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Abstract

In this paper we construct model-free and model-based indicators for the inflation 
risk premium in the US and the euro area. We study the impact of market liquidity, 
surprises from inflation data releases, inflation volatility and deflation fears on the infla-
tion risk premium. For our analysis, we construct a special dataset with a broad range 
of indicators. The dataset is carefully constructed to ensure that at every point in time 
the series are aligned with the information set available to traders. Furthermore, we 
adopt a Bayesian variable selection procedure to deal with the strong multicollinearity 
in the variables that potentially can explain the movements in the inflation risk pre-
mium. We find that the inflation risk premium turned negative, on both sides of the 
Atlantic, during the post-Lehman period. This confirms the recent finding by Camp-
bell et al. (2016) that nominal bonds are no longer “inflation bet” but have turned into 
“deflation hedges”. We also find, and contrary to common beliefs, that indicators of 
inflation uncertainty alone cannot explain the movements in the inflation risk premium 
in the post-Lehman period. The decline in the inflation risk premium seems mostly 
related to increased deflation fears and the belief that inflation will stay far away from 
the monetary policy target rather than declining inflation uncertainty. This in turn 
would suggest that central banks should not be complacent with low or even negative 
inflation risk premia.

JEL classification: E44, G17.
Keywords: Inflation linked swaps, inflation risk premium, inflation expectations.
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NON-TECHNICAL SUMMARY

In this paper we construct model-free and model-based indicators for the inflation risk pre-

mium in the US and the euro area. We also study the impact of market liquidity, surprises

from inflation data releases, inflation volatility and deflation fears on the inflation risk pre-

mium. The literature (see Fleckenstein et al. (2016)) is currently focusing on a possible recent

change in the sign of the inflation risk premium. In particular Campbell et al. (2016) claim

that nominal bonds changed from “inflation bet” to “deflation hedge”. Theoretically the

sign of the inflation risk premium depends on the correlation of inflation with the marginal

inter-temporal rate of substitution of consumption of the representative investor. As it is

very difficult to measure empirically this correlation we apply two more direct approaches

to estimate the inflation risk premium for the US and the euro area. Our first approach is

“model-free” and similar to Soderlind (2011) and is based on comparing inflation forecasts

from Consensus Economics with ILS rates. Our second “model-based” approach applies a

standard affine term structure model to the term structure of ILS rates. We contribute to

the literature by deriving a discrete time equivalent of the approach proposed by Beechey

(2008) and Finlay and Wendel (2012) that can be easily applied to ILS data using standard

programme code.

One methodological advantage of our analysis compared to the literature is the construction

of a consistent data-set for ILS rates. Lags implicit in ILS contracts and settlement date

conventions are taken into consideration when computing the “implicit” one-year-ahead in-

flation forecast embedded in the ILS curve. As we use Consensus Economics data for the

construction of the model-free estimate of the inflation risk premium, we take as key dates

for our regression analysis the dates on which the Consensus Economics data are collected.

The financial market data will also be retrieved for these same dates. In this manner, the

quoted prices for the ILS contracts and the survey data from Consensus are associated with

the same information set. The inflation rates reported in Consensus Economics are not,

however, aligned with the “year-on-year” (e.g. March-on-March) rates naturally embedded

in ILS quotes. In this paper, we thus also propose a novel method to render inflation readings

from Consensus Economics consistent with ILS quotes.

Another methodological advantage of our analysis is the application of a sophisticated

Bayesian variable selection procedure for which we assess performance using a Monte Carlo

study tailored towards our estimation strategy.
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Our results provide strong evidence, robust across business areas and measures for the

inflation risk premium, that the inflation risk premium turned negative, on both sides of

the Atlantic, during the post-Lehman period. This confirms the recent finding by Campbell

et al. (2016) that nominal bonds are no longer “inflation bet” but have turned into “deflation

hedges”. We also find, and contrary to common beliefs, that indicators of inflation uncer-

tainty alone cannot explain the movements in the inflation risk premium in the post-Lehman

period. The decline in the inflation risk premium seems mostly related to increased deflation

fears and the belief that inflation will stay far away from the monetary policy target rather

than declining inflation uncertainty. This in turn would suggest that central banks should

not be complacent with low or even negative inflation risk premia.
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1 Introduction

From an investor’s perspective, a bond that offers a nominal coupon payment of say 5% is

more attractive when annual inflation turns out to be 1% rather than when it turns out

to be 5%. Inflation risks are inherent in most investment strategies, and not surprisingly,

investors commonly demand compensation for bearing those risks. The inflation risk pre-

mium is usually defined as the compensation demanded by investors to hold financial assets

which are subject to inflation risks. Market-based measures of inflation expectations like the

so-called break-even inflation rate (BEIR) and the inflation-linked swap (ILS) rate do not

only contain information on inflation expectations but also on the inflation risk premium.1

The literature (see Fleckenstein et al. (2016)) is currently focusing on a possible recent

change in the sign of the inflation risk premium. In particular Campbell et al. (2016) claim

that nominal bonds changed from “inflation bet” to “deflation hedge”. Theoretically the

sign of the inflation risk premium depends on the correlation of inflation with the marginal

inter-temporal rate of substitution of consumption of the representative investor. As it is

very difficult to measure empirically this correlation we apply two more direct approaches

to estimate the inflation risk premium for the US and the euro area. Our first approach is

“model-free” and similar to Soderlind (2011) and is based on comparing inflation forecasts

from Consensus Economics with ILS rates. Our second “model-based” approach applies a

standard affine term structure model to the term structure of ILS rates. We contribute to

the literature by deriving a discrete time equivalent of the approach proposed by Beechey

(2008) and Finlay and Wendel (2012) that can be easily applied to ILS data using standard

programme code. Our results provide strong evidence, robust across business areas and mea-

sures for the inflation risk premium, that the inflation risk premium turned negative during

the great recession. The aim of the paper is also to shed more light on the main drivers of

the inflation risk premium.

One methodological advantage of our analysis compared to the literature is the construction

of a consistent data-set for ILS rates. Lags implicit in ILS contracts and settlement date

conventions are taken into consideration when computing the “implicit” one-year-ahead in-

flation forecast embedded in the ILS curve. As we use Consensus Economics data for the

construction of the model-free estimate of the inflation risk premium, we take as key dates

for our regression analysis the dates on which the Consensus Economics data are collected.

The financial market data will also be retrieved for these same dates. In this manner, the

quoted prices for the ILS contracts and the survey data from Consensus are associated with

1The BEIR is defined as the difference between the sovereign inflation-linked bond (a real bond) yield
and an equivalent sovereign nominal bond yield.
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the same information set. The inflation rates reported in Consensus Economics are not,

however, aligned with the “year-on-year” (e.g. March-on-March) rates naturally embedded

in ILS quotes. In this paper, we thus also propose a novel method to render inflation readings

from Consensus Economics consistent with ILS quotes.

Another methodological advantage of our analysis is the application of a sophisticated

Bayesian variable selection procedure for which we assess performance using a Monte Carlo

study tailored towards our estimation strategy.

The paper is organised as follows. Section 2 explains the concept of the inflation risk premium

and presents a model-free and a model-based strategy to estimate it. Section 3 provides a

regression analysis to assess the main drivers of the inflation risk premium. This section

also discusses a set of potential drivers of the inflation risk premium and elaborates on the

empirical method adopted for our regression analysis. Section 4 provides some concluding

remarks. Some detailed information on the construction of the data and the affine term

structure model used for the model-based estimation of the inflation risk premium is pre-

sented in the appendix of the paper.

2 The inflation risk premium in ILS quotes

2.1 A conceptual discussion

Zero-coupon inflation-linked swaps (ILS) are the most commonly traded inflation derivatives

in the euro area and the United States. One of the counterparts in the swap agreement will

pay inflation and the other will pay an agreed fixed rate. The cash flow of the contract (for

the net amount) will be paid at maturity. The agreed fixed rate is not, however, a perfect

measure of inflation expectations as it includes an embedded inflation risk premium. To

see this, let us think of the simple one-year-ahead zero-coupon ILS where one counterpart

pays an agreed fixed rate, say πILS, and the other counterpart pays the inflation rate π. No

money is exchanged upfront, and thus standard finance theory suggests that the price of the

two future payoffs is the same. This means that the expected value of the product of the

(stochastic) discount factor M and future inflation should be the same as the expected value

of the product of M and πILS. That is:

E
(
MπILS

)
= E (Mπ) (1)
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Noting that E(M) = (1+r)−1 and that r is the risk-free rate, simple standard algebra makes

it possible to derive the following equation:2

πILS − Eπ = (1 + r)Cov (M,π) ≡ IRP (2)

The spread between the inflation rate quoted in the ILS and future expected inflation is

called the inflation risk premium (IRP).

Note that according to equation (2) the inflation risk premium is proportional to the co-

variance between the stochastic discount factor and future inflation. From this perspective,

the sign of the inflation risk premium is not set a priori and depends on the sign of this

covariance term.

In macroeconomic theory the stochastic discount factor is equivalent to the marginal rate of

substitution of consumption, or more precisely, the rate at which the investor is willing to

substitute consumption today for consumption tomorrow. This marginal rate of substitution

of consumption is dependent on the future marginal utility of consumption. If we assume

that the marginal utility of consumption is higher when the level of consumption is low, then

an asset that provides low (or even negative) returns when wealth is most needed (i.e. when

the marginal utility of consumption is high or equivalently when consumption itself is low)

should be held by the investor only if it offers a positive premium. Following this rationale,

when the future movements of inflation are expected to be positively (negatively) correlated

with the future marginal utility of consumption, there is a positive (negative) premium for

holding financial assets that offer nominal payoffs. This is so because the “real” return on

these assets deteriorates with inflation. To be more specific, in case market participants

see the risk of “stagflation”, the inflation risk premium would be positive as investors like

to hedge for high inflation that will “eat up” real returns in the economic downturn. In

contrast, the expectation of a deflationary recession could lead to a negative inflation risk

premium as nominal bonds perform well in case of deflation. The literature on the inflation

risk premium, as surveyed by Fleckenstein et al. (2016), emphasises the possibility of a recent

change in the sign of the inflation risk premium. In this regard the work by Campbell et al.

(2016) is especially worth mentioning. Campbell et al. (2016) argue that nominal bonds

changed from “inflation bets” to “deflation hedges” following the financial crisis.

As a direct measure of the correlation of inflation and marginal utility is not available the

2In the absence of arbitrage, for an investment offering a risk-free return of rt, it should hold that
1 = E (M(1 + r)) = (1 + r)E(M). In the derivation of the result, use is made of the fact that for two
random variables X and Y it follows that E (XY ) = E (X)E (Y ) + Cov (X,Y ).
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literature uses several proxies for measuring potential changes in the correlation of inflation

and the pricing kernel. Campbell et al. (2016) for example, investigate the correlation be-

tween equity prices and inflation in a semi-structural model framework. In this study we

propose two alternative ways to directly measure the inflation risk premium.

Note that instead of pricing the two legs of the ILS contract using the pricing kernel as

in (1), we could have chosen to price the two legs using the risk-neutral measure. The “dis-

counted” payoffs of the two legs of the ILS contract under the risk neutral measure should

be equivalent. This we could write as:

EQ

(
πILS

1 + r

)
= EQ

(
π

1 + r

)
where EQ denotes expectations under the risk-neutral measure. Noting that we take r, the

risk-free rate as deterministic and the inflation swap rate πILS is agreed in advance and will

not change after the realisation of π, it then easily follows that πILS = EQπ, that is, the

ILS quote is simply the expected value of future inflation under the risk-neutral measure.

We can then use this result to adjust (2) and thus derive an alternative definition for the

inflation risk premium, namely, that the inflation risk premium is the difference between the

expected value of future inflation under the risk-neutral measure and the expected value of

future inflation under the physical measure:

IRP ≡EQ(π)− Eπ. (3)

This suggests two alternative approaches to estimate the inflation risk premium. First, a

model-free approach whereby we use quotes of the inflation-linked swap, and we replace the

expectation of inflation in (2) with available inflation forecasts from surveys like Consensus

Economics. The inflation risk premium is thus the difference between the ILS quote and the

survey inflation forecast.

Second, a model-based approach, whereby we formulate a model for the joint dynamics of

the stochastic discount factor and the inflation process. The model will take the form of an

affine term structure model for which the formulation of the risk neutral and the physical

distributions are tractable, and we can proceed as in equation (3) to derive the inflation risk

premium. We now turn to the detailed formulation of these two approaches.

2.2 Model-free estimate of the inflation risk premium

As a model-free indicator for the inflation risk premium we use the difference between the

one-year-ahead ILS rate and the mean of the Consensus Economics one-year-ahead inflation
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forecasts. We take as key dates t for our analysis those dates on which Consensus Economics

data are collected. The time of collection is usually, but not always, the second Monday

of the month. As for the computation of the one-year-ahead inflation from the ILS, this

is computed using end-of-day quotes on the same dates as Consensus Economics data were

collected and using the special procedure described in appendix A to construct the implied

future price index from the ILS curve. This special procedure accounts for lags and set-

tlement date conventions embedded in the ILS contracts, and thus ensures that we truly

retrieve from the data a genuine one-year-ahead inflation forecast.

Two important considerations need to be borne in mind when adopting the method de-

scribed in the appendix to construct the implied future price index from ILS quotes. First,

we must ensure that we only use the information available to traders at the time of the

quotes. At the time Consensus Economics data are collected every month, the t in our sam-

ple, data for the previous month’s euro area overall HICP inflation is already available in the

form of a “flash” release by Eurostat, which has been provided since November 2001. This

release is neither the HICP excluding tobacco, nor the “final” release of the overall HICP.

However, this index is revised only to a very small degree subsequently. We therefore take

the view that information on the previous month’s inflation is already available to traders

when pricing euro area ILS contracts. For the United States, and for our sample that spans

the period January 2008 to September 2016, the CPI for the previous month had never been

released by the BLS at the time of the collection of the Consensus Economics data. This

means, for example, that for our observation for February 2015 (which corresponds precisely

to 9 February 2015), the latest CPI data released by the Bureau of Labor Statistics related

to December 2014. Second, in the computation of future inflation from ILS quotes, we use

the seasonal factors computed from the ratio of the seasonally adjusted and non-seasonally

adjusted official price indexes the year before. This choice is motivated by the fact that

in the United States the seasonally adjusted CPI index published by the Bureau of Labor

Statistics is revised with the release of January data each year for the preceding five years. In

the euro area the ECB publishes estimates of the seasonally adjusted HICP index excluding

tobacco that are widely used by inflation traders.3 Previous data are revised with the re-

lease of the latest seasonally adjusted data. However, the seasonality pattern over the period

under study has been relatively stable, and hence for the sake of simplicity and similarity

when handling US data, we equally take the seasonal factors of the previous year as those

employed by inflation traders, when adjusting the data.

3Eurostat, the Statistical Office of the European Union, does not publish a seasonally adjusted series of
the HICP or of the HICP excluding Tobacco index.
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The Consensus Economics data provides us with a forecast of an “annual” rate of change of

inflation for the “current” and “next” year. These “annual” rates are not the simple “year-

on-year” (e.g. December-on-December) rates naturally embedded in ILS quotes. In order to

retrieve information on year-on-year inflation expectations from the information provided by

available data and information from Consensus Economics, we also need to apply a special

procedure. The details of this special procedure are left for appendix B.

It is also important to note that the survey data on inflation expectations from Consen-

sus Economics for the euro area does not refer to the same price index employed as reference

for the inflation-linked contract. Data from Consensus Economics relate to the overall HICP

index, while the ILS contract is associated with the HICP excluding tobacco. The weight

attached to the tobacco component in the overall index is, however, small (around 2.4%),

and the historical average of the overall HICP is around 0.1% higher than that of the HICP

index excluding tobacco. Therefore, the difference between the inflation expectations from

consensus and the embedded inflation expectations from the ILS prices cannot be solely at-

tributed to risk premia, but also to the disparity in the gap. However, we take the view that

the disparity between the overall HICP index and that of the HICP excluding tobacco is

small in size, and, while acknowledging that they potentially bias our results to some degree,

we presume the effect to be small.4

2.3 Model-based estimate of the inflation risk premium

Alternatively, we construct a model-based estimate of the inflation risk premium using the

approach proposed by Beechey (2008) and Finlay and Wendel (2012). We have adapted

their continuous time framework to the discrete time case. The idea is to model the full

inflation swap curve using an affine term structure framework. In appendix A it is explained

that the inflation swap rate is fixed in a way that the cash flows of the inflation payer and

the inflation receiver are equalised:

N ×
[(

1 + πILSt (n)
)n − 1

]
= N ×

[
Pt+n
Pt
− 1

]
If we assume that the inflation swap rates are corrected for the indexation lag, the inflation

swap rate for maturity n, defined in the equation above as πILSt (n), is exactly the inflation

4For the United Kingdom, data from Consensus Economics relate to the Retail Price Index excluding
mortgage costs, usually denoted as RPI-X which thus adjusts the price index for the effects of changes
in interest rates, while the ILS contract most commonly traded in the UK is linked to the overall Retail
Price Index, standard RPI. The difference between RPI inflation and RPI-X inflation is, however, large and
unstable, and this prevents us from replicating our analysis using UK data.
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compensation paid in the market for expected changes in the price level, defined in the

equation by Pt+n/Pt. So far we use πILS to be the discretely compounded inflation swap

rate as quoted in the market. For the model analysis it is more convenient to use instead

the continuously compounded inflation swap rate yπt,n, and also assume that inflation, πt, is

continuously compounded; we then get the following valuation equation for inflation swap

rates:5

N ×
[(

1 + πILSt (n)
)n − 1

]
= N × EQ

t

[
Pt+n
Pt
− 1

]
N ×

[
eny

π
t,n − 1

]
= N × EQ

t

[
exp

(
n∑
j=1

πt+j

)
− 1

]

eny
π
t,n = EQ

t

[
exp

(
n∑
j=1

πt+j

)]

yπt,n =
1

n
log

(
EQ
t

[
exp

(
n∑
j=1

πt+j

)])

Here EQ
t is the expectation under the risk-neutral probability measure Q. The inflation

swap rate for maturity n is, up to a Jensen inequality term, equal to the expected future

inflation (over the period t to t + n). The expectation, however, has to be computed under

the risk-neutral measure as markets normally require a compensation for risk. To model the

expectations under the risk-neutral measure Q we further assume that inflation is driven by

a vector of factors Xt as follows:

πt+1 = π0 + π′1Xt

where π0 is a parameter and π1 is a parameter vector. The vector of factors Xt is further

assumed to be driven by the following dynamic under Q:

Xt = µQ + ΦQXt−1 + ΣεQt

Then we show in the appendix that the inflation swap rates are linear functions of the

underlying factors Xt:

yπt,n = An +B′nXt

where (see appendix) the coefficients An and Bn are determined by standard Riccati equa-

tions known from the affine term structure literature. The factor dynamic under the physical

measure P is:

Xt = µP + ΦPXt−1 + ΣεPt

Conditional on the dynamics of Xt the inflation risk premium for maturity n (IRPt,n) can

easily be computed as the difference of the expectation under the risk-neutral measure (the

5That is, yπt,n = ln
(
1 + πILSt (n)

)
and πt = ln (Pt/Pt−1).
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inflation swap rate) and the physical measure6:

IRPt,n =
1

n

(
EQ
t

[
n∑
j=1

πt+j

]
− EP

t

[
n∑
j=1

πt+j

])

To estimate the model we apply the JSZ approach proposed by Joslin et al. (2011) and

assume that the pricing factors Xt are the first three principle components of the inflation

swap curve. This makes it possible to estimate the model via maximum likelihood without

using the Kalman filter. As in the JSZ approach we assume that the pricing factors are ob-

served without measurement errors. The observed individual inflation swap rates, however,

can deviate from their theoretical values by a gaussian measurement error.

2.4 Estimates of the inflation risk premium

Chart 1, panel a, displays the one-year-ahead model-free indicator of the inflation risk pre-

mium in the euro area and the United States for the period January 2008 to September

2016. From 2011 onwards, the resemblance of the inflation risk premium across countries is

quite striking, particularly in view of the quite different trends displayed by the Consensus

inflation forecasts shown in panel b of the same Chart. Prior to 2011, when allegedly the US

inflation-linked swap market was less liquid, the two ILS spreads were less closely correlated.

Chart 2 shows that both model-free and model-based measures of the inflation risk pre-

mium turned negative during the great recession. Indeed, Table 1 shows that the inflation

risk premium was positive in the period before the great recession and turned strongly neg-

ative following the outbreak of the financial crisis in summer 2007. The dramatic downturn

of the inflation risk premium, following the collapse of Lehman in 2008, is also striking. This

extraordinary movement is explained by a period of extreme liquidity tensions and portfolio

rebalancing triggered by the Lehman bankruptcy. Interestingly, this period is detected by

our outlier adjustment method described later.

The overall movements of model-free and model-based measures are very similar. However,

the model-free measures are considerably more volatile than the model-based measures.

Model-free measures of the inflation risk premium are volatile as noisy movements of in-

flation swap rates at a monthly frequency are compared to relatively smooth survey-based

measures of inflation expectations. In contrast, measurement errors in model-based esti-

6To see how this equation can be derived from the previous one please note that the variance under
risk-neutral and physical measure is the same. The Jensen inequality term coming from interchanging the
expectation and logarithm operators is therefore cancelled out.
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mates of the inflation risk premium can absorb noise moments in the inflation swap rates to

some extent.

It is also important to note that the fact that inflation projections from ILS are contaminated

by risk premia does not necessarily make them worse for forecasting in practice. Chart 3

shows the rolling (over a 12-month window) root mean square error (RMSE) of various in-

flation projections. Interestingly, throughout the financial crisis period, the one-year-ahead

projections from ILS quotes in the euro area were consistently better than Consensus Eco-

nomics forecasts. In the United States the forecasting performance of Consensus Economics

forecasts appears better than the ILS between 2008 and 2013. However, since 2013, the

forecasting performance of both the ILS projections and those of Consensus are roughly

equivalent. In terms of the actual quality of the forecast, Chart 3 appears to suggest that

forecasting inflation for a one-year horizon is a difficult task. In both the euro area and the

United States, a constant forecast was best for most of the sample, although over recent

years it has provided the worse forecast. In any event, for the full sample the difference

between the best performing model and the worse is marginal in absolute values.

Table 1: Inflation risk premium (in basis points)

Period US Euro area

survey-based model-based average survey-based model-based average
2005-2007 43 9 26 19 3 11
2008-2016 -50 -30 -40 -23 -17 -20

3 Drivers of the inflation risk premium

For our empirical analysis the number of possible explanatory variables k to explain the

inflation risk premium is not excessively large (k = 10). Given the sample size of around 100

observations, the use of ordinary least square methods might a priori seem feasible. However,

strong collinearity among some of the regressors suggests that the variance of ordinary least

square estimates might be abnormally high, leading to small t-statistics that may prompt

us to treat many of the potential regressors as irrelevant. We argue that the use of Bayesian

selection methods is preferable under these circumstances, and we justify our strategy with

a Monte Carlo exercise that mimics the nature of our empirical study.
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3.1 Potential drivers

3.1.1 Inflation uncertainty

We use four indicators of inflation uncertainty. Our first proxy for inflation uncertainty is the

one also employed in Soderlind (2011), namely the implied volatility of long-term sovereign

bond options, which we refer to as bond volatility. Strictly speaking this is not truly a direct

measure of inflation uncertainty, but it is sensible to expect inflation uncertainty to be priced

in nominal long-term bond yields, and so, it should also be reflected in the price of bond

options.

Our second proxy is the monthly standard deviation of the daily changes in the one-year-

ahead ILS computed with a one-month window, which we refer to as realised volatility.

Additionally, and in view of the fact that inflation options have become more liquid, and

more information is now available for empirical research, we compute, as our third proxy for

inflation uncertainty, an estimate of the implied volatility measured from inflation options.

To compute this measure we estimate a volatility smile from seven zero-coupon inflation

floors with strike prices ranging from -2% to 1% and one year of maturity. We then take as

our measure of implied volatility the fitted volatility for a strike price which is at the money,

i.e. a strike price equal to the one-year-ahead inflation-linked swap quote. Implied volatili-

ties are computed by means of the Black formula commonly employed for the valuation of

zero-coupon inflation caps and floors.

Further to these measures we also include the difference between the mean and the me-

dian of the Consensus responses as a potential indicator of uncertainty; we refer to this

indicator as the Mean-Median Consensus.7

3.1.2 Market liquidity

We will employ the difference between the ILS rate and the BEIR rate at the five-year ma-

turity as a measure of market liquidity. We will denote the measure of market liquidity as

liquidity in the tables below. In a non-arbitrage environment without frictions, the difference

between the ILS rate and the BEIR rate should be zero. In a world with frictions, the spread

should be related to the sum of the liquidity premium in the inflation-linked bond market

and the ILS market, see e.g. Christensen and Gillan (2015). It is important to note that our

7Some studies favour the use of the median as a better measure of inflation expectations from survey
responses than the mean, see e.g. Mankiw et al. (2003). To the extent that this is a reasonable assumption,
this indicator may capture the possible bias of the mean forecast as a measure of inflation expectations.
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model-free and model-based indicators for the inflation risk premium and our market liquid-

ity proxy are both constructed using ILS data. This might imply a spurious correlation. We

have chosen to compute our market liquidity measure for the five-year maturity rather than

for the one-year maturity employed for our dependent variable, to partly address this issue.

First, the changes in the five-year rate will not be fully driven by changes in expectations to

the one-year rate. The market liquidity proxy computed for the five-year maturity may still

be a relatively good proxy for liquidity conditions in the market. The BEIR for the euro

area is computed as the average of the BEIR rates embedded in the French and German

inflation-linked bonds. Details of how to estimate the BEIR are given in Ejsing et al. (2007).

For the United States we employ the BEIR series from the Gurkaynak et al. (2008) database.

3.1.3 Inflation disagreement

We have also constructed a measure of inflation disagreement from the individual responses

of the Consensus Economics inflation forecasts based on the standard deviation of Consen-

sus Economics expected inflation one year ahead, denoted below by Consensus disagreement.

Our measure of Consensus disagreement is similar to the measure of inflation disagreement

employed in published research, e.g. Soderlind (2011).

Bloomberg reports expectations of the outcome of the inflation data release a few days

before the data are publicly disclosed by the statistical offices. The difference between the

inflation data released by the statistical office and the expectations collected a few days

before provides a measure of the surprise of the data release. We have collected data from

Bloomberg surveys on the “normalised” surprises caused by the data release, and we denote

this data series as data surprise in our tables below. Further to this we have also collected the

reported standard deviation of the surprise of the inflation data release among respondents

to the Bloomberg survey. We will refer to this data series as data surprise uncertainty when

commenting on our results below. In interpreting the impact from the data releases in our

analysis it is important to understand their timing, and how they relate to the dates on which

Consensus data are collected (which serve as reference dates for our empirical analysis). In

the euro area, the date of the inflation data surprise relates to the release by Eurostat of the

“overall” HICP index at the end of the previous month, and it is thus information that by

the time the Consensus Economics surveys are conducted is already a little dated, usually

8 to 10 days old. The surprise is a bit more dated for the United States, where the release

of the CPI by the Bureau of Labor Statistics lags behind our reference date by two to three

weeks. Data release surprises may nonetheless have an impact on the inflation risk premium.
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3.1.4 Inflation and deflation fears

The addition of proxies for inflation and deflation fears to our set of indicators is especially

important for the analysis of the inflation risk premium during the financial crisis period. In

particular, the inflation risk premium may be as much a reflection of a deflation or inflation-

ary bias settling in the mind of investors, as a reflection of levels of inflation volatility per se.

Declining inflation rates are to the detriment of investors holding long inflation positions,

and thus pessimism on short-term inflation dynamics should potentially trigger a decline in

the inflation risk premium. We thus add two proxies for inflation and deflation fears. These

measures will be defined with reference to “psychological” thresholds. In particular, the in-

flation fear may be associated with the price of the one-year-ahead inflation cap with a strike

price equal to 4% which is comfortably above the inflation target of the central bank. In

the same vein, the deflation fear may be defined by the price of the one-year-ahead inflation

floor with a strike price of 0%, that is the threshold for true deflation. These will be referred

to as Cap at 4 and Floor at 0 respectively.

3.2 A simulation study of our variable selection strategy

A simple and common method for model selection is to estimate the full model and discard

variables which are not statistically significant. As stated above, this may be problematic

when there is multicollinearity among the regressors. Thus we set ourselves to study whether

selecting variables on the basis of whether the t-statistics of the ordinary least square regres-

sions are large, leads indeed to worse results than selecting a model by means of Bayesian

variable selection techniques in the presence of multicollinearity. For this purpose we will

adjust and expand the Monte Carlo study presented in Ghosh and Ghattas (2015, Sec 3.1).

In their study, Ghosh and Ghattas (2015) did not assess the potential use of standard t-

statistics for model selection (something we would like to address here), but rather focused

on the impact of the adoption of various prior distributions for Bayesian variable selection.

Variable selection methods. The variable selection methods that will be put to the test

are the following. First, ordinary least squares, OLS∗∗ and OLS∗, will refer to the selection

of variables as pertaining to the true model whenever the t-statistics reject the hypothesis

that the parameter associated with that variable is zero with a level of significance of 5%

and 10% respectively. Second, the highest probability model (HPM) will be the selection
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of that model which is assigned the largest posterior probability among all possible models.

Third, the median probability model (MPM) of Barbieri and Berger (2004), i.e. the model

which includes all variables whose marginal posterior probability of inclusion is larger than

50%. Fourth, selection using the Bayesian model averaging estimates, BMA∗∗ and BMA∗,

the same as for OLS, but now using the BMA estimated coefficients.

We will adopt a fairly standard Bayesian variable selection framework. In particular, we

take the prior probability for a certain variable to be present in the true model as being

independent Bernoulli with probability 0.5. This is equivalent to assuming that any single

possible combination of variables is equally likely as a true model, that is any combination

of variables has prior probability 2−10 of being the true model. We further adopt a standard

conjugate non-informative prior structure for the parameters of a given model. We adopt an

inverse gamma prior for σ2 with parameters ν = 3 and λ = σ̂2, where σ̂2 is the ordinary least

square estimate of the error term computed from the full model, i.e. the model containing

all the explanatory variables.

Bayesian selection methods in the presence of multicollinearity are particularly sensitive

to the choice of the prior distribution of the parameters, as shown in Ghosh and Ghattas

(2015). As in Ghosh and Ghattas (2015) we also put to the test the two most commonly

encountered priors employed in the literature. The first are independently normal priors

with mean zero and variance equal to 2.852×σ2. This prior was advocated by Raftery et al.

(1997) and, as we will see below, leads to better results than alternative equally standard

specifications. The second is the standard g-prior specification of Zellner (1986), where the

parameter g is fixed using the strategy recommended by Fernandez et al. (2001). When

commenting on our results below, we will use the letter i when referring to the adoption of

independent priors, e.g. MPMi, and the letter g when referring to the adoption of the g-prior,

e.g. MPMg. Both these standard conjugate priors have the convenient property that the

marginal posterior probabilities of inclusion of a variable are analytically tractable. In our

analysis the number of possible variables to include is not excessively large and we can thus

compute analytically the posterior probabilities of inclusion for all possible combinations of

the explanatory variables.8

8See Chipman et al. (2001, Sec 3) for details on the implementation of this type of priors, and full details
on the exhaustive calculation of the posterior model probabilities. Note also that for the computation of
the estimated variance of the model averaged parameters reported in the tables, say β̂M , we proceed as in
Leamer (1978, p. 118), namely:

ˆV ar (βM ) =
∑
i

ˆV ar (βi)P (i) +
∑
i

(
β̂i − β̂M

)2
P (i)

ECB Working Paper 2033, March 2017 16



Monte Carlo design. We take the number of candidate variable, k, as equal to 10. The

last six variables are independent standard normally distributed random variables. The first

candidate variables are generated from xit = zt+uit ∗ (1− ρ) ρ−1 for i = 1 to 4, and where zt

and uit are standard independent normally distributed variables. This generates regressors

which are mutually correlated, and with correlations coefficient equal to ρ. We then conduct

two different Monte Carlo studies. In Monte Carlos study A we assume that the first four

variables are assigned a coefficient equal to one, and the remaining six a coefficient equal to

zero. In contrast, in our Monte Carlos study B the opposite is the case, i.e. the first four

variables are assigned a coefficient of zero and the last six a coefficient of one. We will further

conduct the simulation studies for values of ρ either fixed to 0.9 or to 0.5. These values are

aligned with the correlation observed among the indicators listed in section 3.1. They are,

of course, well below the value used in Ghosh and Ghattas (2015) which was 0.997, a value

we judge is not commonly encountered in applied econometric studies that use monthly time

series. We will employ two samples sizes, N = 90 and N = 200, the former equally aligned

with our empirical analysis. Finally, the standard deviation of the error term σε is set to

either 4 or 6; these lead to R-squared coefficients of around 0.85 and 0.45 respectively.

Performance of the different methods is evaluated over 10,000 simulations. Tables 2 and

3 present various metrics to evaluate performance. Table 2 shows i) the average number

of false inclusions (FI), that is the average number of variates that do not belong to the

true model that are selected as valid regressors; ii) the average number of false exclusions

(FE), that is the average number of variates that belong to the true model that fail to be

selected; and iii) the percentage of times that the null model is selected (Null), that is, no

single variate is selected. Table 3 shows instead the average bias and average root mean

square error (RMSE) of the estimated parameters. The bias is presented for the estimated

coefficient of the first and fifth parameter; recall that in the Monte Carlo study A, the first

parameter is 1 and the fifth is zero, and vice-versa for the Monte Carlo Study B. The RMSE

refers to the root mean square error of the 10 estimated parameters.9

Several lessons can be taken from these exercises. First, Bayesian selection techniques such

as MPM and HPM perform better than OLS in identifying the true model. Second, this is

particularly so when multicolinearity is large. Somehow worryingly, the OLS methods lead

where ˆV ar (βi) is the estimated variance of the parameter β in model i, and P (i) is the marginal probability
of model i.

9Of course, when a variable is not selected the assigned value is zero.
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to a large percentage of cases where no single variable is actually selected, e.g. sometimes

the null model is selected 65% of the time. Third, Bayesian techniques such as BMA do not

improve upon the OLS method for identifying the true model. Fourth, MPM and HPM with

independent priors have a slight advantage compared to when the method is implemented

with g-priors. This is indeed aligned with the result reported in Ghosh and Ghattas (2015).

However, our results also reveal that for levels of mulitcolinearity more aligned with econo-

metric applications, the disadvantage of using g-priors is not very large. It is also important

to note that the OLS method does not even appear to have a major advantage over the

MPM and HPM when the level of multicolinearity is low.

Moving to the results of Table 3, it transpires that, as expected, the reliability of the esti-

mates in terms of bias and RMSE deteriorates in the presence of multicollinearity and when

the standard deviation of the error term deteriorates. The RMSE of the posterior parameter

estimates of the MPM and HPM cannot be said to be better or worse than the RMSE of the

OLS method. However, the BMA methods appear clearly more reliable in terms of RMSE

than both the OLS or the MPM and HPM.

All in all, this simulation study suggests that for our empirical analysis Bayesian methods

are more suitable than the adoption of simple OLS techniques. For our empirical analysis we

will choose to report the estimation results for the MPMi and BMAi methods which provide

the best method for model selection and the best method to retrieve estimators with lower

RMSE.

3.3 Regression results

We conduct our regression analysis using series in levels and in first-differences for robust-

ness, and focus on the sample period January 2008 to September 2016. The series do appear

to be stationary. However, serial correlation is non-negligible and may jeopardise the imple-

mentation of the Bayesian selection procedure that relies on normality assumptions. On the

other hand, regressions using first differences might be subject to the standard problems of

over-differencing. We thus also choose to add the lagged value of the inflation risk premium

as a potential explanatory variable in our Bayesian selection strategy.10 In our regression

analysis the explanatory variables are all normalised, that is their mean is adjusted to zero

and the standard deviation to one. This renders the magnitude of the coefficients across

10The only variable that does not appear sensible to transform in first differences is the data surprise. It
is thus left in levels in the reported results below.

ECB Working Paper 2033, March 2017 18



variables comparable. Finally, estimation results removing outliers are also reported in the

tables. Outliers are identified as those observations which deviate from their sample mean by

more than three times their sample standard deviation. All candidate explanatory variables

are shown in figures 4 and 5.

The results for the Bayesian model averaging estimation, where candidate models are weighted

by their posterior probability of inclusion, are shown in Tables 4 and 5. The majority of the

explanatory variables turn out not to be statistically significant. The liquidity indicator turns

out to have a significant effect on the model-free indicator for the inflation risk premium for

the US and the euro area (in the regression in levels) but is not significant when outliers are

removed. For the model-base indicator, liquidity is significant in the level regressions for the

US but again no longer significant when outliers are removed. The fact that the outlier re-

moval changes the significance of the liquidity indicators consistently, suggests that liquidity

was particularly a problem in the immediate months following the collapse of Lehman, as

this is the period identified as an outlier. For the vast majority of specifications, indicators

of realised inflation volatility have a negative, although mainly not significant, coefficient. In

contrast, for a few US specifications the implied inflation volatility has a significant positive

coefficient.

The regression results for our indicators of inflation and deflation fears suggest that the

inflation risk premium is mainly a measure of deflation fears. The price of the inflation

floor at zero (price for deflation protection) consistently shows a negative coefficient that

is statistically significant for most specifications. The price of protecting against inflation

above the target shows consistently a positive coefficient that is statistically significant for

some specifications. The opposite sign of the coefficient associated with the indicators for

inflation and deflation fears strongly indicates that the inflation risk premium is dominantly

influenced by the balance of inflation risk rather than inflation volatility. If the risk of de-

flation increases, or the risk of inflation being higher than the target declines, the inflation

risk premium declines and can even become negative. This interpretation is also supported

by the regression results for the inflation surprise indicator. This indicator has a positive

and statistically significant coefficient for the model-based inflation risk premium for the

US. At the same time, the indicator of surprise uncertainty is not statistically significant.

This again suggests that it is the direction of data surprises, rather than the uncertainty of

inflation data releases, that is the main driver for the inflation risk premium. The sequence

of negative surprises in the inflation releases we have seen since the great recession have

brought down the inflation risk premium.
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4 Conclusions

Our analysis can be condensed into two main results. First, the inflation risk premium

that was, both for model-free and model-based measures, positive in the years before the

collapse of Lehman has turned considerably negative since then. This is striking as most

other premia, like credit risk premia, increased strongly amid the financial crisis. Second,

indicators of inflation uncertainty, like disagreement on inflation forecasts and realised or

historical inflation volatility, seem not to be the main driver of the inflation risk premium.

What actually drives the inflation risk premium are indicators of inflation above the monetary

policy target and indicators for deflation fears. The opposite sign of the indicators of inflation

and deflation fears strongly indicates that the inflation risk premium is dominantly influenced

by the balance of inflation risk rather than inflation volatility. This implies that a low, or

even negative, inflation risk premium is primarily associated with strong deflation risk rather

than low inflation uncertainty. Our results have considerable implication for monetary policy

as central banks should not be complacent with low or even negative inflation risk premia.
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Technical Appendix

A Projected price index embedded in the ILS curve

One of the counterparts in the Zero-coupon inflation-linked swap agreement will pay inflation

and the other will pay an agreed fixed rate. The cash flow of the contract (for the net amount)

will be paid at maturity. If counterpart A pays the fixed rate, say πILSt (k), and counterpart

B pays inflation, their respective cash-flows in a k-year maturity swap for a notional of N

will be:

Cash Flow A = N ×
[(

1 + πILSt (k)
)k − 1

]
Cash Flow B = N ×

[
It+k
It
− 1

]
where t is the date when the contract is settled and It the price index used as reference in

the swap. Of course, the index k serves to denote those years for which there are quotes in

the ILS market. In particular, zero-coupon swaps are actively traded for maturities of 1 to

10 years.

The zero coupon swap provides a picture of expected (under the risk neutral measure) path

for the “reference” price index. If t is the settlement date used to compute the reference

date, the price of an ILS contract of k-years of maturity provides us with the expected value

of the price index in the future. Noting that the discounted value of the cash flow A and B

should be equal at the time of settlement, it follows that:

It+k = It ×
(
1 + πILSt (k)

)k
(A-1)

This clearly illustrates how expectations on future inflation are embedded in ILS quotes.

However, the computation of future inflation from ILS quotes is not as simple as suggested

by equation (A-1). We now turn to this issue.

The ILS quotes can be used to retrieve expectations about the future path of inflation

as recorded by the “official” price index. In this paper we will adopt the notation Pt to

denote the “official” price index underlying the construction of the “reference” price index,

It, actually employed in the payments of the ILS contract. With a slight abuse of notation,

where before we generally adopted the index t to denote a date, we now also adopt the

convention of splitting that index into the subindex y,m, d to denote the year, month and

day of a given date t.11 The reference price It adopted in ILS contracts is computed from

11We further adopt the convention that subtracting one month from a date in January will also result in a
subtraction of the year, even when this is not implicitly defined. That is y,m−1, d for the date 2015/Jan/25
would result into 2014/Dec/25.
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lag values of Pt following market conventions. The rationale for adopting an “indexation”

lag results from the fact that consumer price indexes are usually reported with a lag.

A.1 Euro area

In the most commonly zero coupon inflation-linked swap traded in the euro area, the price

index is usually the non-seasonally adjusted Harmonised Index of Consumer Prices (HICP)

excluding tobacco, and the reference date is the HICP three months before the time of

settlement (three-month lag indexation).12 The time of settlement is currently two working

days. In sum, the index is defined as follows:

It = Iy,m,d = Py,m−3 (A-2)

When using the lag convention adopted in the euro area and the formulation of the reference

price index, shown in equation (A-2), it follows that the price index projected in the swap

contract in equation (A-1) results in:

Py+k,m−lag = Py,m−lag ×
(
1 + πILSt (k)

)k
(A-3)

It would be unwise to compute the embedded price index in between say, Py+k,m−lag and

Py+k+1,m−lag, by linear interpolation. The presence of seasonality in price indexes implies

that inter-month growth in the index over certain months is larger than on average. It is

thus sensible to adjust the monthly interpolation to account for this regular seasonal pattern,

by means of using seasonal adjustment factors, St.
13 For computing the value of the index

at a date τ , where t0 < τ < t1 and values for the price index at Pt0 and Pt1 are available

(either from the projections in equation (A-3) above, or because the index at date t0 may

have already been published by the Statistical Office), we would proceed as follows:

Pτ = Pt0
Sτ
St0

(
Pt1
Pt0

St0
St1

)#(I)
#(K)

(A-4)

where I is the set of all months from t0 to τ , K the set of months from t0 to t1 (without

counting t0 on both accounts), and # (I) and # (K) denote respectively the number of

months in I and K.14

12The HICP is the official measure of consumer price inflation in the euro area. The HICP is calculated
according to a harmonised approach and a single set of definitions, thus providing a comparable measure
of inflation across euro area countries. It is published by Eurostat, the Statistical Office of the European
Commission.

13That is, if PSA is the seasonally adjusted index on month i and Pi the non-seasonally adjusted index,
the seasonal factor is defined by Si = Pi/P

SA
i .

14The computed value for Pτ is such that PSAτ , PSAt0 and PSAt1 lie on the same straight line.
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A.2 United States

The “official” price index underlying the ILS contract in the United States is the Con-

sumer Price Index for All Urban Consumers published by the Bureau of Labor Statistics.

The indexation lag is three months, and contracts are settled in two days. Furthermore,

and in contrast with the euro area, in order to compute a daily reference price index from

the monthly official data published by the Statistical Office, an interpolation procedure is

adopted.15 The reference price index in the US ILS contract is thus computed from the

official monthly data Py,m as:

It = Iy,m,d = Py,m−3 +
d− 1

# of days in m
(Py,m−2 − Py,m−3) (A-5)

(and where it is further assumed that m− 3 gives the official index published by the Statis-

tical office for the month lagging behind the current month by three months). The index It

is commonly rounded to five decimal digits.

The derivation of the future path of the US CPI from ILS contracts is slightly more cum-

bersome. When using the lag convention adopted in the United States, the formulation of

the reference price index, shown in equation (A-5), it follows that the price index projected

in the swap contract in equation (A-1) results in:

(1− δd,m)Py+k,m−lag+δd,mPy+k,m−lag+1 =

[(1− δd,m)Py,m−lag + δd,mPy,m−lag+1]× (1 + ilst(k))k (A-6)

and where:

δd,m =
d− 1

# of days in m

The right-hand side of (A-6), and including δd,m, are known, but this does not allow us

to obtain a projection for the future price index k-years ahead, because this is split into

a weighted average of Py+k,m−lag, and Py+k,m−lag+1. Of course, we could assume that the

projected future values of the index for both Py+k,m−lag and Py+k,m−lag+1, are both aligned

with the growth rate implied by the ILS rate. That is:

Py+k,m−lag = Py,m−lag × (1 + ht(k))k

Py+k,m−lag+1 = Py,m−lag+1 × (1 + ht(k))k

For computing the value of the index at a date τ , where t0 < τ < t1 and values for the price

index at Pt0 and Pt1 are available, we would simply employ the interpolating formula (A-4).

15There are, however, other zero-coupon inflation-linked swaps traded in the euro area that adopt inter-
polation of the price index as a convention, e.g. the French CPI excluding tobacco. These ILS contracts will
not be used in the context of this paper
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B Projected price index embedded in Consensus data

In order to retrieve information on year-on-year inflation expectations from the information

provided by available data and information from Consensus Economics, we need to proceed

as follows. First, we make use of the approximating formula of Patton and Timmermann

(2011). This formula provides a representation of the yearly rates provided by Consensus

Economics as a weighted sum of the monthly rates of growth of the price index. Namely,

zt =
P̄t
P̄t−12

− 1 ≈
23∑
k=0

wkyt−k (B-7)

and where

P̄t =
11∑
k=0

Pt−k

yt−k = log

(
Pt−k
Pt−k−1

)
wk = 1− |k − 11| /12

The data from Consensus correspond to zt for the “current” and for the “next” year, while we

would like to infer the year-on-year rates defined by Pt/Pt−12−1. Second, when reporting the

Consensus “current” estimate of annual inflation, the price indexes for a number of months,

say k∗, in the “current” year are not available. By further using the standard identity linking

seasonally adjusted and non-seasonally adjusted data, i.e. Pt = P SA
t St, we could write the

approximating formula in (B-7) as:

zcurrentt ≈
23∑

k=k∗

wk log

(
Pt−k
Pt−k−1

)
+

k∗−1∑
k=0

wk log

(
P SA
t−k

P SA
t−k−1

St−k
St−k−1

)
Of course, the price indexes for the last k∗ are not available. Third, we assume that the

monthly seasonally adjusted growth rate of the price index for the last k∗ observations

remains constant at a rate g.16 This allows to re-write zcurrentt as:

zcurrentt ≈ Y1 + gW + Y2

with:

Y1 =
23∑

k=k∗

wk log

(
Pt−k
Pt−k−1

)

Y2 =
k∗−1∑
k=0

wk log

(
St−k
St−k−1

)

W =
k∗−1∑
k=0

wk

16While this appears at first a strong assumption, the seasonally adjusted monthly rates of inflation in
both the euro area and the United States do not display strong serial correlation.
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From where it follows that:

g ≈
(
zcurrentt − Y1 − Y2

)
/W

Finally, if τ is the last available price index in the “current” year, the extrapolated price

index for next month can now be simply constructed as:

Pτ+1 = Pτ
Sτ+1

Sτ
exp {g}

This would provide the extrapolated price index for the remaining months of the year. This

procedure could also be easily implemented for the extrapolation of the price index over

the “next” year by simply using the available price indexes as well as the extrapolated

price indexes of the “current” year. Year-on-year rates can then be constructed using the

extrapolated path for the price index over the “current” and “next” year.17

C Affine term structure of inflation swap rates

In this appendix we derive Riccati equations for computing the coefficients An and Bn to

price inflation swap rates:

yπt,n = An +B′nXt

We start with the valuation equation for inflation swap rates derived in the main text

eny
π
t,n = EQ

t

[
exp

(
n∑
j=1

πt+j

)]
In order to derive the same Riccati equations known from nominal term structure models

we invert the equation above18

e−ny
π
t,n = EQ

t

[
exp

(
−

n∑
j=1

πt+j

)]
For an n− 1 maturity inflation swap rate in period t+ 1 we get

e−(n−1)yπt+1,n−1 = EQ
t+1

[
exp

(
−

n−1∑
j=1

πt+1+j

)]
17Knuppel and Vladu (2016) provided an alternative method to compute year-on-year forecasts from

Consensus data. Both their method and the method we propose in this paper rely on the approximating
formula of Patton and Timmermann (2011) and implicitly assume constant monthly growth rates for the
unobserved price indexes of the current year. However, and in contrast with the approach pursued in Knuppel
and Vladu (2016), in our method i) we explicitly model seasonality, (and indeed the assumption of constant
growth over the remaining months of the current year is only imposed on the seasonally adjusted growth
rate) and ii) the projected path of the price index is fully consistent with the reported “current” and “next”
inflation projections of Consensus. More importantly, our method is fully aligned with the method employed
in the previous section to extrapolate the future price index from ILS quotes.

18We are using properties of the log-normal distribution. When Z is a normal distributed random variable
with mean µ and standard deviation σ then X = exp(Z) is log-normal distributed with E(X) = exp(µ+ 1

2σ
2).

Therefore E(X)−1 = exp(−(µ+ 1
2σ

2)).
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We can rearrange the equation for e−ny
π
t,n by using the law of iterated expectations,

e−ny
π
t,n = EQ

t

[
exp

(
−

n∑
j=1

πt+j

)]

= EQ
t

[
exp(−πt+1) exp

(
−

n∑
j=2

πt+j

)]

= EQ
t

[
EQ
t+1

[
exp(−πt+1) exp

(
−

n−1∑
j=1

πt+1+j

)]]

If we substitute the equation for e−(n−1)yπt+1,n−1 and take logs on both sides we get a recursive

equation for inflation swap rates; and if we further assume that inflation in period t + 1 is

known already in period t,19 then it follows that:

−nyπt,n = log
(

exp(−πt+1)EQ
t

[
exp(−(n− 1)yπt+1,n−1)

])
Inflation swap rates are assumed to be linear affine functions for the state variables Xt

yπt,n = −an
n
− b′n
n
Xt = An +B′nXt

−nyπt,n = an + b′nXt

Substituting this definition into the recursive equation for swap rates we get

an + b′nXt = −πt+1 + log
(
EQ
t

[
exp(an−1 + b′n−1Xt+1)

])
= −πt+1 + an−1 + b′n−1E

Q
t (Xt+1) +

1

2
b′n−1V

Q
t (Xt+1)bn−1

Using the dynamics of the state variables under the Q measure and the fact that inflation is

a linear affine function of the state variables

Xt = µQ + ΦQXt−1 + ΣεQt

πt+1 = π0 + π′1Xt

we get

an + b′nXt = −π0 − π′1Xt + an−1 + b′n−1µ
Q + b′n−1ΦQXt +

1

2
(b′n−1Σ′Σbn−1)

19In a model with monthly frequency this assumption just implies that inflation for the current month
is already known at the beginning of the month. In the continuous time framework of Beechey (2008) and
Finlay and Wendel (2012) this assumption is not needed to derive Riccati equations (Riccati ODEs) that are
identical to the case of nominal bond yields. In our discrete time framework the Riccati equations derived
below are approximately valid also without this assumption as shown by Liu et al. (2015).
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and by equating constant terms and terms including Xt the standard Riccati equations are

derived:

bn = −π1 + (ΦQ)′bn−1

an = −π0 + an−1 + (µQ)′bn−1 +
1

2
(b′n−1Σ′Σbn−1)

with b0 = 0 and a0 = 0.
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Table 2: Monte Carlo Simulation for variable selection methods. Inclusion probabilities.

σε = 4 σε = 6
ρ = 0.9 ρ = 0.5 ρ = 0.9 ρ = 0.5

N mod FI FE Null FI FE Null FI FE Null FI FE Null

Monte Carlo Study A

90 OLS∗∗ 0.305 3.452 50.7% 0.306 1.217 0.0% 0.307 3.644 67.7% 0.302 2.472 6.9%
OLS∗ 0.606 3.111 27.9% 0.602 0.814 0.0% 0.595 3.382 48.3% 0.600 1.966 1.1%
BMAg∗∗ 0.020 3.562 56.2% 0.027 2.111 1.8% 0.024 3.738 73.9% 0.023 3.031 21.9%
BMAg∗ 0.038 3.445 44.6% 0.043 1.834 0.3% 0.039 3.635 63.6% 0.040 2.802 11.2%
MPMg 0.222 2.767 1.1% 0.235 0.932 0.0% 0.223 3.050 10.1% 0.225 1.836 0.0%
HPMg 0.234 2.837 0.0% 0.245 1.037 0.0% 0.230 2.992 0.0% 0.240 1.922 0.0%
BMAi∗∗ 0.020 3.562 56.4% 0.028 2.122 1.8% 0.023 3.742 74.2% 0.023 3.050 22.5%
BMAi∗ 0.038 3.423 42.9% 0.045 1.858 0.4% 0.038 3.631 63.2% 0.039 2.835 12.3%
MPMi 0.211 2.464 0.1% 0.237 0.982 0.0% 0.201 2.865 4.2% 0.214 1.937 0.0%
HPMi 0.199 2.608 0.0% 0.245 1.097 0.0% 0.183 2.965 0.0% 0.218 2.024 0.0%

200 OLS∗∗ 0.298 2.951 17.5% 0.303 0.124 0.0% 0.295 3.426 47.7% 0.293 1.099 0.0%
OLS∗ 0.594 2.509 3.9% 0.600 0.063 0.0% 0.597 3.085 25.1% 0.582 0.728 0.0%
BMAg∗∗ 0.016 3.294 32.5% 0.015 0.740 0.0% 0.015 3.545 54.5% 0.016 2.145 1.4%
BMAg∗ 0.027 3.107 18.7% 0.027 0.578 0.0% 0.026 3.433 43.3% 0.026 1.890 0.2%
MPMg 0.137 2.251 0.0% 0.145 0.195 0.0% 0.136 2.862 1.8% 0.138 1.039 0.0%
HPMg 0.141 2.204 0.0% 0.148 0.213 0.0% 0.140 2.938 0.0% 0.143 1.145 0.0%
BMAi∗∗ 0.015 3.247 29.7% 0.015 0.781 0.0% 0.013 3.556 55.6% 0.015 2.194 1.6%
BMAi∗ 0.024 3.035 15.7% 0.026 0.615 0.0% 0.022 3.430 43.0% 0.024 1.950 0.4%
MPMi 0.120 1.991 0.0% 0.136 0.225 0.0% 0.111 2.695 0.5% 0.124 1.132 0.0%
HPMi 0.118 2.103 0.0% 0.135 0.248 0.0% 0.103 2.819 0.0% 0.128 1.237 0.0%

Monte Carlo Study B

90 OLS∗∗ 0.205 2.393 0.6% 0.196 2.395 0.7% 0.196 4.110 11.7% 0.198 4.102 11.5%
OLS∗ 0.409 1.694 0.1% 0.401 1.697 0.1% 0.397 3.391 3.7% 0.401 3.375 3.6%
BMAg∗∗ 0.006 4.491 20.5% 0.011 4.498 20.4% 0.006 5.487 59.4% 0.013 5.502 60.6%
BMAg∗ 0.011 4.140 13.0% 0.021 4.146 12.8% 0.010 5.308 48.5% 0.021 5.316 49.3%
MPMg 0.085 2.681 0.7% 0.133 2.677 0.8% 0.082 4.266 11.0% 0.133 4.264 11.5%
HPMg 0.146 2.681 0.2% 0.164 2.680 0.4% 0.148 4.188 2.5% 0.173 4.203 3.5%
BMAi∗∗ 0.014 4.495 21.2% 0.009 4.510 21.3% 0.010 5.504 60.7% 0.010 5.516 61.5%
BMAi∗ 0.023 4.149 13.6% 0.016 4.161 13.6% 0.018 5.332 50.3% 0.016 5.340 50.6%
MPMi 0.191 2.711 0.9% 0.095 2.728 1.0% 0.169 4.344 13.1% 0.086 4.344 12.6%
HPMi 0.202 2.754 0.2% 0.114 2.762 0.3% 0.176 4.304 2.9% 0.108 4.309 2.7%

200 OLS∗∗ 0.196 0.436 0.0% 0.199 0.433 0.0% 0.205 2.221 0.2% 0.195 2.238 0.3%
OLS∗ 0.397 0.229 0.0% 0.393 0.227 0.0% 0.407 1.550 0.0% 0.396 1.577 0.1%
BMAg∗∗ 0.002 2.075 0.3% 0.008 2.074 0.4% 0.003 4.605 21.1% 0.006 4.602 20.8%
BMAg∗ 0.004 1.725 0.1% 0.014 1.725 0.1% 0.005 4.283 13.5% 0.014 4.297 13.9%
MPMg 0.038 0.763 0.0% 0.082 0.758 0.0% 0.042 2.965 0.9% 0.078 2.969 1.1%
HPMg 0.068 0.751 0.0% 0.098 0.748 0.0% 0.073 2.974 0.2% 0.097 2.973 0.2%
BMAi∗ 0.005 2.110 0.3% 0.006 2.114 0.5% 0.006 4.672 23.7% 0.004 4.669 23.0%
BMAi∗ 0.009 1.763 0.1% 0.010 1.762 0.2% 0.010 4.362 15.3% 0.009 4.379 15.7%
MPMi 0.076 0.800 0.0% 0.056 0.797 0.0% 0.075 3.102 1.5% 0.049 3.111 1.5%
HPMi 0.089 0.793 0.0% 0.066 0.785 0.0% 0.086 3.140 0.3% 0.058 3.138 0.2%

Note: FI shows the average number of false inclusions; FE the average number of false exclusions; and Null the percentage of
times that the null model is selected. See text for further details.
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Table 3: Monte Carlo Simulation for variable selection methods. Bias and estimation error.

σε = 4 σε = 6
ρ = 0.9 ρ = 0.5 ρ = 0.9 ρ = 0.5

N mod bias1 bias5 RMSE bias1 bias5 RMSE bias1 bias5 RMSE bias1 bias5 RMSE

Monte Carlo Study A

90 OLS 0.010 -0.004 6.736 -0.009 0.001 1.868 -0.003 0.010 15.095 0.012 -0.008 4.185
BMAg -0.031 -0.001 5.032 -0.069 -0.000 1.461 -0.041 0.003 5.936 -0.087 -0.001 2.735
MPMg -0.033 0.001 9.639 -0.046 -0.001 1.787 -0.119 -0.000 11.526 -0.067 -0.000 3.994
HPMg -0.027 0.000 10.213 -0.051 -0.000 1.921 -0.036 0.002 12.446 -0.070 0.000 4.156
BMAi -0.014 -0.001 4.679 -0.062 -0.000 1.529 -0.028 0.003 6.321 -0.087 -0.002 2.878
MPMi -0.011 0.001 7.961 -0.050 -0.001 1.863 -0.061 0.000 11.403 -0.077 0.001 4.202
HPMi -0.015 0.000 8.707 -0.055 -0.001 2.011 -0.035 0.000 12.520 -0.085 0.001 4.357

200 OLS 0.004 -0.000 2.839 0.003 0.001 0.779 -0.002 -0.001 6.380 0.002 0.002 1.741
BMAg -0.022 0.000 3.627 -0.014 0.001 0.533 -0.042 -0.000 5.347 -0.053 0.000 1.470
MPMg -0.016 0.000 6.144 -0.003 0.001 0.514 -0.064 -0.001 10.097 -0.033 -0.000 1.816
HPMg -0.008 0.000 5.538 -0.003 0.001 0.532 -0.049 -0.001 10.830 -0.040 -0.000 1.943
BMAi -0.013 0.000 3.196 -0.010 0.001 0.557 -0.031 -0.001 4.957 -0.053 0.000 1.549
MPMi -0.010 0.000 4.938 -0.004 0.001 0.540 -0.049 -0.001 9.112 -0.040 0.000 1.943
HPMi -0.006 0.000 4.957 -0.004 0.001 0.563 -0.046 -0.001 9.902 -0.047 -0.000 2.074

Monte Carlo Study B

90 OLS 0.001 0.004 6.766 0.001 -0.001 1.864 -0.008 -0.003 15.027 -0.004 0.005 4.194
BMAg 0.001 -0.305 2.857 0.001 -0.306 2.548 -0.002 -0.467 4.540 0.001 -0.467 3.900
MPMg 0.000 -0.277 3.736 0.000 -0.274 3.416 -0.001 -0.495 6.370 0.003 -0.496 5.736
HPMg 0.000 -0.270 4.012 0.000 -0.268 3.459 -0.002 -0.475 6.944 0.004 -0.481 5.789
BMAi 0.003 -0.302 3.254 0.001 -0.305 2.572 -0.002 -0.475 5.274 0.001 -0.476 3.932
MPMi 0.004 -0.280 4.274 0.001 -0.282 3.444 0.002 -0.509 7.385 0.003 -0.515 5.752
HPMi 0.006 -0.281 4.493 -0.001 -0.281 3.508 -0.000 -0.498 7.588 0.003 -0.507 5.791

200 OLS 0.004 0.004 2.798 0.003 0.001 0.779 0.009 0.008 6.391 0.002 0.004 1.773
BMAg 0.001 -0.105 1.135 0.000 -0.109 1.070 0.003 -0.332 2.831 0.000 -0.335 2.686
MPMg -0.000 -0.061 1.174 -0.000 -0.066 1.116 0.002 -0.314 3.780 -0.001 -0.320 3.626
HPMg -0.000 -0.059 1.204 -0.000 -0.065 1.111 0.000 -0.312 3.903 -0.001 -0.317 3.652
BMAi 0.001 -0.105 1.235 0.000 -0.109 1.090 0.003 -0.347 3.081 -0.000 -0.350 2.768
MPMi 0.002 -0.066 1.288 -0.000 -0.070 1.145 0.003 -0.337 4.103 -0.002 -0.344 3.750
HPMi 0.002 -0.064 1.324 -0.000 -0.069 1.135 0.003 -0.342 4.236 -0.002 -0.347 3.791

Note: bias1 is the average bias of the estimated coefficient associated with the first variable; bias5 that associated with the
fifth variable. RMSE denotes the average root mean square error of the 10 estimated parameters. See text for further details.
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Figure 1: Inflation Linked Swap deviations from Consensus forecasts.
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Note: Last observation is September 2016.
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Figure 2: Model-free and model-based one-year ahead inflation risk premium.
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Note: Last observation is September 2016. See text for further details.
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Figure 3: Rolling Root Mean Square errors of alternative CPI forecasts.
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Figure 4: Explanatory variables for the euro area.
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Figure 5: Explanatory variables for the United States.
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