the rejection rate of the test with a significance level

set to 90%, i.e. the proportion of simulations which generate returns inconsistent with the

efficient market hypothesis. The lower the rate (or rather the closer the rate to 0.1), the

closer the model specification simulates the efficient market (with respect to either serial

uncorrelatedness or normality of returns).

As the no serial correlation condition is common for both specifications of the market

efficiency, we start with its results. Fig. 1 summarizes the simulation results for both

models as 3D charts and contour plots for better visualization. We observe that the

outcomes are qualitatively very similar for both models. The plane is practically split into

two which are separated by β = 0.5. Note that this value is close to the critical inverse

temperature βC ≈ 0.441. In both parts, we find a strongly non-linear dependence between

β and the rejection rate. For the models above the critical temperature (below the critical

inverse temperature), we find the minimum rejection rate of around 0.5 for β = 0.25. For

the models below the critical temperature (above the critical inverse temperature), the

3The code in R is available upon request.
4We have tried various options for testing serial correlation and normality and the results remain

qualitatively very similar. We report only these two tests for brevity.
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minimum rejection rate of around 0.4 is found for β = 1.25. For specifications where the

local fields plays no role (β = 0), the null hypothesis of no serial correlation (and thus

the efficient market hypothesis) is rejected in practically all cases. The dependence of the

rejection rate on α is much more straightforward as the higher the α parameter is, the

higher the rejection rate is as well. Even though the relationship is not linear either, it is

monotone. Situations closest to the efficient capital market are thus found for α = 0. The

rejection rates on no autocorrelation hypothesis are in general higher for Model II, i.e. the

model with more heterogeneous agents able to switch their strategy spin.

The results for rejection rates of the Gaussian distribution are much less complex. In

Fig. 2, we find that the rejection rates attain low values only for the inverse temperatures

β below the critical value. Above the critical inverse temperature βC , the rejection rates

quickly jump towards high values. This is true for both specifications of the Ising model

analyzed here, even though the rejection rates are again lower for Model I. These findings

are only mildly dependent on the global coupling parameter α. For Model I, the rejection

rates form a weak U-shape, i.e. the rejection rates are the highest for very low and very

high levels of α, and they remain relatively lower in between. For Model II, the lowest

levels are obtained for 1.5 ≤ α ≤ 3.

The results suggest that the model is able to generate serially uncorrelated and normally

distributed returns only for a rather narrow range of parameters. Interestingly, the serially

uncorrelated returns are found also for β > βC which is a new finding not discussed in

the literature which usually focuses only on β < βC . The model dynamics for the inverse

temperatures above the critical value is thus not as uninteresting as usually claimed. From

the perspective of the Gaussian distribution, though, the inverse temperatures above the

critical one are not interesting.

Let us now focus on the results through the optics of the efficient market hypothesis.

If we focus on the martingale version of the hypothesis, we are interested only in the serial

correlation of returns. For these, we find the minimum rejection rates at {α, β} = {0, 0.25}
and {α, β} = {0, 1.25}. If we stick with the classical interpretation of α and β as the

intensities of the global and the local coupling, respectively, we can argue that the efficient

market is found for no global coupling but some local coupling. The latter part of the claim

is very interesting as it suggests that some form of herding is necessary for the market to

be efficient. For no local coupling with β = 0, the market is identified as inefficient for all

values of α practically always. This is well in hand with an intuitive feeling that markets

would not work if they were completely random, which would be the case for {α, β} = {0, 0}
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when the agents make their decisions on the 50-50 basis. The effect of the global coupling

is rather intuitive as well – the stronger the tendency towards the minority game behavior,

the lower the efficiency. The slight differences between Model I and Model II suggest that

the higher heterogeneity of the agents leads to lower efficiency. When we add the Gaussian

distribution into the mix, the situations when β > βC are gone and we are left only with

the under-critical inverse temperatures which are consistent with the efficient market. The

interpretation as presented above is not touched by this change.

However, there is an alternative way how to interpret the interplay between α and β.

Going back to the definition of the local field in Eq. 1 and the buy-sell decision probability

in Eq. 3, we observe that the β parameter is present only in Eq. 3 and not in Eq. 1.

Its interpretation as the intensity of local coupling (herding) is thus rather far-fetched.

If we take the local field definition as an interaction between the local (first term) and

global (second term) coupling, then the α parameter becomes a weight of how much more

important the global coupling is compared to the local one. The higher the α parameter

is, the more influence the global coupling compared to the local coupling has. If α = 0,

the dynamics is driven solely by the local coupling, and if α � 1, the dynamics is driven

solely by the global coupling. The fact that the generated returns are closer to the efficient

market for low values of α underlines that some level of local interactions goes well in hand

with market efficiency. The high values of α and thus high influence of global coupling

goes directly against market efficiency.

Such interpretations are not much different from the ones made using the standard

interpretation of α and β. However, we are able to make such claims using only one of

the parameters. To look deeper into the interpretation of β, we use the idea presented

in McCauley (2009) who discusses market efficiency in the sense of market clearing, i.e.

clearing of supply and demand, and its connection to entropy of the market. We will refer

to this type of efficiency as the technical efficiency of the market. If market clears perfectly,

it is technically efficient. Going back to the parallel of the original Ising model towards

financial applications, we explore further possible connections between the physics model

and its financial application. In practice, 100% efficiency is impossible. However, the

efficient market hypothesis assumes perfect market clearing and thus the 100% efficiency.

Such level of efficiency suggests that there is no energy loss in the system and as such, the

entropy of the system does not increase (in general, it either increases or keeps its level). If

there is energy coming into the system (i.e. agents take actions), it is only possible to have

no change in entropy if the temperature of the system approaches infinity. This yields zero
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inverse temperature β. For positive inverse temperatures, the system entropy increases

and it is not technically efficient. This gives us a new interpretation of the β parameter in

the financial Ising model.

The results clearly show that the markets are not efficient in the EMH perspective for

β = 0 which is parallel to the perfect market clearing. This suggests that at least some

market frictions are necessary for the market to be efficient. Note that such claim does not

go against completely against the notion of the market efficiency as laid down by Fama

(1970) who states three sufficient conditions for efficient markets – no transaction costs, all

available information freely available to all agents, and all agents agree on implications of

such information and future distributions of the traded assets. However, these are sufficient

and not necessary conditions. As specifically noted by Fama (1970), such assumptions do

not reflect the real financial markets. Violating these assumptions does not necessarily

imply inefficiency but it is a potential source. Our results suggest that not only the frictions

do not always go against efficiency, but they mainly suggest that frictions are needed for

the market to be efficient in the EMH sense. To reach the efficient market, there need to

be frictions.

6. Conclusion

We present a novel approach towards the financial Ising model. Most studies utilize the

model to find settings which generate returns closely mimicking the financial stylized facts

such as fat tails, volatility clustering, volatility persistence, and others. We tackle the model

utility from the other side and look for the combination of parameters which yields return

dynamics of the efficient market in the view of the efficient market hypothesis. Working

with the Ising model, we are able to present nicely interpretable results as the model is

based on only two parameters. Apart from showing the results of our simulation study, we

offer a new interpretation of the Ising model parameters. The main outcomes of our study

are the following. First, there is an important interplay between local interactions and

global coupling. The more the agents lean towards the minority game behavior, the less

efficient the market is. Reversely, the more the local interactions dominate the minority

game influence, the closer the markets are to efficiency. Second, if the dynamics is driven

solely by the local interactions (α = 0), i.e. local herding, the markets are the most efficient.

However, if there is no herding (β = 0) or strong herding (β → βC), the markets become

inefficient as well. Some level of herding is thus necessary for market efficiency. Third, the

technical efficiency of the market in the sense of market clearing is not necessary for market
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efficiency in the sense of EMH. On the contrary, some level of market frictions is essential for

efficient markets. These results shed a new light on the efficient market hypothesis which is

usually presented as a hypothesis with unrealistic assumptions. However, as noted already

by Fama (1970), these assumptions are sufficient but not necessary. We show that in fact

market frictions (to a certain level) and herding behavior of the market participants do

not go against market efficiency but what is more, they are needed for the markets to be

efficient.
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Figure 1: Rejection rates of no serial correlation hypothesis for Model I according to Eq.
5 and Model II according to Eqs. 1 and 4. Parameter α varies between 0 and 15 with a
step of 1, and parameter β between 0 and 4 with a step of 0.25. Other parameters are set
at T = 1000 and N = 25, neighborhood interactions Jij are set to the nearest neighbors
and the spin itself with a weight of 1, and 0 otherwise. We provide a 3D view as well as
the contour plot for better visualization.
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Figure 2: Rejection rates of the Gaussian distribution hypothesis for Model I according to
Eq. 5 and Model II according to Eqs. 1 and 4. Parameter α varies between 0 and 15 with
a step of 1, and parameter β between 0 and 4 with a step of 0.25. Other parameters are set
at T = 1000 and N = 25, neighborhood interactions Jij are set to the nearest neighbors
and the spin itself with a weight of 1, and 0 otherwise. We provide a 3D view as well as
the contour plot for better visualization.
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