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Abstract

This study sets a bank-run equilibrium analysis in a dynamic and incom-

plete information environment where agents can reconsider attempts to run

on the bank over time. The typical static bank-run model is extended in this

paper to capture the learning dynamics of agents through time, giving bank-

run analysis a more realistic feature. Apart from employing a self-ful�lling

framework in this model, where agents�actions are strategic complements, we

allow agents to update over time their beliefs on the strength of the funda-

mentals that is not commonly known. In particular, we extend the bank-run

model analyzed by Goldstein and Pauzner (Journal of Finance 2005) and build

it on a dynamic global games framework studied by Angeletos et.al. (Econo-

metrica 2007). We present here how a simple recursive setup can generate a

unique monotone perfect Bayesian Nash equilibrium and show how the prob-

ability of bank-run is a¤ected through time by the in�ow of information and

the knowledge of previous state outcome. Finally, it is also shown that when

an unobservable shock is introduced, multiplicity of equilibria can result in this

dynamic learning process.

Keywords: threshold bank-run, monotone perfect Bayesian Nash equilibrium,

dynamic global games
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1. Introduction

A widely recognized feature of crisis models with self-ful�lling character is the

presence of strategic complementarity. Agents tend to rationally cluster their beliefs

around a certain action which eventually induces an economic outcome that it favors.

In the case of bank-run, this is observed when one argues that if depositors anticipate

others will run against the bank for fear of bankruptcy, their action in conforming

to such belief provokes bankruptcy itself. Consequently, when a su¢ ciently large

number of them entertain such expectation, this bad outcome is soon realized. For

many of these studies on crisis1, strategic complementarity o¤ers a compelling reason

why large �uctuations in the economy could become so sudden and penetrating that

they eventually toss the market into some kind of liquidity black hole. Models with

multiple equilibria then become a natural norm in explaining that a crisis is nothing

but a shift to a lower equilibrium point of the economy.

While crisis is normally attributed to some behavioral and policy issues that are

typically considered outside the formal theory (e.g. irrational exuberance, regulations),

a growing literature now explains its evolution through some endogenous responses

made by rational agents themselves. Morris and Shin (2004), for example, argue

that a feedback mechanism that relies on changing incentives of market participants

can create �nancial distress that feeds on itself. In the recent literature, attempts

to provide an integrated model for this have employed tools on coordination games,

particularly on the so-called global games framework introduced by Carlsson and van

Damme (1993)2. In this approach, an equilibrium is seen as a cut-o¤ point between

crisis and no-crisis events, rather than a point of convergence induced by the changes

in agents� beliefs. This therefore achieves a uniqueness result which resolves the

selection problem inherent in models with multiple equilibria.

However, one of the most important critiques in the application of global games

to crisis events like bank-runs is its con�nement to static structures. Agents maintain

only a one-time discernment to either "run" or "remain" and cannot use any updated

information they have received over time which could reinforce their incentive to

1For currency crises, see studies of Maurice Obstfeld (1996), Flood and Garber (1984), Morris
and Shin (1998, 2004); for debt crises, see Calvo (1988), Cole and Kehoe (1996); and for contagion,
Goldstein and Pauzner (2004).

2For a survey on the literature of global games and its application, see Morris and Shin (2003).
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withdraw prematurely in the future. Normally, when crisis is regarded as a dynamic

event, agents must have that option to withdraw at any stage if the payo¤ for doing

so becomes higher than the expected returns from remaining. Moreover, apart from

the private information that one obtains through time, the realization that a bank has

not yet failed in the past is a signal that either it is strong or that there was really no

potent belief among other agents to abandon it. Thus, this type of learning-through-

time which is crucial in an environment with strategic uncertainty is not incorporated

in the static model.

In this paper, we address this need of extending the static bank-run model into

a dynamic form. We take o¤ from the model analyzed by Goldstein and Pauzner

(2005) and show that bank-run threshold is a function of interest rates. Then, we set

this model on a dynamic global games framework studied by Angeletos et.al. (2007),

using monotone perfect Bayesian-Nash as a solution concept. We establish here how

a simple recursive setup can generate a unique equilibrium strategy. Consequently,

comparative statics is studied to show how the probability of bank-run is a¤ected

over time by the in�ow of private information and the knowledge that the bank

has survived from the bad speculations in the past. Finally, we will also show that

when an unobservable shock is introduced, multiplicity of equilibria can result in this

dynamic learning process.

1.1. Dynamic Global Games Literature

Global games approach under static framework normally admits unique equilib-

rium result in its various applications. It is the presence of a su¢ ciently small noise

in the private signal about the fundamentals that is responsible for pinning down a

threshold equilibrium. This does not happen when the noise reaches zero or when

there is common knowledge since any outcome becomes possible within the range of

values of the strength of the fundamentals �: However, the results are not unanimous

in a dynamic global game framework as they vary depending on how dynamic features

are utilized. Giannitsarou and Toxvaerd (2003), for example, generated a uniqueness

result on the basis of dynamic intertemporal complementarities that make use of sto-

chastic state variable. Morris and Shin (1999) established the same result but by

allowing the fundamentals to follow a random walk over time. Similarly, Goldstein

and Pauzner (2004) maintains also this uniqueness in their study of crises contagion.
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On the other hand, there are advocates of multiplicity results in dynamic global

games like Angeletos et.al (2007) who focus on the learning dynamics that is based

on updated signals and previous regime outcome. There is also Chassang (2008) who

shows in his study on the role of miscoordination in the robustness of cooperation

that a range of perfect Bayesian equilibria is generated when information becomes

su¢ ciently precise. In essence, our study here contributes to this growing debate

by asserting that uniqueness and multiplicity results can be both obtained in a cer-

tain dynamic framework, depending on the presence of unobservable shocks in the

economy.

1.2. Uniqueness and Multiplicity Results

The dynamic feature we employ in this paper is depicted by a learning process

derived from an agent�s private information and the past period�s state outcome.

Although this is basically the heart of Angeletos et. al. model, their result does

not coincide with ours as we generate here a unique equilibrium strategy. The main

reason is that the "state of the world" threshold ��t is only used implicitly in our

model while the threshold on the mass of early withdrawals n�t takes the center stage

in determining whether bank-run will occur at time t. As n�t is derived from ��t

and x�t (i.e. the private signal threshold), it carries a more summarized information

that simpli�es the payo¤ analysis for each agent and in a way that induces a unique

equilibrium outcome. More speci�cally, we argue (in Lemma 2) that both thresholds

��t and n
�
t can be used interchangeably in determining the probability of bank-run

incidence at any time t. That is, intuitively, when bank-run has not occurred, we can

say that either the fundamental � is so strong that it has not gone down below ��t or

that the potential level of early withdrawals has not reached its threshold level n�t .

Put di¤erently, if bank-run occurs, then it is certain that both of these thresholds

are breached simultaneously. Thus, it is the novel use of threshold n�t that plays the

major role in the uniqueness result of our model.

The outcome in a setting with unobservable shocks is quite di¤erent. Multiple

equilibria can now be generated since the noise about the shocks interferes with

the learning process that makes the expected payo¤ to any agent at t to be non-

monotonic in n�t : That is, even at a high and accommodating threshold measure of

early withdrawals, bank-run can still persist. This further means that even if it is
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publicly known that the bank has survived in the past, the uncertainty on shocks

"perturbs" the information about the previous period�s threshold, and is therefore

supported fully by a probability distribution.

The rest of the paper is organized as follows. Section 2 deals with the characteri-

zation of unique equilibrium in a static bank-run model. Section 3 presents how the

uniqueness result prevails even in a dynamic setup and discusses the e¤ect on bank-

run�s probability over time. Finally, Section 4 incorporates the impact of shocks in

the model which results to multiple equilibria.

2. The Static Bank-run Model

A continuum of agents, indexed by i, is uniformly distributed over [0; 1]. Everyone

deposits at the start an amount of one unit and decides simultaneously at a speci�c

moment whether to withdraw or retain the investment. We denote the agent�s ac-

tion as si 2 f0; 1g, where si = 0 is to withdraw and si = 1 is to wait. An agent

receives a payo¤ P (>1) when she decides to withdraw and expects to receive R(>P )

if she decides to wait until maturity. Since waiting until maturity carries a risk and

subjects one�s payo¤ to the bank�s residual resources, one receives at the moment

of discernment the expected payo¤ for waiting as
R
R 1�nP

1�n dF (n); where n 2 [0; 1] is
the proportion of agents who have chosen to withdraw and F (n) is the c.d.f. of n

which will be further discussed later. Notice that whenever n reaches 1
P
; the bank

runs out of resources and leaves the remaining agents with zero utility3. Thus, an

agent chooses to wait provided that there is no bank-run and in turn, bank-run is

prevented if and only if there is no su¢ cient proportion of agents who runs. We see

here that along with the lack of coordination, there exists strategic complementarity

of agents�actions which is central to Goldstein and Pauzner�s (2005) application of

global games to bank-run models. We summarize now each agent�s best response

strategy as follows:

3This is a consequence of the sequential-service constraint mechanism that is normally employed
in the literature of bank runs. Under this mechanism, any agent who wishes to withdraw at a
speci�ed time receives P even if he is the last one to be accommodated by the bank just before its
bankruptcy. See Peck and Shell (2003) for details. The above set-up is similar to Goldstein and
Pauzner (2005) except that it does not ascribe anymore a probability of getting a positive payo¤ for
those who remain when n � 1=P . For simplicity, we relax this assumption that residual depositors
can claim from the bank�s illiquid assets after its bankruptcy.
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si(n) 2 argmax
si2f0;1g

fsi (Uwait � Uwithdraw)g ; (1)

where Uwait =
nR

R 1�nP
1�n dF (n)

0

if 0� n < 1
P

if 1
P
� n � 1 and Uwithdraw =

n
P if 0� n < 1

P

0 if 1
P
� n � 1

Consequently, any remaining agent would �nd it rewarding to stick with the bank

if and only if Uwait > Uwithdraw. This clearly depends on the level of n that each one

thinks at the time when everyone contemplates simultaneously whether to withdraw

or wait.

To model how n is realized4, we note �rst that it is dependent on the state of the

economy �, which is not commonly known to all agents. Thus, an agent i observes

a private signal xi = � + "i; where "i is the error term that is independently and

uniformly distributed over [�"; "]. Assume that there are known thresholds � and ��
i:e: � < �

�
, where agent i decides to surely run when � is observed below � and to

surely wait when above �: For simplicity, we assume that Nature draws �rst � from a

uniform distribution over
�
�; �
�
which de�nes the initial common prior about �: Since

� is observed with certain level of noise, the range of fundamentals where i will neither

have the full conviction to withdraw nor to wait is within the interval
�
� � "; � + "

�
.

This is the intermediate regime where one�s action is not immediately determined

since it can be in�uenced by the expectations on others�actions, i:e: if one believes

that others are withdrawing, she may also think of withdrawing before the bank gets

bankrupt; whereas, if one believes that others will not run, then she will also do the

same.

From the two extreme regimes where actions to withdraw and to wait are pre-

dictable for a given xi, it is natural to look into the intermediate regime for an

equilibrium that "tears" the agent between withdrawing and waiting. In this case,

4The realization of n does not strictly mean that a proportion of n depositors have actually
withdrawn from the bank. Since the game is symmetric and each one follows the same strategy, it
can be understood that each one believes that there are n depositors who already want to withdraw
early at a speci�ed time. Although this di¤erence does not matter much in a one-shot static game,
the latter explanation is used for the dynamic game setup in the next section.
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we consider a threshold Bayesian-Nash equilibrium wherein the agent�s strategy is

monotonic in xi: Suppose for a given �; agents follow a threshold x� 2 [� � "; � + "] ;
where � 2

�
�; �
�
; such that each one withdraws if and only if xi � x�. The proportion

of agents withdrawing is then decreasing in � and is given by:

n(�; x�) = Pr(xi � x�j �) =
1

2"

Z x�

��"
dxi =

x� � � + "
2"

(2)

It follows then that there is a �� that solves �� = n(��; x�); where bank-run occurs

if and only if � � ��: Thus, we obtain:

�� = n(��; x�)() x� = (1 + 2")n(��; x�)� " (3)

As the parameter �� depicts the threshold strength of fundamentals that deter-

mines bank-run incidence, n(��; x�) which represents the mass of agents who withdraw

at state �� can also be regarded as a threshold. Indeed, bank-run occurs if and only

if n � n(��; x�) since

Pr(� � �� jx� ) = 1

2"

��Z
x��"

d� =
�� � x� + "

2"
=

1Z
n(��;x�)

dn = Pr(n � n(��; x�)) (4)

Now, given that bank-run does not occur for as long as n < n(��; x�); the expected

payo¤ advantage of retaining ones investment over withdrawing it is given by:

U(n(��; x�); x�) = P

Z 1
P

0

R

�
1� n(��; x�)P
1� n(��; x�)

�
dF (n(��; x�))� P (5)

where F (n(��; x�)) � F (n(��) jx� ) is the c.d.f. of n conditional on threshold x�

being followed. F (n(��; x�) is interpreted as the probability that bank-run has not
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yet been induced (i.e. n < n(��; x�)), given that every one follows the threshold x� for

their signals. It is clear from the utility representation of (5) that an agent i waits if

U(n(��; x�); x�) > 0 and withdraws if U(n(��; x�); x�) � 0.

By setting U(n(��; x�); x�) = 0, we derive a unique monotone equilibrium using

the threshold x� such that if xi � x�; i will withdraw since n � n(��; x�) and bank-run
is sure to come.

Proposition 1: In the static game, there is a unique bank-run equilibrium

using the threshold x�: This equilibrium is characterized by n(��; x�) through the fol-

lowing equations:

(i) (P � 1) ln
�

P

P � 1

�
=
R� 1
R

(ii) n(��; x�) =
R� P
P (R� 1) = 1�

1

P ln
�

P
P�1

� 2 (0; 1)
Proof: A direct way of solving the equilibrium is to solve �rst for F (n(��; x�))

which was the method used by Morris and Shin (2003) in their analysis of liquidity

in the traders�market. Note that for any threshold signal �x;

Pr(� > ��j �x) = �x+ "� ��

2"
= Pr(n < n(��; �x)) = F (n(��; �x)):

By using (3) and substituting the value of x� on �x, we obtain F (n(��; x�)) =

n(��; x�) which implies that dF (n(��; x�)) = 1: Applying this on (5) and noting that
1�nP
1�n is decreasing in n, for all n 2 [0; 1], we see that U(n(��; x�); x�) is monotonic in
n(��; x�); giving a uniqueness result whenever a solution exist.

To solve U(n(�); x�) = 0; we use integration by parts on (5) with dF (n(��; x�)) = 1;
hence, we obtain

R

�
�(1� n(��; x�)P ) ln(1� n(��; x�)) + P

Z
� ln(1� n(��; x�))dn(��; x�)

�
= 1
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() R[(n(��; x�)P � 1) ln(1� n(��; x�)) + P (1� n(��; x�)) ln(1� n(��; x�))

+Pn(��; x�)]
���n(�)=1=P
n(�)=0

= 1

Simplifying,

R

�
(P � 1) ln

�
P � 1
P

�
+ 1

�
= 1() (P � 1) ln

�
P

P � 1

�
=
R� 1
R

By substituting R on the equation R 1�n(�)P
1�n(�) = P; we have

n(��; x�) = 1� 1

P ln
�

P
P�1

�
Finally, to see that i indeed prefers to wait when xi > x�; recall that this implies

� > �� , n(��; xi) < n(�
�; x�): Thus, from (5), we have U(n(��; xi); xi) > 0: Analo-

gously, when xi � x�; an agent strictly prefers to withdraw since U(n(��; xi); xi) �
0: �

In Figure 1, the equilibrium is depicted at n(��; x�) where the expected returns

from waiting is equal to that of withdrawing, i.e. area A = area B: At this point,

everyone starts thinking of withdrawing from the bank eventhough everyone knows

that only n(��; x�) agents are willing to do so. This is because the expected residual

payo¤ at this moment for those who may still want to wait is just equal to P , which

is the amount received by withdrawing prematurely. Above n(��; x�); agents who

remain will obtain expected payo¤ lower than P .
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Figure 1: Unique threshold equilibrium in a static framework

One can also explain this equilibrium from a di¤erent perspective. Observe that

in the region where n > n(��; x�); agents will preempt their actions for fear of being

preempted by others and so each one simply wants to withdraw ahead of the others.

Each one wants to withdraw as soon as possible to avoid being caught in a bankruptcy

by being overtaken by others in withdrawing. This preemptive behavior continues

until it is just below n(��; x�) where the mass of withdrawals is just su¢ cient not to

provoke a bank-run. The perception of each one that others may withdraw early is a

result of the assumption that economic fundamentals are not commonly known.

As regards bank�s deposit interest rates, the above proposition has the following

implication.

Corollary. The threshold equilibrium measure of early withdrawals is a function

of interest rates, i.e.

n(��; x�) = 1� 1

(1 + r) ln
�
1+r
r

� :
Notice that the threshold n(��; x�) is decreasing in r which means that as interest

rate increases, the threshold that triggers a crisis becomes less and less relaxed. This

seems not to square well with the common idea that high interest rate promotes

greater deposits in the bank. The main reason for this apparent paradox is that once

the money is in the bank the situation becomes di¤erent. The very same high interest

rate provides better incentive for agents to withdraw whenever fear of impending

bankruptcy starts to appear. The higher therefore is the payo¤ at the exit stage, the
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more will the agents be induced to withdraw when there is already uncertainty about

the fundamentals.

3. The Dynamic Bank-run Model

Within a dynamic game framework, the static benchmark previously discussed is

modi�ed in such a way that agents can receive information over time so that they

can choose to run on the bank at any time if so needed. Clearly, the static model is

designed only for a one-shot decision to either withdraw or wait and does not capture

the learning process of agents through time which gives bank-run phenomena a more

realistic feature. In what follows, we apply on the static benchmark the dynamic

regime change framework studied by Angeletos et.al. (2007).

Here, we set all t 2 f1; 2; 3; :::; Tg as moments for making decisions for every
agent to choose sit 2 f0; 1g for as long as the bank remains viable after t � 1;
once bank�run occurs, the game ends. Denote n(�) as the measure of potential early

withdrawals at a given state �: Given that bank-run has not occurred at date t � 1;
bank-run could occur only at t if and only if n(�) � n(��t ; x�t ); where n(��t ; x�t ) is the
threshold size of early withdrawals that triggers a bank-run at t. Over time, agents

receive noisy signals xit = � + "it about � which is never commonly known to all as

in the static model. This form of learning through time which provides agents the

possibility of withdrawing at any period is the main ingredient in the mechanics of

this intertemporal coordination problem in dynamic bank-run.

3.1. Monotone Perfect Bayesian-Nash Equilibrium

Let x̂t = fx̂itgi2[0;1] where each x̂it = fxi1; xi2; :::; xitg is the history of i�s signals
until t: Denote ŝt(x̂t) = fs1(x̂1); s2(x̂2); :::st(x̂t)g as the complete strategy pro�le of all
players up to date t where st(x̂t) represents the strategy of everyone at t. The decision

for i to either withdraw or wait at any time t is depicted by sit(x̂it; ŝt�1(x̂t�1)) 2 f0; 1g
since it is contingent only on i�s own history of private signals until t and the knowledge

that bank-run has not occurred in the past.

To characterize an equilibrium, recall that an agent chooses an action that max-

imizes her expected payo¤ di¤erence between withdrawing and waiting, such that
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she chooses to withdraw (sit = 0) if the expected payo¤ from withdrawing is higher,

otherwise she chooses to wait (sit = 1). As in the static model, the expected payo¤

di¤erence depends mainly on the measure of agents who would want to withdraw

which is implied by the level of fundamentals. Thus, we let F (n (�) j x̂it; ŝt�1) as the
c.d.f. of n (�), conditional on the knowledge of one�s own past and present signals

and that bank-run has not yet occurred in the past as represented by agents�strategy

ŝt�1: Note that this characterization does not necessarily require an in�nite horizon

setting and is valid even with only a �nite length of time T . Thus, we de�ne our

equilibrium concept as follows:

De�nition: The symmetric strategy fsitgTt=1 for each agent i is an equilibrium
if and only if for all x̂it and for all t 2 f1; 2; 3; :::; Tg :

sit(n(�); x̂it) 2 arg max
si2f0;1g

�
si

�Z
R(n (�)) dF (n (�) j x̂it; ŝt�1)� P

��
:

The above de�nition is a perfect Bayesian-Nash equilibrium since at every sub-

game, every player chooses the optimal payo¤given her own signal and the knowledge

that bank-run has not occurred in the past. The fact that the bank continues to exist

makes agent�s actions sequentially rational as they do not depend on any other pe-

riod. Moreover, any "o¤-the-equilibrium" action of any agent is negligible since apart

from being unobservable, it forms part only of the �nal and summarized information

that bank-run has not occurred in the past5. Therefore, an agent�s expected payo¤

for waiting is determined only by Baye�s rule at any relevant history of the game.

For t = 1; we have x̂i1 = xi1 and ŝ0 = 1 i:e: trivially, no bank-run has occurred

before period 1. This dynamic game played only in period 1 is analog to the static

model that admits a unique equilibrium characterized by the thresholds for xi1 and

�. The result of Proposition 1 therefore applies also for this case of dynamic game

with t = 1: For t � 2; the equilibrium strategy sit(�) is conditioned by the pro�le of
i�s signals over time (x̂it) and the knowledge whether bank-run has already happened

5This concept has semblance of open-loop strategies in the sense that agents are nonatomic (i.e.
no single agent can in�uence other player�s payo¤). The only di¤erence is that each agent still reacts
to the collective previous actions of others at every time t based on the summary of information
obtained until time t� 1.
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before the present time (ŝt�1). Given a uniform distribution about � and errors

"it being independent of � and serially uncorrelated across time, the simple average

�xit = �+�"it is a su¢ cient statistic for the pro�le of signals x̂it; where �"it = 1
t

Pt
�=1 "i� :

Thus, we summarize i�s history of private information into a single parameter at each

time t:Where no confusion may arise, we simply denote �xit and �"it in this symmetric

game as �xt and �"t; respectively.

Lemma 1: Any monotone perfect Bayesian-Nash equilibrium strategy fstgTt=1
is characterized by a sequence fx�t ; ��tgTt=1; where x�t 2

�
� � �"t; � + �"t

�
and ��t 2

�
�; �
�
;

such that:

(i) if ��t > �
�
t�1; then bank-run occurs at t � 2 with probability 1�

�xt+�"t���t
�xt+�"t���t�1

;

(ii) at any t � 1; an agent withdraws (sit = 0) if �xt � x�t and waits (sit = 1)
if �xt > x�t :

Proof: The proof is similar to the induction procedure adopted by Angeletos,

etc. For t = 1; the equilibrium is characterized following Proposition 1. Now for any

t � 2; we consider two possibilities: Case 1: Suppose ��t � ��t�1; then if bank-run has
not occurred at t � 1(i.e. � > ��t�1); then it is with probability 1 that bank-run will
also not occur at t (i.e. � > ��t ). Hence, �xt � � + �"t for any t � 2: Case 2: Suppose
��t > �

�
t�1; then if bank-run has not occurred at t� 1; the probability that bank-run

will also not occur at time t is given by:

Pr(� > ��t j �xt; � > ��t�1) =
1
2"

R �xt+�"t
��t

d�

1
2"

R �xt+�"t
��t�1

d�
=

�xt + �"t � ��t
�xt + �"t � ��t�1

(6)

The above posterior probability is continuous and strictly increasing in �xt 2
(��t � �"t;1) : Initially, we know that �xt 2

�
� � �"t; � + �"t

�
; however as � ! 1;the

posterior approaches 1; while as � ! ��t it approaches to 0: (Lower than �
�
t ; the prob-

ability becomes either negative or greater than 1.) This implies therefore that there

exist x�t 2 (��t � �"t;1) such that R(n (�)) � Pr(� > ��t j �xt; � > ��t�1) � Pt whenever

�xt � x�t and so sit(n(�); �xt) = 0 and R(n (�)) �Pr(� > ��t j �xt; � > ��t�1) > Pt whenever
�xt > x

�
t and therefore sit(n(�); �xt) = 1: �

Remark: Note that Lemma 1 (i) allows the possibility of bank-runs to occur at
any time t � 2: If ��s � ��s�1; for any s � 2; then it is immediate that no one thinks
of running against the bank in period t � s:
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Since Lemma 1 claims the existence of a threshold x�t from which an agent bases

her decision to withdraw, one can now measure the mass of agents who will withdraw

following that threshold. This measure at a given period t, which is continuous and

decreasing in �; is given by n(�; x�t ) = Pr(�xt � x�t j�) = 1
2"

R x�t
���"t d �xt =

x�t��+�"t
2�"t

: This

implies that bank-run occurs if and only if � � ��t ; where ��t ; like in the static model,
is the unique �xed point of n; that is,

��t =
x�t � ��t + �"t

2�"t
= n(��t ; x

�
t ) (7)

Moreover, to say that the level of fundamentals is above its bank-run threshold

(i.e. � > ��t ) is similar to saying that the proportion of agents who wish to withdraw at

period t is still below its own bank-run threshold (i.e. n < n(��t ; x
�
t )). This assertion

which has its analog in the static game is presented in the following lemma by stating

that the c.d.f. of the posterior belief on n at any period t is equal to the probability

that bank-run will not occur at t; given that it has not occurred in the past.

Lemma 2: Given thresholds x�t 2
�
� � �"t; � + �"t

�
; n(��t ; x

�
t ) 2 (0; 1) and ��t 2

(�; �) and that n(��t ; x
�
t ) < n(�

�
t�1; x

�
t ); the c.d.f. of the posterior beliefs on n at period

t is equivalent to n(��t ;x
�
t )

n(��t�1;x
�
t )
and to Pr(� > ��t jx�t ; � > ��t�1):

Proof:

F (n(��t ; x
�
t )j ŝt�1) = Pr(n < n(��t ; x�t ) jn < n(��t�1; x�t ))

=
F (n(��t ; x

�
t )) \ F (n(��t�1; x�t ))
F (n(��t�1; x

�
t ))

=
n(��t ; x

�
t )

n(��t�1; x
�
t )

=
Pr(�xt � x�t j ��t )
Pr(�xt � x�t

�� ��t�1 )
=

x�t + �"t � ��t
x�t + �"t � ��t�1

= Pr(� > ��t jx�t ; � > ��t�1) ; from Lemma 1

�

14



Even if the size of potential early withdrawals is not observable to anyone at any

point in time, the fact that bank-run did not occur at t�1 is enough to be ascertained
that this size has not reached its threshold level at t� 1. In other words, despite the
absence of information about n; one can also describe the probability of bank-run at t

in terms of threshold n(��t ; x
�
t ) since this can be derived from how bank-run incidence

is determined using ��t and the signal �xt. In what follows, Lemma 2 shall allow us to

simplify our payo¤ analysis by using the parameter n(��t ; x
�
t ) instead of �

�
t in pinning

down an equilibrium. We note from the proof of Lemma 2 that n(��t ; x
�
t ) has a uniform

distribution over (0; 1) since f(n(��t ; x
�
t )j ŝt�1) is equal to a constant 1

n(��t�1;x
�
t )
:

Similar to (5) of the static model, we de�ne below the expected payo¤ advantage

in retaining one�s investment over withdrawing it for an agent who holds a threshold

signal x�t at time t:

�
�
n�t ; n

�
t�1; x

�
t

�
= P

Z 1
P

0

R

�
1� n(��t ; x�t )P
1� n(��t ; x�t )

�
dF (n(��t ; x

�
t ) jŝt�1 )� P (8)

The value of n(��t ; x
�
t ); as de�ned in (7), is contingent on �

�
t and x

�
t : Thus, even if

n(��t ; x
�
t ) is unobservable as a threshold, this does not pose any problem in determining

the probability of bank-run since it can be indirectly drawn from any realizable private

signal and the knowledge that bank-run has not happened at t� 1, i.e. � > ��t�1: It
follows therefore that equilibrium can be characterized by:

�
�
n�t ; n

�
t�1; x

�
t

�
= 0 (9)

Proposition 2: In a dynamic game, there is a unique monotone bank-run

equilibrium using the threshold x�t at time t: This equilibrium is characterized by the

sequence fn(��t ; x�t ); x�tg
T
t=1 through the following equations:

(Pt � 1) ln
�

Pt
Pt � 1

�
=
R� n(��t�1; x�t )

R
(10)
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n(��t ; x
�
t ) =

R� Ptn(��t�1; x�t )
Pt(R� n(��t�1; x�t ))

= 1� 1

Pt ln
�

Pt
Pt�1

� (11)

Proof.
From Lemma 2, we have F (n(��t ; x

�
t ) jŝt�1 ) =

n(��t ;x
�
t )

n(��t�1;x
�
t )
. Thus, we have (9) as:

�
�
n�t ; n

�
t�1; x

�
t

�
=

R

n(��t�1; x
�
t )

Z 1
Pt

0

�
1� n(��t ; x�t )Pt
1� n(��t ; x�t )

�
dn(��t ; x

�
t )� 1 = 0 (12)

The derivation of (10) from (12) follows the same steps as in the proof of Propo-

sition 1 and is therefore omitted. At t = 1, we derive the equilibrium n(��1; x
�
1)

similar to Proposition 1 with x�1 as signal threshold and with n(�
�
0; x

�
1) = 1: Now

to characterize the equilibrium at t = 2; we �rst compute n(��t�1; x
�
t ) in terms of

n(��t�1; x
�
t�1) =

x�t�1���t�1+�"t�1
2�"t�1

; thus we obtain:

n(��t�1; x
�
t ) =

(x�t � x�t�1)
2�"t

+
�
2n(��t�1; x

�
t�1)� 1

� �"t�1
2�"t

+
1

2
(13)

By plugging n(��1; x
�
1) into (13) as n(�

�
t�1; x

�
t�1) and by using (10), x

�
2 can be solved

along with n(��1; x
�
2): Then, n(�

�
1; x

�
2) is entered into (11) to obtain n(�

�
2; x

�
2): Repeating

this for t � 3; we obtain a sequence of n(��t ; x�t ) along with its associated x�t : Finally,
since n(��t ; x

�
t ) and �

�
t can be used interchangeably as bank-run threshold (from Lemma

2), any sequence fn(��t ; x�t ); x�tg
T
t=1 characterizes a monotone equilibrium (from Lemma

1).

To show uniqueness, notice that (12) has the same form as (5) except for Pt and

the intercept R
n(��t�1;x

�
t )
. Thus, �

�
n�t ; n

�
t�1; x

�
t

�
also monotonically decreases in n(��t ; x

�
t )

at any t � 1: �

Proposition 2 is in fact a generalization of Proposition 1 that identi�es a unique

equilibrium at every time t: In period 1, the result coincides with the static model

that derives n(��1; x
�
1) and x

�
1; given that P1 = P; n(�

�
0; x

�
1) = 1; and x

�
0 = � � "0 (a

16



case where nobody runs). The values of n(��0; x
�
1) and x

�
0 show the trivial fact that

there was no bank-run at t = 0: For any time t � 2; the threshold equilibrium is

continuously depicted by n(��t ; x
�
t ) by using the derived values of x

�
t ; n(�

�
t�1; x

�
t�1) and

n(��t�1; x
�
t ).

This is made clearer through the help of Figure 2 which presents g2(n(�
�
2; x

�
2);

n(��1; x
�
2)) as the function of the expected payo¤ for waiting at t = 2, given the past

threshold n(��1; x
�
1) and function g1(n(�

�
1; x

�
1); n(�

�
0; x

�
1)) which was introduced in Figure

16: The �gure also presents A0 and B0 (the regions bounded by dashed lines) as the

agent�s expected payo¤s for waiting and withdrawing, respectively. To summarize

the mechanics of equilibrium characterization, start at time 1. In this period, set

n(��1; x
�
1) to be the unique solution to �(n

�
1; n

�
0; x

�
1) = 0; where n(��0; x

�
1) = 1: Next,

at t = 2, use the derived n(��1; x
�
1) to solve �(n

�
2; n

�
1; x

�
2) = 0; naming its solution

as n(��2; x
�
2): Graphically, the use of n(�

�
1; x

�
1) increases the vertical intercept of the

function g2(n(�
�
2; x

�
2); n(�

�
1; x

�
2)) from R to

R
n(��1;x

�
2)
; and the function�s intersection with

P2 derives the value for n(�
�
2; x

�
2): By continuing the same process for every t � 3 until

t = T; we generate the complete sequence fn(��t ; x�t ); x�tgTt=1:

Figure 2: Unique equilibrium path in a dynamic framework

6Note that gt(n(�
�
t ; x

�
t ); n(�

�
t�1; x

�
t )) is concave for all n(�

�
t ; x

�
t ); n(�

�
t�1; x

�
t ) 2 (0; 1) and t � 1

since @
@n(��t ;x

�
t )

�
R

n(��t�1;x
�
t )
1�n(��t ;x

�
t )Pt

1�n(��t ;x�t )

�
< 0 and @2

@n2 (�) < 0:
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3.2. Probability Bank-run

The main message of Proposition 2 is that a unique threshold equilibrium contin-

ues to exist even in a dynamic global games framework and for as long as bank-run

has not happened in the past, there remains a possibility that it can occur at any time

t � 1: This possibility however declines over time as is shown in our next proposition.

Proposition 3: Given that bank-run has not occurred at any time in the past,

at the threshold equilibrium fn(��t ; x�t ); x�tgTt=1,
(i) x�t can increase or decrease over time,

(ii) n(��t ; x
�
t ) is decreasing over time, and

(iii) the probability of bank-run at t, decreases over time.

Proof.
(i) From (10), we have @n(��t�1;x

�
t )

@Pt
= R

�
1
Pt
� ln

�
Pt
Pt�1

��
< 0 for any Pt > 1 and

so, since Pt increases in t; n(�
�
t�1; x

�
t ) must decrease in t no matter what the value of

x�t is. Assume that information becomes precise over time, i.e. �"t ! 0: Hence from

(13), we see that if n(��t�1; x
�
t�1) � 1

2
; then x�t must decrease as n(�

�
t�1; x

�
t ) decreases;

whereas if n(��t�1; x
�
t�1) <

1
2
; x�t can go up or down, depending on the level of the

decrease in n(��t�1; x
�
t ).

(ii) From (11), we have @n(��t ;x
�
t )

@Pt
=
�
ln
�

Pt
Pt�1

�
� 1

Pt�1

�
=
�
P 2t ln

2
�

Pt
Pt�1

��
< 0; for

all Pt > 1; and so n(�
�
t ; x

�
t ) must decrease over time as Pt increases in t:

(iii) From (i) and (ii), we have @
�

n(��t ;x
�
t )

n(��t�1;x
�
t )

�
=@Pt > 0; for all Pt > 1: Since

the probability of bank-run at t, given that it has not occurred at t � 1 is given by
1� n(��t ;x

�
t )

n(��t�1;x
�
t )
(from Lemma 2), we therefore have this probability decreasing over time.

�

The fact that a bank can fail in one period after having survived in the past

only shows that the threshold n(��t ; x
�
t ) is decreasing over time. When n(�

�
t ; x

�
t ) �

n(��t�1; x
�
t�1); and given that bank-run has not occurred at t�1 (i.e. n(�) < n(��t�1; x�t�1)),

then it is with probability 1 that bank-run will also not occur at t. On the other hand,

if n(��t ; x
�
t ) < n(��t�1; x

�
t�1); there is a positive probability for bank-run to occur at

t and the threshold n(��t ; x
�
t ) is determined by solving �

�
n�t ; n

�
t�1; x

�
t

�
= 0: If in the

end, bank-run did not occur at t; then an agent will have to update the bank-run

probability at t+ 1 based on her private information at t+ 1 and the past threshold

18



n(��t ; x
�
t ): If again n(�

�
t+1; x

�
t+1) � n(��t ; x�t ); then bank-run will not happen at t + 1;

otherwise, there is again a positive probability of bank-run at t + 1 at the threshold

n(��t+1; x
�
t+1): This mechanics is made clearer in Figure 3, which shows the derivation

of threshold n(��t ; x
�
t ) over time.

Figure 3: Decreasing threshold equilibrium over time

4. Learning with Shocks

We analyze in this section how the introduction of shocks in the learning process

a¤ects the probability of bank-run incidence. The dynamic model we discussed before

shall be modi�ed in the following manner. Suppose initially that everyone follows a

monotone strategy at all t 2 f1; 2; :::Tg such that any one withdraws if and only if

�xt � ~xt + ��t

where �t parameterizes an exogenous shock at time t, independent of ~xt and with a

uniform support over [��"t; �"t]; while � represents the volatility of �t. As before, �xt is
the agent�s summary of signals received until t while ~xt is the threshold signal when

there is no shock. Notice that as agents are aware of the presence of unobservable

shocks, they tend to be cautious and decide to withdraw even when receiving a higher

signal about the fundamentals.

19



Given the above strategy, the measure of agents who will withdraw in period t at

a certain level of fundamentals � is:

� (�; ~xt) =
1

2�"t

Z ~xt+��t

���"t
d�xt =

~xt + ��t � � + �"t
2�"t

= n(�; ~xt) +
��t
2�"t

Note here that when � = 0; this setup coincides with the dynamic game without

shock as � (�; ~xt) = n(�; ~xt). Now since � (�; ~xt) is continuous and decreasing in �;

there is a �� that solves � (��; ~xt) = �� such that bank-run occurs if and only if

� � �� = ~xt+��t+�"t
1+2�"t

: This condition is equivalent �t � �̂�t (�) where

�̂�t (�) =
1

�
(� (1 + 2�"t)� ~xt � �"t) =

2�"t
�
(� � �(�; ~xt)) + �t: (14)

This shows that while �t summarizes the disturbances caused by any macroeco-

nomic variable that can a¤ect the sentiments of agents in retaining their assets, this

should not cause bank-run unless the level reaches �̂�t (�). It follows then from (14)

that the probability of bank-run to occur at t; conditional on � and using threshold

~xt is

��t (�(�; ~xt)) = 1� F (�̂�t (�)) = ��t (�; ~xt) (15)

Now at any time t, the di¤erence between expected payo¤ from attacking and the

payo¤ from withdrawing, for an agent with a summarized private information of �xt;

is given by

��t
�
~xt
�
= RPt

Z 1
Pt

0

�
1� �(�; ~xt)Pt
1� �(�; ~xt)

�
f�t
�
�(�; ~xt); ~x

t�1� d�(�; ~xt)� Pt (16)

where f�t (�(�; ~xt); ~x
t�1) is the density function of the private posterior at time t and

is computed using Baye�s rule, i.e.

f�t
�
�(�; ~xt); ~x

t�1� = �(�; ~xt) f
�
t (�(�); ~x

t�1)R 1
0
��(�; ~xt) f�t

�
��(�); ~xt�1

�
d��(�)

(17)

where f�t (�(�); ~x
t�1) is the density function of the common posterior about �(�); when

agents in previous periods follow the strategy thresholds ~xt�1 = f~x1; ~x2; :::; ~xt�1g and
is computed also by Baye�s rule.
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From this setup, we show that monotone equilibrium strategy can still be achieved

in fx�tg
T
t=1 although this does not necessarily be unique. We proceed in showing this

by presenting �rst the following lemmas.

Lemma 3. Given thresholds ��t and ~xt at time t and past thresholds ~xt�1;

F �t (�(�
�
t ; ~xt); ~x

t�1) = 1� F �t (��t j(~xt; �t); ~xt�1 ) :

Proof.
First, we show that the common posteriors on �(�) and � are equal given the past

thresholds ~xt�1. Thus, we have

f�t
�
�(�); ~xt�1

�
=

�
1� ��t�1 (�(�; ~xt�1))

�
f�t�1 (�(�); ~x

t�2)R 1
0

�
1� ��t�1

�
��(�; ~xt�1)

��
f�t�1

�
��(�); ~xt�2

�
d��(�)

=
ut�1r=1 (1� ��r (�(�; ~xr))) f�1 (�(�))R 1

0
ut�1r=1

�
1� ��r

�
��(�; ~xr)

��
f�1

�
��(�)

�
d��(�)

where the density of the initial prior f�1 (�(�)) = f
�
1 (�) =

1
2"1
: From (15), we have

=
ut�1r=1 (1� ��r (�; ~xr)) f�1 (�)R �

�
ut�1r=1

�
1� ��r

�
��; ~xr

��
f�1

�
��
�
d��

= f�t
�
�; ~xt�1

�
Then, from (17) and recalling that �(�; ~xt) = ~xt+��t��+�"t

2�"t
; we obtain

f�t
�
�(�; ~xt); ~x

t�1� = ut�1r=1 (1� ��r (�; ~xr)) (~xt + ��t � � + �"t)R �
�
ut�1r=1

�
1� ��r

�
��; ~xr

���
~xt + ��t � �� + �"t

�
d��

(18)
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At threshold ��t , we have the c.d.f. of f
�
t (�) as

F �t
�
�(��t ; ~xt); ~x

t�1� =

Z �(��t ;~xt)

0

f�t
�
�(�; ~xt); ~x

t�1� d�(�; ~xt)
=

ut�1r=1 (1� ��r (��t ; ~xr)) (~xt + ��t � ��t + �"t)R �
�
ut�1r=1

�
1� ��r

�
��
�
t ; ~xr

���
~xt + ��t � ��

�
t + �"t

�
d��
�
t

=
(~xt + ��t � ��t + �"t) f�t (��t ; ~xt�1)R �

�

�
~xt + ��t � ��

�
t + �"t

�
f�t

�
��
�
t ; ~x

t�1
�
d��
�
t

=
Pr (� � ��t j(~xt; �t)) f�t (��t ; ~xt�1)R �

�
Pr
�
�� � ��t j(~xt; �t)

�
f�t

�
��
�
t ; ~x

t�1
�
d��
�
t

= 1� F �t
�
��t
��(~xt; �t); ~xt�1 �

�

Lemma 4. For t = 1; ��1 (~x1) is continuous in ~x1 for any ~x1 2
�
� � "; � + "

�
while for t � 2; ��t (~xt) is continuous in ~xt for any ~xt 2

�
� � "; � + "

�t
:

Proof.
Case 1: � = 0:

Since this case is equivalent to a dynamic case without shock, �01 (~x1) =

� (n(��1; x
�
1)) while �

0
t (~x

t) = �
�
n(��t ; x

�
t ); n(�

�
t�1; x

�t�1)
�
for t � 2: Note that for

all t; n(��t ; x
�t) = max

n
n(�) : n(�) = x�r��+�"r

2�"r
� �; for all r � t

o
is continuous in x�t

and is bounded in [0; 1]: And so, since �(n(��1; x
�
1)) is continuous in n(�

�
1; x

�
1) and

�
�
n(��t ; x

�
t ); n(�

�
t�1; x

�t�1)
�
is continuous in (n(��t ; x

�
t ); n(�

�
t�1; x

�t�1)) 2 [0; 1]2; it im-
plies that for all t � 1, �0t (~xt) is continuous in ~xt:
Case 2: � > 0:

In this case, note �rst that the function ��t (�; ~xt) = 1�F
�
1
�
(� (1 + 2�"t)� ~xt � �"t)

�
is increasing in ~xt and decreasing in �: If ~xt increases such that 1� (� (1 + 2�"t)� ~xt � �"t) <
��"t then ��t (�) = 1; while if ~xt decreases such that 1

�
(� (1 + 2�"t)� ~xt � �"t) > �"t then

��t (�) = 0; thus, ��t (�) is bounded in [0; 1] : For t = 1; the c.d.f. of �(�) given the

threshold ~x1; F �1 (�(�) j~x1 ) = � (�; ~x1) = ~x1+��t��+�"1
2�"1

; is continuous in ~x1 and �: This

implies that ��1 (~x1) = RP1
R 1��(�)P1

1��(�) dF
�
1 (�) is continuous in ~x1:

For t � 2; observe from the proof of Lemma 3 that F �t (�(�
�
t ; ~xt); ~x

t�1) is

continuous in �; ~xt and ~xt�1; which implies that ��t (~x
t) is continuous in ~xt. �
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Proposition 4. For � > 0; any monotone equilibrium strategy fstgTt=1 is
characterized by a sequence fx�tg

T
t=1 if and only if

(i) at any t � 1; an agent withdraws (sit = 0) if �xt � x�t and waits
(sit = 1) if �xt > x�t :

(ii) for t = 1, x�1 2
�
� � "1; � + "1

�
solves ��1 (x

�
1) = 0; while for t � 2;

x�t 2
�
� � �"t; � + �"t

�
solves ��t (x

�t) = 0:

Multiple equilibria can exist for any � > 0:

Proof.
Necessity. Set fst(�)gTt=1 as the monotone equilibrium strategy such that one

withdraws if �xt � x�t = ~xt + ��t: Since the proportion of agents withdrawing at any

t is decreasing in � in such a strategy, the probability of bank-run is also decreasing

in �: Solving for the �xed point ��t that solves �
�
t = � (�

�
t ; x

�
t ) ; we obtain �

�
t =

x�t+�"t
1+2�"t

.

Now consider the payo¤s. Since �(��t ; ~xt) � �(��t ; x
�
t ) and by applying this on (16)

along with the value of ��t ; we solve the sequence fx�tg
T
t=1 : Since the strategy is an

equilibrium that gives maximal payo¤at every t; an agent surely withdraws if �xt � x�t
since ��t (x

�t) � 0 and waits if �xt > x�t since ��t (x�t) > 0:
Su¢ ciency. The monotonicity of ��t (x

�t) in x�t follows directly from Lemma 4

such that by considering a sequence fx�tg
T
t=1 that satis�es conditions (i) and (ii) of

the proposition, monotone equilibrium is obtained where ��t (x
�t) � 0 if �xt � x�t and

��t (x
�t) > 0 if �xt > x�t .

Multiplicity. While ��t (x
�t) is monotonic in x�t at any t and when � > 0; it is not

so in ��t nor in � (�
�
t ; x

�
t ) : To show this, apply the fact that �

�
t = �(�

�
t ; ~xt) � �(��t ; x�t ) on

(16) so that ��t (~x
t) is depicted in terms of �(��t ; x

�
t ): Then, since f

�
t (�(�

�
t ; x

�
t ); x

�t�1) =
ut�1r=1(1���r (�(�

�
r ;x

�
r)))�(�

�
t ;x

�
t )R 1

0 u
t�1
r=1(1���r (��(��r ;x�r)))��(��t ;x�t )d��(��t ;x�t )

; the equation

RPt

�
1� � (��t ; x�t )Pt
1� � (��t ; x�t )

�
f�t
�
�(��t ; x

�
t ); x

�t�1�� Pt = 0
is a polynomial of degree t in � (��t ; x

�
t ). By the fundamental theorem of algebra there

is at least one solution to this equation which therefore applies also for ��t (x
�t) = 0:

Hence, there exists a possible multiple equilibria in this game. �

The main di¤erence in the dynamics of equilibrium between the basic dynamic

setup (without unobservable shocks) and in that of Proposition 4 is that in the latter,

the complete sequence of past thresholds x�t�1 is monitored at every stage t; while
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in the former the entire in�uence of x�t�1 on deriving the current threshold x�t is

captured by the fact that ��t�1 is not breached.

While there exists a monotone equilibrium strategy with respect to x�t in this

current setting, the payo¤ ��t (x
�t) is no longer monotonic in �(��t ; x

�
t ) which gives

way to multiple equilibria. To understand this better, Figure 4 presents an example

that admits multiple equilibria when T = 2. As before, the solid line represents

an agents payo¤ in period 2 that is truncated by period 1�s threshold �(��1; x
�
1) =

n(��1; x
�
1): Note that there is only a positive probability bank-run in period 2 whenever

�(��2; x
�
2) < �(�

�
1; x

�
1) since above �(�

�
1; x

�
1) everyone remains and gets a payo¤ R. On

the other hand, the dashed line represents the payo¤ ��2(x
�2) of a game with noisy

shocks (� > 0) and the two values of �(��2; x
�
2) are the solutions to �

�
2(x

�2) = 0: Notice

that in the presence of noisy shocks, the truncation at �(��1; x
�
1) is already lost and

the posterior on �(�) has retained full support over [0; 1]. Thus, eventhough bank-run

has survived in the past, an agent at every stage does not anymore see the threshold

�(��1; x
�
1) as clearly as in the game without shocks but rather draws it from a range

of probability. Thus, even if an agent receives a high signal �x2 which means that the

probability of bank-run at time 2 is low (or that �(��2; x
�
2) > �(�

�
1; x

�
1)), bank-run could

still persist due to the uncertainty on the past period�s threshold.

Figure 4: Multiple equilibria in a dynamic setup with unobservable shocks

From the same �gure above, it is worthwhile also to note that as � ! 0; the

"noisy" private signal threshold in period 1 converges to x�1 and the probability of
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bank-run approaches 0 for �(��2; x
�
2) � �(��1; x

�
1): This simply means that �

�
2 (x

�2)

converges to the payo¤ function �(n�2; n
�
1; x

�
2) of the original dynamic game.

5. Conclusion

This study which main objective is to set a dynamic bank-run model has estab-

lished the following results. First, by applying the static global games framework

on bank-runs, we have characterized a unique monotone equilibrium in terms of the

threshold measure of early withdrawals. In particular, this equilibrium threshold n�

can now be de�ned by the level of interest rates which represents the payo¤ derived

at the time of withdrawal. Second, the use of threshold n� in the payo¤ analysis,

instead of following the typical use of ��; is instrumental in extending the uniqueness

result to dynamic game framework. Through a simple recursive mechanism, a unique

equilibrium path n�t is generated which maps out the crisis threshold point at every

time t. This also allows comparative statics to show that for as long as bank-run has

not occurred in the past, its probability incidence decreases over time. Finally, we

demonstrate that in the presence of some unobservable macroeconomic shocks, this

equilibrium uniqueness result no longer hold since the perturbed learning process fails

to certainly identify the thresholds in the previous periods.
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Appendix:

Alternative Proof of Proposition 1:

This proof obtains the result of Proposition 1 without using the bank-run threshold

��: Given from equation (2) that n(�; x�) = x���+"
2"

; the expected utility from waiting,

R
�
1�Pn(�;x�)
1�n(�;x�)

�
; can be rewritten as R

�
2"�P (x���+")
2"�(x���+")

�
: Note that as R(�) = 0 whenever

� = x��"
�
2
P
� 1
�
; an equilibrium is characterized by any � 2

�
x� + "; x� � "

�
2
P
� 1
��
:

Thus, the threshold equilibrium payo¤ is computed as follows

P

2"

Z x�+"

x��"( 2P �1)
R
2"� P (x� � � + ")
2"� (x� � � + ") d� � P = 0Z x�+"

x��"( 2P �1)
R
2"� P ("+ x�) + P�

"� x� + � d� = 2"

Let a = 2"� P ("+ x�) and b = "� x� such that we have

R

Z x�+"

x��"( 2P �1)

a+ P�

b+ �
d� = 2"

By integrating by parts, we obtain

(a+ �) ln(b+ �)�
Z
ln(b+ �)d�

����=x�+"
�=x��"( 2P �1)

=
2"

R

(a� Pb) ln(b+ �) + P�
����=x�+"
�=x��"( 2P �1)

=
2"

R

Substituting back the values of a and b and by some algebra,

(1� P ) ln
�

P

P � 1

�
+ 1 =

1

R

By substituting R on the equation R 1�n(�)P
1�n(�) = P; we have

n(�; x�) = 1� 1

P ln
�

P
P�1

�
�
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