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Guanxing Fu† and Ulrich Horst‡
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Abstract

This paper establishes the existence of relaxed solutions to mean field games (MFGs for short)

with singular controls. As a by-product, we obtain an existence of relaxed solutions results for

McKean-Vlasov stochastic singular control problems. Finally, we prove approximations of solutions

results for a particular class of MFGs with singular controls by solutions, respectively control rules,

for MFGs with purely regular controls. Our existence and approximation results strongly hinge on

the use of the Skorokhod M1 topology on the space of càdlàg functions.

AMS Subject Classification: 93E20, 91B70, 60H30.

Keywords: mean field game, singular control, relaxed control, Skorokhod M1 topology.

1 Introduction and overview

Starting with the seminal papers [25, 33], the analysis of mean field games (MFGs) has received con-

siderable attention in the stochastic control and financial mathematics literature. In a standard MFG,

each player i ∈ {1, ..., N} chooses an action from a given set of admissible controls that maximizes a cost

functional of the form

J i(u) = E

[∫ T

0

f(t,Xi
t , µ̄

N
t , u

i
t)dt+ g(Xi

T , µ̄
N
T )

]
(1.1)

subject to the state dynamics

{
dXi

t = b(t,Xi
t , µ̄

N
t , u

i
t) dt+ σ(t,Xi

t , µ̄
N
t , u

i
t) dW

i
t ,

Xi
0 = x0

. (1.2)

Here W 1, ...,WN are independent Brownian motions defined on some underlying filtered probability

space, u = (u1, · · · , uN ), ui = (uit)t∈[0,T ] is an adapted stochastic process, the action of player i, and

µ̄Nt := 1
N

∑N
j=1 δXj

t
denotes the empirical distribution of the individual players’ states at time t ∈ [0, T ].

In particular, all players are identical ex ante and each player interacts with the other players only through

the empirical distribution of the state processes.
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The existence of approximate Nash equilibria in the above game for large populations has been established

in [4, 25] using a representative agent approach. In view of the independence of the Brownian motions

the idea is to first approximate the dynamics of the empirical distribution by a deterministic measure-

valued process, and to consider instead the optimization problem of a representative player that takes the

distribution of the states as given, and then to solve the fixed-point problem of finding a measure-valued

process such that the distribution L(X) of the representative player’s state process X under her optimal

strategy coincides with that process.1

Following the representative agent approach, a MFG can then be formally described by a coupled control

and fixed point problem of the form:




infuE
[∫ T

0
f(t,Xt, µt, ut) dt+ g(XT , µT )

]
,

subject to

dXt = b(t,Xt, µt, ut) dt+ σ(t,Xt, µt, ut) dWt

X0 = x0,

L(X) = µ.

(1.3)

There are essentially three approaches to solve mean field games. In their original paper [33], Lasry

and Lions followed an analytic approach. They analyzed a coupled forward-backward PDE system,

where the backward component is the Hamiltion-Jacobi-Bellman equation arising from the representative

agent’s optimization problem, and the forward component is a Kolmogorov-Fokker-Planck equation that

characterizes the dynamics of the state process.

A second, more probabilistic, approach was introduced by Carmona and Delarue in [4]. Using a maximum

principle of Pontryagin type, they showed that the fixed point problem reduces to solving a McKean-

Vlasov forward-backward SDEs (FBSDEs for short). Other results based on probabilistic approaches

include [1, 2, 3, 5, 10]. Among them, [2, 3, 5] consider linear-quadratic MFGs, while [1, 10] consider

MFGs with common noise and with major and minor players, respectively. A class of MFGs in which the

interaction takes place both through the state dynamics and the controls has recently been introduced in

[8]. In that paper the weak formulation, or martingale optimality principle, is used to prove the existence

of a solution.

A relaxed solution concept to MFGs was introduced by Lacker in [31]. Considering MFGs from a more

game-theoretic perspective, the idea is to search for equilibria in relaxed controls (“mixed strategies”) by

first establishing the upper hemi-continuity of the representative agent’s best response correspondence to

a given µ using Berge’s maximum theorem, and then to apply the Kakutani-Fan-Glicksberg fixed point

theorem in order to establish the existence of some measure-valued process µ∗ such that the law of the

agent’s state process under a best response to µ∗ coincides with that process.

Relaxed controls date back to Young [38]. They were later applied to stochastic control in, e.g. [19, 20, 29],

to MFGs in [31], and to MFGs with common noise in [6]. In the common noise case, the fixed point

is random. This prevents an application of standard fixed-point results. To overcome the problem of

randomness, [6] introduced a notion of weak solution to MFGs, based on the approximation of MFGs

by MFGs with discretized common noise paths. The notion of weak solutions is further supported in

[32] where it is shown that the weak limit of ǫ-Nash equilibria for N player games as N → ∞ is a weak

solution to MFGs. Moreover, each weak solution to MFGs yields an ǫ-Nash equilibrium for the N player

game.

Applications of MFGs range from models of optimal exploitation of exhaustible resources [11, 12, 18]

1The idea of decoupling local from global dynamic in large interactive stochastic systems goes back at least to Föllmer

[14], see also [15], and has been successfully applied to equilibrium models of social interaction in e.g. [22, 23].
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to systemic risk and bank-run models [7, 9, 34], and from principal-agent problems [13] to problems of

optimal trading under market impact [8, 16, 26]. Motivated by possible applications to optimal portfolio

liquidation under strategic interaction that allow for both block trades and absolutely continuous trades

as in [17, 21, 30], this paper provides a probabilistic framework for analyzing MFGs with singular controls.

Extending [31], we consider MFGs with singular controls of the form




infu,Z E
[∫ T

0
f(t,Xt, µt, ut) dt+ g(XT , µT ) +

∫ T
0
h(t) dZt

]
,

subject to

dXt = b(t,Xt, µt, ut) dt+ σ(t,Xt, µt, ut) dWt + c(t) dZt,

L(X) = µ

(1.4)

where u = (ut)t∈[0,T ] is the regular control, and Z = (Zt)t∈[0,t] is the singular control. When singular

controls are admissible, the state process no longer takes values in the space of continuous functions,

but rather in the Skorokhod space D(0, T ) of all càdlàg functions. The key is then to identify a suitable

topology on the Skorokhod space with respect to which the compactness and continuity assumptions of

the maximum and the fixed-point theorems are satisfied.

There are essentially three possible topologies on the space of càdlàg functions: the (standard) Skorokhod

J1 topology (J1 topology for short), the Meyer-Zheng topology (or pseudo-path topology), and the

Skorokhod M1 topology (M1 topology for short). The M1 topology seems to be the most appropriate

one for our purposes. First, the set of bounded singular controls is compact in the M1 topology but not

in the J1 topology. Second, there is no explicit expression for the metric corresponding to Meyer-Zheng

topology. In particular, one cannot bound the value function at given points in time in the Meyer-

Zheng topology. Third, the M1 topology has better continuity properties than the J1 topology. For

instance, it allows for an approximation of discontinuous functions by continuous ones. This enables us

to approximate solutions to certain classes of MFGs with singular controls by solutions to MFGs with

only regular controls. Appendix B summarizes useful properties of the M1 topology; for more details, we

refer to the textbook of Whit [37].

To the best of our knowledge, ours is the first paper to establish the existence of solutions results to

MFGs with singular controls. As a byproduct, we obtain a new proof for the existence of optimal

(relaxed) controls for the corresponding class of stochastic singular control problems. A similar control

problem, albeit with a trivial terminal cost function has been analyzed in [20]. While the methods and

techniques applied therein can be extended to non-trivial terminal cost functions after a modification

of the control problem, they cannot be used to prove existence of equilibria in MFGs. In fact, in [20],

it is assumed that the state space D(0, T ) is endowed with Meyer-Zheng topology, and that the spaces

of admissible singular and regular controls are endowed with the topology of weak convergence and

the stable topology, respectively. With this choice of topologies the continuity of cost functional and

the upper-hemicontinuity of distribution of the representative agent’s state process under the optimal

control w.r.t. to a given process µ cannot be established. As a second byproduct we obtain a novel

existence of solutions result for a class of McKean-Vlasov stochastic singular control problems. MFGs

and control problems of McKean-Vlasov type are compared in [5]. The main difference between these

somewhat similar, yet very different problems lies in the order of carrying out the optimization and the

fixed point arguments. When optimizing first, the subsequent fixed point problem leads to MFGs, while

in McKean-Vlasov control problems one searches for fixed points before solving the optimization problem.

Our second main contributions are two approximation results that allows us to approximate solutions to

a certain class of MFGs with singular controls by the solutions to MFGs with only regular controls. The

approximation result, too, strongly hinges on the choice of the M1 topology.

The rest of this paper is organized as follows: in Section 2, we recall the notion of relaxed control for
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singular stochastic control problems, introduce MFGs with singular controls and state our main existence

of solutions result. The proof is given in Section 3. In Section 4, we state and prove two approximation

results for MFGs with singular controls by MFGs with regular controls. Appendix A recalls known results

and definitions that are used throughout this paper. Append B reviews key properties of theM1 topology.

2 Assumptions and the main results

In this section we introduce MFGs with singular controls and state our main existence of solutions result.

For a given interval I we denote by C(I) the space of all Rd-valued continuous functions on I, by D(I) the

Skorokhod space of all Rd-valued càdlàg functions on I, and by A(I) ⊂ D(I) the subset of nondecreasing

functions. For reasons that will become clear later we identify processes on [0, T ] with processes on the

whole real line. For instance, we identify the space D(0, T ) with the space

D̃0,T (R) = {x ∈ D(R) : x|[0,T ] ∈ D (0, T ) , xt = 0 if t < 0 and xt = xT if t > T}.

Likewise, we denote by Ã0,T (R) the subspace of D̃0,T (R) with nondecreasing paths. We occasionally drop

the subscripts 0 and T if there is no risk of confusion. For a metric space (E, d) we denote by Pp(E)

the class of all probability measures on E with finite moment of p-th order. For p = 0 we write P(E)

instead of P0(E). By Wp,(E,d) we denote the Wasserstein distance on Pp(E); see Definition A.4. To save

notation the set Pp(E) endowed with the Wasserstein distance is often denoted Wp,(E,d) or Wp if there

is no risk of confusion about the underlying state space.

2.1 Singular stochastic control problems

Before introducing MFGs with singular controls, we briefly review stochastic singular control problems

of the form 



infu,Z E
[∫ T

0
f(t,Xt, ut) dt+ g(XT ) +

∫ T
0
h(t) dZt

]
,

subject to

dXt = b(t,Xt, ut) dt+ σ(t,Xt, ut) dWt + c(t) dZt,

X0− = 0,

(2.1)

where the regular control u = (ut)t∈[0,T ] takes values in a compact set U , and that the singular control

Z = (Zt)t∈[0,T ] takes values in Ã(R). The existence of optimal relaxed controls to stochastic singular

control problems has been addressed in [20] using the so-called compactification method. We use a similar

approach to solve MFGs with singular controls, albeit in different topological setting.

The following notion of relaxed controls follows [20].

Definition 2.1. The tuple r = (Ω,F , {Ft, t ≥ 0},P, X, q, Z) is called a relaxed control if

1. (Ω,F , {Ft, t ≥ 0},P) is a filtered probability space;

2. P(Xt = 0, Zt = 0 if t < 0, Xt = XT , Zt = ZT if t > T and q0 = δu0
) = 1, for some u0 ∈ U ;

3. q is a P(U) valued and {Ft, t ≥ 0} progressively measurable stochastic process, and Z is a Ã(R)-

valued and {Ft, t ≥ 0} progressively measurable stochastic process;

4. X is a {Ft, t ≥ 0} adapted stochastic process with path in D̃(R) such that for each φ ∈ C2
b (R

d), the

space of all continuous and bounded functions with continuous and bounded first- and second-order
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derivatives, Mφ is a P continuous martingale, where

Mφ
t := φ(Xt)−

∫ t

0

∫

U

Lφ(s,Xs, u) qs(du)ds−

∫ t

0

(∂xφ(Xs−))
⊤c(s)dZs

−
∑

0≤s≤t

(
φ(Xs)− φ(Xs−)− (∂xφ(Xs−))

⊤△Xs

)
,

with Lφ(t, x, u) := 1
2

∑
ij aij(t, x, u)

∂2φ(x)
∂xi

∂xj

+
∑
i bi(t, x, u)∂xi

φ(x) and a(t, x, u) = σ⊤σ(t, x, u).

With some abuse of notation we sometimes write Z ∈ Ã(R) to indicate that Z is a progressively measur-

able stochastic process taking values in Ã(R) and call the process q the relaxed control; the control u will

be referred to as the strict control. The class of strict controls can be embedded into the class of relaxed

controls via the mapping u 7→ δu. The cost functional corresponding to a relaxed control r is defined by

J̃(r) = EP

[∫ T

0

∫

U

f(t,Xt, u) qt(du)dt+

∫ T

0

h(t) dZt + g(XT )

]
. (2.2)

Remark 2.2. For (t, x) ∈ [0, T ]× Rd, let

K(t, x) = {(a(t, x, u), b(t, x, u), e) : e ≥ f(t, x, u), u ∈ U}.

If K(t, x) is convex for each (t, x) ∈ [0, T ] × Rd, then it can be shown that for each relaxed control r,

there exists a strict control u and a singular control Z with equal cost; see [19, Theoerem 3.6] for details.

In what follows, we restrict ourselves to relaxed controls and always assume that Ω is the canonical path

space, and that the σ-algebra {Ft, t ≥ 0} is generated by the corresponding coordinate processes X, q

and Z. More precisely, from now on we restrict ourselves to relaxed controls with

Ω = D̃(R)× U(0, T )× Ã(R)

where U(0, T ) denotes the set of all finite measures on [0, T ] × U whose first marginal is the Lebesgue

measure on [0, T ] and whose the second marginal belongs to P(U), and assume that for each ω :=

(x, q, z) ∈ Ω,

X(ω) = x, q(ω) = q and Z(ω) = z.

Definition 2.3. Let r = (Ω,F , {Ft, t ≥ 0},P, X, q, Z) be a relaxed control where Ω is the canonical path

space and (X, q, Z) are the coordinate processes. Then, the probability measure P is called the control

rule. The associated cost functional is defined as

Ĵ(P) := J̃(r).

Let us denote by R the class of all the control rules for the stochastic control problem (2.1). Clearly,

inf
P∈R

Ĵ(P) ≥ inf
relaxed control r

J̃(r).

Conversely, for any relaxed control r one can construct a control rule P ∈ R such that Ĵ(P) = J̃(r).

The proof is standard; it can be found in, e.g. [20, Proposition 2.6]. In other words, the optimization

problems with relaxed controls and control rules are equivalent. It is hence enough to consider control

rules.

Remark 2.4. In [20], it is assumed that the space A(0, T ) of singular controls is endowed with the topology

of weak convergence, that the state space D(0, T ) is endowed with Meyer-Zheng topology, and that the
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space of relaxed controls U(0, T ) is endowed with the stable topology. Note that in [20], D(0, T ) and

A(0, T ) are càglàd path spaces rather than càdlàg. For this choice of topologies and under suitable

assumptions on the cost coefficients it is then shown that an optimal control rule exists if g ≡ 0. Their

method allows for terminal costs only after a modification of the cost function; see [20, Remark 2.2

and Section 4] for details. As a byproduct (see Proposition 3.9) of our analysis of MFGs, under the

same assumptions on the cost coefficients as in [20] we establish the existence of an optimal control rule

for terminal cost functions that satisfy linear growth condition. Moreover, we generalize the stochastic

singular control problem to problems of McKean-Vlasov-type (see Theorem 3.17).

2.2 Mean field games with singular controls

We are now going to consider MFGs with singular controls of the form (1.4). We again restrict ourselves

to relaxed controls. The first step of solving mean field games is to solve the representative agent’s

optimal control problem




infu,Z E
[∫ T

0
f(t,Xt, µt, ut) dt+ g(XT , µT ) +

∫ T
0
h(t) dZt

]

subject to

dXt = b(t,Xt, µt, ut) dt+ σ(t,Xt, µt, ut) dWt + c(t) dZt,

X0− = 0

for any fixed mean field measure µ. As in the stochastic control framework, the canonical path space for

MFGs with singular controls is

Ω := D̃(R)× U(0, T )× Ã(R).

We assume that the spaces D̃(R) and Ã(R) are endowed with theM1 topology, and that the space U(0, T )

is endowed with the topology induced by the Wasserstein distance

Wp,[0,T ]×U (q
1, q2) :=

1

T
inf





(∫

([0,T ]×U)2
|κ1 − κ2|

p γ(dκ1, dκ2)

) 1
p

: the marginals of γ are q1 and q2



 .

It is well known [37, Chapter 3] that the spaces D̃(R) and Ã(R) are Polish spaces when endowed with

the M1 topology, and that the σ-algebras on D̃(R) and Ã(R) coincide with the Kolmogorov σ-algebras

generated by the coordinate projections. Moreover, (U(0, T ),Wp,[0,T ]×U ) is a separable metric space.

Definition 2.5. A probability measure P is called a control rule with respect to µ if

1. (Ω,F , {Ft, t ≥ 0},P) is the canonical probability space and (X, q, Z) are the coordinate mappings

on it;

2. P(Xt = 0, Zt = 0 if t < 0, Xt = XT , Zt = ZT if t > T and q0 = δu0
) = 1 for some u0 ∈ U ;

3. q is a Pp(U) valued and {Ft, t ≥ 0} progressively measurable stochastic process. Z is a {Ft, t ≥ 0}

progressively measurable stochastic process valued in Ã(R);

4. X is a {Ft, t ≥ 0} adapted stochastic process with path in D̃(R) such that for each φ ∈ C2
b (R

d),

Mµ,φ is a P continuous martingale, where

Mµ,φ
t := φ(Xt)−

∫ t

0

∫

U

Lφ(s,Xs, µs, u) qs(du)ds−

∫ t

0

(∂xφ(Xs−))
⊤c(s)dZs

−
∑

0≤s≤t

(
φ(Xs)− φ(Xs−)− (∂xφ(Xs−))

⊤△Xs

)
,

(2.3)
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with Lφ(t, x, µ, u) := 1
2

∑
ij aij(t, x, µ, u)

∂2φ(x)
∂xi

∂xj

+
∑
i bi(t, x, µ, u)∂xi

φ(x) and a(t, x, µ, u) = σ⊤σ(t, x, µ, u).

For a fixed measure-valued process µ, the corresponding set of control rules is denoted R(µ), the cost

functional corresponding to a control rule P ∈ R(µ) is

J(µ,P) = EP

[∫ T

0

∫

U

f(t,Xt, µt, u) qt(du)dt+

∫ T

0

h(t) dZt + g(XT , µT )

]
,

and the (possibly empty) set of optimal control rules is denoted by

R∗(µ) := argminP∈R(µ)J(µ,P).

If a probability measure P satisfies the fixed point property

P ∈ R∗(P ◦X−1),

then we call P or P ◦ X−1 a relaxed solution to the MFG with singular controls (1.4). The following

theorem gives sufficient conditions for the existence of a relaxed solution to our MFG. The proof is given

in Section 3.

Theorem 2.6. For some p̄ > p ≥ 1, we assume that the following conditions are satisfied:

A1. There exist a positive constant C1 such that |b| ≤ C1 and |a| ≤ C1; moreover, b and σ are measurable

in t and are Lipschitz continuous in x, uniformly in t, u and µ.

A2. The functions f and g are measurable in t and are continuous with respect to x, u and µ, uniformly

in t.

A3. For each (t, x, µ, u) ∈ [0, T ]×Rd×Pp(D̃(R))×U , there exist strictly positive constants C2, C3 and

a positive constant C4 such that

−C2

(
1− |x|p̄ +

∫

Rd

|x|p µ(dx)

)
≤ g(x, µ) ≤ C3

(
1 + |x|p̄ +

∫

Rd

|x|p µ(dx)

)
,

and

|f(t, x, µ, u)| ≤ C4

(
1 + |x|p + |u|p +

∫

Rd

|x|p µ(dx)

)
.

A4. The functions c and h are continuous and c is strictly positive.

A5. The functions b, σ and f are locally Lipschitz continuous with µ in p-th Wasserstein metric, uni-

formly in (t, x, u), i.e., for ϕ = b, σ and f ,

|ϕ(t, x, µ1, u)− ϕ(t, x, µ2, u)| ≤ C
(
1 + L(Wp(µ

1, δ0),Wp(µ
2, δ0))

)
Wp(µ

1, µ2),

where L(Wp(µ
1, δ0),Wp(µ

2, δ0)) is locally bounded with Wp(µ
1, δ0) and Wp(µ

2, δ0).

A6. U is a compact subspace of a Polish space.

Under assumptions A1-A6, there exist a relaxed solution to the MFGs with singular controls (1.4).

Remark 2.7. A typical example where assumption A3 holds is

g(x, µ) = |x|p̄ + ḡ(µ),

where |ḡ(µ)| ≤
∫
Rd |y|

p µ(dy). This assumption is not needed under a finite fuel constraint on the singular

controls. It is needed in order to approximate MFGs with singular controls by MFGs with a finite fuel

constraint. The assumption that c > 0 is also only needed when passing from finite fuel constrained to

unconstrained problems, see Lemma 3.12. Assumption A5 is needed in order to prove the continuity of the

cost function and the correspondence R in µ. A typical example for A5 is
∫
|x|pµ(dx) or

∫
|x|pµ(dx)∧K

for some fixed constant K if boundedness is required.
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3 Proof of the main result

The proof of Theorem 2.6 is split into two parts. In Section 3.1 we prove the existence of a solution to

our MFG under a finite fuel constraint on the singular controls. The general case is established in Section

3.2 using an approximation argument.

3.1 Existence under a finite fuel constraint

In this section, we prove the existence of a relaxed solution to our MFG under a finite fuel constraint.

That is, we restrict the set of admissible singular controls to the set

Ãm(R) = {z ∈ Ã(R) : zT ≤ m},

for some m > 0. By Corollary B.5, the set Ãm(R) is (D̃(R), dM1
) compact.

We start with the following auxiliary result on the tightness of the distributions of the solutions to a

certain class of SDEs.

Proposition 3.1. For each n ∈ N, on a probability space (Ωn,Fn,Pn), let Xn satisfy the following SDE

on [0, T ]:

dXn
t = bn(t) dt+ σn(t) dM

n
t + dcn(t), (3.1)

where the random coefficients bn and σn are bounded uniformly in n, Mn is a continuous martingale

with bounded quadratic variation, uniformly in n and cn is monotone, uniformly bounded and càdlàg

in time a.s.. Moreover, assume that Xn
t = 0 if t < 0 and Xn

t = Xn
T if t > T . Then, the sequence

{Pn ◦ (Xn)−1}n≥1 is relatively compact as a sequence in Wp,(D̃(R),dM1
).

Proof. By the uniform boundedness of bn, σn, cn and the quadratic variation of Mn, for each κ, there

exists a constant C that is independent of n, such that

EPn

sup
0≤t≤T

|Xn
t |
κ ≤ C <∞. (3.2)

By Proposition A.5(2) it is thus sufficient to check the tightness of {Pn ◦ (Xn)−1}n≥1. This can be

achieved by applying Corollary B.7. Indeed, the condition (B.12) holds, due to (3.2). Hence, one only

needs to check that for each ǫ > 0 and η > 0, there exists δ > 0 such that

sup
n

Pn(w̃s(X
n, δ) ≥ η) < ǫ.

To this end, we first notice that for each t and t1, t2, t3 satisfying 0∨ (t− δ) ≤ t1 < t2 < t3 ≤ (t+ δ)∧T ,

the monotonicity of cn implies

|Xn
t2 − [Xn

t1 , X
n
t3 ]|

= inf
0≤λ≤1

|Xn
t2 − λXn

t1 − (1− λ)Xn
t3 |

≤

∣∣∣∣
∫ t2

t1

bn(s) ds+

∫ t2

t1

σn(s) dM
n
s

∣∣∣∣+
∣∣∣∣
∫ t3

t2

bn(s) ds+

∫ t3

t2

σn(s) dM
n
s

∣∣∣∣

+ inf
0≤λ≤1

|cn(t2)− λcn(t1)− (1− λ)cn(t3)|

=

∣∣∣∣
∫ t2

t1

bn(s) ds+

∫ t2

t1

σn(s) dM
n
s

∣∣∣∣+
∣∣∣∣
∫ t3

t2

bn(s) ds+

∫ t3

t2

σn(s) dM
n
s

∣∣∣∣ .
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Similarly, for t1 and t2 satisfying 0 ≤ t1 < t2 ≤ δ,

|Xn
t1 − [0, Xn

t2 ]| ≤

∣∣∣∣
∫ t2

t1

bn(s) ds+

∫ t2

t1

σn(s) dM
n
s

∣∣∣∣ .

Therefore,

w̃s(X, δ) ≤ 3 sup
t

sup
t1,t2

∣∣∣∣
∫ t2

t1

bn(s) ds+

∫ t2

t1

σn(s) dM
n
s

∣∣∣∣ ,

where the first supremum extends over 0 ≤ t ≤ T and the second one extends over 0∨ (t− δ) ≤ t1 ≤ t2 ≤

T ∧ (t+ δ). By the Markov inequality and the boundedness of bn and σn, this yields

Pn(w̃s(X
n, δ) ≥ η) ≤

k(δ)

η
, (3.3)

for some constant C that is independent of n and some function k(δ) with limδ→0 k(δ) = 0.

The next result shows that the class of all possible control rules is relatively compact. In a subsequent

step this will allow us to apply Berge’s maximum theorem.

Lemma 3.2. Under assumptions A1, A4 and A6, the set
⋃
µ∈Pp(D̃(R)) R(µ) is relatively compact in

Wp,(D̃(R),dM1
).

Proof. Let {µn}n≥1 be any sequence in Pp(D̃(R)) and Pn ∈ R(µn), n ≥ 1. It is sufficient to show

that {Pn|D̃(R)}n≥1, {P
n|U(0,T )}n≥1 and {Pn|Ãm(R)}n≥1 are relatively compact. Since U and Ãm(R) are

compact by assumption and Corollary B.5, respectively, {Pn|U(0,T )}n≥1 and {Pn|Ãm(R)}n≥1 are tight.

Since U and Ãm(R) are bounded, these sequences are relatively compact in the topology induced by

Wasserstein metric; see Proposition A.5(2).

It remains to prove the relative compactness of {Pn|D̃(R)}n≥1. Since Pn is a control rule associated with

the measure µn, for any n, it follows from Proposition A.6 that there exit extensions (Ω̄, F̄ , {F̄t}t≥0,Q
n)

of the canonical path spaces and processes (Xn, qn, Zn,Mn) defined on it, such that

dXn
t =

∫

U

b(t,Xn
t , µ

n
t , u) q

n
t (du)dt+

∫

U

σ(t,Xn
t , µ

n
t , u)M

n(du, dt) + c(t) dZnt

and

Pn = Pn ◦ (X, q, Z)−1 = Qn ◦ (Xn, qn, Zn)−1,

where Mn is a martingale measure on (Ω̄, F̄ , {F̄t}t≥0,Q
n) with intensity qn. Relative compactness of

{Pn ◦X−1}n≥1 now reduces to relative compactness of {Qn ◦ (Xn)−1}n≥1, which is a direct consequence

of the preceding Proposition 3.1.

Remark 3.3. For the above proof, the assumption c > 0 is not necessary. To see this, we decompose X̄

as

X̄· =

∫ ·

0

∫

U

b(t, X̄t, µ
n
t , u) q̄t(du)dt+

∫ ·

0

∫

U

σ(t, X̄t, µ
n
t , u)M

n(du, dt) +

∫ ·

0

c+(t) dZ̄t −

∫ ·

0

c−(t) dZ̄t,

where c+ and c− are the positive and negative parts of c, respectively. By the above proof, we see that

the law of

K· :=

∫ ·

0

∫

U

b(t, X̄t, µ
n
t , u) q̄t(du)dt+

∫ ·

0

∫

U

σ(t, X̄t, µ
n
t , u)M

n(du, dt) +

∫ ·

0

c+(t) dZ̄t
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is tight. This implies, for each ǫ > 0, the existence of a (D̃(R), dM1)-compact set K1 ⊆ D̃(R) such that

inf
n

Pn
(∫ ·

0

∫

U

b(t, X̄t, µ
n
t , u) q̄t(du)dt+

∫ ·

0

∫

U

σ(t, X̄t, µ
n
t , u)M

n(du, dt) +

∫ ·

0

c+(t) dZ̄t ∈ K1

)
≥ 1− ǫ.

On the other hand, due to the boundedness of Z, for the given ǫ > 0, there exists a positive constant K2

such that infn P
n
(∫ T

0
c−(s) dZ̄s ≤ K2

)
≥ 1− ǫ. Thus,

inf
n

Pn{ω ∈ Ω : X·(ω) ∈ K1 +K2}

≥ inf
n

Pn
{
ω ∈ Ω : K· ∈ K1,−

∫ ·

0

c−(s) dZs ∈ K2

}

≥ 1− 2ǫ.

(3.4)

By Corollary B.5, the set K2 := {z ∈ D̃(R) : −z ∈ Ã(R), zT ≥ −K2} is a M1-compact subset of D̃(R).

Proposition B.8 implies that K1 +K2 is a M1-compact subset of D̃(R).

The next result states that the cost functional is continuous on the graph

GrR := {(µ,P) ∈ Pp(D̃(R))× Pp(Ω) : P ∈ R(µ)}.

of the multi-function R. This, too, will be needed to apply Berge’s maximum theorem below.

Lemma 3.4. Suppose that A1-A6 hold. Then J : GrR → R is continuous.

Proof. For each µ ∈ Pp(D̃(R)) and ω = (x, q, z) ∈ Ω, set

J (µ, ω) =

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt+ g(xT , µT ) +

∫ T

0

h(t) dzt. (3.5)

Thus

J(µ,P) =

∫

Ω

J (µ, ω)P(dω).

In a first step we prove that J (·, ·) is continuous in the first variable; in a second step we prove continuity

and a polynomial growth condition in the second variable. The two results together will give us the

desired continuity of J .

Step 1: continuity in µ. Let µn → µ in Wp,(D̃(R),dM1
) and recall that µnt = µn ◦X−1

t and µt = µ ◦X−1
t ,

where X is the coordinate process on D̃(R). We consider the first two terms on the r.h.s. in (3.5)

separately, starting with the first one. By assumption A5,

∣∣∣∣∣

∫ T

0

∫

U

f(t, xt, µ
n
t , u) qt(du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt

∣∣∣∣∣

≤ C

∫ T

0

(1 + L (Wp(µ
n
t , δ0),Wp(µt, δ0)))Wp(µ

n
t , µt) dt

≤ C

(∫ T

0

(1 + L (Wp(µ
n
t , δ0),Wp(µt, δ0)))

p

p−1 dt

)1− 1
p
(∫ T

0

Wp(µ
n
t , µt)

p dt

) 1
p

.

(3.6)

The convergence µn → µ in Wp,(D̃(R),dM1
) implies µn → µ weakly. By Skorokhod’s representation

theorem, there exits X̄n and X̄ defined on some probability space (Q, Ω̄, F̄), such that

µn = Q ◦ (X̄n)−1, µ = Q ◦ X̄−1

10



and

dM1
(X̄n, X̄) → 0 Q-a.s.

Hence, (3.6) implies that
∣∣∣∣∣

∫ T

0

∫

U

f(t, xt, µ
n
t , u) qt(du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt

∣∣∣∣∣

≤ C

(∫ T

0

(
1 + L

(
Wp(Q ◦ (X̄n

t )
−1, δ0),Wp(Q ◦ X̄−1

t , δ0)
)) p

p−1 dt

)1− 1
p
(
EQ

∫ T

0

|X̄n
t − X̄t|

p dt

) 1
p

For each t ∈ [0, T ],

|X̄n
t (ω̄)− X̄t(ω̄)|

p ≤ 2p
(
dM1(X̄

n(ω̄), 0)p + dM1(X̄(ω̄), 0)p
)
,

and so, ∫ T

0

|X̄n
t (ω̄)− X̄t(ω̄)|

p dt ≤ 2pT
(
dM1

(X̄n(ω̄), 0)p + dM1
(X̄(ω̄), 0)p

)
.

On the other hand,

EQ
(
dM1(X̄

n, 0)p + dM1(X̄, 0)
p
)
=

∫

D[0,T ]

dM1(x, 0)
p µn(dx) +

∫

D[0,T ]

dM1(x, 0)
p µ(dx)

→ 2

∫

D[0,T ]

dM1(x, 0)
p µ(dx) <∞.

Therefore, dominated convergence yields

EQ

∫ T

0

|X̄n
t − X̄t|

p dt→ 0. (3.7)

Since supnWp(Q ◦ (X̄n
t )

−1, δ0) <∞ it thus follows from the local boundedness of the function L that
∣∣∣∣∣

∫ T

0

∫

U

f(t, xt, µ
n
t , u) qt(du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt

∣∣∣∣∣→ 0.

As for the second term on the r.h.s. in (3.5) recall first that xn → x in M1 implies xnt → xt for each

t /∈ Dist(x) and xnT → xT . In particular, the mapping x 7→ ϕ(xT ) is continuous for any continuous real-

valued function ϕ on Rd. Since any continuous positive function ϕ on Rd that satisfies ϕ(x) ≤ C(1+ |x|p),

also satisfies

ϕ(xT ) ≤ C(1 + |xT |
p) ≤ C(1 + dM1(x, 0)

p)

we see that
∣∣∣∣
∫

Rd

ϕ(x)µnT (dx)−

∫

Rd

ϕ(x)µT (dx)

∣∣∣∣ =
∣∣∣∣∣

∫

D̃(R)

ϕ(xT )µ
n(dx)−

∫

D̃(R)

ϕ(xT )µ(dx)

∣∣∣∣∣
n→∞
−→ 0.

More generally, we obtain µnT → µT from µn → µ, which also implies that g(xT , µ
n
T ) → g(xT , µT ).

Step 2: continuity in ω. If ωn = (xn, qn, zn) → ω = (x, q, z), then xnT → xT . In particular,

g(xnT , µT ) → g(xT , µT ).

Moreover, zn → z in M1 implies znt → zt for for all continuity points of z and znT → zT . By the

Portmanteau theorem this implies that

∫ T

0

h(t) dznt →

∫ T

0

h(t) dzt.
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Next we show the convergence of
∫ T
0

∫
U
f(t, xnt , µt, u) q

n
t (du)dt to

∫ T
0

∫
U
f(t, xt, µt, u) qt(du)dt. We have

that,

∫ T

0

∫

U

f(t, xnt , µt, u) q
n
t (du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt

=

∫ T

0

∫

U

f(t, xnt , µt, u) q
n
t (du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) q
n
t (du)dt

+

∫ T

0

∫

U

f(t, xt, µt, u) q
n
t (du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt.

By Assumption A2 the convergence of xn to x yields f(t, xnt , µt, u) → f(t, xt, µt, u) for each t /∈ Disc(x).

From the compactness of U it follows that supu∈U |f(t, xnt , µt, u)− f(t, xt, µt, u)| → 0 for each t /∈ Disc(x).

Since Disc(x) is at most countable this implies
∣∣∣∣∣

∫ T

0

∫

U

f(t, xnt , µt, u) q
n
t (du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) q
n
t (du)dt

∣∣∣∣∣

≤

∫ T

0

sup
u∈U

|f(t, xnt , µt, u)− f(t, xt, µt, u)| dt→ 0.

The compactness of U , the growth condition on f and the convergence of qn to q, imply

lim
n→∞

∣∣∣∣∣

∫ T

0

∫

U

f(t, xt, µt, u) q
n
t (du)dt−

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt

∣∣∣∣∣ = 0.

Step 3: continuity of J . Thus far, we have established the continuity of the mapping (µ, ω) → J (µ, ω).

We are now going to apply Proposition A.5(4) to prove the continuity of J . To this end, notice first that

for each fixed µ ∈ Pp(D̃(R)), due to Assumption A3,
∣∣∣∣∣

∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt+

∫ T

0

h(t) dzt

∣∣∣∣∣

≤ C

(
1 +

∫ T

0

∫

U

(
1 + |xt|

p + |u|p +

∫

Rd

|y|pµt(dy)

)
qt(du)dt+ zT

)

≤ C

(
1 + dM1

(x, 0)p +Wp,U×[0,T ](q, δ0)
p + dM1

(z, 0) +

∫ T

0

∫

Rd

|y|p µt(dy)dt

)

≤ C

(
1 + dM1

(x, 0)p +Wp,U×[0,T ](q, δ0)
p + dM1

(z, 0)p +

∫

D̃(R)

dM1
(y, 0)p µ(dy)

)
.

Hence, using the previously established continuity in µ and the local Lipschitz continuity of f in µ, it

follows from Proposition A.5 that (µn,Pn) → (µ,P) implies

EPn

(∫ T

0

∫

U

f(t, xt, µ
n
t , u) qt(du)dt+

∫ T

0

h(t) dzt

)

→EP

(∫ T

0

∫

U

f(t, xt, µt, u) qt(du)dt+

∫ T

0

h(t) dzt

)
.

(3.8)

Since the terminal cost functions is not necessarily Lipschitz continuous we need to argue differently in

order to prove the continuous dependence of the expected terminal cost on (µ,P). First, we notice that

for each p̃ > p̄, by the boundedness of b, σ and Z, we have that

sup
n
EPn

dM1
(X, 0)p̃ ≤ C <∞, (3.9)
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which implies

lim
K→∞

sup
n

∫

{x:dM1
(x,0)>K}

dM1(x, 0)
p̄ Pn(dx) = 0. (3.10)

By Assumption A3,

|g(xT , µT )| ≤ C

(
1 + |xT |

p̄ +

∫
|y|pµT (dy)

)
≤ C

(
1 + |xT |

p̄ +

∫
|y|p̄µT (dy)

)
.

Together with (3.10) this implies,

EPn

g(XT , µT ) → EPg(XT , µT ). (3.11)

By the tightness of {Pn}n≥1, for each ǫ > 0, there exists a compact set Kǫ ⊆ D̃(R) such that

∣∣∣∣∣

∫

D̃(R)

g(xT , µ
n
T )P

n(dx)−

∫

D̃(R)

g(xT , µT )P
n(dx)

∣∣∣∣∣

≤

∫

Kǫ

|g(xT , µ
n
T )− g(xT , µT )|P

n(dx) +

∫

D̃(R)/Kǫ

|g(xT , µ
n
T )− g(xT , µT )|P

n(dx)

≤ sup
x∈Kǫ

|g(xT , µ
n
T )− g(xT , µT )|+

(∫

D̃(R)/Kǫ

|g(xT , µ
n
T )− g(xT , µT )|

2Pn(dx)

) 1
2 (

sup
n

Pn(D̃(R)/Kǫ)

) 1
2

≤ sup
x∈Kǫ

|g(xT , µ
n
T )− g(xT , µT )|+ Cǫ

1
2 (by (3.9)).

Thus, ∣∣∣∣∣

∫

D̃(R)

g(xT , µ
n
T )P

n(dx)−

∫

D̃(R)

g(xT , µT )P
n(dx)

∣∣∣∣∣→ 0. (3.12)

The convergence (3.8), (3.11) and (3.12) yield the continuity of J(·, ·).

We now recall from [20, Proposition 3.1] an equivalent characterization for the set of control rules R(µ).

This equivalent characterization allows us to verify the martingale property of the state process by

verifying the martingale property of its continuous part.

Proposition 3.5. A probability measure P is a control rule with respect to the given µ if and only if there

exists a C(0, T )-valued {Ft, t ≥ 0} adapted process Y on the filtered canonical space (Ω,F , {Ft, t ≥ 0})

such that

(1) P(Xt = 0, Zt = 0 if t < 0, Xt = XT , Zt = ZT if t > T and q0 = δu0
) = 1;

(2) P(ω ∈ Ω : X·(ω) = Y·(ω) + Z·(ω)) = 1;

(3) for each φ ∈ C2
b (R

d), M
µ,φ

is a continuous (P, {Ft, t ≥ 0}) martingale, where

M
µ,φ

t = φ(Yt)−

∫ t

0

∫

U

L̄φ(s,Xs, Ys, µs, u) qs(du)ds, (3.13)

with L̄φ(s, x, y, µ, u) =
∑
i bi(s, x, µ, u)∂yiφ(y) +

1
2

∑
ij aij(s, x, µ, u)

∂2φ(y)
∂yi∂yj

.

The previous characterization of control rules allows us to show that the correspondence R has a closed

graph.

Proposition 3.6. Suppose that A1 and A4-A6 hold. For any sequence {µn}n≥1 ⊆ Pp(D̃(R)) and

µ ∈ Pp(D̃(R)) with µn → µ in Wp,(D̃(R),dM1
), if {P

n}n≥1 ⊆ R(µn) and Pn → P in Wp, then P ∈ R(µ).

13



Proof. By the Proposition B.1(3) and the Portmanteau theorem the set

Ω̃0,T := {ω : xt = 0, zt = 0 if t < 0, xt = xT , zt = zT if t > T and q0 = δu0}

is closed. Hence P satisfies condition (1) in Proposition 3.5.

In order to verify conditions (2) and (3), notice first that, for each n, there exits a C(0, T )-valued stochastic

process Y n such that

Pn
(
X· = Y n· +

∫ ·

0

c(s) dZs

)
= 1

and such that the corresponding martingale problem is satisfied. In order to show that a similar decompo-

sition and the martingale problem hold under the measure P we apply Proposition A.6. For each n, there

exits a probability space (Ωn,Fn,Qn) that supports random variables (X̄n, q̄n, Z̄n) and a martingale

measure Mn with intensity q̄n such that

Pn = Qn ◦ (X̄n, q̄n, Z̄n)−1

and

dX̄n
t =

∫

U

b(t, X̄n
t , µ

n
t , u) q̄

n
s (du)ds+

∫

U

σ(t, X̄n
t , µ

n
t , u)M

n(du, dt) + c(t)dZ̄nt .

Thus, for each 0 ≤ s < t ≤ T ,

EPn

|Y nt − Y ns |4 = EPn

∣∣∣∣
(
Xt −

∫ t

0

c(r) dZr

)
−

(
Xs −

∫ s

0

c(r) dZr

)∣∣∣∣
4

= EQn

∣∣∣∣
(
X̄n
t −

∫ t

0

c(r) dZ̄nr

)
−

(
X̄n
s −

∫ s

0

c(r) dZ̄nr

)∣∣∣∣
4

= EQn

∣∣∣∣
∫ t

s

∫

U

b(r, X̄n
r , µ

n
r , u) q̄

n
r (du)dr +

∫ t

s

∫

U

σ(r, X̄n
r , µ

n
r , u)M

n(du, dr)

∣∣∣∣
4

≤ C|t− s|2.

(3.14)

Hence, Kolmogorov’s weak compactness criterion implies the tightness of Y n. Therefore, taking a subse-

quence if necessary, the sequence (X, q, Z, Y n) of random variables taking values in Ω×C(0, T ) has weak

limit (X̂, q̂, Ẑ, Ŷ ) defined on some probability space.

By Skorokhod’s representation theorem, there exists a probability space (Ω̃, F̃ ,Q) that supports random

variables (X̃n, q̃n, Z̃n, Ỹ n) and (X̃, q̃, Z̃, Ỹ ) such that

L(X̃n, q̃n, Z̃n, Ỹ n) = L(X, q, Z, Y n), L(X̃, q̃, Z̃, Ỹ ) = L(X̂, q̂, Ẑ, Ŷ )

where L(·) stands for the law of a random variable, and such that

(X̃n, q̃n, Z̃n, Ỹ n) → (X̃, q̃, Z̃, Ỹ ) Q-a.s.

In particular, Ỹ is C(0, T )-valued as the uniform limit of a sequence of continuous processes, and

Q

(
X̃· = Ỹ· +

∫ ·

0

c(s) dZ̃s

)
= 1.

Since Pn → P, we have P ◦ (X, q, Z)−1 = Q ◦ (X̃, q̃, Z̃)−1. Hence, there exits a C(0, T )-valued stochastic

process Y such that

P

(
X· = Y· +

∫ ·

0

c(s) dZs

)
= 1
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and P ◦ (X, q, Z, Y )−1 = Q ◦ (X̃, q̃, Z̃, Ỹ )−1. Finally, for each t ∈ [0, T ], define

M
n,µn,φ

t = φ(Y nt )−

∫ t

0

∫

U

L̄(s,Xs, Y
n
s , µ

n
s , u) qs(du)ds,

M̃n,µn,φ
t = φ(Ỹ nt )−

∫ t

0

∫

U

L̄(s, X̃n
s , Ỹ

n
s , µ

n
s , u) q̃

n
s (du)ds,

and

M̃µ,φ
t = φ(Ỹt)−

∫ t

0

∫

U

L̄(s, X̃s, Ỹs, µs, u) q̃s(du)ds.

For each 0 ≤ s < t ≤ T and each F that is continuous, bounded and Fs-measurable, we have

0 = EPn
(
M

n,µn,φ

t −M
n,µn,φ

s

)
F (X, q, Z) = EQ

(
M̃n,µn,φ

t − M̃n,µn,φ
s

)
F (X̃n, q̃n, Z̃n)

→ EQ
(
M̃µ∗,φ

t − M̃µ∗,φ
s

)
F (X̃, q̃, Z̃) = EP

(
M

µ,φ

t −M
µ,φ

s

)
F (X, q, Z).

(3.15)

Corollary 3.7. Suppose that A1 and A4-A6 hold. Then, for each µ ∈ Pp(D̃(R)) the set R(µ) is compact.

Proof. It suffices to prove for each µ ∈ Pp(D̃(R)) and any sequence {Pn}n≥1 ⊆ R(µ), there exists a

convergence subsequence Pnk and that the limit still belongs to R(µ). By Lemma 3.2,
⋃
nR(µn) is

relatively compact. Hence, the assertion follows from Proposition 3.6.

Corollary 3.8. Suppose that A1 and A4-A6 hold. Then, R(·) : Pp(D̃(R)) → 2Pp(Ω) is hemi-continuous.

Proof. The lower hemi-continuity of R can be dealt with as [31, Lemma 4.4]. The upper hemi-continuity

follows from the closed-graph theorem and Corollary 3.7.

Corollary 3.9. Under assumptions A1-A6, the stochastic singular control problem (2.1) admits an

optimal control rule in the sense of Definition 2.3.

Proof. This is a direct corollary of Lemma 3.2, Corollary 3.8, Lemma 3.4 and Theorem A.1.

Remark 3.10. Using our method, we could have obtained Corollary 3.9 under the same assumptions of

the coefficients as in [20]. We will generalize it to McKean-Vlasov case at the end of this section.

Theorem 3.11. Under assumptions A1-A6 and the finite-fuel constraint Z ∈ Ãm(R), there exists a

relaxed solution to (1.4).

Proof. By [27, Section 5.4], for each µ ∈ Pp(D̃(R)) the set R(µ) is nonempty. Moreover, by Corollary

3.7, the correspondence R is compact valued. Therefore, by Corollary 3.8, Lemma 3.4 and Theorem A.1,

the argmax-correspondence R∗ is upper hemi-continuous.

From inequality (3.3) in the proof of Lemma 3.1, we see that for each µ ∈ Pp(D̃(R)) and P ∈ R(µ),

there exists a nonnegative function k(·) that is independent of µ, such that P(w̃s(X, δ) > η) ≤ k(δ)
η and

limδ→0 k(δ) = 0, where w̃s is the modified oscillation function defined in (B.11).

Let us now define a set-valued map ψ by

ψ : Pp(D̃(R)) → 2Pp(D̃(R),

µ 7→ {P|D̃(R) : P ∈ R∗(µ)}, (3.16)
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and let

S =

{
P ∈ Pp(D̃(R)) : for each η > 0, P(w̃s(X, δ) > η) ≤

k(δ)

η
and EP sup

0≤t≤T
|Xt|

p̄ ≤ C

}

where C < ∞ denotes the upper bound in (3.2). It can be checked that S is non-empty, relatively

compact, convex, and that ψ(µ) ⊆ S ⊆ S̄, for each µ ∈ D̃(R). Hence, ψ : S̄ → 2S̄ . Therefore, Theorem

A.2 is applicable by embedding Pp(D̃(R)) into M(D̃(R)), the space of all bounded signed measures on

D̃(R) endowed with weak convergence topology.

3.2 Existence in the general case

In this section we establish the existence of a solution to MFGs with singular controls for general singular

controls Z ∈ Ã(R). For each m and µ, define

Ωm = D̃(R)× U × Ãm(R)

and denote by Rm(µ) the control rules corresponding to Ωm and µ, that is, Rm(µ) is the subset of

probability measures in R(µ) that are supported on Ωm. Denote by MFGm the mean field games

corresponding to Ωm. The preceding analysis showed that there exits a solution Pm∗ to MFGm, for each

m. In what follows,

µm∗ := Pm∗ ◦X−1.

The next lemma shows that the sequence {Pm∗}m≥1 is relatively compact; the subsequent one shows

that any accumulation point is a control rule.

Lemma 3.12. Suppose A1, A3, A4 and A6 hold. Then there exists a constant K <∞ such that

sup
m
EPm∗

|ZT |
p̄ ≤ K <∞.

As a consequence, the sequence {Pm∗}m≥1 is relatively compact.

Proof. We recall that c(·) is bounded away from 0. Hence, there exists a constant C <∞ such that, for

all m ∈ N,

EPm∗

|ZT |
p̄ ≤ C

(
1 + EPm∗

|XT |
p̄
)

(3.17)

and

EPm∗

|Xt|
p ≤ C

(
1 + EPm∗

|ZT |
p
)
, t ∈ [0, T ]. (3.18)

Moreover,

J(µm∗,Pm∗) = EPm∗

[∫ T

0

∫

U

f(t,Xt, µ
m∗
t , u) qt(du)dt+ g(XT , µ

m∗
T ) +

∫ T

0

h(t) dZt

]

≥ − C

(
1 +

∫ T

0

∫

Rd

|x|p µm∗
t (dx)dt+ EPm∗

∫ T

0

|Xt|
p dt+ EPm∗

∫ T

0

∫

U

|u|p qt(du)dt

−EPm∗

|XT |
p̄ +

∫

Rd

|x|p µm∗
T (dx) + EPm∗

∣∣∣∣∣

∫ T

0

h(t) dZt

∣∣∣∣∣

)
(by assumption A3)

≥ − C

(
1 +

∫ T

0

∫

Rd

|x|p µm∗
t (dx)dt+ EPm∗

∫ T

0

|Xt|
p dt+ EPm∗

∫ T

0

∫

U

|u|p qt(du)dt

+

∫

Rd

|x|p µm∗
T (dx) + EPm∗

∣∣∣∣∣

∫ T

0

h(t) dZt

∣∣∣∣∣− EPm∗

|ZT |
p̄

)
(by (3.17)).
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Now choose any P0 ∈ Rm(µm∗) such that supm J(µ
m∗,P0) <∞. Then,

EPm∗

|ZT |
p̄ ≤ J(µm,Pm∗) + C

(
1 + EPm∗

∣∣∣∣∣

∫ T

0

h(t) dZt

∣∣∣∣∣+ EPm∗

∫ T

0

|Xt|
p dt+ EPm∗

|XT |
p

)

≤ J(µm,P0) + C
(
1 + EPm∗

|ZT |+ EPm∗

|ZT |
p
)

(by (3.18) and the optimality of Pm∗)

≤ C
(
1 + EPm∗

|ZT |+ EPm∗

|ZT |
p
)
.

(3.19)

Since the measure Pm∗ is supported on Ωm, we see that EPm∗

|ZT |
p̄ is finite, for each m. In order to see

that there exists a uniform upper bound on EPm∗

|ZT |
p̄, notice that, independently of m we can choose

M > 0 large enough such that

EPm∗

|ZT |
p0 ≤M +

1

4C
EPm∗

|ZT |
p̄ (p0 = 1, p)

Together with (3.19) this yields,

EPm∗

|ZT |
p̄ ≤ 2C(1 +M) := K.

By Proposition A.5 and Lemma 3.2, the relative compactness of {Pm∗}m≥1 follows.

The previous lemma shows that the sequence {Pm∗}m≥1 has an accumulation point P∗. Let µ∗ = P∗◦X−1.

Clearly, µm∗ → µ∗ in Wp along a subsequence. The following result is an immediate corollary to

Proposition 3.6.

Lemma 3.13. Suppose that A1 and A3-A6 hold, let P∗ be an accumulation point of the sequence

{Pm∗}m≥1. Then, P∗ ∈ R(µ∗).

The next theorem establish the existence of relaxed MFGs solution to (1.4) in the general case, i.e. it

proves Theorem 2.6.

Theorem 3.14. Suppose A1-A6 hold. Then P∗ ∈ R∗(µ∗), i.e., for each P ∈ R(µ∗) it holds that

J(µ∗,P∗) ≤ J(µ∗,P).

Proof. It is sufficient to prove that J(µ∗,P∗) ≤ J(µ∗,P) for each P ∈ R(µ∗) with J(µ∗,P) <∞.

By Proposition A.6, there exists a filtered probability space (Ω̄, F̄ , F̄t, P̄) on which random variables

(X̄, q̄, Z̄,M) are defined such that P = P̄ ◦ (X̄, q̄, Z̄)−1 and

dX̄t =

∫

U

b(t, X̄t, µ
∗
t , u) q̄t(du)dt+

∫

U

σ(t, X̄t, µ
∗
t , u)M(du, dt) + c(t) dZ̄t, (3.20)

where M is a martingale measure with intensity q̄. Using the same argument as in the proof of Lemma

3.12 we see that,

EPZ p̄T = EP̄Z̄ p̄T <∞. (3.21)

Define Pm = P̄ ◦ (X̄m, q̄, Z̄m) ∈ Rm(µm∗), such that X̄m is the unique strong solution to

dX̄m
t =

∫

U

b(t, X̄m
t , µ

m∗
t , u) q̄t(du)dt+

∫

U

σ(t, X̄m
t , µ

m∗
t , u)M(du, dt) + c(t) dZ̄mt , (3.22)

where for each ω̄ ∈ Ω̄,

Z̄mt (ω̄) =

{
Z̄t(ω̄), if t < τm(ω̄)

m, if t ≥ τm(ω̄),

17



with τm(ω̄) = inf{t : Z̄t(ω̄) > m}. Similarly, we can define Zm. Furthermore, if Z is Ãm(R) valued, then

Z = Zm. Hence,

EP̄ sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZ̄s −

∫ t

0

c(s) dZ̄ms

∣∣∣∣

= EP sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZs −

∫ t

0

c(s) dZms

∣∣∣∣

=

∫

Ãm(R)

sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZs(ω)−

∫ t

0

c(s) dZms (ω)

∣∣∣∣P(dω)

+

∫

Ã(R)\Ãm(R)

sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZs(ω)−

∫ t

0

c(s) dZms (ω)

∣∣∣∣P(dω)

=

∫

Ã(R)\Ãm(R)

sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZs(ω)−

∫ t

0

c(s) dZms (ω)

∣∣∣∣P(dω).

(3.23)

By Hölder’s inequality,

∫

Ã(R)\Ãm(R)

sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZs(ω)−

∫ t

0

c(s) dZms (ω)

∣∣∣∣P(dω)

≤

∣∣∣∣∣

∫

Ã(R)\Ãm(R)

∫ T

0

c(t) dZt(ω)P(dω) +

∫

Ã(R)\Ãm(R)

∫ T

0

c(t) dZmt (ω)P(dω)

∣∣∣∣∣

≤ C
(
EPZpT

) 1
p P(Ã(R)\Ãm(R))1−

1
p + C

(
EP(ZmT )p

) 1
p P(Ã(R)\Ãm(R))1−

1
p

≤ C
(
EPZpT

) 1
p P(Ã(R)\Ãm(R))1−

1
p .

Since Ãm(R) ↑ Ã(R) implies P(Ã(R)\Ãm(R)) → 0 we get,

EP̄ sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZ̄s −

∫ t

0

c(s) dZ̄ms

∣∣∣∣→ 0. (3.24)

Similarly,

EP̄

∣∣∣∣∣

∫ T

0

h(t) dZ̄t −

∫ T

0

h(t) dZ̄mt

∣∣∣∣∣→ 0. (3.25)

By (3.20) and (3.22), the Lipschitz continuity of b and σ in x and µ and the Burkholder-Davis-Gundy

inequality,

EP̄ sup
0≤t≤T

∣∣X̄m
t − X̄t

∣∣

≤ EP̄

∫ T

0

∣∣X̄m
t − X̄t

∣∣ dt+
∫ T

0

C (1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))Wp(µ

m∗
t , µ∗

t ) dt

+ CEP̄

(∫ T

0

∣∣X̄m
t − X̄t

∣∣2 dt
) 1

2

+ C

(∫ T

0

(1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))

2 Wp(µ
m∗
t , µ∗

t )
2 dt

) 1
2

+ EP̄ sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZ̄s −

∫ t

0

c(s) dZ̄ms

∣∣∣∣

≤ EP̄

∫ T

0

∣∣X̄m
t − X̄t

∣∣ dt+ C

(∫ T

0

(1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))

p

p−1 dt

)1− 1
p
(∫ T

0

Wp(µ
m∗
t , µ∗

t )
p dt

) 1
p

+ CT
1
2EP̄ sup

0≤t≤T

∣∣X̄m
t − X̄t

∣∣
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+ C

(∫ T

0

(1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))

2p
p−1 dt

) 1
2−

1
2p
(∫ T

0

Wp(µ
m∗
t , µ∗

t )
2p dt

) 1
2

+ EP̄ sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZ̄s −

∫ t

0

c(s) dZ̄ms

∣∣∣∣ . (3.26)

Set T0 such that CT
1
2
0 = 1/2. Then (3.26) and Gronwall’s inequality yield that

EP̄ sup
0≤t≤T0

∣∣X̄m
t − X̄t

∣∣

≤ C̃

(∫ T

0

(1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))

p

p−1 dt

)1− 1
p
(∫ T

0

Wp(µ
m∗
t , µ∗

t )
p dt

) 1
p

+ C̃

(∫ T

0

(1 + L (Wp(µ
m∗
t , δ0),Wp(µ

∗
t , δ0)))

2p
p−1 dt

) 1
2−

1
2p
(∫ T

0

Wp(µ
m∗
t , µ∗

t )
2p dt

) 1
2

+ C̃EP̄ sup
0≤t≤T

∣∣∣∣
∫ t

0

c(s) dZ̄s −

∫ t

0

c(s) dZ̄ms

∣∣∣∣ ,

(3.27)

where C̃ is a constant depending on C and T0. By (3.24) and the arguments leading to (3.7) in the proof

of Lemma 3.4,

lim
m→∞

EP̄ sup
0≤t≤T0

∣∣X̄m
t − X̄t

∣∣ = 0.

Iterating the same argument, we get

lim
m→∞

EP̄ sup
0≤t≤T

∣∣X̄m
t − X̄t

∣∣ = 0. (3.28)

By (3.25), (3.28), µm∗ → µ∗ in Wp,(D̃(R),dM1
) and the same arguments as in the proof of Lemma 3.4, we

get

EP̄

(∫ T

0

f(t, X̄m
t , µ

m∗
t , u) q̄t(du)dt+ g(X̄m

T , µ
m∗
T ) +

∫ T

0

h(t) dZ̄mt

)

→ EP̄

(∫ T

0

f(t, X̄t, µ
∗
t , u) q̄t(du)dt+ g(X̄T , µ

∗
T ) +

∫ T

0

h(t) dZ̄t

)
.

This shows that

J(µm∗,Pm) → J(µ∗,P).

Finally, although g does not have growth of p-th order in x, for each K, by Proposition A.5 we have

lim
m→∞

∫

Ω

J (µm∗, ω) ∧K Pm∗(dω) =

∫

Ω

J (µ∗, ω) ∧K P∗(dω),

from which monotone convergence implies lim infm→∞ J(µm∗,Pm∗) ≥ J(µ∗,P∗), where J (µ, ω) is defined

as in Lemma 3.4. Finally, we obtain that

J(µ∗,P) = lim
m→∞

J(µm∗,Pm) ≥ lim inf
m→∞

J(µm∗,Pm∗) ≥ J(µ∗,P∗).
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3.3 Related McKean-Vlasov stochastic singular control problem

The literatures on McKean-Vlasov singular control focuses on necessary conditions for optimality; the

existence of optimal control is typically assumed; see e.g. [24]. In this section, we establish the existence

of a relaxed control to the following McKean-Vlasov stochastic singular control problem:

min
Z
J(Z) = min

Z
E

[∫ T

0

f(t,Xt,L(Xt),L(Zt)) dt+ g(XT ,L(XT ),L(ZT )) +

∫ T

0

h(t) dZt

]
(3.29)

subject to

dXt = b(t,Xt,L(Xt),L(Zt)) dt+ σ(t,Xt,L(Xt),L(Zt)) dWt + c(t) dZt, t ∈ [0, T ]. (3.30)

The regular control is dropped to simplify notation; it can easily be reintroduced. Without the regular

control, the canonical path space is

Ω = D̃(R)× Ã(R)

Definition 3.15. We call (Ω,F , {Ft, t ≥ 0},P, X, Z) a relaxed control to McKean-Vlasov stochastic

singular control problem (3.29)-(3.30) if it satisfies items 1, 2 and 3 in Definition 2.1 and

4’
(
MP,φ, {Ft, t ≥ 0},P

)
is a continuous martingale, where

MP,φ
t = φ(Xt)−

∫ t

0

φ′(Xs)b(s,Xs,P ◦X−1
s ,P ◦ Z−1

s ) ds

−
1

2

∫ t

0

φ′(Xs)a(s,Xs,P ◦X−1
s ,P ◦ Z−1

s ) ds

−

∫ t

0

φ′(Xs−)c(s) dZs −
∑

0≤s≤t

(φ(Xs)− φ(Xs−)− φ′(Xs−)∆Xs) .

(3.31)

For each relaxed control r = (Ω,F , {Ft, t ≥ 0},P, X, Z), we define the corresponding cost functional by

J(r) = EP

[∫ T

0

f
(
t,Xt,P ◦X−1

t ,P ◦ Z−1
t

)
dt+ g

(
XT ,P ◦X−1

T ,P ◦ Z−1
T

)
+

∫ T

0

h(t) dZt

]
. (3.32)

The notion of control rules can be defined as in Definition 2.3. Denote by R all the control rules. For

P ∈ R, the corresponding cost functional is defined as in (3.32).

Using straightforward modifications of arguments given in the proof of [20, Proposition 2.6] we see that

our optimization problems with relaxed controls and with control rules are equivalent. The next two

theorems prove the existence of an optimal control under a finite-fuel constraint. The existence results

can then be extended to the the general unconstraint case. We do not give a formal proof as the arguments

are exactly the same as in the preceding subsection.

Theorem 3.16. Suppose A1, A4, A5 hold. Under a finite-fuel constraint on the singular controls, R 6= ∅.

Proof. For each (µ1, µ2) ∈ Pp(D̃(R))× Pp(Ã
m(R)), there exists a weak solution to the SDE

dXt = b(t,Xt, µ
1
t , µ

2
t ) dt+ σ(t,Xt, µ

1
t , µ

2
t ) dWt + c(t) dZt, t ∈ [0, T ]. (3.33)

We define a set-valued map Φ on Pp(D̃(R))× Pp(Ã
m(R)) with non-empty convex images by

Φ : (µ1, µ2) → {(Pµ
1,µ2

◦X−1,Pµ
1,µ2

◦Z−1) : (Ω,F , {Ft, t ≥ 0},Pµ
1,µ2

, X, Z) is a weak solution to (3.33)}.
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The relatively compactness of Φ(µ1, µ2) can be obtained by analogy to Lemma 3.2; closedness follows

from Corollary 3.7. The hemi-continuity of Φ can be obtained by analogy to Lemma 3.2 and Lemma

3.8. By analogy to the proof of Theorem 3.11 we can define a non-empty, compact, convex set S̄ ⊂

Pp(D̃(R)) × Pp(Ã
m(R)) such that Φ : S̄ → 2S̄ . Hence, Φ has a fixed point, due to Theorem A.2. This

gives us the desired optimal control rule.

Theorem 3.17. Suppose A1, A3-A5 hold and that A2 holds with the continuity of f and g being replaced

by lower semi-continuity. Under a finite-fuel constraint, there exist an optimal control rule, that is, there

exists P∗ ∈ R such that

J(P∗) ≤ J(P) for all P ∈ R.

Proof. It is sufficient to prove R is compact and J is lower semi-continuous. It can be achieved by

Corollary 3.7 and by the same way as that in the proof of Lemma 3.4, respectively.

4 MFGs with regular controls and MFGs with singular controls

In this section we establish two approximation results for a class of MFGs with singular controls under

finite-fuel constraints. In Section 4.1 we prove the convergence of (relaxed) solutions to certain MFGs

with regular controls to a (relaxed) solution of a related MFG with singular controls, while in Section 4.2

we show how to approximate any relaxed solution to a MFG with singular controls by admissible control

rules for MFGs with regular controls.

4.1 Solving MFGs with singular controls using MFGs with regular controls

In this section we establish an approximation of (relaxed) solutions for MFGs with singular controls and

finite-fuel constraints by (relaxed) solutions to MFGs with regular controls. More precisely, we consider

MFGs with singular controls of the form:





infu,Z E
[∫ T

0
f(t,Xt, µt, ut)dt

]

subject to

dXt = b(t,Xt, µt, ut) dt+ σ(t,Xt, µt, ut)dWt + c(t) dZt, t ∈ [0, T + ǫ]

µ = L(X),

(4.1)

for some fixed ǫ > 0 under the finite-fuel constarint Z ∈ Ãm
0,T (R). The reason we define the state process

on the time interval [0, T + ǫ] is that we approximate the singular controls by absolutely continuous ones

that are most naturally regarded as elements of D̃0,T+ǫ(R) rather than D̃0,T (R). Specifically, we associate

with each singular control Z ∈ Ãm
0,T (R) the sequence of absolutely continuous controls

Z
[n]
t = n

∫ t

(t− 1
n
)

Zs ds (t ∈ [0, T ], n ∈ N) . (4.2)

These controls take values in Ãm
0,T+ǫ(R) for all sufficiently large n ∈ N. Since each Z [n] is absolutely

continuous and Z is càdlàg we cannot expect convergence of Zn to Z in the Skorokhod J1 topology in

general. But we do know that

Z [n] → Z a.s. in
(
D̃0,T+ǫ(R), dM1

)
.
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For each n, we consider the following finite-fuel constrained MFGs denoted by MFG[n]:




infu,Z E
[∫ T

0
f(t,X

[n]
t , µt, ut)dt

]

subject to

dX
[n]
t = b(t,X

[n]
t , µt, ut)dt+ σ(t,X

[n]
t , µt, ut)dWt + c(t) dZ

[n]
t , t ∈ [0, T + ǫ]

X
[n]
0 = 0

Z
[n]
t = n

∫ t
(t− 1

n
)
Zs ds

µ = L(X [n]).

(4.3)

Definition 4.1. We call the vector rn = (Ω,F , {Ft, t ≥ 0},P, X, q, Z [n]) a relaxed control if (Ω,F , {Ft, t ≥

0},P, X, q, Z) satisfies 1.-3. in Definition 2.1 with item 4 being replaced by

4′. X is a {Ft, t ≥ 0} adapted stochastic process with path in D̃0,T+ǫ(R) such that for each φ ∈ C2
b (R

d),

M[n],µ,φ is a P continuous martingale, where

M
[n],µ,φ
t := φ(Xt)−

∫ t

0

∫

U

Lφ(s,Xs, µs, u) qs(du)ds−

∫ t

0

(∂xφ(Xs))
⊤c(s) dZ [n]

s , (4.4)

with L defined as in Definition 2.5.

The probability measure P is called a control rule if (Ω,F , {Ft, t ≥ 0},P, X, q, Z [n]) is a relaxed control

with (Ω,F , {Ft, t ≥ 0}) being the filtered canonical space with

Ω := D̃0,T+ǫ(R)× U(0, T )× Ãm
0,T (R)

and (X, q, Z) being the coordinate processes on (Ω,F , {Ft, t ≥ 0}).

Remark 4.2. If Z is discontinuous at T , then Z [n] may not converge to Z in D̃0,T (R) but only in D̃0,T+ǫ(R).

Likewise, the associated sequence of the state processes may only converge in D̃0,T+ǫ(R). The possible

discontinuity at the terminal time T is also the reason why there is no terminal cost and no cost from

singular control in this section. If we assume that T is always a continuous point, then terminal costs

and costs from singular controls are permitted. In this case, one may as well allow unbounded singular

controls.

For each fixed n and µ, denote R[n](µ) the set of all the control rules for MFG[n], and define the cost

functional corresponding to the control rule P ∈ R[n](µ) by

J [n](µ,P) = EP

(∫ T

0

∫

U

f(t,Xt, µt, u) qs(du)dt

)
.

For each fixed n and µ, denote by R[n]∗(µ) all the optimal control rules. We can still check that

inf
relaxed control rn

J [n](µ, rn) = inf
P∈R[n](µ)

J [n](µ,P),

which implies we can still restrict ourselves to control rules in analyzing MFG[n].

The proof of the following theorem is very similar to that of Theorem 3.11 and is hence omitted.

Theorem 4.3. Suppose A1-A6 hold. For each n, there exists a relaxed solution P[n] to MFG
[n].

By Proposition 3.1, the sequence
{
P[n]

}
n≥1

is relatively compact. Denote its limit (up to a subsequence)

by P∗ and set µ∗ = P∗ ◦X−1. Then, µ∗ is the limit of µ[n] := P[n] ◦X−1. The following lemma shows

that P∗ is admissible.
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Lemma 4.4. Suppose A1-A2, A4-A6 hold. Then P∗ ∈ R(µ∗).

Proof. By Proposition 3.5 there exists, for each n, a (P[n], {Ft, 0 ≤ t ≤ T + ǫ}) continuous process Y n,

such that

P[n]

(
X· = Y n· +

∫ ·

0

c(s) dZ [n]
s

)
= 1.

Arguing as in the proof of Proposition 3.6, there exits a probability space (Ω̃, F̃ ,Q) supporting random

varibales (X̃n, Ỹ n, q̃n, Z̃n) and (X̃, Ỹ , q̃, Z̃) such that (X̃n, Ỹ n, q̃n, Z̃n) → (X̃, Ỹ , q̃, Z̃) Q-a.s. and

P[n] ◦ (X,Y n, q, Z)−1 = Q ◦ (X̃n, Ỹ n, q̃n, Z̃n)−1,

which implies

Q

(
X̃n

· = Ỹ n· +

∫ ·

0

c(s) dZ̃ [n],n
s

)
= 1, (4.5)

where Z̃
[n],n
t = n

∫ t
(t−1/n)

Z̃ns ds. For each fixed ω̃ ∈ Ω̃ and for each t which is a continuous point of Z̃(ω̃),

by (B.6) in Proposition B.1, we have

∣∣∣∣∣n
∫ t

t− 1
n

Z̃ns (ω̃) ds− Z̃t(ω̃)

∣∣∣∣∣ ≤ n

∫ t

t− 1
n

|Z̃ns (ω̃)− Z̃s(ω̃)| ds+ n

∫ t

t− 1
n

|Z̃s(ω̃)− Z̃t(ω̃)| ds

≤ sup
t− 1

n
≤s≤t

|Z̃ns (ω̃)− Z̃s(ω̃)|+ sup
t− 1

n
≤s≤t

|Z̃s(ω̃)− Z̃t(ω̃)|

→ 0.

Then (4.5) and right-continuity of the path yields that

Q

(
X̃· = Ỹ· +

∫ ·

0

c(s) dZ̃s

)
= 1. (4.6)

The desired result can be obtained by the same proof as Proposition 3.6.

Remark 4.5. In the above proof, the local uniform convergence near a continuous point is necessary. As

stated in Proposition B.1, this is a direct consequence of the convergence in the M1 topology. Local

uniform convergence cannot be guaranteed in the Meyer-Zheng topology. For Meyer-Zheng topology, we

only know that convergence is equivalent to convergence in Lebesgue measure but we do not have uniform

convergence in general.

We are now ready to state and prove the main result of this section.

Theorem 4.6. Suppose A1-A6 hold. Then P∗ is a relaxed solution to the MFG (4.1).

Proof. For each P ∈ R(µ∗) such that J(µ∗,P) <∞, on an extension (Ω̃, F̃ , {F̃t, t ≥ 0}, P̃) we have,

dX̃t =

∫

U

b(t, X̃t, µ
∗
t , u) q̃t(du)dt+

∫

U

σ(t, X̃t, µ
∗
t , u) M̃(du, dt) + c(t) dZ̃t,

and P = P̃ ◦ (X̃, q̃, Z̃)−1. Let Z̃
[n]
t = n

∫ t
t−1/n

Z̃s ds. By the Lipschitz continuity of the coefficient b and

σ, there exists a unique strong solution Xn to the following SDE on (Ω̃, F̃ , {F̃t, t ≥ 0}, P̃):

dXn
t =

∫

U

b(t,Xn
t , µ

[n]
t , u) q̃t(du)dt+

∫

U

σ(t,Xn
t , µ

[n]
t , u) M̃(du, dt) + c(t) dZ̃

[n]
t .
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For each n, set Pn = P̃ ◦ (Xn, Z̃)−1. It is easy to check that Pn ∈ R[n](µ[n]). Standard estimates yield,

EP̃

∫ T

0

|Xn
t − X̃t|

2 dt ≤ EP̃

∫ T

0

|Z
[n]
t − Z̃t|

2 dt

+ CEP̃

∫ T

0

(
1 + L(Wp(µ

[n]
t , δ0),Wp(µ

∗
t , δ0))

)2
Wp(µ

[n]
t , µ∗

t )
2 dt.

(4.7)

By Proposition B.1, Z [n] → Z in M1 a.s. By the same arguments leading to (3.7) in the proof of Lemma

3.4,

EP̃

∫ T

0

(
1 + L(Wp(µ

[n]
t , δ0),Wp(µ

∗
t , δ0))

)2
Wp(µ

[n]
t , µ∗

t )
2 dt→ 0.

This yields,

lim
n→∞

EP̃

∫ T

0

|Xn
t − X̃t|

2 dt = 0. (4.8)

Hence, up to a subsequence, dominated convergence implies

lim
n→∞

J [n](µ[n],Pn) = lim
n→∞

EP̃

[∫ T

0

∫

U

f(t,Xn
t , µ

[n]
t , u) q̃t(du)dt

]

=EP̃

[∫ T

0

∫

U

f(t,Xt, µ
∗
t , u) q̃t(du)dt

]

=J(µ∗,P).

Moreover, by Lemma 3.4,

lim
n→∞

J [n](µ[n],P[n]) = J(µ∗,P∗).

Altogether, this yields,

J(µ∗,P) = lim
n→∞

J [n](µ[n],Pn) ≥ lim
n→∞

J [n](µ[n],P[n]) = J(µ∗,P∗).

4.2 Approximating solutions to MFGs with singular controls by control rules

of MFGs with regular controls

In this subsection, we show how to approximate a given solution to a class of MFGs with only singular

controls by a sequence of admissible control rules of MFGs with regular controls. Specifically, we consider

the MFG with (only) singular control




infZ E
[∫ T

0
f(t,Xt, µt)dt

]

subject to

dXt = b(t,Xt, µt) dt+ σ(t, µt)dWt + c(t) dZt, t ∈ [0, T + ǫ]

X0− = 0 and

µ = L(X).

(4.9)

where Z ∈ Ãm
0,T (R) with the canonical path space

Ω := D̃0,T+ǫ(R)× Ãm
0,T (R).

Let P∗ be any solution to the above MFG. Since (Ω, {Ft, t ≥ 0},P∗, X, Z) satisfies the associated martin-

gale problem, there exist a triplet (X̂, Ẑ, B) defined on some extension (Ω̂, {F̂t, t ≥ 0},Q) of the canonical

path space, such that

P∗ ◦ (X,Z)−1 = Q ◦ (X̂, Ẑ)−1
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and

Q

(
X̂· =

∫ ·

0

b(s, X̂s, µ
∗
s) ds+

∫ ·

0

σ(s, µ∗
s) dBs +

∫ ·

0

c(s) dẐs

)
= 1. (4.10)

Let X [n] be the unique strong solution of the SDE

dX
[n]
t = b(t,X

[n]
t , µ

[n]
t ) dt+ σ(t, µ

[n]
t ) dBt + c(t) dẐ

[n]
t , (4.11)

where Ẑ [n] is defined by (4.2) and µ[n] = Q ◦ (X [n])−1. One checks immediately that

P[n] := Q ◦ (X [n], Ẑ)−1 ∈ R[n](µ[n]).

Our goal is to show that the sequence {P[n]}n≥1 converges to P∗ in Wp along some subsequence. The

proof is based on the following generalization of [35, Theorem 1.1] to McKean-Vlasov case with random

noise that extends the second moment convergence (4.7) and (4.8) in the proof of Theorem 4.6.

Proposition 4.7. On some probability space (Ω,F , {Ft, t ≥ 0},P), let Xn and X be the unique strong

solution to SDE,

dXn
t = b(t,Xn

t , µ
n
t ) dt+ σ(t, µnt ) dBt + dZnt , t ∈ [0, T̃ ] (4.12)

respectively,

dXt = b(t,Xt, µt) dt+ σ(t, µt) dBt + dZt, t ∈ [0, T̃ ] (4.13)

where T̃ is a fixed positive constant, b and σ satisfy A1 and A5, and b is continuous in the time variable.

If Zn → Z in (Am(0, T̃ ), dM1) a.s. and µ
n → µ in Wp,(D(0,T̃ ),dM1

), then

lim
n→∞

EPdM1
(Xn, X)p = 0.

Proof. By the a.s. convergence of Zn to Z in M1, there exists Ω ⊆ Ω with full measure such that

dM1
(Zn(ω), Z(ω)) → 0 for each ω ∈ Ω. Furthermore, by [35, Theorem 1.2], for each ω ∈ Ω, there exit

parameter representations (u(ω), r(ω)) ∈ ΠZ(ω) and (un(ω), rn(ω)) ∈ ΠZn(ω) for each n, such that

‖un(ω)− u(ω)‖ → 0 and ‖rn(ω)− r(ω)‖ → 0,

where rn(ω) and r(ω) satisfy the following properties:

1. rn(ω, ·) and r(ω, ·) are absolutely continuous w.r.t. Lebesgue measure with densities r′n(ω, ·) and

r′(ω, ·), respectively;

2.

lim
n→∞

∫ 1

0

|r′n(ω, t)− r′(ω, t)| dt = 0;

3. ‖r′(ω, ·)‖ ≤ 2T̃ .

Let (uXn(ω), rXn(ω)) and (uX(ω), rX(ω)) be the parameter representations of Xn(ω) and X(ω), respec-

tively. Since X(ω) (resp. Xn(ω)) jumps at the same time as Z(ω) (resp. Zn(ω)), the time change

parameter of X(ω) (resp. Xn(ω)) is r(ω) (resp. rn(ω)). In the following, we will drop the dependence

on ω ∈ Ω, if there is no confusion.

By [35, equation (3.1)],

uXn(t) =

∫ t

0

b(rn(s), uXn(s), µnrn(s))r
′
n(s) ds+

∫ rn(t)

0

σ(s, µns ) dBs + un(t),
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and

uX(t) =

∫ t

0

b(r(s), uX(s), µr(s))r
′(s) ds+

∫ r(t)

0

σ(s, µs) dBs + u(t).

Hence,

|uXn(t)− uX(t)| ≤

∣∣∣∣
∫ t

0

b(rn(s), uXn(s), µnrn(s))r
′
n(s) ds−

∫ t

0

b(r(s), uX(s), µr(s))r
′(s) ds

∣∣∣∣

+

∣∣∣∣∣

∫ rn(t)

0

σ(s, µns ) dBs −

∫ r(t)

0

σ(s, µs) dBs

∣∣∣∣∣+ |un(t)− u(t)|

≤

∣∣∣∣
∫ t

0

b(rn(s), uXn(s), µnrn(s))r
′
n(s) ds−

∫ t

0

b(rn(s), uX(s), µr(s))r
′
n(s) ds

∣∣∣∣

+

∣∣∣∣
∫ t

0

b(rn(s), uX(s), µr(s))r
′
n(s) ds−

∫ t

0

b(r(s), uX(s), µr(s))r
′
n(s) ds

∣∣∣∣

+

∣∣∣∣
∫ t

0

b(r(s), uX(s), µr(s))r
′
n(s) ds−

∫ t

0

b(r(s), uX(s), µr(s))r
′(s) ds

∣∣∣∣

+

∣∣∣∣∣

∫ rn(t)

0

σ(s, µns ) dBs −

∫ r(t)

0

σ(s, µs) dBs

∣∣∣∣∣+ |un(t)− u(t)|

≤ 2T̃

∫ t

0

|uXn(s)− uX(s)| ds

+

∫ t

0

C
(
1 + L(Wp(µ

n
rn(s)

, δ0),Wp(µr(s), δ0))
)
Wp(µ

n
rn(s), µr(s))r

′(s) ds

+ 2T̃

∫ t

0

∣∣∣b(rn(s), uX(s), µr(s))− b(r(s), uX(s), µr(s))
∣∣∣ ds+ C

∫ t

0

|r′n(s)− r′(s)| ds

+

∣∣∣∣∣

∫ rn(t)

0

σ(s, µns ) dBs −

∫ rn(t)

0

σ(s, µs) dBs

∣∣∣∣∣

+

∣∣∣∣∣

∫ rn(t)

0

σ(s, µs) dBs −

∫ r(t)

0

σ(s, µs) dBs

∣∣∣∣∣+ |un(t)− u(t)| .

(4.14)

Since µn → µ in Wp,(D(0,T̃ ),dM1
), Skorokhod’s representation theorem yields the existence of a probability

space (Ω̌, F̌ , P̌) carrying random variables X̌n and X̌, such that µn = P̌ ◦ (X̌n)−1, µ = P̌ ◦ X̌−1 and

dM1
(X̌n, X̌) → 0 P̌ a.s. This yields the following representation for the second term on the right hand

side of the above inequality:
∫ t

0

(
1 + L(Wp(µ

n
rn(s)

, δ0),Wp(µr(s), δ0))
)
Wp(µ

n
rn(s), µr(s))r

′(s) ds

=

∫ t

0

[
1 + L

((
EP̌|X̌n

rn(s)
|p
) 1

p

,
(
EP̌|X̌r(s)|

p
) 1

p

)](
EP̌|X̌n

rn(s)
− X̌r(s)|

p
) 1

p

r′(s) ds

=: K.

By the definition of M1 topology,

EP̌|X̌r(s)|
p ≤ EP̌dM1(X̌, 0)

p <∞ (4.15)

and

EP̌|X̌n
rn(s)

|p ≤ EP̌dM1
(X̌n, 0)p → EP̌dM1

(X̌, 0)p <∞. (4.16)

Hence, the local boundedness of the function L yields a constant Č depending on EP̌dM1(X̌, 0)
p such

that

L
(
EP̌|X̌n

rn(s)
|p, EP̌|X̌r(s)|

p
)
≤ Č. (4.17)
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By (4.17), an application of Hölder’s inequality yields

K ≤

[∫ t

0

[
1 + L

(
EP̌|X̌n

rn(s)
|p, EP̌|X̌r(s)|

p
)]p

r′(s) ds

] 1
p
[∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s) ds

] 1
p

≤ C̃

[∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s) ds

] 1
p

,

(4.18)

where p is the Hölder conjugate of p. Since rn and r are defined on Ω, they can be considered as constants

under the measure P̌. If r(s) is a jump time of Z (and thus a jump time of X), then r(s) is a constant,

thus r′(s) = 0. Therefore,

∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s) ds

=

∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s)1{Xr(s)=Xr(s)−} ds+

∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s)1{Xr(s) 6=Xr(s)−} ds

=

∫ t

0

EP̌|X̌n
rn(s)

− X̌r(s)|
pr′(s)1{Xr(s)=Xr(s)−} ds

= EP̌

∫ r(t)

0

|X̌n
rn◦r−1(s) − X̌s|

p1{Xs=Xs−} ds

= EP̌

∫ r(t)

0

|X̌n
rn◦r−1(s) − X̌s|

p1{Xs=Xs−,X̌s=X̌s−} ds. (4.19)

By (4.15) and (4.16), dominated convergence and (B.6) yield that

EPEP̌

∫ r(t)

0

|X̌n
rn◦r−1(s) − X̌s|

p1{Xs=Xs−,X̌s=X̌s−} ds

≤ EPEP̌

∫ T̃

0

∣∣∣X̌n
rn◦r−1(s) − X̌s

∣∣∣
p

1{Xs=Xs−,X̌s=X̌s−} ds→ 0.

By (4.14), (4.18) and (4.19), we have

EP‖uXn − uX‖p ≤ CEP

∫ 1

0

|uXn(s)− uX(s)|p ds+ CEP

∣∣∣∣
∫ 1

0

|r′n(s)− r′(s)| ds

∣∣∣∣
p

+ CEP

∫ 1

0

∣∣b(rn(s), uX(s), µr(s))− b(r(s), uX(s), µr(s))
∣∣p ds

+ CEP sup
0≤t≤T̃

∣∣∣∣
∫ t

0

σ(s, µns ) dBs −

∫ t

0

σ(s, µs) dBs

∣∣∣∣
p

+ CEP sup
0≤t≤1

∣∣∣∣∣

∫ rn(t)

0

σ(s, µs) dBs −

∫ r(t)

0

σ(s, µs) dBs

∣∣∣∣∣

p

+ CEP‖un − u‖p + CEPEP̌

∫ T̃

0

∣∣∣X̌n
rn◦r−1(s) − X̌s

∣∣∣
p

1{Xs=Xs−,X̌s=X̌s−} ds.

(4.20)

Therefore, Gronwall’s inequality and dominated convergence imply

EP‖uXn − uX‖p → 0.

Corollary 4.8. Under the assumptions of Proposition 4.7, along a subsequence

P[n] → P∗ in Wp.

27



Proof. We have that ∫ ·

0

c(t) dẐ
[n]
t =

∫ ·

0

c+(t) dẐ
[n]
t −

∫ ·

0

c−(t) dẐ
[n]
t ,

where a.s. in (Ãm
0,T+ǫ(R), dM1

),

∫ ·

0

c+(t) dẐ
[n]
t →

∫ ·

0

c+(t) dẐt and

∫ ·

0

c−(t) dẐ
[n]
t →

∫ ·

0

c−(t) dẐt.

Since
∫ ·

0
c+(t) dẐt and

∫ ·

0
c−(t) dẐt never jump at the same time, Proposition B.8 implies that

∫ ·

0

c(t) dẐ
[n]
t →

∫ ·

0

c(t) dẐt

a.s. in (Ãm
0,T+ǫ(R), dM1

). Hence, by Proposition 4.7,

EQdM1
(X [n], X̂)p → 0.

So up to a subsequence, dM1
(X [n], X̂)p → 0 Q a.s., which implies that (X [n], Ẑ) → (X̂, Ẑ) a.s. in the M1

product topology. For any nonnegative continuous function φ satisfying

φ(x, z) ≤ C(1 + dM1(x, 0)
p + dM1(z, 0)

p),

the uniform integrability of dM1
(X [n], 0)p and dM1

(Ẑ, 0)p yields EQφ(X [n], Ẑ) → EQφ(X̂, Ẑ). This implies

Q ◦ (X [n], Ẑ)−1 → Q ◦ (X̂, Ẑ)−1 in Wp by Proposition A.5, that is, P[n] → P∗ in Wp.

A Useful Notions and Propositions

In this appendix we summarize some results on correspondences and weak convergence of measures that

are frequently used throughout the paper.

A.1 Maximum and fixed-point theorem

Theorem A.1. [Berge’s Maximum Principle] Let ψ : X → 2Y be a continuous set-valued function

between topological spaces with nonempty- and compact-values, and f : Grψ → R be a continuous function.

ν(x) := argmaxy∈ψ(x) f(x, y). Then

1. ν has nonempty and compact values

2. if Y is Hausdorff, then ν is upper hemicontinuous.

Theorem A.2. [Kakutani-Fan-Glicksberg fixed point theorem] Given a locally convex topology vector

space Y , S, a subset of Y , is convex, nonempty and compact. Let ψ : S → 2S be a set-valued function,

which is upper hemi-continuous. If ψ is nonempty-, convex- and compact-valued, then ψ has a fixed point,

i.e., ∃ y ∈ S such that y ∈ ψ(y).

Definition A.3. [hemi-continuity in metric space] Let A and B be two metric spaces. The set-valued

function ψ : A → 2B is closed valued. Then we say ψ is upper hemi-continuous if whenever an → a in A

and bn ∈ ψ(an), there exist a subsequence bnk
of bn such that the limit of bnk

belongs to ψ(a). ψ is called

lower hemi-continuous if whenever an → a and b ∈ ψ(a), there exists bnk
∈ ψ(ank

) such that bnk
→ b. If

ψ is both upper and lower hemi-continuous, we say ψ is hemi-continuous.
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A.2 Wasserstein distance and representation of martingales

Definition A.4. Let (E, d) be a metric space. Denote by Pp(E) the class of all probability measures on

E with finite moment of p-th order. The p-th Wasserstein metric on Pp(E) is defined by:

Wp,(E,d)(P1,P2) = inf

{(∫

E×E

d(x, y)p γ(dx, dy)

) 1
p

: γ(dx,E) = P1(dx), γ(E, dy) = P2(dy)

}
. (A.1)

The set Pp(E) endowed with the Wasserstein distance is denoted by Wp,(E,d) or Wp,E or Wp if there is

no risk of confusion about the underlying state space or distance.

Proposition A.5. ([36, Definition 6.8]) Let (E, d) be a Polish space and p ≥ 1. Let {µn}n≥1 be a

sequence of probability measures in Pp(E) and µ ∈ Pp(E). Then the following statements are equivalent:

(1). µn → µ in Wp,(E,d);

(2). µn → µ in weak sense and moreover, for some ( and thus for any) y0 ∈ E,

lim
K→∞

sup
n

∫

{y∈E:d(y,y0)>K}

d(y, y0)
p µn(dy) = 0; (A.2)

(3). µn → µ in weak sense and moreover, for some (and thus for any) y0 ∈ E,

lim
n→∞

∫

E

d(y, y0)
p µn(dy) =

∫

E

d(y, y0)
p µ(dy); (A.3)

(4). for each continuous ϕ satisfies ϕ(y) ≤ C(1 + d(y, y0)
p) for some (and thus for any) y0 ∈ E, it holds

∫

E

ϕ(y)µn(dy) →

∫

E

ϕ(y)µ(dy). (A.4)

It is well known [28, Theorem III-10] that for every continuous square integrable martingale m with

quadratic variation process
∫ ·

0

∫
U
a(s, x, µ, u) qs(du)ds, on some extension of the original probability space,

there exists a martingale measure M with intensity qs(du)ds such that m· =
∫ ·

0

∫
U
σ(t, x, µ, u)M(du, dt).

This directly leads to the following proposition, which is frequently used in the main text.

Proposition A.6. The existence of solution P to the martingale problem (2.3) is equivalent to the

existence of the weak solution to the following SDE

dX̄t =

∫

U

b(t, X̄t, µt, u) q̄s(du)ds+

∫

U

σ(t, X̄t, µt, u) M̄(du, dt) + c(t) dZ̄t, (A.5)

where X̄, M̄ and Z̄ are defined on some extension (Ω̄, F̄ , P̄) and M̄ is a martingale measure with intensity

q̄. Moreover, the two solutions are related by P = P̄ ◦ (X̄, q̄, Z̄)−1.

B Strong M1 Topology in Skorokhod Space

In this section, we summarise some definitions and properties about strong Skorokhod M1 topology. For

more details, please refer to Chapter 3, 11 and 12 in [37]. Note that in [37] two M1 topologies are

introduced, the strong one and the weak one. In this paper, we only apply the strong one. So without

abuse of terminologies, we just take M1 topology for short.

29



For x ∈ D(0, T ), denote by Disc(x) the set of discontinuous points of x. Note that on [0, T ], Disc(x) is

at most countable. Define the thin graph of x as

Gx = {(z, t) ∈ Rd × [0, T ] : z ∈ [xt−, xt]}, (B.1)

where xt− is the left limit of x at t and [a, b] means the line segment between a and b, i.e., [a, b] = {αa+

(1−α)b : 0 ≤ α ≤ 1}. On the thin graph, we define an order relation. For each pair (zi, ti) ∈ Gx, i = 1, 2,

(z1, t1) ≤ (z2, t2) if either of the following holds: (1) t1 < t2; (2) t1 = t2 and |z1 − xt1−| < |z2 − xt2−|.

Now we define the parameter representation, on which the M1 topology depends. The mapping pair

(u, r) is called a parameter representation if (u, r) : [0, 1] → Gx, which is continuous and nondecreasing

w.r.t. the order relation defined above. Denote by Πx all the parameter representations of x. Let

dM1
(x1, x2) = inf

(ui,ri)∈Πxi
,i=1,2

||u1 − u2|| ∨ ||r1 − r2||. (B.2)

It can be shown that dM1
is a metric on D(0, T ) such that D(0, T ) is a Polish space. The topology induced

by dM1 is called M1 topology.

For each t ∈ [0, T ] and δ > 0, the oscillation function around t is defined as

v̄(x, t, δ) = sup
0∨(t−δ)≤t1≤t2(t+δ)∧T

|xt1 − xt2 |, (B.3)

and the so called strong M1 oscillation function is defined as

ws(x, t, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧T

|xt2 − [xt1 , xt3 ]|, (B.4)

where |xt2 − [xt1 , xt3 ]| is the distance from xt2 to the line segment [xt1 , xt3 ]. Moreover,

ws(x, δ) := sup
0≤t≤T

ws(x, t, δ). (B.5)

Now we present the characterizations of M1 convergence, continuity of convergence, relative compactness

and tightness.

Proposition B.1. The following statements about the characterization ofM1 convergence are equivalent,

1. xn → x in M1 topology;

2. there exist (u, r) ∈ Πx and (un, rn) ∈ Πxn for each n such that

lim
n→∞

‖un − u‖ ∨ ‖rn − r‖ = 0;

3. xn(t) → x(t) for each t ∈ [0, T ] \Disc(x) including 0 and T , and

lim
δ→0

limn→∞ws(x
n, δ) = 0.

Moreover, each one of the above three items implies the local uniform convergence of xn to x at each

continuous point of x, that is, for each t 6∈ Disc(x), there holds

lim
δ→0

lim sup
n→∞

sup
t−δ≤s≤t+δ

|xn(s)− x(s)| = 0. (B.6)
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Proposition B.2. A subset A of (D(0, T ), dM1) is relatively compact w.r.t. M1 topology if and only if

sup
x∈A

||x|| <∞ (B.7)

and

lim
δ↓0

sup
x∈A

w′
s(x, δ) = 0, (B.8)

where

w′
s(x, δ) = ws(x, δ) ∨ v̄(x, 0, δ) ∨ v̄(x, T, δ). (B.9)

In [37], it is assumed that x0− = x0, which implies there is no jump at the initial time. For singular

control problems it is natural to admit jumps a the initial time. It is also implied by Proposition B.2 that

the terminal time T is a continuous point of x ∈ D(0, T ). This, too, is not appropriate for singular control

problems. In order to adapt the relative compactness criteria stated in Proposition B.2 to functions with

jumps at 0 and T , we work on the extended state spaces D̃(R) and Ã(R). Convergence in D̃(R) can be

defined as convergence in D(R), where a sequence {xn, n ≥ 1} converges to x in D(R) if and only if the

sequences {xn|[a,b], n ≥ 1} converge to x|[a,b] for all a < b at which x is continuous; see [37, Chapter 3].

Relative compactness of a sequence {xn, n ≥ 1} ⊆ D̃(R) is equivalent to that of the sequence {xn|[a,b], n ≥

1} ⊆ D[a, b] for any a < 0 and b > T . Specifically, we have the following result.

Proposition B.3. The sequence {xn, n ≥ 1} ⊆ D̃(R) is relatively compact if and only if

sup
n

||xn|| <∞ and lim
δ↓0

sup
x∈A

w̃s(x, δ) = 0, (B.10)

where the modified oscillation function w̃s is defined as

w̃s(x, δ) = ws(x, δ) + sup
0≤s<t≤δ

|xs − [0, xt]|. (B.11)

We notice that the modified oscillation function w̃s is defined in terms of the original oscillation function

ws and the line segment (if it exists) between 0− and 02. As such the space D̃(R) is isomorphic to the

space

D0,T := {(y, x|[0,T ]) ∈ Rd ×D(0, T ) : x ∈ D(R), x0− = y}.

On D0,T , we can construct the modified thin graph by taking the segment (if it exists) between 0− and

0 into consideration. In the same spirit of M1 metric on the thin graph, we can define the modified M1

metric (we call it M̃1) on the modified thin graph. Therefore, we have the following characterization of

convergence in (D0,T , M̃1).

Lemma B.4. (yn, xn|[0,T ]) → (y, x|[0,T ]) in M̃1 on D0,T if and only if xnt → xt for each t ∈ [0, T ]\Disc(x)

including T , yn → y, and

lim
δ→0

limn→∞w̃s(x
n, δ) = 0.

For each set A ⊆ D0,T , define

Ã := {x̃ ∈ D̃(R) : for some (y, x|[0,T ]) ∈ A, x̃|[0,T ] = x|[0,T ], x̃t = y if t < 0 and x̃t = xT if t > T}.

It is easy to show that the (D0,T , M̃1) relative compactness of A is equivalent to the (D̃(R),M1) relative

compactness of Ã. In this way, we could consider D0,T as the canonical space as well.

2Due to the right-continuity of the elements in D̃(R) it is not necessary to consider the line segment between T− and T

separately.
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Corollary B.5. Let A = {z ∈ Ã(R) : zT ≤ K} for some positive constant K, then A is (D̃(R),M1)

compact.

Proof. This follows from Proposition B.3 as ws(z, t, δ) = 0 for each z ∈ A, t ∈ R and δ > 0.

We now state conditions for the tightness of probability measures on D(0, T ) and D̃(R), respectively.

Proposition B.6. A sequence of probability measures {Pn}n≥1 on (D(0, T ), dM1
) is tight if and only if

(1) for each ǫ > 0, there exits c large enough such that

sup
n

Pn(||x|| > c) < ǫ; (B.12)

(2) for each ǫ > 0 and η > 0, there exists δ > 0 small enough such that

sup
n

Pn(w
′
s(x, δ) ≥ η) < ǫ. (B.13)

By Proposition B.6 and Proposition B.3, we have the following tightness criteria for probability measures

on D̃(R).

Corollary B.7. A sequence of probability measures {Pn}n≥1 on D̃(R) is tight if and only if (B.12) holds,

and for each ǫ > 0 and η > 0, there exists δ > 0 small enough such that

sup
n

Pn(w̃s(x, δ) ≥ η) < ǫ. (B.14)

The following proposition shows that if two M1 limits do not jump at the same time, then the M1

convergence preserves by the addition operation.

Proposition B.8. If xn → x and yn → y in (D(0, T ), dM1
), and Disc(x) ∩Disc(y) = Ø, then

xn + yn → x+ y in M1. (B.15)
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