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Abstract

The performance of information criteria and tests for residual heteroskedasticity
for choosing between different models for time-varying volatility in the context
of structural vector autoregressive analysis is investigated. Although it can be
difficult to find the true volatility model with the selection criteria, using them is
recommended because they can reduce the mean squared error of impulse response
estimates substantially relative to a model that is chosen arbitrarily based on the
personal preferences of a researcher. Heteroskedasticity tests are found to be useful
tools for deciding whether time-varying volatility is present but do not discrimi-
nate well between different types of volatility changes. The selection methods are
illustrated by specifying a model for the global market for crude oil.
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1 Introduction

Following the seminal publication by Engle (1982), time-varying volatility in time
series data has received increasing attention. It has been diagnosed in many time
series and it is taken into account to improve inference, for risk analysis and for
economic studies not only in univariate but also in multivariate time series models.
Engle introduced ARCH (autoregressive conditional heteroskedasticity) processes
for modelling time-varying volatility. In the meantime a range of alternative mod-
els for conditional as well as unconditional heteroskedasticity have been developed
to capture various volatility patterns. For applied work this raises the question
which model is best suited for a given volatility pattern.

So far the choice of a volatility model is often not well justified. It is sometimes
dictated by convenience, the preferences of the analyst or it is based on ad hoc
criteria with unclear implications for the objective of the analysis. Hence, it is
clearly desirable to better understand the implications of choosing a specific model
for the time-varying volatility and the second moment structure of a time series
variable or set of variables more generally.

An improved understanding of the choice of the model for the second moment
structure of a time series is best considered in the context of a specific mod-
elling and analysis framework. A number of studies have compared the forecasting
ability of univariate volatility models (e.g., Hansen and Lunde (2005), Becker and
Clements (2008), and Caporin and McAleer (2012)). The performance of multivari-
ate volatility models has been studied with the objective of covariance forecasting
or risk assessment in mind (e.g., Caporin and McAleer (2011), Laurent, Rombouts
and Violante (2012), and Becker, Clements, Doolan and Hurn (2015)). Some of
these studies are based on specific data sets and may be difficult to generalize.
Moreover, some studies compare GARCH type models only.

A crucial issue in comparisons of volatility models is the metric used for the
comparison. In the present study, we focus on structural vector autoregressive
(SVAR) analysis. In that framework alternative models for time-varying volatil-
ity have been used to support the identification of structural shocks. Therefore
we focus in this study on choosing an appropriate volatility structure for vector
autoregressive (VAR) models with the specific objective of SVAR analysis in mind.

The volatility models that have been used in this context range from simple
exogenous jumps in the residual variance (Rigobon (2003), Lanne and Lütkepohl
(2008)) or a smooth transition between different volatility states (Lütkepohl and
Netšunajev (2014b)) to more sophisticated GARCH processes (Normandin and
Phaneuf (2004), Bouakez and Normandin (2010)) and Markov switching mecha-
nisms (Lanne, Lütkepohl and Maciejowska (2010), Herwartz and Lütkepohl (2014)).
In some of the related literature even competing models are applied to the same
data and it is unclear which of them best describes the time-varying volatility of
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a given system of variables (see, e.g., Lütkepohl and Netšunajev (2017)). In such
a situation having objective criteria that facilitate the selection of a model would
be desirable. At the same time, however, little is known about the consequences
of selecting a specific volatility model for parameter estimation and inference.

The objective of this study is to compare different procedures that discriminate
between competing volatility models and to determine which ones are most helpful
in deciding on a volatility model for SVAR analysis. We investigate how the choice
of a model affects the outcome of the structural analysis and use evaluation criteria
for model selection that are based on inference for impulse response analysis which
is often the objective of SVAR analysis.

For this purpose we perform the following experiment. We generate time series
with different types of volatility changes and then fit a set of different models that
allow for changing volatility. These models are compared with different specifica-
tion tests and model selection criteria. The goal is to determine which tests or
criteria are best suited for finding the process that has actually generated the data
and to investigate the impact of model selection on the structural parameters of
interest.

We find that tests for heteroskedasticity are useful tools for detecting time-
varying volatility but are less useful for deciding on a specific model type. We
compare three standard information criteria for selecting the specific volatility
model and find that it depends on the DGP how successful they are in selecting
the correct model. Overall Akaike’s AIC has a slight advantage over the other
criteria in selecting the correct model. The models chosen by AIC also tend to
provide impulse response estimates with relatively small mean squared errors. Any
one of the criteria is better in this respect than choosing some volatility model by
convenience or the subjective preferences of the analyst. Hence, it is recommended
to use information criteria to support the selection of a suitable volatility model.
We illustrate our selection strategy with a VAR model for the global market for
crude oil from Kilian (2009).

The remainder of this study is organized as follows. The next section presents
the general model setup and reviews four common volatility models that have
been used in the related literature and that are compared in the simulation study.
Section 3 gives an overview of the different tools for model selection. In Section 4
the setup of the Monte Carlo study is outlined and the results of the simulation
study are discussed in Section 5. The empirical illustration is presented in Section
6 and Section 7 concludes.
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2 The Model Setup and the Volatility Models

2.1 Model Setup

We assume that the data generation process (DGP) is a vector autoregressive
process of order p (VAR(p)) of the form

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where yt = (y1t, . . . , yKt)
′ is a vector of observable variables, the Ai are K × K

coefficient matrices, ν is a K × 1 constant term and the ut are K-dimensional
serially uncorrelated, heteroskedastic or conditionally heteroskedastic residuals.

The process is assumed to be stable such that

det(IK − A1z − · · · − Apz
p) 6= 0 for |z| ≤ 1, z ∈ C.

This condition implies that yt has a Wold moving average representation

yt = µ+
∞∑
i=0

Φiut−i.

The underlying structural innovations of the DGP, εt, can be retrieved from
(1) by a linear transformation of the residuals ut,

εt = B−1ut or ut = Bεt, (2)

where εt are the structural innovations. If the ut have a time-invariant covariance
matrix Σu, and the εt are independently and identically distributed with vari-
ances standardized to unity, i.e., εt ∼ iid(0, IK), it follows that B must be such
that BB′ = Σu. In a conventional homoskedastic setting this structural model
is referred to as a B-model in some of the structural VAR literature (see, e.g.,
Lütkepohl (2005)). In this model the elements of the matrix B can be interpreted
as the instantaneous effects or impact effects of the structural innovations on the
observed variables yt.

Often it is convenient to restrict the elements of the main diagonal of B−1

to unity and leave the variances of the structural innovations unrestricted, i.e.,
Σu = BΣεB

′, where Σε = E(εtε
′
t). This model corresponds to a structural form

B−1yt = ν∗ + A∗1yt−1 + · · ·+ A∗pyt−p + εt,

where ν∗ = B−1ν and A∗i = B−1Ai for i = 1, . . . , p. It is occasionally referred to
as the A-model and we will also use this terminology in the following.

For both types of models the structural impulse responses are obtained as the
elements of the matrices Θi = ΦiB, i = 0, 1, . . . . More precisely, the klth element
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of Θi, denoted by θkl,i, is interpreted as the response of variable k to the lth struc-
tural shock after a propagation horizon of i periods. Notice that for the B-model
the structural impulse responses have a size of one standard deviation because
the structural shocks have standard deviation 1 in a conventional homoskedastic
setting. On the other hand, for the A-model the size of the impulse responses is
one unit which is not normally equal to the standard deviation of the structural
shocks. This distinction is important later because the impulse responses based
on the A-model do not explicitly require an estimate of the structural innovation
variances which may be an advantage when the variance is not time-invariant.

2.2 Volatility Models

In our comparison we consider a range of different models for heteroskedasticity
or conditional heteroskedasticity which have all been used in SVAR analysis.

Exogenous Volatility Changes

In the first model for time-varying volatility, the covariance changes are assumed
to occur at prespecified break dates,

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (3)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility regimes
of consecutive time periods. The Tm, for m = 1, . . . ,M − 1, represent the time
periods of volatility changes with T0 = 0 and TM = T . The change points Tm
may be predetermined by some statistical procedure. Under the assumption of
a constant instantaneous impact effects matrix B, for each volatility regime a
decomposition

Σu(m) = BΛmB
′, (4)

exists, where Λ1 = IK and Λm = diag(λ1,m, . . . , λK,m) (m = 2, . . . ,M) are diagonal
matrices with strictly positive elements that can be interpreted as the changes of
the variances of the structural innovations in regime m relative to the first regime.
Lanne et al. (2010) state the conditions under which the decomposition in (4) is
(locally) unique and, hence, the structural parameters B and Λ are identified.

Assuming Gaussian residuals ut, the log-likelihood function is

log l(β,σ) = −KT
2

log 2π − 1

2

T∑
t=1

log det(Σt)−
1

2

T∑
t=1

u′tΣ
−1
t ut, (5)

where β = vec[ν,A1, . . . , Ap] and σ contains all unknown covariance parameters.
Thus, estimation by maximum likelihood (ML) of the model is straightforward.
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In the simulation study we consider models with M = 2 volatility states. To
find the breakpoint T1, we fit a model allowing for one break point in the range of
[0.15T , 0.85T ] and pick the model with the highest log-likelihood. Note, that this
procedure adds another parameter that has to be accounted for in the calculation
of information criteria for example.

Smooth Transition in Variances

As an alternative to a shift in the variances at some points in time, one may
model the change in the residual covariance matrix as a smooth transition from a
volatility regime with a positive definite covariance matrix Σu(1) to a regime with
Σu(2) such that

E(utu
′
t) = Σt = (1−G(γ, c, st))Σu(1) +G(γ, c, st)Σu(2), (6)

where the transition function

G(γ, c, st) = (1 + exp[− exp(γ)(st − c)])−1

is a logistic function that depends on the smoothness parameter γ, the location
parameter c and a transition variable st. In our setup, small values of the smooth-
ness parameter γ imply a slow, gradual transition from one volatility regime to the
other. When the smoothness parameter becomes very large, however, the tran-
sition resembles a step function with a discrete change between volatility states.
A locally unique decomposition of the reduced form covariance matrices such as
displayed in (4) is obtained if Σu(1) = BB′ and Σu(2) = BΛB′, where the diagonal
matrix Λ = diag(λ1, . . . , λK) has distinct, strictly positive values λk (k = 1, . . . , K).
This model was proposed and used by Lütkepohl and Netšunajev (2014b) in the
context of SVAR analysis.

For Gaussian ut, the log-likelihood can be written as in (5). It is now a function
of the transition parameters as well. An iterative procedure for estimation is
discussed in detail by Lütkepohl and Netšunajev (2014b). Since the range of the
smoothness and threshold parameters {γ, c} can be bounded, a grid search can be
performed over the relevant range of these two parameters.

Markov Switching in Covariances

Alternatively, the volatility changes may be generated by a discrete Markov process
st (t = 0,±1,±2, . . . ) with states 1, . . . ,M , and transition probabilities pij =
Pr(st = j|st−1 = i) (i, j = 1, . . . ,M). The distribution of ut is assumed to be
Gaussian conditionally on st and has a state dependent covariance matrix,

ut|st ∼ N (0,Σu(st)). (7)
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Decomposing the residual covariance matrices as in (4), (local) uniqueness of B
holds under the conditions stated in Lanne and Lütkepohl (2008). The model was
first proposed for SVAR analysis by Lanne et al. (2010). It has been used in a
range of applied SVAR studies including Velinov and Chen (2015), Lütkepohl and
Netšunajev (2014a), and Lütkepohl and Velinov (2016).

The parameters of the model can be estimated by ML. The log-likelihood func-
tion is

log l(β,σ, P ) =
T∑
t=1

log

(
M∑

m=1

Pr(st = m|Yt−1)f(yt|st = m,Yt−1)

)
, (8)

where P = [pij] is the (M × M) matrix of transition probabilities, Yt−1 =
(y′t−1, . . . , y

′
t−p)

′ and

f(yt|st = m,Yt−1) = (2π)−K/2(det Σu(m))−1/2 exp

{
−1

2
u′tΣu(m)−1ut

}
.

Optimization of the log-likelihood is difficult because (i) it is unbounded so that
there is no global maximum and a suitable local maximum has to be found, (ii) it
is highly nonlinear and has multiple local optima, (iii) the label-switching problem
has to be overcome, which arises if the ordering of the regimes changes in the course
of the optimization. A feasible procedure for estimation of the Markov switch-
ing model based on the EM algorithm was proposed by Herwartz and Lütkepohl
(2014). It is the method used for estimating Markov switching SVAR models in
our simulations reported later in this study. When using the model, the number
of volatility states, M , has to be specified by the analyst.

Multivariate GARCH

Multivariate GARCH processes offer yet another possibility to model time-varying
volatility. Many different proposals for parametrizing multivariate GARCH pro-
cesses are available in the literature (e.g., Bauwens, Laurent and Rombouts (2006),
Silvennoinen and Teräsvirta (2009)). In the context of SVAR analysis the GO-
GARCH specification proposed by van der Weide (2002) specified as

E(utu
′
t|Ft−1) = Σt|t−1 = BΛt|t−1B

′, (9)

is typically used. Here Ft denotes the information available at time t,

Λt|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1)

is a diagonal matrix with univariate GARCH(1,1) diagonal elements,

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−j + gkσ

2
k,t−j|t−j−1, k = 1, . . . , K, (10)
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where εk,t = b∗kut and b∗k is the kth row of B−1 (k = 1, . . . , K). Moreover, gk ≥ 0,
γk > 0, gk + γk < 1 (k = 1, . . . , K). The model has been proposed and used for
SVAR analysis by Normandin and Phaneuf (2004) and Bouakez and Normandin
(2010), for example. Identification conditions for uniqueness of B are stated in
Sentana and Fiorentini (2001) and Milunovich and Yang (2013).

The setup of the model implies an unconditional residual covariance matrix

E(utu
′
t) = Σu = BB′.

Under Gaussian assumptions for the εk,t the log-likelihood of the model is

log l =
T∑
t=1

log ft|t−1(yt),

where the conditional densities have the form

ft|t−1(yt) = (2π)−K/2 det(Σt|t−1)
−1/2 exp

(
−1

2
u′tΣ

−1
t|t−1ut

)
. (11)

The log-likelihood function is highly nonlinear which makes the maximization and,
thus, ML estimation of the GARCH parameters and the impact effects matrix B
numerically challenging. In the simulation study we use a two-step algorithm for
ML estimation described by Lanne and Saikkonen (2007). In the first step the
estimation procedure is broken down in univariate GARCH estimations to get
initial estimates of the parameters of the volatility model and in the second step a
full, joint ML estimation of the parameters is performed starting from the initial
estimates obtained in the first step.

Model Selection

For a given set of time series it is often not clear which model best describes the
volatility changes. Sometimes subject matter consideration may suggest that one
model is more plausible than another one. In practice, the choice may be arbitrary
to some extent and perhaps driven by convenience or the subjective preferences
of the analyst. Having more systematic procedures for deciding on the specific
volatility model is desirable. It should also be noted that actual changes in the
volatility observed in plotted residuals from all the models can look similar and,
hence, purely subjective eye-balling criteria are problematic. In the next section
some statistical tools for model selection and model comparison are considered.

3 Tools for Model Comparison

In this section two alternative strategies for comparing different volatility models
are presented. One possibility is to choose the volatility model that optimizes some
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model selection criterion. The second approach is to check whether the chosen
model wipes off all the volatility changes in the residuals or leaves some remaining
heteroskedasticity or conditional heteroskedasticity in the residuals. Obviously, a
model that accounts for all volatility changes is preferable to one that cannot fully
account for the heteroskedasticity in the data. Standard model selection criteria
are presented first for model comparison and then a couple of diagnostic tests for
remaining GARCH are presented.

3.1 Model Selection Criteria

Since Gaussian ML estimation or quasi ML estimation is possible for all the models
considered in the previous section, likelihood based information criteria for model
comparison can be used. For example, the AIC criterion (Akaike (1974)),

AIC = −2 log l + 2× no of free parameters,

the Hannan-Quinn criterion (Hannan and Quinn (1979)),

HQ = −2 log l + 2 log log(T )× no of free parameters,

or the Bayesian criterion proposed by Schwarz (1978),

BIC = −2 log l + log(T )× no of free parameters,

are standard criteria, some of which have been used also for choosing between
volatility models (e.g., Lütkepohl and Netšunajev (2017)). However, so far little
is known about the suitability for choosing between different volatility models for
SVAR analysis.

Clearly, the best model chosen with one of these criteria is not necessarily a
good model in the sense that it captures all the volatility changes in a given set of
time series. To make sure there is no left-over heteroskedasticity one may consider
applying diagnostic tests, as presented in the next subsection.

3.2 Diagnostic Tests

If the (conditional) heteroskedasticity is fully captured by the (conditional) covari-
ance matrix Σt (Σt|t−1), then the standardized residuals,

ust = Σ
−1/2
t ut (Σ

−1/2
t|t−1ut)

should be free of heteroskedasticity or conditional heteroskedasticity. Hence, stan-
dard GARCH tests can be applied to investigate whether a specific model has
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cleaned the residuals from volatility changes. A model is rejected for SVAR anal-
ysis if it leaves heteroskedasticity in the residuals. The tests can also be used to
investigate whether there are volatility changes in the original reduced form resid-
uals ut. Tests based on the following statistics can be considered (see Lütkepohl
and Milunovich (2016) for details on the theoretical underpinning).

Univariate autocovariances A test statistic can be based on univariate auto-
covariances of squared residuals,

Q1(H) = T
H∑
j=1

[γ̃(j)/γ̃(0)]2, (12)

where

γ̃(j) = T−1
T∑

t=j+1

ξtξt−j,

and

ξt = us′t u
s
t − T−1

T∑
i=1

us′i u
s
i .

The statistic has a χ2(H) distribution if the standardized residuals are not
conditionally heteroskedastic.

Multivariate autocovariances Alternatively, a test can be based on multivari-
ate autocovariances,

Q2(H) = T
H∑
j=1

tr[Γ̃(j)′Γ̃(0)−1Γ̃(j)Γ̃(0)−1], (13)

where

Γ̃(j) = T−1
T∑

t=j+1

ϑtϑ
′
t−j for j = 0, 1, . . . ,

Γ̃(j) = Γ̃(−j)′ for j < 0, and

ϑt =vech(ustu
s′
t )− T−1

∑T
i=1vech(usiu

s′
i ).

Here vech denotes the half-vectorization operator. The statistic has an
asymptotic χ2

(
1
4
HK2(K + 1)2

)
distribution under the null hypothesis of

no remaining conditional heteroskedasticity.
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LM statistic A third option is an LM statistic based on the regression

ηt = δ0 +D1ηt−1 + · · ·+DHηt−H + wt, (14)

where ηt = vech(ustu
s′
t ), δ0 is a 1

2
K(K + 1)-dimensional fixed vector, the Di,

i = 1, . . . , H, are 1
2
K(K + 1)× 1

2
K(K + 1) parameter matrices and wt is an

error term. The LM statistic for testing the null hypothesis

H0 : D1 = · · · = DH = 0

is

LM(H) = 1
2
TK(K + 1)− T tr[Σ̃wΓ̃(0)−1], (15)

where Σ̃w is the estimated residual covariance matrix of (14). The LM statis-
tic also has an asymptotic χ2

(
1
4
HK2(K + 1)2

)
distribution if the standard-

ized residuals are free of ARCH.

In practice, the standardized residuals are, of course, replaced by estimated resid-
uals in all these test statistics.

4 Design of Monte Carlo Comparison

4.1 DGPs

To investigate the relative merits of the alternative approaches of choosing between
different volatility models, we perform a simulation experiment based on a range
of different types of bivariate DGPs, i.e., K = 2. The conditional mean part of
the model is a VAR(1) process of the form

yt = ν + A1yt−1 + ut (16)

with ν = 0. For given A1 and starting value y0 = (0, 0)′ we generate the data by
drawing the residuals ut from distributions characterized by the following types of
volatility processes:

Heteroskedastic DGP: ut ∼ N (0,Σt) are generated with

Σt =

{
BB′ for t = 1, . . . , 0.5T,
BΛB′ for t = 0.5T + 1, . . . , T,

where the specific values used for the structural parameters B and Λ =
diag(λ1, λ2) are discussed below.
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Smooth Transition DGP: We choose our transition variable st to be time,
st = t (i.e., st = 1, . . . , T ), and set the smoothness parameter γ = −3 such
that a rather smooth transition is ensured between the volatility regimes in
order to differentiate the process from a heteroskedastic DGP. Note, that
holding γ constant leads to transition functions whose exact shape depends
on the sample size T . The location parameter c is set to 0.5T such that
the transition from one state to the other occurs in the center of the sample
period. The covariance matrices Σu(1) = BB′ and Σu(2) = BΛB′ depend
on the specific structural parameters B and Λ used. The ut are generated
by drawing from an N (0,Σt) distribution with

Σt = (1−G(γ, c, t))Σu(1) +G(γ, c, t)Σu(2). (17)

Markov Switching DGP: The Markov process has two states and a matrix of
transition probabilities

P =

[
.9 .1
.2 .8

]
.

The states s1, . . . , sT , st ∈ {1, 2}, are first generated with these transition
probabilities and then the ut (t = 1, . . . , T ) are generated by drawing from
N (0,Σst) distributions with Σ1 = BB′ and Σ2 = BΛB′.

GARCH DGP: In order to generate GARCH residuals, we first generate bivari-
ate standard normal variates, (e1t, e2t)

′ ∼ N (0, I2), and

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, 2,

where εk,t = ek,tσk,t|t−1 for t = 1, . . . , T . Finally, the ut = BΛ
1/2
t|t−1et are

generated, where Λt|t−1 = diag(σ2
1,t|t−1, σ

2
2,t|t−1). Thereby, the unconditional

covariance matrix of ut is Σu = BB′. We use GARCH parameters (γ1, g1) =
(0.1, 0.85)′, and (γ2, g2) = (0.05, 0.92). The choice of the GARCH parameters
ensures rather persistent volatility patterns as they are often observed in
practice (see, e.g., Bouakez and Normandin (2010, Table 1)).

In our baseline specification we set

B =

[
1 0
−1 10

]
, Λ =

[
2 0
0 7

]
, A1 =

[
0.2 0.1
0.1 0.4

]
. (18)

The choice of B is motivated by two considerations. First, we restrict the upper
right element of the matrix to zero (b12 = 0) to be able to compare the outcomes
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of the volatility models with a recursive model that ignores time-varying volatility
in the residuals.

Second, we choose a distinguishable sign pattern for the two columns of B as
well as distinct magnitudes of its diagonal elements. Thus, we are able to induce a
unique ordering of the estimated B matrices that corresponds with the true values
of B.2 The elements of Λ are chosen such that the volatility regimes are clearly
distinct. The magnitudes of the values for Λ in (18) are well in line with estimates
in the applied literature (see, e.g., Lütkepohl and Netšunajev (2017, Table 2)). The
VAR coefficient matrix A1 is chosen such that the system is stable (stationary).

4.2 Fitted Models

We fit VAR(1) models with intercept and all four competing volatility models from
Section 2 plus a recursively identified VAR(1) model to all the series:

H-VAR: A heteroskedastic VAR(1) model with one change point in the residual
covariance is fitted without assuming the change point. The change point is
estimated as explained in Section 2.

ST-VAR: VAR(1) models with smooth transition in the residual covariance ma-
trices are fitted by the ML procedure described in Section 2.

MS-VAR: VAR(1) models with volatility changes generated by a Markov switch-
ing mechanism with two volatility states are fitted by the ML or quasi ML
procedure mentioned in Section 2.

GARCH-VAR: A VAR(1) with GO-GARCH is fitted by Gaussian ML or quasi
ML.

Plain VAR denotes a plain VAR(1) model fitted by equationwise least squares
without allowing for heteroskedasticity or conditional heteroskedasticity.

We fit all these models to all series regardless of the true DGP and compare
them with the model selection criteria, AIC, HQ and BIC. We also apply diag-
nostic tests to investigate which model is most suitable for capturing the volatility

2Since the B matrix is identified only up to column sign and column permutations, some
ordering of the columns is necessary and in the absence of an economically justified ordering,
for data generated by the heteroskedastic DGP, the smooth transition DGP and the Markov
switching DGP, we order the associated estimated models with respect to the size of the elements
of Λ, where the smallest element is placed in the upper left corner and the columns of B are
ordered accordingly. For the models fitted to the GARCH DGP and the estimated GARCH
model for all DGPs, however, we normalize the estimated B to have positive entries on the main
diagonal and place its largest element in the lower-right corner.
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changes and to see whether the model selection criteria are able to properly de-
tect models that remove the time-varying volatility. Later, we turn to impulse
response functions to assess the consequences of model selection on estimates of
these quantities. The number of replications for each simulation design is 500.
The simulations are performed for sample sizes of T = 100, 200 and 500.

5 Results of the Monte Carlo Study

5.1 Properties of Information Criteria

For each simulation round we compute and compare the information criteria for
all estimated models and select the model that minimizes the respective criterion.
The relative selection frequencies are shown in Tables 1 - 4 for the four different
DGPs. The following observations emerge from the tables.

(1) The chances of finding the correct DGP by one of the information criteria
depends on the underlying DGP and the sample size. For example, the
heteroskedastic DGP is reliably detected by all three criteria even for samples
as small as T = 100 (Table 1), whereas the Markov switching DGP is only
selected with high probability when T = 200 or greater (Table 3), and the
GARCH DGP is found in less than 80% of the replications even for T = 500
(Table 4). For the DGPs that pose more difficulties for the information
criteria, the chances to pick the correct one increases with the sample size.

(2) AIC is overall the most successful criterion in selecting the correct volatility
process. In Tables 1 - 4 it finds the correct DGP with the highest frequency
for all sample sizes, although the selection frequency of the correct DGP may
still be low.

(3) Some DGPs are difficult to disentangle. For example, the smooth transition
DGP is difficult to distinguish from a heteroskedastic DGP, as can be seen in
Table 2. Even for T = 200 all three criteria choose the heteroskedastic DGP
with a higher frequency than the true smooth transition DGP. However,
this finding is in line with the known difficulties of precisely estimating the
parameter γ which governs the smoothness of the transition between the two
regimes of the ST-VAR (see, e.g., van Dijk, Teräsvirta and Franses (2002)).

In addition to the results shown in Tables 1 - 4, we have also performed the
simulation experiment without including the plain VAR model in the competition.
Excluding the plain VAR model, i.e., selecting only from models with time-varying
volatility, in general does not lead to a higher detection rate of true models (the
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results are not shown). When the plain VAR model is excluded, the selection
criteria select the H-VAR model more often instead.

Summarizing, the AIC, HQ and BIC information criteria are reliable indicators
for sorting out the underlying processes in some situations: While a heteroskedastic
DGP is reliably detected, the sample size must be sufficiently large to correctly
find volatility patterns generated by the smooth transition DGP and the Markov
switching mechanism. All three criteria have difficulties detecting the GARCH
DGP even for relatively large samples of size T = 500.

Not surprisingly, the tendency to completely ignore the volatility pattern in
the data by choosing the plain VAR model decreases with increasing sample size
and vanishes for all DGPs for T = 500 except for the GARCH DGP. For all DGPs
and sample sizes, the AIC outperforms the other criteria in its ability to correctly
detect the underlying DGP.

5.2 Diagnostic Tests for Left-Over Heteroskedasticity

Relative rejection frequencies at the 5% significance level of the three ARCH tests
described in Subsection 3.2 for all DGPs when a plain VAR model or the model
selected by an information criterion is fitted are displayed in Table 5. We test for
low (H = 1) and higher order ARCH up to an order of H = 5 and present the
rejection frequencies in the table.

The three alternative tests yield similar results and no systematic pattern in
favour of one of the three tests is apparent. They all have power against the time-
varying volatility generated by the four DGPs, as seen by looking at the plain VAR
models. The power tends to be higher for H = 5 and increases with the sample
size, reaching high values for T = 500. Even for such large samples the power
is not perfect for some of the DGPs, however. Still, the tests are useful tools to
support a decision of whether time-varying volatility is present or not.

Considering the models selected by the information criteria, it turns out that
the tests have rejection rates closer to the 5% significance level than for the plain
VAR models. In particular, the models selected by AIC wipe off much of the
time-varying volatility in the residuals even if the selected models are not the true
DGPs. The rejection rates are typically slightly larger for the more parsimonious
criteria HQ and BIC. They are still considerably smaller than for the plain VAR
models, however. To some extent this confirms that the information criteria do a
good job in selecting reasonable models for capturing the time-varying volatility.
The AIC is somewhat superior to HQ and BIC in this respect.

We have also applied the tests to the residuals of each of the models when
fitted regardless of the DGP. Although the tests indicate that there is left-over
heteroskedasticity, they are not helpful in discriminating between different DGPs.
Therefore we do not show detailed results.
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The overall conclusions from our simulation experiments for the tests for left-
over heteroskedasticity are that they are useful tools for deciding about the pres-
ence of time-varying volatility in the residuals but not for discriminating between
specific models. They confirm that the information criteria AIC, HQ and BIC all
select models that capture the volatility changes in a set of time series at least to
some extent. AIC is best in this respect.

5.3 Implications for Structural Analysis

So far we have discussed the ability of information criteria to discriminate correctly
between different models for time-varying volatility and point to the correct under-
lying DGP. It is also of interest to determine the implications of model selection
for the estimation precision of structural impulse responses if impulse response
analysis is the ultimate objective.

In this section we investigate the properties of the estimated structural impulse
responses obtained from the models with time-varying volatility when identifica-
tion through heteroskedasticity is used. We fit all the models and estimate the
impulse responses also from the wrong models to see how much estimation pre-
cision is lost by fitting a false volatility model. Alternatively, we use information
criteria to choose a model among the models allowing for time-varying volatility.
The idea is that a researcher who finds time-varying volatility in the data decides
to use that feature for identifying structural shocks. S/he may decide to use a
specific volatility model or to apply model selection criteria for making a choice
on the volatility model.

We also compare the impulse response estimates obtained by identification
through heteroskedasticity with those from a plain VAR model that ignores het-
eroskedasticity. For the impulse responses from plain VAR models a recursive
identification is assumed because identification through heteroskedasticity is not
an option in this case. Obviously, by construction the recursively identified struc-
tural VAR model has an advantage over the models identified by heteroskedasticity
because the recursively identified model imposes a true restriction on the struc-
tural parameters. Thus, we give a clear advantage to the plain VAR model in our
simulations. Its handicap is the ignorance to changing volatility.

To evaluate the estimation precision of the impulse responses, we calculate
the cumulated mean squared errors (MSEs) of the impulse response functions
relative to the impulse response functions estimated from the true DGP. We do
not restrict the analysis to the instantaneous effects matrix, B, but focus on the
first five estimated impulse responses. Thereby we capture at least to some extent
estimation efficiency losses and gains for the VAR slope parameters as well. More
precisely, the MSE of the impulse response functions up to horizon h for variable
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k induced by shock l is calculated as

MSEh(θkl,•) =
h−1∑
i=0

(
1

S

S∑
s=1

(θkl,i − θ̂kl,i(s))2
)
, (19)

where θ̂kl,i(s) denotes the estimate of the structural impulse response θkl,i obtained
in the sth replication of our simulation experiment.

Tables 6 - 9 display the results of the simulation experiment. The impulse
response functions based on the B-model involve estimating the innovation vari-
ance given that the size of a structural shock is of size one standard deviation in
one of the volatility regimes. In contrast, the structural impulse responses based
on the A-model do not directly involve an estimate of the residual variance. The
corresponding relative MSEs are shown in the right-hand columns of the tables.
The following main conclusions can be drawn from the results in the tables.

(1) Leaving aside the plain VAR model, the estimated DGP typically results in
the smallest MSEs. The smooth transition DGP is the only exception to
this rule. For that DGP the impulse response estimates obtained from an
H-VAR model can, in fact, be smaller than those from the true model if the
sample size is not very large (see Table 7). Of course, this result is driven by
the very simple volatility change in the smooth transition DGP which can
be captured well by an H-VAR model.

(2) Using model selection criteria is better in terms of MSE than choosing an
arbitrary model by convenience or personal preference. This result holds in
particular for larger samples of size T = 200 or 500. For example, if the
true DGP is the Markov switching DGP and the sample size is T = 200
or T = 500, trying to model the volatility changes by a GARCH process
because such a model is quite common if volatility changes are detected, one
would obtain much less precise estimates of the structural impulse responses
than from the models recommended by the information criteria (see, e.g.,
Table 8). In fact, for T = 500, we have seen in Table 3 that all information
criteria always select the model correctly. Hence, the corresponding relative
MESs in Table 8 are all 1.

(3) Among the model selection criteria, AIC tends to result in the smallest MSEs
and BIC delivers the largest values. Although it depends to some extent on
the DGP and the sample size which criterion provides the best MSEs, if AIC
does not provide the smallest MSEs, its MSEs are usually very close to the
smallest ones among the information criteria. In most cases the MSEs of all
three information criteria are close together.
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(4) Ignoring heteroskedasticity or conditional heteroskedasticity can lead to sub-
stantial inefficiencies for the impulse response estimates in the B-model but
tends to improve estimation efficiency in the A-model if the true model is
recursive and this fact is known to the researcher (see the relative MSEs of
the plain VAR model in Tables 6 - 9). The remarkably small MSEs of the
plain VAR models when set up as A-models is, of course, partly driven by
the different identification strategy used for these models. While the struc-
tural parameters, B, are identified by the changes in volatility in the other
models, identification for the plain VAR model is obtained by imposing the
correct recursive structure. In practice, the correct structural identification
conditions are typically not known and this may be the reason for consider-
ing identification through heteroskedasticity. Therefore using the plain VAR
model may not be an option. If it can be used, setting it up as an A-model
is much better than considering the B-model if heteroskedasticity or con-
ditional heteroskedasticity is present. For the GARCH DGP ignoring the
time-varying volatility implies, in fact, smaller MSEs for the structural im-
pulse responses even for the B-model. Thus, having the correct identifying
information is more beneficial than knowing the true volatility process.

(5) When identification through heteroskedasticity is used, the A-model does not
have a clear advantage over the B-model. In particular, if the true DGP is
unknown and information criteria are used for picking a volatility model, the
B-model may lead to similar estimation precision for the structural impulse
responses as the A-model (see, e.g., the results for the GARCH DGP in Table
9).

The main message from these results is that in the presence of time-varying
volatility, using the A-model is preferable to using the B-model setup if the model is
recursive and correct identifying restrictions are available. If identification through
heteroskedasticity is considered, the distinction between A- and B-models is less
clear and it is recommended to use AIC for selecting the volatility model rather
than making an arbitrary choice.

6 Empirical Example

To illustrate the selection of a volatility model for a structural VAR analysis we use
an example from Lütkepohl and Netšunajev (2014a) who consider a model for the
global market for crude oil from Kilian (2009) with the following three variables:
percent change in global crude oil production (∆prodt), a log detrended index of
real economic activity (qt), and the log of the real price of oil (pt). Thus, yt =
(∆prodt, qt, pt)

′. The same set of variables is also used in a structural VAR study
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by Kilian and Murphy (2012) without allowing for heteroskedasticity. Lütkepohl
and Netšunajev (2014a) fit MS-VAR(3) models to monthly data for the period
1973m2 - 2006m12. Hence, the sample size is T = 404. Their preferred model has
three volatility states and is signified as MS(3)-VAR(3) model. They perform a
structural analysis with that model.

We apply the same ordering of the variables as Kilian (2009) for the recursive
identification of a plain structural VAR(3) model. The reduced-form residuals of
this model are plotted in Figure 1. They display clear changes in volatility. The
residuals of the oil production equation are much more volatile in the first part
of the sample while the oil price residuals are substantially more volatile in the
later sample period. Although the graphs contain a clear message already, we
have performed our ARCH tests from Section 3.2 and show the results in Table
10. Clearly, all diagnostic tests have very small p-values and, hence, indicate
time-varying residual volatility. Thus, allowing for this feature in the model is
desirable.

The question is, however, whether modelling the change in volatility by a
Markov switching mechanism is preferable to other volatility models. We have
fitted a range of other volatility models and present the corresponding model se-
lection criteria in Table 11, where we signify a heteroskedastic VAR(3) model
with m changes in variance as H(m)-VAR(3) and the transition variable for the
ST-VAR(3) model is st = t as in the simulations.

In Table 11 we present all three criteria for all the models and it turns out
that the MS(3)-VAR(3) model minimizes all the criteria simultaneously. Thus,
it is clearly the preferred model. It is also interesting to note that the criteria
are maximized for the plain VAR model. In other words, any one of the models
accounting for changing volatility is preferred to a model that does not allow
for heteroskedasticity. Of course, this result is not surprising given the residual
series displayed in Figure 1. It is also worth pointing out that the MS(2)-VAR(3)
model is the second best choice according to all three criteria and among the
models with time-varying volatility the GARCH-VAR(3) is the least desirable
model. Apparently, the volatility changes can be captured better with the Markov
switching mechanism than with a GARCH type volatility process.

In Figure 2 the standardized structural residuals from all the models are dis-
played. In other words, the plotted quantities are the estimated εt = B−1ut divided
by the respective estimated standard deviation or conditional standard deviation.
If the volatility models capture the heteroskedasticity properly, the standardized
structural shocks should have time-invariant volatility. In Figure 2 it can be seen
that the MS(3)-VAR(3) model filters out the volatility changes most successfully.
The first row of graphs in Figure 2 shows the standardized structural shocks of
the plain VAR model. The volatility changes are seen even more clearly than in
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the reduced-form residuals in Figure 1. In particular, the volatility of the first
structural shock is much higher in the first part of the sample than at the end of
the sample period. Most of the volatility models, apart from the MS(3)-VAR(3)
model, have problems to fully capture this volatility change. The GARCH-VAR(3)
model additionally cannot capture well the volatility change in the third structural
shock (see the last row of Figure 2).

In Table 12 the results of the ARCH tests of Subsection 3.2 applied to the
standardized residuals are reported. The LM test and the multivariate Q2 test
both reject the null hypothesis of no ARCH at the 1% significance level for all
but the MS(3)-VAR(3) and the GARCH-VAR(3) models at least for some lag.
This result is another indication that most of the models do not properly capture
all volatility changes. Although the MS(3)-VAR(3) model would also be rejected
at a 5% level for lag 1 by the Q2 test and for lags 1 and 10 by the LM test, it
apparently takes better care of the volatility changes than its competitors. The
large p-values of all three tests for the GARCH-VAR model are not surprising
given that the residuals of this model are already prefiltered by a GARCH model.
Taking this feature into account, the diagnostic tests are overall supportive of the
MS(3)-VAR(3) model. As expected on the basis of our simulation results, the
diagnostic tests are not as useful to discriminate between the volatility models
as the model selection criteria, however, because they do not clearly point to a
specific model and are biased towards the GARCH model by construction.

Once a volatility model has been decided upon, it can be used for structural
analysis as in Lütkepohl and Netšunajev (2014a). Since these authors use a MS(3)-
VAR(3) model for their analysis, we can now draw on their results. They find that
a recursive structural model is supported by the data so that an impulse response
analysis can be based on a recursive model that takes into account the changes in
volatility.

7 Conclusions

In this study we have investigated strategies for choosing a suitable volatility model
for identifying structural shocks through heteroskedasticity in a SVAR analysis.
The performance of the information criteria AIC, HQ and BIC is compared. We
have also considered tests for left-over heteroskedasticity in VAR models. Our
investigation is based on an extensive simulation study using four DGPs for the
volatility models, similar to models that have been used in the structural VAR
literature on identification through heteroskedasticity.

We find that among the three information criteria using AIC is preferable to
HQ and BIC. AIC outperforms its competitors in its ability of correctly indicating
the true model and also tends to provide the impulse response estimates with the
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smallest MSEs. Depending on the sample size, it may not find the true DGP very
frequently. Generally it may require rather large samples of T = 500, for example,
to detect the true DGP with some probability. For some of our DGPs a reliable
detection is possible with much smaller samples, however. The heteroskedasticity
tests are useful tools for indicating the presence of time-varying volatility but are
not very helpful for selecting a specific model. They indicate that the models
selected by the information criteria take care very well of the residual variance
changes. AIC is again better than HQ and BIC in this respect. Using any one
of the model selection criteria may provide substantially smaller MSEs than an
arbitrarily chosen model, however.

From our results the following preferred strategy for using identification through
heteroskedasticity emerges. First the data are checked for time-varying volatility
by one of the (standard) diagnostic tests considered in Section 3.2. If time-varying
volatility is detected, AIC should be used for selecting a suitable candidate model
for the volatility process. Using any one of the information criteria is preferable
to choosing the model by convenience or personal preference, as was done in some
previous studies in the related SVAR literature.

We have used this strategy for modelling volatility changes in a VAR model for
the global oil market and find evidence for time-varying volatility in the residuals
of a VAR(3). In this example all three model selection criteria favour the same
MS-VAR model for volatility changes.

Our simulation study also shows that if other identifying information is avail-
able for the structural parameters it is strongly recommended to use that. We
find that if a recursive structure is the true one and this is known to the analyst,
this knowledge can be more valuable than knowing the process that generated the
volatility changes. In particular, if the A-model is used in this case, substantial
gains in estimation precision for the impulse responses can be achieved even when
time-varying volatility is ignored.

Our study has obvious limitations. As usual, simulation studies are based on
specific DGPs and the conclusions may not be generalizable. In the present simu-
lation study we have considered exclusively bivariate DGPs. While this is special,
it should be clear that the methods considered for structural VAR analysis are
mainly relevant for low-dimensional processes because frequentist ML estimation
is very difficult or impossible numerically for some of the volatility models and
high-dimensional processes. For example, MS-VAR and GARCH-VAR models are
difficult to estimate for higher-dimensional processes. Hence, considering the bi-
variate case is perhaps not a severe restriction.

Another limitation of our study is that in practice further choices have to be
made by the analyst in addition to the volatility model. Notably the VAR lag
order and the number of volatility states in a MS or heteroskedastic VAR model
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have to be specified. In our simulations we have assumed that these quantities are
known whereas in practice one may also choose them by statistical tools, as in our
example. This simplification may be reasonable to focus attention on the choice
of volatility models. In future research it may be of interest, however, to study
further aspects of joint model selection in the context of structural VAR analysis.
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Tables and Figures

Table 1: Heteroskedastic DGP - Relative Frequencies of Models Selected

Estimated models

Sample Size Criterion H-VAR ST-VAR MS-VAR GARCH-VAR plain VAR

T = 100
AIC 1.00 0.00 0.00 0.00 0.00
HQ 1.00 0.00 0.00 0.00 0.00
BIC 1.00 0.00 0.00 0.00 0.00

T = 200
AIC 1.00 0.00 0.00 0.00 0.00
HQ 1.00 0.00 0.00 0.00 0.00
BIC 1.00 0.00 0.00 0.00 0.00

T = 500
AIC 1.00 0.00 0.00 0.00 0.00
HQ 1.00 0.00 0.00 0.00 0.00
BIC 1.00 0.00 0.00 0.00 0.00

Table 2: Smooth Transition DGP - Relative Frequencies of Models Selected

Estimated models

Sample Size Criterion H-VAR ST-VAR MS-VAR GARCH-VAR plain VAR

T = 100
AIC 0.89 0.04 0.04 0.00 0.02
HQ 0.80 0.02 0.03 0.00 0.14
BIC 0.42 0.01 0.01 0.00 0.56

T = 200
AIC 0.54 0.46 0.00 0.00 0.00
HQ 0.66 0.34 0.00 0.00 0.00
BIC 0.78 0.22 0.00 0.00 0.00

T = 500
AIC 0.21 0.79 0.00 0.00 0.00
HQ 0.30 0.70 0.00 0.00 0.00
BIC 0.47 0.53 0.00 0.00 0.00
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Table 3: Markov Switching DGP - Relative Frequencies of Models Selected

Estimated models

Sample Size Criterion H-VAR ST-VAR MS-VAR GARCH-VAR plain VAR

T = 100
AIC 0.27 0.01 0.69 0.02 0.01
HQ 0.26 0.00 0.61 0.01 0.11
BIC 0.16 0.00 0.41 0.00 0.43

T = 200
AIC 0.03 0.00 0.97 0.00 0.00
HQ 0.03 0.00 0.96 0.00 0.01
BIC 0.03 0.00 0.88 0.00 0.09

T = 500
AIC 0.00 0.00 1.00 0.00 0.00
HQ 0.00 0.00 1.00 0.00 0.00
BIC 0.00 0.00 1.00 0.00 0.00

Table 4: GARCH DGP - Relative Frequencies of Models Selected

Estimated models

Sample Size Criterion H-VAR ST-VAR MS-VAR GARCH-VAR plain VAR

T = 100
AIC 0.70 0.01 0.10 0.02 0.16
HQ 0.44 0.01 0.07 0.01 0.48
BIC 0.20 0.00 0.01 0.00 0.79

T = 200
AIC 0.70 0.02 0.14 0.10 0.04
HQ 0.58 0.01 0.09 0.06 0.27
BIC 0.30 0.00 0.05 0.03 0.62

T = 500
AIC 0.12 0.01 0.11 0.75 0.01
HQ 0.14 0.01 0.11 0.72 0.03
BIC 0.11 0.00 0.08 0.60 0.21
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Table 5: ARCH-Tests - Relative Rejection Frequencies (at 5% Significance Level)
Based on Estimated Standardized Residuals

Hetero. DGP ST DGP MS DGP GARCH DGP

Test Sample Size Model H = 1 H = 5 H = 1 H = 5 H = 1 H = 5 H = 1 H = 5

Q
1
(U

n
iv
a
r
.
A
u
to

c
o
v
.)

T = 100

Plain VAR 0.336 0.636 0.092 0.142 0.210 0.194 0.090 0.120
AIC 0.048 0.052 0.032 0.038 0.060 0.040 0.042 0.050
HQ 0.048 0.052 0.034 0.036 0.072 0.048 0.052 0.056
BIC 0.048 0.052 0.048 0.050 0.126 0.080 0.062 0.070

T = 200

Plain VAR 0.596 0.960 0.344 0.714 0.404 0.418 0.220 0.360
AIC 0.054 0.044 0.054 0.042 0.080 0.072 0.064 0.096
HQ 0.054 0.044 0.052 0.046 0.082 0.074 0.076 0.124
BIC 0.054 0.044 0.048 0.044 0.102 0.080 0.112 0.188

T = 500

Plain VAR 0.956 1.000 0.916 1.000 0.852 0.880 0.548 0.814
AIC 0.044 0.038 0.040 0.040 0.142 0.084 0.050 0.068
HQ 0.044 0.038 0.042 0.044 0.142 0.084 0.060 0.074
BIC 0.044 0.038 0.042 0.042 0.142 0.084 0.106 0.174

Q
2
(M

u
lt
iv
a
r
.
A
u
to

c
o
v
.)

Plain VAR 0.316 0.632 0.120 0.186 0.256 0.300 0.124 0.188

T = 100

AIC 0.034 0.026 0.030 0.028 0.100 0.076 0.060 0.066
HQ 0.034 0.026 0.036 0.040 0.110 0.082 0.070 0.098
BIC 0.034 0.026 0.056 0.082 0.180 0.134 0.100 0.120

T = 200

Plain VAR 0.496 0.894 0.280 0.638 0.374 0.434 0.298 0.464
AIC 0.038 0.060 0.042 0.046 0.072 0.072 0.082 0.112
HQ 0.038 0.060 0.044 0.046 0.076 0.074 0.116 0.148
BIC 0.038 0.060 0.046 0.050 0.088 0.094 0.166 0.246

T = 500

Plain VAR 0.848 1.000 0.768 0.996 0.706 0.756 0.628 0.898
AIC 0.046 0.042 0.030 0.042 0.076 0.082 0.032 0.066
HQ 0.046 0.042 0.028 0.042 0.076 0.082 0.042 0.078
BIC 0.046 0.042 0.036 0.038 0.076 0.082 0.114 0.202

L
M

T
e
st
s

T = 100

Plain VAR 0.328 0.574 0.122 0.172 0.270 0.300 0.130 0.156
AIC 0.032 0.040 0.032 0.026 0.108 0.094 0.062 0.062
HQ 0.032 0.040 0.038 0.040 0.116 0.098 0.074 0.076
BIC 0.032 0.040 0.058 0.068 0.188 0.152 0.106 0.110

T = 200

Plain VAR 0.498 0.848 0.286 0.570 0.384 0.418 0.300 0.408
AIC 0.040 0.052 0.042 0.048 0.074 0.078 0.080 0.122
HQ 0.040 0.052 0.044 0.048 0.078 0.080 0.114 0.154
BIC 0.040 0.052 0.046 0.052 0.092 0.102 0.164 0.222

T = 500

Plain VAR 0.848 0.996 0.766 0.982 0.706 0.704 0.630 0.856
AIC 0.046 0.040 0.034 0.042 0.076 0.090 0.034 0.064
HQ 0.046 0.040 0.032 0.042 0.076 0.090 0.044 0.076
BIC 0.046 0.040 0.040 0.044 0.076 0.090 0.114 0.184
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Table 6: Heteroskedastic DGP - Mean Squared Errors of the Impulse Response
Functions Relative to True Model for a Horizon of h = 5

B-model A-model

Sample Size Model θ11 θ21 θ12 θ22 θ11 θ21 θ12 θ22

T = 100 H-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST-VAR 1.00 1.00 0.99 0.98 1.00 1.00 1.01 0.99
MS-VAR 2.31 2.49 1.37 1.39 1.41 1.30 1.42 1.60
GARCH-VAR 3.06 3.28 16.53 22.51 2.00 2.06 1.40 1.46
AIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Plain VAR 1.26 0.95 16.41 24.34 0.70 0.72 0.80 1.12

T = 200 H-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST-VAR 0.99 1.00 1.01 1.02 0.99 1.00 1.00 1.01
MS-VAR 1.17 1.18 1.09 1.06 1.07 1.04 1.07 1.11
GARCH-VAR 3.70 3.30 43.90 64.78 1.98 1.93 1.65 1.94
AIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Plain VAR 1.85 0.99 43.74 67.06 0.70 0.68 0.97 1.54

T = 500 H-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ST-VAR 1.01 1.01 1.00 1.00 1.01 1.01 1.00 1.00
MS-VAR 1.01 1.00 1.00 1.00 1.01 1.01 1.00 1.00
GARCH-VAR 4.41 2.36 109.27 160.30 1.52 1.51 1.39 1.60
AIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Plain VAR 3.43 1.09 108.89 161.55 0.72 0.71 0.98 1.52

Note: Only volatility models eligible for selection by criteria.
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Table 7: Smooth Transition DGP - Mean Squared Errors of the Impulse Response
Functions Relative to True Model for a Horizon of h = 5

B-model A-model

Sample Size Model θ11 θ21 θ12 θ22 θ11 θ21 θ12 θ22

T = 100 H-VAR 1.08 1.11 0.83 0.66 1.02 1.00 1.09 1.10
ST-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS-VAR 2.80 2.87 1.47 1.22 1.41 1.08 2.15 2.45
GARCH-VAR 0.93 0.99 2.87 3.33 0.93 1.07 0.61 0.50
AIC 1.15 1.17 0.92 0.81 1.01 0.98 1.11 1.14
HQ 1.14 1.17 0.88 0.75 1.01 0.98 1.11 1.13
BIC 1.16 1.18 0.86 0.72 1.02 0.99 1.12 1.15
Plain VAR 0.16 0.10 3.08 4.29 0.13 0.15 0.20 0.21

T = 200 H-VAR 1.30 1.35 0.52 0.42 1.19 1.16 1.13 1.18
ST-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS-VAR 3.26 3.36 0.76 0.54 1.76 1.52 2.18 2.91
GARCH-VAR 2.76 2.77 6.74 6.86 1.59 1.57 1.51 1.62
AIC 1.16 1.16 1.01 0.99 1.10 1.08 1.12 1.19
HQ 1.20 1.20 0.97 0.93 1.11 1.08 1.13 1.21
BIC 1.26 1.29 0.90 0.84 1.17 1.14 1.17 1.24
Plain VAR 0.78 0.39 6.87 7.43 0.28 0.27 0.60 0.95

T = 500 H-VAR 1.14 1.15 1.21 1.21 1.13 1.13 1.05 1.03
ST-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS-VAR 1.12 1.13 1.18 1.18 1.11 1.11 1.04 1.02
GARCH-VAR 3.56 1.89 86.33 115.16 1.22 1.23 1.27 1.44
AIC 1.04 1.04 1.03 1.03 1.04 1.03 1.01 1.01
HQ 1.04 1.04 1.07 1.08 1.04 1.04 1.02 1.02
BIC 1.07 1.08 1.11 1.13 1.07 1.07 1.03 1.02
Plain VAR 2.77 0.84 86.06 116.06 0.56 0.55 0.89 1.39

Note: Only volatility models eligible for selection by criteria.
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Table 8: Markov Switching DGP - Mean Squared Errors of the Impulse Response
Functions Relative to True Model for a Horizon of h = 5

B-model A-model

Sample Size Model θ11 θ21 θ12 θ22 θ11 θ21 θ12 θ22

T = 100 H-VAR 11.95 12.86 6.03 3.48 3.51 1.93 5.27 6.90
ST-VAR 12.04 12.89 6.04 3.79 3.46 1.94 5.13 6.71
MS-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH-VAR 1.82 2.06 4.49 5.24 1.69 2.00 1.08 0.95
AIC 3.84 4.08 2.37 1.64 1.58 1.13 2.06 2.50
HQ 4.37 4.66 2.61 1.71 1.71 1.18 2.28 2.79
BIC 4.87 5.21 2.85 1.84 1.86 1.27 2.51 3.10
Plain VAR 0.35 0.31 4.45 6.48 0.31 0.39 0.39 0.49

T = 200 H-VAR 34.29 37.30 18.85 10.49 9.21 4.51 17.73 32.00
ST-VAR 35.24 38.28 19.16 10.86 9.22 4.46 17.71 32.02
MS-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH-VAR 5.02 5.69 13.62 16.33 3.65 3.74 2.63 2.83
AIC 1.58 1.63 1.48 1.36 1.16 1.08 1.37 1.67
HQ 1.67 1.75 1.52 1.34 1.20 1.11 1.43 1.78
BIC 2.05 2.22 1.77 1.45 1.32 1.16 1.68 2.24
Plain VAR 0.69 0.47 13.78 20.11 0.37 0.41 0.64 1.03

T = 500 H-VAR 113.63 118.69 66.55 39.44 28.60 11.84 55.15 106.19
ST-VAR 114.98 120.20 65.59 38.84 28.80 12.23 55.25 106.00
MS-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH-VAR 10.39 11.19 43.42 60.01 7.14 6.95 4.17 4.26
AIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Plain VAR 1.45 0.68 43.95 68.34 0.49 0.50 0.86 1.51

Note: Only volatility models eligible for selection by criteria.
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Table 9: GARCH DGP - Mean Squared Errors of the Impulse Response Functions
Relative to True Model for a Horizon of h = 5

B-model A-model

Sample Size Model θ11 θ21 θ12 θ22 θ11 θ21 θ12 θ22

T = 100 H-VAR 1.37 1.09 1.39 1.58 1.13 1.06 1.17 1.31
ST-VAR 1.47 1.12 1.50 1.69 1.16 1.07 1.22 1.40
MS-VAR 1.64 1.03 2.05 2.17 1.59 1.40 1.69 2.19
GARCH-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AIC 1.56 1.08 1.62 1.76 1.30 1.16 1.38 1.74
HQ 1.53 1.04 1.56 1.74 1.25 1.12 1.33 1.65
BIC 1.50 1.05 1.56 1.75 1.25 1.11 1.32 1.64
Plain VAR 0.34 0.14 0.43 0.86 0.20 0.17 0.31 0.50

T = 200 H-VAR 1.79 1.64 1.78 1.90 1.55 1.54 1.59 1.67
ST-VAR 1.84 1.61 1.77 1.98 1.51 1.50 1.50 1.58
MS-VAR 2.00 1.35 2.34 2.47 1.90 1.72 2.04 2.56
GARCH-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AIC 1.82 1.51 1.89 1.97 1.56 1.50 1.64 1.89
HQ 1.81 1.53 1.88 1.97 1.55 1.51 1.62 1.79
BIC 1.81 1.58 1.85 1.94 1.56 1.52 1.61 1.76
Plain VAR 0.32 0.12 0.43 0.88 0.15 0.14 0.28 0.47

T = 500 H-VAR 3.71 3.73 3.29 2.68 3.46 3.24 3.21 3.33
ST-VAR 3.83 3.76 3.35 2.82 3.50 3.21 3.21 3.41
MS-VAR 3.45 2.68 2.99 3.15 3.35 3.07 2.98 3.17
GARCH-VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AIC 1.62 1.50 1.51 1.50 1.42 1.39 1.42 1.50
HQ 1.64 1.52 1.51 1.47 1.45 1.42 1.43 1.51
BIC 1.65 1.54 1.52 1.48 1.49 1.45 1.43 1.45
Plain VAR 0.45 0.19 0.56 0.95 0.23 0.20 0.39 0.73

Note: Only volatility models eligible for selection by criteria.

Table 10: p-Values of ARCH-Tests for Plain VAR(3) Model for Example Data

Test Lag 1 Lag 3 Lag 5 Lag 10

Q1 (univariate) 0.00 0.01 0.01 0.01
Q2 (multivariate) 0.00 0.00 0.00 0.00
LM 0.00 0.00 0.01 0.00
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Table 11: Comparison of Time-Varying Residual Volatility Specifications for a
VAR(3) for the Example Data

Model logLT AIC HQ BIC

Plain VAR(3) -4271.47 8614.94 8671.96 8758.99
H(1)-VAR(3) -4167.59 8421.17 8489.29 8593.24
H(2)-VAR(3) -4123.86 8333.72 8401.83 8505.78
ST-VAR(3) -4156.44 8400.88 8470.58 8576.94
MS(2)-VAR(3) -4106.88 8301.76 8371.45 8477.82
MS(3)-VAR(3) -4049.70 8201.40 8282.18 8405.47
GARCH-VAR(3) -4173.00 8436.00 8507.27 8616.06

Table 12: p-Values of ARCH-Tests on Standardized Estimated Residuals for Al-
ternative Models for Global Oil Market

Test Model Lag 1 Lag 3 Lag 5 Lag 10

Q1 (univariate) H(1)-VAR(3) 0.04 0.20 0.41 0.81
H(2)-VAR(3) 0.00 0.00 0.00 0.01
ST-VAR(3) 0.09 0.36 0.63 0.94
MS(2)-VAR(3) 0.00 0.00 0.00 0.02
MS(3)-VAR(3) 0.25 0.38 0.59 0.49
GARCH-VAR(3) 0.58 0.94 0.99 0.86

Q2 (multivariate) H(1)-VAR(3) 0.00 0.00 0.08 0.57
H(2)-VAR(3) 0.00 0.00 0.01 0.00
ST-VAR(3) 0.00 0.05 0.40 0.56
MS(2)-VAR(3) 0.00 0.00 0.00 0.04
MS(3)-VAR(3) 0.03 0.72 0.32 0.05
GARCH-VAR(3) 0.82 1.00 1.00 0.85

LM H(1)-VAR(3) 0.00 0.00 0.07 0.12
H(2)-VAR(3) 0.00 0.00 0.02 0.00
ST-VAR(3) 0.00 0.05 0.43 0.09
MS(2)-VAR(3) 0.00 0.00 0.00 0.02
MS(3)-VAR(3) 0.03 0.78 0.35 0.04
GARCH-VAR(3) 0.82 1.00 1.00 0.86
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Figure 1: Reduced-form residuals of a plain VAR(3) model for the example data.
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Figure 2: Standardized structural shocks of VAR(3) models with
alternative specifications for residual volatility.
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