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Abstract

This study presents how selection of equilibrium in a game with many

equilibria can be made possible when the common knowledge assumption

(CKA) is replaced by the notion of common belief. Essentially, this idea of

pinning down an equilibrium by weakening the CKA is the central feature

of the global game approach which introduces a natural perturbation on

games with complete information. We argue that since common belief is

another form of departure from the CKA, it can also obtain the results at-

tained by the global game framework in terms of selecting an equilibrium.

We provide here necessary and su¢ cient conditions.

Following the program of weakening the CKA, we weaken the notion

of common belief further to provide a less stringent and a more natural

way of believing an event. We call this belief process as iterated quasi-

common p-belief which is a generalization to many players of a two-person

iterated p-belief. It is shown that this converges with the standard notion

of common p-belief at a su¢ ciently large number of players. Moreover, the

agreeing to disagree result in the case of beliefs (Monderer & Samet, 1989

and Neeman, 1996a) can also be given a generalized form, parameterized

by the number of players.

Keywords: common p-belief; common knowledge assumption; global games
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1. Introduction.

Common knowledge among players on certain features of the game is an essential

yet a very stringent assumption that often leads to many Nash equilibria. In a strict

sense of a term, common knowledge requires a hierarchical "knowing" of an event

or payo¤ structure of the game i.e. not only that everyone should know the event,

but that everyone should also know that everyone knows it, and that everyone should

know that everyone knows that everyone knows it, and so on, ad in�nitum1. It is

therefore on this rigorousness that many economists maintain that common knowledge

assumption (CKA) can never really be sustained in practice. As Wilson (1987) would

put it, "only by weakening the CKA will the theory approximate reality".

However, abandoning the CKA has far better consequences than just making a

theory more realistic. In the �eld of equilibrium selection, Carlsson and van Damme

(1993) showed that by introducing a small amount of noise on player�s payo¤, any

initial multiple equilibria in a game contracts into a unique rationalizable equilibrium.

Their approach even generalizes the Harsanyi-Selten�s criterion for selection in the

sense that players always choose the risk-dominant equilibrium even when the other

equilibrium is payo¤-dominant. This kind of mechanism, termed as the "global game

approach" has particularly found its application on explaining why crisis phenomenon

can become a stable outcome2.

In this paper, we show that the success achieved by the global game method for

equilibrium selection can also be attained by another form of departure from the

CKA known as common belief. Monderer and Samet (1989), in an attempt to weaken

the CKA3, ventured on the idea that if players do not fully know and therefore,

only believe an event is true with probability of at least p (or simply say p-believe),

the hierarchical structure of information that is similar to common knowledge can

still be maintained. It must be noted here that while common knowledge about the

1This de�nition, confounding as it may seem, was given a simpler mathematical formulation by
Aumann (1976). This formulation was later applied by Monderer and Samet (1989) on common
belief. Geanakoplos (1994) and Fagin, Halpern et.al. (1999) provide an excellent discussion on
common knowledge.

2See Morris and Shin (2003) for a survey of global game application on crisis structures.
3The idea of a weaker form of common knowledge �rst came about from Rubinstein�s (1989)

notion of almost common knowledge. He showed, however, in a modernized version of �coordination-
attack problem�that optimizing agents cannot behave as if they are in a common knowledge envi-
ronment and therefore cannot achieve the typical Nash equilibrium of the game.
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event is no longer at its fullest, the common knowledge on the rationality of players is

preserved. An event, say E, is said to be commonly p-believed if everybody p-believes

E, everybody p-believes that everybody p-believes E, and so on. They established

that players can still achieve an equilibrium similar to a game played under a common

knowledge environment for as long as they behave as "-optimizers. Thus, if a game has

multiple equilibria under complete information, these equilibria will continue to be

stable within a certain neighborhood under the common belief setup. Our approach

therefore is a re�nement of their result since it attempts to reduce this multiplicity

into a unique equilibrium criterion.

In this study, we refrain from using "noisy" private signals and focus only on the

information partition that each agent received from the very start. As we assume here

a common prior among agents, di¤erences of the probability estimates (posteriors)

on a certain event are attributed only to the di¤erences in the information sets that

each agent may have. Thus, the inability of every agent to fully pin point the true

state of the economy is due to the realization that there are other "states" in her

information set that are indistinguishable from the true one. As a result, any event

that proceeds from the occurrence of the true state can not be fully ascertained and

will not generate a de�nitive action from any player unless one�s information partition

is entirely contained in that event. In the end, the uncertainty of the realization of a

certain event or outcome is tantamount to the uncertainty that players may have in

making an action that favors such outcome. Nonetheless, we show in this paper that

despite this uncertainty, players can be made to coordinate their actions provided

that they all have a relatively strong common belief on a certain outcome.

Moreover, in line with the program of weakening the CKA by using common belief

structures4, we further weaken the notion of common belief itself to provide an even

less stringent and a more natural way of believing an event. Rather than having a

collective notion of belief on E (as if people gather together, share their beliefs with

one another, and declare that they all p-believe E), we argue that what comes more

natural is an iterated process where each one simply refers her belief with the rest

of the people�s belief �which is generally taken together as one. The words like �I

4In the literature, there arise a number of ways of de�ning belief process to approximate common
knowledge, but the idea of common p-belief is the one generally used as a standard. For the
comparison of common p-belief, iterated p-belief , and weak common p-belief, see Morris (1999).
For common repeated p-belief and joint common repeated p-belief, see Monderer and Samet (1996).
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believe that others believe that it is so�or �I believe that others believe in what I

believe�are examples of this kind of reasoning which considers �others�as if another

individual. This manner of reasoning allows us to introduce the notion of iterated

quasi-common p-belief where an agent i p-believes an event E, i p-believes that others

p-believe E, i p-believes that others p-believe that i p-believes E, and so on. Despite

being a weaker form than common p-belief in general, it is shown that if everyone

follows this iterative binary approach of belief (between one�s own and that of the

rest), it could approximate the notion of common p-belief as the number of individuals

involved becomes larger.

The rest of the paper is organized as follows. Section 2 presents our leading

example, illustrating how in a common belief environment a unique equilibrium can

be selected. We provide necessary and su¢ cient conditions for this selection in Section

4 while a formal framework is presented beforehand in Section 3. Sections 5 and 6

deals with a general characterization of common belief and the agreeing to disagree

result through the use of iterated quasi-common p-belief. Section 7 concludes.

2. Example.

Suppose at a certain time a �nite number of investors are all contemplating to

choose between two possible actions: to attack or not to attack the currency. The

symmetric payo¤ to any agent i with respect to other agents� actions is common

knowledge and is depicted below:

Notice that if � > 3; then i knows that all the others will choose "not attack"

and so it pays him to do the same action; whereas if � < 0; then everyone will end

up attacking the currency. Only when � 2 [0; 3] that the outcome is not de�nitive
since either everyone will attack or everyone will not attack. For example, if � = 1;

even if the the equilibrium (3; 3) is payo¤-dominant to equilibrium (1; 1) ; nothing
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prohibits the agents from settling at (1; 1) if everyone knows that everyone will choose

"not attack". But when will everyone know that? Only when everyone knows that

[everyone knows that everyone will choose "not attack"], and so on. This in�nite

hierarchy of knowledge is actually the heart of common knowledge which allows some

sub-optimal choices to even become Nash equilibria.

Now we show that when we weaken the common knowledge assumption to common

p-belief, a unique cut-o¤equilibrium for all � within the interval [0; 3] can be achieved.

First, we show that the prediction of common p-belief on dominant regions is

consistent with the scenario under common knowledge environment. Suppose the

event "� > 3" is common p-belief. Then i believes that "not attack" will be chosen

by all other agents with probability at least p. Since "� > 3" is commonly p-believed

by all, i will also choose "not attack" with probability at least p. But will i really

end up choosing "not attack" for a su¢ ciently high p? Observe that for i to choose

otherwise i.e. "attack", it must be that the expected net payo¤ from attacking is

greater than zero or

3(1� p) + 0 � p > � , p <
3� �
3

:

Since � > 3 at the event "� > 3", the above inequality cannot hold for a su¢ ciently

high p and so i will always choose "not attack". A similar argument follows for i to

always choose "attack" whenever the event "� < 0" is common p-belief. At "� < 0";

and for i not to attack, the net expected payo¤ for doing so must be positive, which

in turn cannot hold in the following inequality since p needs to become very low, i.e.

� > 3p+ 0 � (1� p), p <
�

3
:

Suppose the event "� 2 [0; 3]" is common p-belief, then players may either think
that everyone will attack or everyone will not attack. However, the indeterminacy

of outcome that each i have within this region is not complete and is limited only

to the intersection of conditions for attacking (p � �
3
) and not attacking (p � 3��

3
):

In the �gure below, we see that for � 2 [0; 3
2
) and p 2 [0; 1], every i knows that the

condition for attacking has more chances of being followed than that of not attacking.

This makes "attack" to be the best-response action for any agent i. In contrast, for

� 2 (3
2
; 3]; "not attack" maintains the best-response for each i and so only when � = 3

2

that players will be indi¤erent between the two actions.
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In the succeeding two sections, this observation on how a unique equilibrium is

chosen from a game with multiple equilibria will be given a more general treatment.

Our analysis will focus on information partitions rather than on the usage of noisy

signals, typical of the global game approach. We will also depart from the normal

one-dimensional payo¤ structure by simply incorporating payo¤s into "states" that

a¤ect the action of agents. Finally, notice the use of symmetric binary interaction

between player i and the rest of the players in the above example. This will be given

a more detailed analysis in Sections 5 and 6.

3. Beliefs and Information Structure.

Consider a probability space (�;�; ') ; where� is a countable payo¤state space, �

is a �� algebra of events in �; and ' is a probability measure assigned on the elements
of �: For each agent i 2 I = f1; 2; 3; :::; ng ; let 	i; interpreted as the information
available to i; be a �nite partition of � into measurable sets. For any true state

� 2 �; denote the subset of 	i that contains � as 	i(�); which also represents the
set to which i knows � could belong whenever it occurs. Write � i for the �� algebra
generated by 	i; i.e. � i contains all the unions of the elements of 	i: For event E 2 �
and probability p 2 [0; 1] ; we say that "at �; i believes E with probability of at

least p" (or simply "i p-believes E at �") if the probability of E given that � has

occurred is at least p for agent i. Denoting Bp
iE as the event that i p-believes E at

�; we formally write Bp
iE = f� j' (E j	i(�)) � pg : Furthermore, the intersection of

p-beliefs of agents on E is denoted by Bp
�E =

T
i2I
Bp
iE: The last two statements are

made clearer by the following example.
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Let I = f1; 2g and � = fa; b; c; d; eg where each state in � has equal prior

probability of 1=5. Suppose 	1 = ffa; bg; fc; d; egg and 	2 = ffa; c; dg; fbg; fegg :
Consider the event E = fc; dg at � = c and with p � 0:6: Then,

B0:6
1 E =

�
�
��' (fc; dg jfc; d; eg) = 2

3

	
= fc; d; eg

B0:6
2 E =

�
�
��' (fc; dg jfa; c; dg) = 2

3

	
= fa; c; dg; and

B0:6
� E = fc; dg:

Now consider a binary action game where each agent i chooses either an action �

or its alternative� �: Pick two disjoint events E�; E�� 2 � such that E�[E�� = �5;
where E� is the set of all payo¤ states where every agent will choose � and E�� is the

set where every agent will choose the alternative. Thus, at a given �, i surely picks

� (� �) whenever 	i(�) � E� (resp. 	i(�) � E��). If some payo¤ states in 	i(�)

are not in E�; then i will only have a certain probability of at least p 2 [0; 1] that
everyone will be choosing � and this is denoted by Bp

iE
�: A similar interpretation is

given to Bp
iE

��:

The following are straightforward properties of belief operator B : �! � and are

known in the literature of common belief (see Monderer and Samet, 1989 &1996 and

Morris, 1999).

P1: If E 2 � i; then B
p
iE = E

P2: Bp
i (B

p
iE) = Bp

iE

P3: (Monotonicity) If E � F; then Bp
iE � Bp

i F

P4: If (Em) is a decreasing sequence of events, then B
p
i

�T
m

Em

�
=T

m

Bp
i (Em)

P5: Bp
iE ) ' (E jBp

iE ) � p

P6: If s � p; then Bs
iE � Bp

iE

De�nition 1. An event E is common p-belief at � if � 2 CpE; where

CpE � Bp
�E \Bp

�B
p
�E \Bp

�B
p
�B

p
�E \ ::: �

T
k�1
(Bp

�)
k E:

5This condition is without loss of generality eventhough E� [ E�� � � would have been more
lenient. Nothing substantial hinges on this di¤erence and is made only for the purpose of simplifying
our presentation.
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This de�nition provides a graphic illustration of common p-belief. Nevertheless,

Monderer and Samet (1989) argued that it would be di¢ cult to identify common p-

belief by knowing all the in�nite hierarchical conditions this de�nition requires. Thus,

following Aumann�s simpler characterization of common knowledge, they provided a

similar concise description on common p-belief without losing its original meaning

through the use of the notion of evident p-belief.

De�nition 2. An event F is evident p-belief if it is a �xed point of Bp
i for all i,

i.e. F � Bp
i F; for all i.

Proposition 1. (Monderer and Samet, 1989). Event E is common p-belief at �
if and only if there exists an evident p-belief event F such that � 2 F and F � Bp

iE;

for all i.

Remark. In "rede�ning" common p-belief, Monderer and Samet showed in their

proof that CpE is an evident p-belief event (i.e. CpE � Bp
i (C

pE); for all i) and E is

a common p-belief at � with � 2 CpE and CpE � Bp
iE; for all i.

4. Equilibrium Selection.

The system to which an equilibrium is chosen under a common belief environment

mimics that of the global game approach since it leads the game to a unique cut-o¤

equilibrium between two dominant regions. In the previous section, we show that

there are occasions in which a player chooses an action regardless of the decision of

others. We show later in Proposition 3 that the existence of such dominant action

can lead to a dominant event where everyone else ends up doing the same action.

However, in the intermediate case where all players only p-believe an event, where

p < 1, any action favoring the realization of that event cannot be made certain. While

it is true that players, in principle, cannot still make a decisive action even when the

event is commonly p-believed, we nonetheless show that there is a criterion in which

players can further re�ne their information. This criterion rests on the principle of

duality such that even if players commonly p-believe an event E� with p < 1, each of

them knows that at every level of the hierarchy of beliefs, everyone believes E�� with

probability of at most 1�p. In other words, there exists a form of common knowledge
on how each one compares one�s belief on one event as against its alternative. The
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awareness of this information is what, in turn, allows for the equilibrium selection in

this type of incomplete information game.

Furthermore, our approach in this presentation is quite general in the sense that

it does not give any reference or condition about the type of payo¤ structure of the

game. It simply assumes that payo¤s are included in the type of state that in�uences

the decision of a player, such that if a certain state is one that makes everyone choose

�; then the payo¤ that it o¤ers to each one is higher than any other state that makes

them choose � �:We start now our presentation by characterizing �rst the existence

of dominant events and then proceed by introducing the notion of duality and belief

deduction; tools which will be used for generating conditions for selection.

Proposition 2. (Dominant Events) If E� is common p-belief at � and there

exists a k 2 I whose 	k(�) � E�; then all players will choose �:

Proof:

Pick a k 2 I where 	k(�) � E�: Then B1
kE

� = f� j' (E� j	k(�)) = 1g = 	k(�):
Since E� is common p-belief at � then we have � 2 CpE� � B1

kE
� � E� which

implies that even if � is not certainly identi�ed, every i knows that � is in E� and so

everyone will choose �: q:e:d:

De�nition 3. Denote B1�p
i E as the event that i believes E by at most 1� p (or

that i (1� p)-believes E). Furthermore, denote C1�pE whenever event E is common
(1� p)-belief at � where � 2 C1�pE �

T
k�1

T
i2I

�
B1�p
i

�k
E.

Lemma 1. (Duality)
i) Bp

iE
� = B1�p

i E�� and

ii) CpE� = C1�pE��

Proof:
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i) Bp
iE

� = f� j' (E� j	i(�)) � pg
= f� j' (�nE� j	i(�)) � 1� pg
= f� j' (E�� j	i(�)) � 1� pg
= B1�p

i E��

ii) CpE� =

(
� j '

 
E�

����� Tk�1 (Bp
�)
k E�

!
� p

)
by de�nition and P5

=

(
� j '

 
�nE�

����� Tk�1 (Bp
�)
k E�

!
� 1� p

)

=

(
� j '

 
E��

����� Tk�1
�
B1�p
�

�k
E��

!
� 1� p

)
by (i) above

= C1�pE�� q:e:d:

Remark. We note here that Lemma 1 (ii) is true even if CpE� \ E�� = Ø

since that means that '

 
�nE�

����� Tk�1 (Bp
�)
k E�

!
= 0 which still admits elements for(

� j '
 
�nE�

����� Tk�1 (Bp
�)
k E�

!
� 1� p

)
: Thus, C1�pE�� is always non-empty since

CpE� contains at least one element, �.

Lemma 2. (Belief Deduction)
i) If E� is common p-belief, then for all i, E� is q-believed, i.e. CpE� � Bq

iE
�;

where q = 1� k(1�p)
nk

,  2 [1; n] ; and k � 0:
ii) IfE�� is common (1� p)-belief, then for all i, E�� is r�believed, i.e. C1�pE�� �

Br
iE

��; where r = 1� kp
nk
,  2 [1; n] ; and k � 0:

When E� is common p-belief, it is true that everyone p-believes E� (Proposition

1). However, this does not give a �ner information about the extent of i�s belief now

that each one knows that there is a common p-belief on E�. Lemma 2 therefore

provides a more precise information on each i�s belief on E�:

Proof:
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i) If E� is common p-belief then there exists an evident p-belief event F such

that � 2 F and F � Bp
iE

�; for all i. Monderer and Samet (1989) showed that CpE�

is the largest of such event F , i.e. � 2 CpE� � Bp
i (C

pE�) � Bp
iE

�: Since (Bp
�)
k E�

is decreasing in k, we have from P4 and P5:

Bp
i (C

pE�) ) ' (CpE� jBp
i (C

pE�)) � p

) '

 
nT
i=1

Bp
i

 T
k�1
(Bp

�)
k�1E�

!����� Bp
i (C

pE�)

!
� p:

By countable subadditivity, we have the following inequality:

'

 
nS
i=1

 
�nBp

i

 T
k�1
(Bp

�)
k�1E�

!!�����Bp
i (C

pE�)

!

�
nP
j=1

'

 
�nBp

i

 T
k�1
(Bp

�)
k�1E�

!�����Bp
i (C

pE�)

!
= (1� p);

where  2 [1; n] is a measure of set overlapping, i.e.  = 1) disjoint sets.

This therefore leads to the following expressions:

) '

 
Bp
i

 T
k�1
(Bp

�)
k�1E�

!
jBp

i (C
pE�)

!
� 1� (1� p)

n

) B
1� (1�p)

n
i

 T
k�1
(Bp

�)
k�1E�

!

Following the above derivation, we have B
1� (1�p)

n
i

 T
k�1
(Bp

�)
k�1E�

!
)

B
1� (1�p)2

n2

i

 T
k�1
(Bp

�)
k�2E�

!
: By induction, we derive Bq

iE
�; for all i where q =

1� k(1�p)
nk

and that CpE� � Bp
i (C

pE�) � Bq
iE

�:

ii) In a similar fashion, B1�p
i (C1�pE��) implies that '

�
C1�pE��

���B1�p
i (C1�pE��)

�
�

11



1� p: Then, we obtain the following.

) '

 
nT
i=1

B1�p
i

 T
k�1

�
B1�p
�

�k�1
E��

!�����B1�p
i (C1�pE��)

!
� 1� p

) '

 
nS
i=1

 
�nB1�p

i

 T
k�1

�
B1�p
�

�k�1
E��

!!�����B1�p
i (C1�pE��)

!
� p

) '

 
B1�p
i

 T
k�1

�
B1�p
�

�k�1
E��

!�����B1�p
i (C1�pE��)

!
� 1� p

n

) B
1� p

n
i

 T
k�1

�
B1�p
�

�k�1
E��

!

By induction, this leads to Br
iE

��; where r = 1� kp
nk
;  2 [1; n] ; and k � 0 and

that C1�pE�� � B1�p
i (C1�pE��) � Br

iE
��: q:e:d:

By using Lemma 1 and 2, we are now prepared to present a theorem on selection.

Theorem 1. Every i p-believes E� and chooses � if and only if E� is common
p-belief with p > 1

2
: If p = 1

2
, then players are indi¤erent in choosing between � and

� �:

Proof:

(!) Suppose E� is common p-belief with p > 1=2: By duality, CpE� = C1�pE��

and that event E� is known to have higher common belief than E��: By deduction,

Bq
iE

� and Br
iE

�� are obtained and since p > 1=2, this implies from Lemma 2 that

q > r: Every i therefore puts higher probability on event E� than on E��. Thus,

every i chooses �:

( ) We prove this by contraposition such that (either� CpE� or p � 1=2) )
(either Bp

iE
� for some i or � � is chosen) :

Case 1. Suppose � CpE�. Then there exists a �0 2
T
k�1

�
sT
i=1

Bp
i

�k
E� � Bp

iE
� for

all i = 1 to s, where s < n. Thus, there are some i 2 I who do not p-believe E�:

Case 2. Suppose CpE� and p � 1=2: By duality, CpE� = C1�pE�� and that event

E� is known to have lower common belief than E��: By deduction, Bq
iE

� and Br
iE

��

are obtained and since p � 1=2, this implies from Lemma 2 that q � r: Thus, every i

12



places on event E�� greater than or equal probability on E�. Thus, every i chooses

� � if p < 1=2 and is indi¤erent between � and � � if p = 1=2. q:e:d

In the following example, we show a case where players are indi¤erent between �

and � � when both E� and E�� are common 1
2
-belief.

Example 1. Suppose � = fa; b; c; d; e; fg and i 2 I = f1; 2; 3g: Let all the
states in � have equal prior of 1

6
and assume that 	1 = ffc; dg; fa; fg; fb; egg; 	2 =

ffb; c; d; eg; fa; fgg, and 	3 = ffa; f; c; dg; fb; egg: Now, consider the events E� =
fa; b; cg and E�� = fd; e; fg which are both common 0:5-belief. Then, at � = c, the

posteriors of all players on E� and E�� are as follows:

B0:5
1 E� = f� j '(fa; b; cg jfc; dg)g = fc; dg = f� j '(fd; e; fg jfc; dg)g = B0:5

1 E��

B0:5
2 E� = fb; c; d; eg = B0:5

2 E��

B0:5
3 E� = fa; f; c; dg = B0:5

3 E��

From Lemma 1, we con�rm that C0:5E� = C0:5E��; i.e.

B0:5
� E� = B0:5

� B0:5
� E� = ::: = fc; dg and

B0:5
� E�� = B0:5

� B0:5
� E�� = ::: = fc; dg

And since both events are equally commonly believed by all players, then each of

them is indi¤erent in choosing between � or � �:

It is worth noting that the theorem does not say whether the event that contains

the true state will always be chosen. It is therefore possible that an event that has

higher common belief will lead players to select an action favoring that event even if

the true state is nonexistent. We show this pathological case in our next example.

Example 2. Let � = fa; b; c; d; e; fg and i 2 I = f1; 2; 3g: Let all the states
in � have equal prior of 1/6 and assume that 	1 = ffc; d; eg; fa; b; fgg; 	2 =
ffc; d; eg; fa; bg; ffgg, and 	3 = ffc; d:eg; fag; fb; fgg: Now, consider that event
E� = fa; b; cg is common 1=3-belief while E�� = fd; e; fg is common 2=3-belief.
Then, at � = c, the posteriors of all players on E� and E�� are as follows:

B
1=3
1 E� = B

1=3
2 E� = B

1=3
3 E� = B

2=3
1 E�� = B

2=3
2 E�� = B

2=3
3 E�� = fc; d; eg

B
1=3
� E� = B

1=3
� B

1=3
� E� = ::: = fc; d; eg

13



B
2=3
� E�� = B

2=3
� B

2=3
� E�� = ::: = fc; d; eg

Thus, it is possible to have higher probability on E�� even if the true state c is

not in E��:

5. A Weaker Form of Common Belief.

In this section, we propose a weaker form of common p-belief called iterated quasi-

common p-belief. It is a generalization to many players of a two-person iterated

p-belief that maintains a symmetric binary relation, i.e. in this case of n players,

between i and the rest. Morris (1999) showed, in the case of two individuals, that

iterated p-belief is weaker than common p-belief. That is, if an event is common

p-belief for every p < 1, then that event is iterated p-belief, but not vice versa. In

this section, we claim that the converse is also true provided that the number of

players becomes larger. Thus, the iterated quasi-common p-belief converges with the

standard notion of common p-belief as will be presented in Theorem 2.

The relevance of studying iterated process of beliefs, as argued by Morris (1999),

is that it is the most appropriate relaxation of CKA to use for the analysis of best

response dynamics. For example, when an incomplete information game is repeatedly

played, this procedure allows an individual to learn over time how her strategy based

on her beliefs "performed" against that of the others. Although we will not be

extending this dynamic setup to many players, we will nonetheless show how this

generalized iterated process can shed light on the structure of beliefs in terms of the

number of players involved.

An event E is iterated quasi-common p-belief for agent i if i p-believes E, i p-

believes that others p-believe E, i p-believes that others p-believe that i p-believes E,

and so on. We formally de�ne this as follows.

De�nition 4. An event E is iterated quasi-common p-belief at � if it is so for

all agents, i.e. � 2 QpE �
T
i2I
QpiE, where:

QpiE � Bp
iE \B

p
iB

p
�niE \B

p
iB

p
�niB

p
iE \ ::: �

T
k�0

Bp
i

�
Bp
�niB

p
i

�k
E \

T
k�0
(Bp

iB
p
�ni)

k+1E

14



and Bp
�niE �

T
Bp
jE; for all j 2 Ini = f1; 2; :::; i� 1; i+ 1; :::; ng and for a given

i 2 I:

The iterated quasi-common p-belief also has a simpler (�xed point) characteriza-

tion in the spirit of Morris�(1999) two-person iterated p-belief.

De�nition 5. A set  is joint p-evident if for all G �  and for all i, Bp
iG �  :

Proposition 3. Event E is iterated quasi-common p-belief at � if and only if

there exists a joint p-evident set  such that (i) Bp
iE �  ; for all i and (ii) � 2 G; for

all G �  .

Proof:

(!) Assume that  is a joint p-evident set where (i) and (ii) hold. By (i), Bp
iE �  

for all i which implies that Bp
�niE �  : Since  is joint p-evident, it follows that for all

i, Bp
i (B

p
�niE) �  : Note also that the de�nition of joint p-evident set  also implies

that Bp
�niG �  ; for all G �  and for all i: Thus, we have Bp

�ni(B
p
iE) �  : By

induction, we obtain Bp
i (B

p
�niB

p
i )
kE �  and (Bp

iB
p
�ni)

k+1E �  ; for all i and for all

k � 0: Since the intersection of these iterative sets in k is a subset of  , � is contained
in the intersection by (ii). The intersection, though, is equivalent to QpE, thus E is

iterated quasi-common p-belief at �.

( ) Assume that E is iterated quasi-common p-belief at �. Let  be a collection of
subset G where G 2

n
Bp
i (B

p
�niB

p
i )
kE; (Bp

iB
p
�ni)

k+1E; for all i 2 I and k � 0
o
. Since

by de�nition of QpE, � 2
T
i2I

 T
k�0

Bp
i

�
Bp
�niB

p
i

�k
E \

T
k�0
(Bp

iB
p
�ni)

k+1E

!
, it therefore

shows that � 2 G for any G �  and therefore (ii) holds. Notice also that by

construction of  , (i) holds at k = 0. Thus,  is joint p-evident. q:e:d:

Now we present that the two belief processes can be made equivalent at a su¢ -

ciently large number of agents.

Theorem 2. For a large number of players, every event E is common p-belief at
� if and only if it is iterated quasi common p-belief at �.

To prove this theorem, we will need the following lemmas:

Lemma 3. For any i 2 I; Bp
�niE � Bp

iE for a large number of n.
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Remark: This means that the set of payo¤ states where a group of people other

than i (as many as possible) collectively p-believes E, then these states are also p-

believed by i. The intuition behind this lemma is that the combined information

of more people provides a �ner belief on E at �, as compared to the belief on E

of a single arbitrary player not part of the group. This, however, assumes that the

information set that contains � of those players other than i should not be identical

to one another. Otherwise, the increase in the number of players cannot re�ne the

information that pins down the actual �:We state this assumption formally as follows:

Assumption: For any i; g 2 I and � 2 �;	i(�) 6= 	g(�), where i 6= g.

Proof:

Note that the true statement Bp
�E �

T
i2I
Bp
iE � Bp

iE can be expressed as

' (Bp
iE jBp

�E ) = 1. That is, given that all players collectively p-believe E, then

the probability that anyone of them believes E by at least p is 1. Similarly, we will

prove Bp
�niE � Bp

iE by showing that '
�
Bp
iE
���Bp

�niE
�
= 1 as the number of players

increases. Hence, we derive:

'
�
Bp
iE
���Bp

�niE
�
=
'
�
Bp
iE \B

p
�niE

�
'(Bp

�niE)
=

'

�T
i2I
Bp
iE

�
'

 T
i2Ini

Bp
jE

!

Let '
�T
i2I
Bp
iE

�
� r, where r 2 (0; 1). Then, it is also true that '

 T
i2Ini

Bp
jE

!
�

r since Bp
�E � Bp

�niE. Observe that '
�T
i2I
Bp
iE

�
� r , '

�
nS
i=I

(�nBp
iE)

�
� 1� r.

Then, ' (�nBp
iE) � (1� r) n ) ' (Bp

iE) � 1�
(1�r)
n

; for all i 2 I; where  2 [1; n]

such that if  = 1 then
nS
i=1

(�nBp
iE) is a union of disjoint sets. Similarly, since

n�1S
j=1

�
�nBp

jE
�
is a union of n � 1 players, we obtain from the same arguments as

above the value of the denominator as '
�
Bp
jE
�
� 1� (1�r)

n�1 ; for all j 2 Ini. Thus,

lim
n!1

'
�
Bp
iE
���Bp

�niE
�
�
1� (1�r)

n

1� (1�r)
n�1

= 1
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q:e:d:

Lemma 4. (Decreasing Sequence)
Let xkE �

T
i2I
Bp
i (B

p
�niB

p
i )
kE and ykE �

T
i2I
(Bp

iB
p
�ni)

kE.

(i) For any k � 0; xkE � yk+1E

(ii) For any k � 0; xkE � xk+1E and yk+1E � yk+2E

Proof:

(i) By Lemma 3, Bp
�niE � Bp

iE; for all i. Notice that B
p
iE and Bp

�niE are events

(i.e. measurable with respect to � i and ��ni respectively, for any E 2 �). Using P3
and P2, we get Bp

iB
p
�niE � Bp

iB
p
iE � Bp

iE ) y1E � x0E. By applying again P3,

Bp
�niB

p
iB

p
�niE � Bp

�niB
p
iE ) (Bp

iB
p
�ni)

2E � Bp
iB

p
�niB

p
iE ) y2E � x1E. By doing the

same process repeatedly, we obtain yk+1E � xkE for any k � 0:

(ii) Since Lemma 3 is true for any event (e.g. Bp
iE) measurable in �, it shows that

Bp
�ni(B

p
iE) � Bp

i (B
p
iE) � Bp

iE. Using P3 and P2, we have B
p
iB

p
�niB

p
iE � Bp

iE )
x1E � x0E. By applying P3 repeatedly, we obtain B

p
�niB

p
iB

p
�niB

p
iE � Bp

�niB
p
iE )

Bp
i (B

p
�niB

p
i )
2E � Bp

i (B
p
�niB

p
i )E ) x2E � x1E: Thus, by following the process con-

tinuously, it is clear that xk+1E � xkE for all k � 0:
Now notice that we can write:

xk+1E �
T
i2I
Bp
i (B

p
�niB

p
i )
k+1E �

T
i2I
(Bp

iB
p
�ni)

k+1Bp
iE � yk+1F and

xk+2E �
T
i2I
Bp
i (B

p
�niB

p
i )
k+2E �

T
i2I
(Bp

iB
p
�ni)

k+2Bp
iE � yk+2F; for all k � 0 and

where F is a measurable event in �. Thus, it is also clear that yk+2E � yk+1E; for

all k � 0: q:e:d:

Proof of Theorem 2:

(!) Suppose E is iterated quasi-common p-belief at �. By Proposition 3, there

exists a joint p-evident set  :

Let  be a collection of subset G where G 2 fBp
i (B

p
�niB

p
i )
kE; (Bp

iB
p
�ni)

k+1E; for

all i 2 I and k � 0g such that � 2 G; for all G �  . Since
T
G �  , it follows that
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� 2
T
G � QpE �

T
k�0

xkE \
T
k�0

yk+1E. By P2, we obtain
T
k�0

xkE �
T
k�0

Bp
i xkE andT

k�0
yk+1E �

T
k�0

Bp
i yk+1E which leads to the following equality:

QpE �
T
k�0

Bp
i xkE \

T
k�0

Bp
i yk+1E:

Using Lemma 4(ii) and P4, QpE � Bp
i

T
k�0

xkE \ Bp
i

T
k�0

yk+1E. Then, by Lemma

4(i) and P4,

QpE � Bp
i

 T
k�0

xkE \
T
k�0

yk+1E

!
:

Thus, QpE � Bp
i (Q

pE) and shows that QpE is p-evident event. Since it can be

shown also that for k = 0, QpE � x0E \ y1E � Bp
iE \ B

p
iB

p
�niE � Bp

iE, we then

conclude by Proposition 1 that event E is common p-belief at �.

( ) Suppose E is common p-belief at �. Then, by Proposition 1 (see remark),

� 2 CpE �
T
k�0

Bp
�(B

p
�)
kE: Since

T
k�0

Bp
�(B

p
�)
kE �

T
k�0

Bp
i (B

p
i )
kE, then � 2 Bp

i (B
p
i )
kE;

for all k � 0 and for all i 2 I. Let  be a collection of subset G where G 2
fBp

i (B
p
i )
kE; for all i 2 I; for some k � 0g. Then it shows that for any G �  , � 2 G.

Moreover, by construction of  , Bp
iE �  ; for all i. Hence, from Proposition 3, it

follows that E is iterated quasi-common p-belief at �. q:e:d:

The short proof on the statement that all common p-belief events are iterated

quasi-common p-belief comes from the fact that QpE is generally a weaker variant of

common p-belief i.e. CpE � QpE. The converse, however, is not straightforward and

it requires to show that QpE is a decreasing sequence among its elements xkE and

yk+1E for all k � 0. And it is shown that this can be achieved when the number of
players is su¢ ciently large.

6. A Case of Agreeing to Disagree.

The immediate question that comes from the result of Theorem 2 is that if con-

vergence is achieved only at a su¢ ciently large number of players, how would the

two belief processes di¤er at every (small) number of players. More speci�cally, this

question attempts to determine at which probability will an iterated quasi-common
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p-belief event for a given number of players be commonly believed6. The following

proposition answers this question concretely.

Proposition 4. For a given number of players n and for any p < 1, if event E
is iterated quasi-common p-believed, then it is commonly believed with probability

1� n(1�p)
n�1 i.e. QpE � C1�

n(1�p)
n�1 E.

Remark. It is easily seen from the claim of Proposition 4 that as n approaches

in�nity, we get QpE � CpE, which supports the idea behind the �rst part of the

proof of Theorem 2.

Proof:

Since we have by de�nition QpE �
T
i2I

 T
k�0

Bp
i

�
Bp
�niB

p
i

�k
E \

T
k�0
(Bp

iB
p
�ni)

k+1E

!
;

then for all i, � 2
T
k�0

Bp
i

�
Bp
�niB

p
i

�k
E and � 2

T
k�0
(Bp

iB
p
�ni)

k+1E: Let  = fBp
iE; B

p
iB

p
�niE;

for all i 2 Ig i.e  is the smallest collection of joint p-evident events derived

from QpE. Thus, for every QpiE there exists a set
n
Bp
iE \B

p
iB

p
�niE

o
: From P5,

Bp
iB

p
�niE ) '(Bp

�niE
���Bp

i (B
p
�niE)) � p: Then we have, '

 T
j2Ini

Bp
jE
���Bp

i (B
p
�niE)

!
�

p which implies the following:

'

 S
j2Ini

�
�nBp

jE
� ���Bp

i (B
p
�niE)

!
�

n�1P
j=1

'
�
�nBp

jE
���Bp

i (B
p
�niE)

�
= (1� p)

'
�
Bp
jE
���Bp

i (B
p
�niE)

�
� 1� (1� p)

n� 1 ;

where  2 [1; n] is the measure of set-overlapping i.e.  = 1 means that all the

subsets are disjoint. Thus, Bp
iB

p
�niE ) Bq

iE; where q = 1 � (1�p)
n�1 : However since

q is always at least as big as p for all p < 1 and for all n � 2 (otherwise p > 1, a

contradiction), then by P6, Bq
iE � Bp

iE which implies that QpiE ) Bq
iE:

6This type of comparison was used and examined by Morris (1999) between (two-player) iterated
p-belief and common p-belief. His result di¤ers from this study since it focuses on the number of
states in � and makes use of the �xed point characterization of iterated p-belief which only gives
a �loose�bound for a divergence to occur between the two belief processes. In Proposition 4, we
examine the role of the number of players in comparing the two processes by directly employing
their de�nitions in order to give a tighter bound for divergence.
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Now, note that Bq
iE is also a measurable event and that B

q
iE = Bq

i (B
q
iE). So we

have ' (Bq
iE j	i(�)) � q which implies ' (�nBq

iE j	i(�)) � 1� q: Then,

'

�
nS
i=1

(�nBq
iE) j	i(�)

�
�

nP
i=1

' (�nBq
iE j	i(�)) =

n


(1� q)

'

�
�n

nS
i=1

(�nBq
iE) j	i(�)

�
� '

�
nT
i=1

Bq
iE j	i(�)

�
� 1� n


(1� q)

Then, by de�nition of (1 � n

(1 � q))�belief, we have � 2 B1�n


(1�q)

i

�
nT
i=1

Bq
iE

�
:

Thus,

QpE �
nT
i=1

Bq
iE � B

1�n

(1�q)

i

�
nT
i=1

Bq
iE

�
� B

1� n
n�1 (1�p)

i (QpE)

which shows that QpE is an evident (1 � n
n�1(1 � p))-belief event where � 2 QpE.

Moreover, since it is always true that p � 1� n
n�1(1� p) (otherwise, p > 1), then by

P6, QpE � Bp
iE � B

1� n
n�1 (1�p)

i E. Hence, we conclude by Proposition 1 that E is a

common (1� n
n�1(1� p))-belief at �. q:e:d:

Aumann (1976) showed that it is impossible to agree to disagree when the posteri-

ors of a certain event is common knowledge. In the case of common p-belief, Monderer

and Samet (1989) showed that posteriors can no longer coincide and could di¤er by

at most 2(1 � p). This bound, however, was later improved by Neeman (1996a) to
1� p.

Theorem 3. If the posteriors of the event E are iterated quasi-common p-belief
at some � 2 �, then the maximum di¤erence of any two posteriors is n(1�p)

n�1 .

Proof:

From Proposition 4, E is common (1 � n(1�p)
n�1 )-belief. Then, by following the

result of Neeman (1996a), the maximum distance between any two posteriors is n(1�p)
n�1 .

q:e:d:

Remark: One can see here that as the number of players increases, the di¤erence

of any two posteriors approaches 1� p which is the maximum bound set by Neeman

(1996a) for common p-belief. This again con�rms the assertion that an increasing

number of players allows iterated quasi-common p-belief to approximate common p-

belief. Furthermore, note that at p = 1, the posteriors of a certain event are common
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1-belief and therefore coincide with one another (Aumann, 1976 and Brandenburger

& Dekel, 1987) regardless of the number of players.

We show in a simple example where the maximum posterior di¤erence reaches the

limit predicted by Theorem 3.

Example 3. Let � = fa; b; c; dg and I = f1; 2g: Set ' (fag) = '(fbg) = 1� p and
'(fcg) = '(fdg) = (2p�1)

2
, for p < 1. Suppose also that 	1 = ffa; bg; fb; cg; fdgg and

	2 = ffa; cg; fb; dgg: Now, consider the event E = fa; cg: At � = c, the posteriors of

the two players are:

Bp
1E = Bp

�n2E = f� j'(E jfb; cg) = 2p� 1g = fb; cg and
Bp
2E = Bp

�n1E = f� j'(E jfa; cg) = 1g = fa; cg

Furthermore, these posteriors can be shown to be iterated quasi-common p-belief

at �:Notice �rst thatBp
1B

p
�n1E = Bp

1B
p
�n1B

p
1E = ::: = fcg andBp

2B
p
�n2E = Bp

2B
p
�n2B

p
2E =

::: = fcg: Then let  be a collection of subset G where G 2 fBp
i

�
Bp
�niB

p
i

�k
E;

(Bp
iB

p
�ni)

k+1E; for i = f1; 2g and k � 0g which shows that  = ffa; cg; fb; cg; fcgg:
Observe that Bp

iE �  for i = f1; 2g; and for all G �  ; c 2 G: Finally, Bp
iG �  for

all G �  :

Note now that the di¤erence of the posteriors is 2(1� p), which is the bound set
by Theorem 3 for two players. However, the posterior of player 1 must be at least

p (i.e. 2p � 1 � p) in order to obtain fb; cg. Thus, the result is trivial since the
limit p = 1 is already reached and so the bound for the di¤erence cannot anymore be

extended.

7. Conclusion.

This study which takes a second look at the notion of common belief has achieved

a twofold objective. The �rst is it provides necessary and su¢ cient conditions for

selecting an equilibrium in an environment where payo¤states are commonly believed.

The main ingredient in our setup is the duality of beliefs that allows individuals to

obtain a meaningful comparison between a particular event and its (complementary)

alternative. Given this and through a deductive approach, we showed that all agents

will end up choosing an action favorable to the event that they all p-believe if and
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only if such event is commonly believed to have higher probability of occurrence (i.e.

p > 1=2) than its alternative.

The second is the introduction of a weaker form of common belief dubbed as

iterated quasi-common p-belief. Its weakness lies on the iterated binary process that

makes believing of an event unstable at small number of players. Nonetheless, when

the population becomes larger, it is shown that this converges to the standard notion

of common p-belief. It therefore gives common belief a general characterization in

terms of the number of players and which also allows for the di¤erences in the players�

posterior beliefs to be depicted in a more general fashion.
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