
Borke, Lukas; Härdle, Wolfgang Karl

Working Paper

GitHub API based QuantNet Mining infrastructure in R

SFB 649 Discussion Paper, No. 2017-008

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Borke, Lukas; Härdle, Wolfgang Karl (2017) : GitHub API based QuantNet
Mining infrastructure in R, SFB 649 Discussion Paper, No. 2017-008, Humboldt University of Berlin,
Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/162509

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/162509
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SFB 649 Discussion Paper 2017-008

GitHub API based
QuantNet Mining

infrastructure in R

Lukas Borke*
Wolfgang K. Härdle*

*Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de

ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin

S
FB

6

4
9

 E

 C
 O

 N
 O

 M
 I

C

 R
 I

S
 K

 B

 E
 R

 L
 I

N

GitHub API based
QuantNet Mining infrastructure in R∗

Lukas Borke† Wolfgang K. Härdle‡

Abstract

QuantNet being an online GitHub based organization is an integrated environment consist-
ing of different types of statistics-related documents and program codes called Quantlets.
The QuantNet Style Guide and the yamldebugger package allow a standardized audit and
validation of YAML annotated software repositories within this organization. The behav-
ior statistics of QuantNet users are measured with Web Metrics from Google Analytics.
We show how the search queries obtained from Google’s metrics can be used in the test
collections in order to calibrate and evaluate the information retrieval (IR) performance of
QuantNet’s search engine called QuantNetXploRer. For that purpose, different text mining
(TM) models will be examined by means of the new TManalyzer package. Further, we
introduce the Validation Pipeline (Vali-PP) and apply it on the YAML data. Vali-PP
is a functional multi-staged instrument for clustering analysis, providing multivariate sta-
tistical analysis of the co-occurrence distribution of driving factors of the pipeline. The
new package rgithubS, which enables a GitHub wide search for code and repositories us-
ing the GitHub Search API and which is an essential element of the QuantNet Mining
infrastructure, is briefly presented.

The TManalyzer results show that for all considered single term queries the number
of true positives is maximal in a latent semantic analysis model configuration (LSA50).
The Vali-PP analysis indicates that the optimality of the combination LSA50 and hierar-
chical clustering (HC) applies to 70 − 90% of the cluster sizes for most of the considered
quality indices. Further, we can infer that more accurate and comprehensive metadata
increases the clustering quality. Subsequently, the findings of our experimental design are
implemented into the QuantNetXploRer. The GitHub API driven QuantNetXploRer can
be found and mined under http://www.quantlet.de

Keywords: Code Search, Software Repositories, Text Mining, Information Retrieval, Smart
Data, YAML, GitHub Search API, Google Analytics, Web Metrics, LSA, GVSM, Cluster
Validation, Quality Indices, Validation Pipeline

∗We acknowledge financial support for this project from the Deutsche Forschungsgemeinschaft (DFG)
through CRC 649 Economic Risk.
†Humboldt-Universität zu Berlin, R.D.C - Research Data Center, SFB 649 “Economic Risk”, Span-

dauer Str. 1, 10178 Berlin, Germany
‡Humboldt-Universität zu Berlin, C.A.S.E. - Center for Applied Statistics and Economics, Unter

den Linden 6, 10099 Berlin, Germany and School of Business, Singapore Management University, 50
Stamford Road, Singapore 178899

1

1 Introduction to GitHub Mining

This research is the technological and scientific basis of the project “GitHub API based
QuantNet Mining infrastructure in R” as introduced in Borke and Härdle (2017). Its
structure and objectives are described by the diagram in Figure 1 and in the following
text. The research starts with the Parser 1 node of the TM Pipeline (see Figure 1) and
goes along the path till the end point at the Smart Clusterization node. Alternatively,
the pipeline could start with other parsers, depending on the data source. For instance,
Parsers 2 or 3 could be used for processing the special repository structure of papers or
external books, respectively.

Figure 1: TM Pipeline of the “GitHub API based QuantNet Mining infrastructure in R”

An integral part of the overall project is GitHub – a Git repository hosting service
founded in 2008, which not only provides its users with a web-based graphical interface
of the well-known version control system, but also allows such high-level features as
access control and collaborative work (Loeliger, 2009). The first essential step of the
large scheme is to adjust the application program interface (API) of GitHub to the R
software environment and to implement different parsers for data extraction from various
repositories of programming projects, see the rgithubS package (Scheidegger and Borke,
2017), whose baseline operational spectrum is described in Borke and Bykovskaya (2017).
Big Data obtained at this stage is thus constituted by a large corpus of text documents,
each of which corresponds to the meta information of a particular program code, be it in
a repository, a folder or under another GitHub storage resource.

QuantNet was originally designed as a platform to freely exchange empirical as well
as quantitative-theoretical methods for statistical and economical programming, called
Quantlets, or in abbreviated form “QLs”. It supports the deployment of computer codes
written in R, Matlab, SAS and Python. Because of the open structure other languages
can be easily added.

The first objective is to implement initial processing of the massive text data obtained

2

from the QuantNet’s GitHub organization, available at https://github.com/Quantlet.
In the case of QuantNet, the task of extracting smart data out of the raw text collection is
completed by means of the rgithubS and the yamldebugger packages (Borke, 2017b),
using the YAML (http://yaml.org/) encoded metadata of the QLs, see Sections 3 and
4. Being a human-readable data serialization language, YAML is commonly used for
configuration files, but could be used in many applications where data is being stored
(e.g. debugging output) or transmitted (e.g. document headers). Thus derived smart
data pass through a compound chain of processing layers, TM and Smart Clustering layer.
The TM layer is implemented in form of the TManalyzer package (Borke, 2017a), see
Section 6. The Smart Clustering layer is calibrated via the Validation Pipeline (Vali-
PP) as described in Section 7.

The second objective is to calibrate the IR performance and effectiveness in different
TM models. Section 5 shows how the search queries obtained from Web Metrics via the
RGoogleAnalytics package (Pearmain et al., 2014) can be exploited for this purpose.
Further, different clustering and validation methods within the R software environment
are examined in order to determine the optimal combination of the data configuration,
vector space model, clustering method and clustering criteria settings. The Vali-PP
evaluates thereby the resulting partition and eventually finds a reasonable number of
clusters, see Section 7.1.1 for more details. While Section 2 provides the related work of
this research, Section 8 presents an overview of the findings.

In a summary, the GitHub-R-API based and rgithubS driven TM pipeline (including
three parser types as displayed in Figure 1) retrieves the YAML encoded meta information
of Quantlets via the yamldebugger package, then the LSA model is applied, clusters
and labels are generated (by use of the TManalyzer package andValidation Pipeline)
and the processed data is transferred via JSON into the D3 application, which is the
visualization layer of the QuantNetXploRer.

2 Related Work

D3.js (or just D3 for Data-Driven Documents) is a JavaScript library for producing dy-
namic, interactive data visualizations in web browsers. The QuantNetXploRer is a good
example of D3 in power. More information about the D3 architecture, its various designs
and the D3-based QuantNetXploRer can be found in Bostock et al. (2011) and Borke and
Härdle (2017). The repository https://github.com/Quantlet/D3Genesis contains de-
tailed information about the development of the main D3 components for the QuantNet
visualization together with live examples on GitHub pages.

One of studies presenting the effectiveness of LSA was performed by Feinerer and Wild
(2007). They applied LSA based algorithms for the automated processing of transcripts
of interviews. Compared to marketing expert judgments, the machine results showed
very high levels of reliability and validity in automatic text analysis. Moreover, the LSA
approach proved useful not only in avoiding human inherent subjectivity, but also in
reducing high costs of human judgment.

Wild and Stahl (2007) described the lsa R package (Wild, 2015) and illustrated its proper

3

http://quantlet.de
https://github.com/Quantlet
http://yaml.org/
http://www.quantlet.de
https://github.com/Quantlet/D3Genesis

use through examples from the areas of automated essay scoring and knowledge represen-
tation. Feinerer et al. (2008) presented the tm package (Feinerer and Hornik, 2015) which
provides a framework for text mining applications within R, encompassing techniques for
count-based analysis methods, text clustering, text classification and string kernels. The
new package TManalyzer (Borke, 2017a) combines and extends the functionality of
both packages, facilitating IR tools in 3 text mining models: BVSM, GVSM(TT) and
LSA. As presented in Cristianini et al. (2002) and Borke and Härdle (2017), all three TM
models are special representations of the generalized vector space model (GVSM).

Brock et al. (2008), Desgraupes (2013) and Charrad et al. (2014) provided a good overview
about the existing clustering validity indices. Additionally, there are accompanying R
packages for their application allowing cluster validation and determining the relevant
number of clusters in a data set: clValid, clustCrit, NbClust.

Gousios and Spinellis (2012) performed a deep analysis on the architecture of GitHub data
and provided the overall schema of GitHub’s data and API, discussing ways to overcome
its limitations. Their paper also presents GHTorrent, an effort to create a scalable,
queriable, offline mirror of data offered through the GitHub REST API, providing users
with a possibility to analyze the development of their projects, and researchers with
efficient tool to gather and analyze GitHub’s event-stream data. Based on GHTorrent
data, Kalliamvakou et al. (2014) analyzed the quality and properties of the data available
from GitHub and discussed both positive and negative points of using and mining GitHub.

Scheidegger and his co-authors (North et al., 2015) introduced the design and implementa-
tion of the RCloud1, an Integrated Exploratory Analysis, Visualization, and Deployment
on the Web. Being an environment for collaboratively creating and sharing data anal-
ysis scripts, RCloud encompasses analysis code in R, HTML5, Markdown, Python, and
others. Amongst other features, RCloud provides an environment, in which R packages
can create rich HTML content, using, for example, D3 and dc.js, and a transparent, in-
tegrated version control system. RCloud’s implementation2 of the versioning mechanism
is built on top of GitHub’s gists3. The github package (Scheidegger, 2016) supports,
amongst many other features, creating, modifying and administrating of GitHub’s gists
via the GitHub API.

The new package rgithubS (Scheidegger and Borke, 2017), which extends the function-
ality of the github package, allows a GitHub wide search for code and repositories using
the GitHub Search API. Performing similar as Google, it is designed to find results that
best meet the personal needs and which are ranked by best match, as indicated by the
score field for each item returned. Borke and Bykovskaya (2017) introduce the Quant-
Net@GitHub statistics and some lightweight parsers within the baseline operational spec-
trum of rgithubS. The current “QuantNet@GitHub” statistics are retrieved in real time
as displayed in Table 1 (on February 28, 2017). First we see there the total number of all
QLs on GitHub, then all QLs in the https://github.com/Quantlet organization. In
the third place, all Style Guide compliant and validated QLs from the QuantNetXploRer
visualization are displayed (http://quantlet.de/). Additionally, an optional character
vector as an argument for the desired author/editor list is supported.

1https://github.com/att/rcloud
2http://rcloud.social/gallery/index.html
3https://help.github.com/articles/about-gists/

4

https://github.com/Quantlet
http://quantlet.de/
https://github.com/att/rcloud
http://rcloud.social/gallery/index.html
https://help.github.com/articles/about-gists/

total number
full_gh 2799

quantlet_gh_org 1495
QuantNetXploRer 1239

bykovskaya.as.editor 203
borke.as.editor 149

Table 1: QuantNet@GitHub statistics via the qnet.stats function from the rgithubS package

3 QuantNet Search Code in a nutshell

Borke and Bykovskaya (2017) show how the GitHub Search API (https://developer.
github.com/v3/search/) can be used for software mining of QuantNet and other GitHub
organizations. Just like searching on Google, people want to see a few pages of search
results so that one can find the item that best meets the personal needs. To satisfy that
need, the GitHub Search API provides up to 1.000 results for each search. GitHub’s
results are sorted by best match, as indicated by the score field for each item returned.
1 library(rgithubS)
2 library(yamldebugger)
3 # GitHub’s user authorization
4 ctx = interactive.login("client_id", "client_secret")
5

6 q_search = ’Quantlet Published Description Keywords Author filename:"metainfo.txt"’
7

8 spec_search_term = "yaml user:Quantlet user:lborke user:b2net"
9 sr = search.code(paste(spec_search_term, q_search), per_page = 20)

10

11 spec_search_term = "black scholes user:Quantlet"
12 sr = search.code(paste(spec_search_term, q_search), per_page = 10)
13

14 sr$content$total_count
15

16 q_top = yaml.parser.light(sr, print_item = FALSE)
17

18 (q_names = sapply(q_top, function(yaml_meta){ yaml.getQField(yaml_meta, "q")}))
19 (q_author = sapply(q_top, function(yaml_meta){ yaml.getQField(yaml_meta, "a")}))
20 (q_scores = sapply(sr$content$items, function(item){ item$score}))
21 (q_repos = sapply(sr$content$items, function(item){ item$repository$full_name }))
22

23 (name_path_scores = data.frame(qlet.name = q_names, qlet.repo.path = q_repos,
24 search.score = round(q_scores, 2)))
25

26 a_splitted = unlist(str_split(q_author, ", "))
27 (tab_sorted = sort(table(a_splitted), decreasing = T)[1:10])
28

29 (q_s = qnet.stats(spec_editor = c("bykovskaya", "borke")))

Listing 1: QuantNet Search Code via the rgithubS package

Listing 1 produces the results for Tables 1, 2, 3 and 4. After loading the package rgithubS
and “Basic Authentication”4 the Search code functionality of the GitHub Search API is

4https://developer.github.com/v3/search/#rate-limit

5

https://developer.github.com/v3/search/
https://developer.github.com/v3/search/
https://developer.github.com/v3/search/#rate-limit

fully available. Two search queries are performed by the function search.code. The first
search query retrieves all YAML meta infos according to the Style Guide and containing
the term “yaml” from 3 users/organizations: Quantlet, lborke, b2net (see Table 2). Due to
the parameter per_page = 20 only the top twenty matches (sorted by the score value)
are retrieved. These results are presented in Table 2. The second query specifies all
meta infos in the organization https://github.com/Quantlet, which share the term
“black scholes”, see Table 3. As per_page was set to 10, only the top ten results are
collected. Additionally, the variable sr$content$total_count provides the total count
of all matches, 98 QLs in this case. The top ten authors (concerning the number of
contributions) of the QLs retrieved by the second query are presented in Table 4. For
that purpose per_page was set to 100 in order to capture all relevant QLs. Via the
function qnet.stats the current “QuantNet@GitHub” statistics are retrieved in real
time as displayed in Table 1.

qlet.name qlet.repo.path score
1 yaml_run lborke/yamldebugger_intro 12.05
2 yaml_keyword_finder lborke/yamldebugger_intro 11.97
3 yaml_start lborke/yamldebugger_intro 11.71
4 YAMLcentroids b2net/Clustering_Validation_Pipeline 11.70
5 YAMLcleanmerge b2net/Clustering_Validation_Pipeline 11.70
6 YAMLnumbchars b2net/Clustering_Validation_Pipeline 11.70
7 lsa_heatmaperr b2net/Clustering_Validation_Pipeline 11.70
8 lsa_heatmapsvd b2net/Clustering_Validation_Pipeline 11.70
9 yaml_wordcloud lborke/yamldebugger_intro 11.67
10 yaml_keyword_frequency lborke/yamldebugger_intro 11.65
11 lsa_determineSign b2net/Clustering_Validation_Pipeline 11.50
12 yaml_TDM_CorrPlot lborke/yamldebugger_intro 11.42

Table 2: All Quantlets dealing with “YAML” available on Quantlet, lborke, b2net; extracted
via rgithubS and yamldebugger

qlet.name qlet.repo.path search.score
1 blspricevec QuantLet/SFS-ToDo 11.98
2 SFSstoploss QuantLet/SFS 11.09
3 blsprice QuantLet/SFE-ToDo 11.09
4 SFEItoProcess QuantLet/SFE_class_2015 10.90
5 SFEBoundary QuantLet/SFE_class_2015 10.90
6 SFEBoundary_V QuantLet/SFE_class_2015 10.90
7 SFEBoundary_V_tau QuantLet/SFE_class_2015 10.90
8 blackscholes QuantLet/SFS 10.81
9 SFSBSCopt1 QuantLet/SFS 10.81
10 SFShullhedgeratio QuantLet/SFS 10.76

Table 3: Top ten Quantlets from the Quantlet organization dealing with “black scholes”, ex-
tracted via rgithubS and yamldebugger

For the aggregation of the search results as displayed in the tables of this section, an
additional parsing process of the retrieved YAML meta infos (whose locations are stored
in the data structure sr$content$items) is necessary. This is accomplished via the

6

https://github.com/Quantlet

lightweight parser yaml.parser.light, which is a function and part of the rgithubS
package. The yaml.parser.light produces a list of parsed YAML objects, for each
YAML file one “YAML list object” with YAML data fields as further list elements. Hence,
the resulting list object q_top contains each of the 12 “YAML list objects” (in the case
of the search string “yaml”). The package yamldebugger for extracting the YAML
data fields (yaml.getQField) is incorporated. Finally, all information is merged into the
corresponding data frames for table creation (e.g. name_path_scores).

Number of Quantlets
Awdesch Melzer 41

Ying Chen 14
Andreas Golle 12

Christian M. Hafner 6
Lasse Groth 6

Szymon Borak 6
Florian Schulz 5
Simon Gstöhl 5
Daniel T. Pele 4

Derrick Kanngiesser 4

Table 4: Top ten authors of Quantlets dealing with “black scholes”, extracted via rgithubS
and yamldebugger

More application examples of the rgithubS package for mining different types of GitHub
organizations are illustrated in Borke and Bykovskaya (2017).

4 Yamldebugger

4.1 YAML

YAML is a human friendly data serialization standard for all programming languages
(http://yaml.org/). Designed as a human-readable and data-oriented language in 2001,
YAML can easily be applied to widely used data frames such as lists and arrays. What
makes YAML also rather user-friendly for maintaining hierarchical data is that it avoids
the excessive use of brackets, tags and other enclosures which could make the document
structure less comprehensible.

The design goals for YAML are, in decreasing priority: 1. YAML is easily readable
by humans; 2. YAML data is portable between programming languages; 3. YAML
matches the native data structures of agile languages; 4. YAML has a consistent model
to support generic tools; 5. YAML supports one-pass processing; 6. YAML is expressive
and extensible; 7. YAML is easy to implement and use.

There exist many YAML parser implementations for various programming languages,
amongst them: C/C++, Java, Javascript, PHP, Python, Ruby. The R implementation is
available as a package (https://github.com/cran/yaml), which is basically a C interface
to the ‘libyaml’, a YAML 1.1 parser and emitter, see http://pyyaml.org/wiki/LibYAML.

7

http://yaml.org/
https://github.com/cran/yaml
http://pyyaml.org/wiki/LibYAML

Due to the properties mentioned above, YAML was selected as annotation language for
the meta information of QLs. A typical example for a YAML meta info is e.g.: https:
//github.com/Quantlet/QuachSymanzikForsgren/blob/master/Metainfo.txt. Be-
sides Quantlet, there are various GitHub organizations using YAML for metadata. Three
examples with each more than 30.000 repositories are:
I) https://github.com/GITenberg – an open source community curating and publish-
ing highly usable and attractive ebooks in the public domain stored as a collaborative,
trackable, scriptable digital library on GitHub;
II) https://github.com/gitpan – a project to import the entire history of CPAN (Com-
prehensive Perl Archive Network) into a set of git repositories, one per distribution; and
III) https://github.com/the-domains – a big collection of meta information concern-
ing web pages and their images.

4.2 Style Guide

The QuantNet Style Guide5 enables a standardized audit and validation of new QLs by
means of comprehensive help pages and the yamldebugger package, see also Section
4.3.

The Style Guide contains several subsections:
1) Style guide of Quantlets: an overview of the structure of a Quantlet;
2) Characteristics and mandatory data fields of the YAML meta info file Metainfo.txt;
3) Examples of complete and correct meta infos;
4) The main YAML rules most relevant for QuantNet;
5) Instructions on how to format the programming R code with examples of using the
formatR package (Xie, 2016a);
6) Basic instructions for the GitHub Desktop client (https://desktop.github.com/);
7) Main information about the purpose of the yamldebugger package and further guide-
lines (technical terms, Quantlet repository structure, special characters etc.).

The QuantNet Style Guide was developed by several Quantlet users6 over a longer time
period and was permanently adjusted to the practical needs. Together with the yamlde-
bugger and introductory yamldebugger_intro, a potential Quantlet contributor has all
necessary tools for a fast, transparent and iterative code development and documentation
process.

4.3 Yamldebugger package

In order to simplify and automate the validation process of new QLs, the YAML parser
debugger package (or yamldebugger for short) (Borke, 2017b) was developed for testing
and certifying of local versions of the GitHub repositories containing YAML metadata, see
https://github.com/Quantlet/yamldebugger for implementation details. The yamlde-
bugger fulfills two main tasks. First, it checks the Quantlet repository structure, the

5https://github.com/Quantlet/Styleguide-and-FAQ
6https://github.com/Quantlet/Styleguide-and-FAQ/graphs/contributors

8

https://github.com/Quantlet/QuachSymanzikForsgren/blob/master/Metainfo.txt
https://github.com/Quantlet/QuachSymanzikForsgren/blob/master/Metainfo.txt
https://github.com/GITenberg
https://github.com/gitpan
https://github.com/the-domains
https://desktop.github.com/
https://github.com/Quantlet/yamldebugger_intro
https://github.com/Quantlet/yamldebugger
https://github.com/Quantlet/Styleguide-and-FAQ
https://github.com/Quantlet/Styleguide-and-FAQ/graphs/contributors

validity of the YAML meta information and the completeness of the mandatory data
fields as described in the Style Guide, see Section 4.2. Second, the yamldebugger helps
to analyze, standardize and unify the different YAML data fields, which are subject to
varying spelling and notations.

The current yamldebugger version ranks every validated QL, thus helping to quickly
identify deviations and discrepancies from the Style Guide specifications as well as YAML
errors. The quality ranking system spans five different grades: “A”, “B”, “C”, “D” and
“N”. “A” means the full compliance, “B” minor discrepancies, “C” more serious style
violations and “D” YAML parser errors. “N” indicates that no YAML meta info could
be found and must be decided on an individual basis, because a repository can contain
different subfolders, those containing QLs and those without them.
library(yamldebugger)

workdir = "C:/GitHub/Stochastic_processes"
d_init = yaml.debugger.init(workdir, show_keywords = FALSE)
qnames = yaml.debugger.get.qnames(d_init$RootPath)
d_results = yaml.debugger.run(qnames, d_init)
(OverView = yaml.debugger.summary(qnames, d_results, summaryType = "compact"))

Listing 2: The interaction of the four main functions of the yamldebugger package

Listing 2 demonstrates the interaction of the four main functions of the yamldebug-
ger. This set of functions is responsible for the first main task (validity of the YAML
meta information and repository structure). Listing 11 demonstrates the practical ap-
plication, using the repository https://github.com/Quantlet/Stochastic_processes
as an example.
subset(OverView, !(‘Q-Quali‘ %in% c("A")))
yaml.not.Qdfields(d_results$meta_names_distribution)
rowSums(sapply(d_results$Metainfos, function(yaml)

{ yaml.Qdfields.nchar.from.meta(yaml) }))
d_names = unlist(sapply(d_results$Metainfos, function(yaml)

{ yaml.Qdfields.from.meta(yaml)$found_dnames }))
(d_names_distr = sort(table(d_names), decreasing = TRUE))

Listing 3: YAML data field analysis via yamldebugger functions

Listing 3, on the other hand, illustrates the interplay of the yamldebugger functions
for YAML data field analysis. The corresponding example is given in Listing 12 using
the same QLs for validation as in Listing 11. Diverse characteristics as quality ranking
grades, distributions and occurrences of data field names, their validity, their character
distributions etc. can be aggregated, analyzed, evaluated, and, if necessary, the YAML
data field matching list Q_dfield_list7 from the package itself can be adjusted. A
meaningful and reasonable calibration of this matching list is crucial for further extraction
of YAML data fields (via the yaml.getQField function of the yamldebugger package)
within the TM and cluster validation steps, as will become apparent in Sections 6.3 and
7.1.2. The function yaml.getQField was already used in Listing 1.

The function yaml.debugger.summary in Listing 2 allows three different levels of sum-
mary details: mini, compact and full. Together with the R package knitr (Xie, 2016b),

7https://github.com/lborke/yamldebugger/blob/master/R/yaml.Qdfields.R

9

https://github.com/Quantlet/Stochastic_processes
https://github.com/lborke/yamldebugger/blob/master/R/yaml.Qdfields.R

the yamldebugger summary can be easily converted into a GitHub compliant Markdown
table via kable(OverView). Since the yamldebugger version 1.0 all validated Quantlet
repositories contain the file “yamldebugger_results.md”, see e.g. the SFE repository8.
This reporting process can be even simplified by means of the package git2r (Widgren
and others, 2016).

The introductory QLs yamldebugger_intro provide more examples on how to install
and run the yamldebugger with additional analysis and visualization capabilities, see
also Figures 2 and 10. The yaml_TDM_CorrPlot visualizes correlations between the
most frequent keywords of the document-term matrix, which is extracted from the key-
words in the Quantlet YAML meta infos, see Figure 2. Listing 4 shows the relevant code
part from the yaml_TDM_CorrPlot.

Figure 2: Correlation plot of YAML keywords

> DTM
<<DocumentTermMatrix (documents: 1198, terms: 980)>>
Non-/sparse entries: 11383/1162657
Sparsity : 99%
Maximal term length: 35
Weighting : term frequency (tf)
> DTM_graph = plot(DTM, terms = findFreqTerms(DTM, lowfreq = 60), corThreshold = 0.2,

weighting = TRUE)
> DTM_graph
[1] "A graph with 37 nodes."

Listing 4: yaml_TDM_CorrPlot application example

8https://github.com/Quantlet/SFE/blob/master/yamldebugger_results.md

10

https://github.com/Quantlet/yamldebugger_intro
https://github.com/QuantLet/yamldebugger_intro/tree/master/yaml_TDM_CorrPlot
https://github.com/QuantLet/yamldebugger_intro/tree/master/yaml_TDM_CorrPlot
https://github.com/Quantlet/SFE/blob/master/yamldebugger_results.md

5 Google Analytics

The aim of this section is to provide insights into the automatized integration of data
from Google Analytics into R for further processing and analysis. The data of interest are
various download statistics of the QuantNet website. Within the Collaborative Research
Center 649: Economic Risk, there was a regular meeting in which a certain set of statistics
was presented. These presentations were created on a monthly basis and in a specific
build-up. Their content however needed to be updated each time based on the log files
of the Linux server. Originally, this was done manually in Excel and then exported to
PowerPoint. Later, this was adopted into the R environment by means of the Google
Analytics API , such that up-to-date statistics are available through a program in R.

Figure 3: QuantNet visitors via Google Analytics: global view (left), Germany(right)

5.1 Introduction to Web Metrics

Web metrics, also known as web analytics, is the process of collecting, analysing and
reporting online traffic generated by internet users on a website. This can be helpful for
improving the usability of a particular website or to get valuable information about the
relevance of the provided content. There are several tools to analyse the web traffic which
differ in their functionalities and complexity. In a nutshell, these tools cover combinations
of browser logging tools and user panels, the collection of network traffic data provided
via the Internet service provider as well as site-specific server log parsers or page tagging
technologies.

Google Analytics represents the latter. It is a page-tagging tool, which employs first
party cookies to track user behavior. This means, that user data is collected via the web

11

http://www.quantlet.de
http://sfb649.wiwi.hu-berlin.de/index.php
http://sfb649.wiwi.hu-berlin.de/index.php
https://developers.google.com/analytics/
https://developers.google.com/analytics/

browser and sent to a remote data-collection server. Google provides this service and the
relevant reports for further analysis (https://www.google.com/analytics/). Kaushik
(2010) delivers a good introduction into the field of online data mining and predictive
analytics. Prem et al. (2016) present various indicators (among them Google Analytics)
to measure open science implementations and to create an Open Science Observatory
(http://opendigitalscience.eu).

Figure 4: QuantNet visitors from USA (upper left), Russia (right) and China (lower left)

Figures 3 and 4 show the Audience Overview, which is accessible via the Google Analytics
website. This reporting tool allows manual configuration and parametrization of the
desired web analytics results. In the given case, the total user sessions in the time period
16.11.2013 − 18.11.2016 are grouped and sorted by countries. The most visitors come
from Germany (Figure 3), followed by those from the USA, Russia and China (Figure 4).

5.2 RGoogleAnalytics in a nutshell

Thanks to the RGoogleAnalytics package (Pearmain et al., 2014), R possesses a Google
Analytics API binding. Therefore, it is possible to access and query data from Google
Analytics directly. Additionally, the package enables access to all Google Analytics ac-
counts of a user. In terms of this section, all download and user behavior statistics for
the QuantNet website can be acquired conveniently through that package 9.

The RGoogleAnalytics package allows for integration of data from Google Analytics
into the R environment. Six functions are included, which will be presented here. Because

9QuantNet first created a Google Analytics account on 16th of November 2013 and all statistics can
only be retrieved starting then

12

https://www.google.com/analytics/
http://opendigitalscience.eu
https://support.google.com/analytics/answer/1012034
http://www.quantlet.de

Google Analytics and R are two different application environments, a connection needs
to be established for further processing of any kind of data.
oauth_token <- Auth(client.id = "XXX", client.secret = "YYY")
save(oauth_token, file = "oauth_token")
load("oauth_token")
ValidateToken(oauth_token)

The Auth function serves that purpose and is the necessary first step. Precisely speaking,
it authorizes the RGoogleAnalytics package to the user’s Google Analytics account
using OAuth2.0, an open protocol for standardized and secure API -authorization between
applications. Two arguments are required: client.id resembles the user name and
client.secret the corresponding pass-phrase. The created token can be saved to a file
and, in subsequent runs, called up again without requiring the user’s consent. Only if the
user queries another Google Analytics profile with another email account, that consent is
required again. However, that token has a 60 minute lifetime, after which a new token
can be obtained by using the ValidateToken method. This method checks if the token is
expired, and if this is true, a new token will be generated and the token object updated.
GetProfiles(oauth_token)

Continuing from there, the GetProfiles function creates a data frame of all profile IDs
and profile names by using the created token as the only argument. After retrieving all
profile information, Google Analytics query parameters need to be initialized.
query.params.list <- Init(start.date = NULL, end.date = NULL, dimensions = NULL,

metrics = NULL, filters = NULL, sort = NULL, segments = NULL, max.results = NULL,
start.index = NULL, table.id = NULL)

This can be done by the Init function. It combines all query parameters into a list.
Parameters like start.date and end.date define the timeframe for the requested Google
Analytics data. Up to 7 dimensions can be set by the dimensions argument and up to
10 metrics by the metrics argument. In both cases this can be done as a single string
or as a vector of strings. Besides setting the scope, several arguments can be used to
preprocess the retrieved data. With sort, the sorting order of the returned data can be
set. Additionally, a filter string for the Google Analytics request can be used to narrow the
data for processing. The segments argument serves the purpose to slice and dice the data
to define segments. Finally, the start.index and max.results arguments set the first
row and the following number of rows, which will be included in the query response. The
table.id depicts the Analytics View ID, for which the query will retrieve the data. All
query parameters are NULL by default. Listing 5 demonstrates the use of the parameters.
After initializing the query list, we pass it on to the QueryBuilder function.
ga.query <- QueryBuilder(query.params.list)

The function QueryBuilder initializes an object with all query parameters and validates
them. The created object qa.query in combination with the created token are passed on
to the GetReportData function.
GetReportData(ga.query, oauth_token, split_daywise = FALSE, paginate_query = FALSE)

13

Additional optional arguments like split_daywise and paginate_query are available:
the first one splits the query into day-wise partitions by date range, the second one
numbers chunks of results by requesting a maximum number of allowed rows at a time.
Finally, the GetReportData function retrieves the requested data from the Core Reporting
API .

5.3 Metrics, Dimensions, Event Tracking in Google Analytics

In general, a metric is a quantitative measurement of statistics describing events or trends
on a website. A key performance indicator (KPI) is a metric that helps to understand
how you are doing against your objectives (Kaushik, 2010).

In Google Analytics, metric is a number, which is used to measure one of the character-
istics of a dimension. A dimension is the attribute of visitors to a given website. Taken
together, a dimension provides context to a metric. Though both dimensions and met-
rics are the characteristics of the website visitors, they are different in the way they are
configured, collected, processed, reported and queried in Google Analytics.

Event Tracking captures data differently from the standard tag-based Page View data.
The event data is stored differently and creates new metrics that capture the unique
experience of rich media and user actions triggered by click events or by keyboard entries.
The Event Tracking - Dimensions and Metrics Reference describes all event tracking
dimensions and metrics available in the Real Time Reporting API .

5.4 Most downloaded Quantlets: a code example

Quantlet Downloads
autocorr.m (autocorrelation plots) 2450
MVACARTBan1 (US bankruptcy analysis) 677
SFSmeanExcessFun (generalized Pareto distribution) 393
SFEVolSurfPlot (implied volatility surface) 371
MVAandcur (Andrew’s curves) 363
SMSboxcar (Boxplot car mileage) 339
blsprice (Black-Scholes price function) 331
IBTblackscholes (call & put options - Black Scholes) 327

1 query.list.Qlet <- Init(start.date = "2013-11-16", end.date = "today",
2 dimensions = "ga:eventLabel", metrics = "ga:totalEvents",
3 filters = "ga:eventCategory==QNetShow", sort = "-ga:totalEvents",
4 max.results = 2000, table.id = "ga:78690351")
5 ga.query <- QueryBuilder(query.list.Qlet)
6 ga.df <- GetReportData(ga.query, oauth_token)
7

8 samplesize = 8
9 colnames(ga.df) = c("Quantlet", "Downloads")

10 # output as data frame, top downloaded Quantlets as defined by samplesize
11 ga.df[1:samplesize,]

Listing 5: RGoogleAnalytics code for extracting the most downloaded Quantlets

14

https://developers.google.com/analytics/devguides/reporting/core/v3/common-queries
https://developers.google.com/analytics/devguides/reporting/core/v3/common-queries
https://developers.google.com/analytics/devguides/reporting/realtime/dimsmets/eventtracking
https://developers.google.com/analytics/devguides/reporting/realtime/v3/

The presented script in Listing 5 retrieves the most downloaded QLs. It extracts re-
cent download statistics from Google Analytics starting November 2013 for each QL.
Furthermore, short explanations (based on the desciptions in the meta information) of
the specific QLs are added and the final results are presented as an R data frame. The
API query specifies the parameters dimensions, metrics and filters conditioning the
desired Event Tracking criteria. Every time the user clicks on a Quantlet page, this
interaction is tracked by Event Tracking and is available for further analysis. The R
code for the full reproducibility with additional postprocessing (short explanations) and
LATEX-table output is available as TopDownloads.

5.5 Most Quantlet downloads by country: a code example

Country Downloads
Germany 37042
United States 9735
China 9266
Bulgaria 2502
Russia 2356
United Kingdom 2265
India 1653
Italy 1643
Japan 1609
France 1335

1 dimensions = "ga:country" # in the ’Init’ function
2 samplesize = 10
3 colnames(ga.df) = c("Country", "Downloads")

Listing 6: RGoogleAnalytics code for extracting the most Quantlet downloads by country

Listing 6 shows only the required changes relative to the code in Listing 5, see
DownloadsByCountry for the full code. Within the Init function, only the parameter

dimensions needs to be adjusted. While the metric and retrieved raw data remain the
same, the final information is aggregated by the new dimension “country”. The remaining
two changes concern the format of the output data frame. It should be noted that the web
analytics results from Listing 6 differ from those in Figure 3. The first results reflect the
download statistics triggered by user events (mouse click), the latter reflect the total user
sessions (as defined in Audience Overview) in the same time period. This is exactly the
difference between the Event Tracking and Page View approach, see Section 5.3. During
the same session a user can perform several user events like mouse clicks.

5.6 Most frequent search queries: a code example

The code example in Listing 7 demonstrates the main part of the procedure how to
retrieve the most frequent search queries entered into the search field of the QuantNet
visualization. See the complete QTopSearch for all details. The R code uses the same

15

https://developers.google.com/analytics/devguides/collection/analyticsjs/events
https://github.com/QuantLet/RGoogleAnalytics/tree/master/TopDownloads
https://github.com/QuantLet/RGoogleAnalytics/tree/master/DownloadsByCountry
https://support.google.com/analytics/answer/1012034
https://github.com/QuantLet/RGoogleAnalytics/tree/master/QTopSearch

dimensions and metrics parameters as in the Listing 5. The main difference are other
filters (eventCategory = QNet2Visu and eventAction = search) and table.id set-
tings. The latter parameter specifies from whichGoogle Analytics view (profile) to retrieve
data. The QuantNetXploRer in Figure 5 is the “source” for events which are observed
by the profile with the table.id = 134092861.
1 query.list.search <- Init(start.date = s_date, end.date = "today",
2 dimensions = "ga:eventLabel", metrics = "ga:totalEvents",
3 filters = "ga:eventCategory==QNet2Visu;ga:eventAction==search",
4 sort = "-ga:totalEvents", max.results = 1000, table.id = "ga:134092861")
5 ga.query <- QueryBuilder(query.list.search)
6 ga.df <- GetReportData(ga.query, oauth_token)
7

8 samplesize = 20
9 colnames(ga.df) = c("SearchQuery", "frequency")

10 ga.df[1:samplesize,]

Listing 7: RGoogleAnalytics code for extracting the most frequent search queries

Figure 5: Search field in the QuantNetXploRer: after every keystroke the Quantlets relevant
to the search query are displayed both in textual form as in graphical form; additionally the
search queries are tracked via Google Analytics

As we will see in the next section, the most frequent search queries obtained from Google
Event Tracking metrics can be used as queries in the test collections in order to evaluate
and calibrate the information retrieval (IR) performance in different TM models. In this
manner, we have a kind of “Google Analytics driven” dynamic test queries for IR evalua-
tion allowing to concentrate on the most frequent and hence most popular search queries,
which could help to reduce the efforts usually encountered in IR relevance assessments.

16

6 IR in a nutshell

An examination of the opening pages of a number of information retrieval (IR) books
reveals that each author defines the topic of IR in different ways. Some say that IR is
simply a field concerned with organizing information (Salton, 1968), and others emphasize
the range of different materials that need to be searched (Witten et al., 1999). While
others stress the contrast between the strong structure and typing of a database system
with the lack of structure in the objects typically searched in IR (Rijsbergen, 1979).
Across all of these definitions, there is one thing in common: IR systems have to deal
with incomplete or underspecified information in the form of the queries issued by users.
The IR systems must be able to handle the users’ underspecified query.

The typical interaction between a user and an IR system has the user submitting a query
to the system, which returns a ranked list of objects that hopefully have some degree of
relevance to the user’s request with the most relevant at the top of the list. Sections 3
and 6.5 provide some examples. The success of such an interaction is affected by many
factors, the range of which has long been considered. Sanderson (2010) discusses the
following five:

1. The ability of the system to present all relevant documents
2. The ability of the system to withhold non-relevant documents
3. The time interval between the demand being made and the answer being given
4. The physical form of the output (i.e., presentation)
5. The effort, intellectual or physical, demanded of the user

Sanderson (2010) points out that many other factors can be considered, some of them
are: 1) the ability of the user at specifying their need, 2) the interplay of the components
of which the search algorithm is composed, 3) the type of user information need.

6.1 Test Collections

A strong focus of IR research has been on measuring the effectiveness of an IR system:
determining the relevance of items, retrieved by a search engine, relative to a user’s in-
formation need. The vast majority of published IR research assessed effectiveness using
a resource known as a test collection, applying thereby evaluation measures. There are
many conferences and meetings devoted purely to test collections, including three inter-
national conferences, TREC, CLEF, and NTCIR, which together took place more than
30 times since the early 1990s. This research focus is a part of a longer tradition which
was motivated by the creation and sharing of testing environments in the previous three
decades, which itself was inspired by innovative work conducted in the 1950s.

The classic components of a test collection are as follows: 1) a collection of documents,
2) a set of topics (also referred to as queries), 3) a set of relevance judgments composed
of a list of topic/document pairs, detailing the relevance of documents to topics.

The genesis of IR evaluation is generally seen as starting with the work of Cleverdon and
his Cranfield collections, built in the early 1960s. However, he and others were working

17

on retrieval evaluation for most of the 1950s (Cleverdon, 1959). In his first collection
Cleverdon tested four competing indexing approaches on a set of 18.000 papers. The
papers were manually indexed using each of the four classification methodologies. Once
the indexes were built, the papers were searched with 1.200 “search questions”. The col-
lection became known as Cranfield I. Cleverdon concluded that the relatively large size of
Cranfield I was not important in ensuring reliable measurements. Therefore, the new col-
lection was composed of 1.400 “documents” (titles, author names and abstracts) derived
from the references listed in around 200 recent research papers. This work resulted in
the Cranfield II collection comprising 1.400 documents, 221 topics, and a set of complete
variable level relevance judgments. Alongside the work of Cleverdon, Salton initiated
the creation of a series of test collections, collectively known as the SMART collections
(Lesk and Salton, 1968). A good review of the IR research and its history is provided in
Sanderson (2010).

6.2 Effectiveness measures: Precision, Recall

Relevant Non-relevant
Retrieved a b a + b

Not retrieved c d c + d
a + c b + d a + b + c + d

Table 5: Contingency table of all possible quantities in IR

Cleverdon et al. (1966) produced a contingency table of all possible quantities that could
be calculated to judge an information retrieval system. Table 5 is reproduced including
the original labels. Another common notation for the table’s cells in Table 5 is: true
positives (a), false positives (b), false negatives (c) and true negatives (d), see Manning
et al. (2008). Various measures can be created out of combinations of the table’s cells.
The three that are probably the best known are:

Precision = a

a + b
, Recall = a

a + c
, Fallout = b

b + d
. (1)

Where precision measures the fraction of retrieved documents that are relevant, recall
measures the fraction of relevant documents retrieved and fallout measures the fraction
of non-relevant documents retrieved. Most IR systems experience a dilemma concerning
them. To improve a system’s precision, the system needs strong measures for deciding
whether a document is relevant to a query. This will help minimize the false hits/false
positives (quantity b in Table 5), but it will also affect the number of relevant documents
that are retrieved. These strong measures can prevent some important relevant docu-
ments from being included within the set of documents that satisfy the query, thereby
lowering the recall (Herbert et al., 2004). Further, because the number of relevant docu-
ments in a set of documents is fixed for any query (it is the quantity a + c in Table 5) we
can use the true positives (quantity a) as proxies for the “relative recall”. In practice the
determination of the total number of relevant documents relative to a query is difficult
and time-consuming due to the size of the document corpus. A higher true positive value
implies a higher recall value, up to the scalar multiple of 1

a+c
.

18

6.3 Google Analytics driven QuantNet Test Collection

As data set for the following IR performance analysis, the current YAML meta informa-
tion was parsed from QuantNet by means of the TM pipeline, see Figure 1. Hence, our
collection of documents contains 1140 YAML documents. Our set of topics was formed
from the most frequent search queries delivered by the Google Event Tracking metrics,
see Section 5.6. The set of relevance judgments is determined on demand, when addi-
tional precision and recall benchmarks are required. All results and tables were calculated
by use of the TManalyzer package, which is the TM layer of the “GitHub API based
QuantNet Mining infrastructure in R”.

Throughout the rest of our article we will use the definitions and notations from Sec-
tion Vector space representations in Borke and Härdle (2017). The most important
quantities are: Q = {d1, . . . , dn} as a set of documents/Quantlets; T = {t1, . . . , tm} as a
dictionary (set of all terms); tf(d, t) as the absolute frequency of term t ∈ T in d ∈ Q;
tf -idf as the term frequency - inverse document frequency; D as a “term by document
matrix” TDM. The TM models BVSM, GVSM(TT) and LSA were considered. From
LSA two configurations were examined: LSA (50% of the weight of all singular values
maintained) and LSA50 (with the dimension parameter k = 50).

6.4 IR system designs in 3 models

All IR results and TDM representations in this section were calculated by means of the
TManalyzer package as displayed in Listing 13.

6.4.1 Single term queries

Via RGoogleAnalytics (see Listing 7) the following most frequent single term search
queries were obtained: “covar”, “random”, “quantile”, “histogram”, “multivariate”, see
Table 6. They serve as the first set of topics in the IR simulation in Listing 13. A
document is retrieved if its similarity value relative to the query is bigger than the given
IR threshold. Taking different weighting schemes (argument tf_weight) and varying
threshold levels (argument sim_threshold), we obtain the IR results as summarized in
Table 7.

q1 q2 q3 q4 q5
covar 1 0 0 0 0

histogram 0 0 0 1 0
multivari 0 0 0 0 1
quantil 0 0 1 0 0
random 0 1 0 0 0

Table 6: TDM of the single term queries in the post processed raw TF-form

The results in Table 7 can be summarized as follows. The LSA50 model retrieves the
most documents for all tf_weight × sim_threshold combinations. BVSM returns the

19

least number of matches. Under the weighting scheme tf no clear dominance between
GVSM(TT) and LSA can be determined. Under the weighting scheme tf -idf GVSM(TT)
outperforms LSA in many cases. Additionally, the weighting scheme tf -idf retrieves more
matches averaged over all TM models × sim_threshold combinations.

B TT LSA L50 B TT LSA L50 B TT LSA L50
weighting scheme tf normalized

covar 0 0 0 7 0 0 3 9 0 0 6 9
random 0 0 0 6 0 1 0 7 0 10 3 18
quantile 0 0 0 0 0 1 0 1 0 1 2 6

histogram 0 0 0 3 0 0 2 6 2 2 4 14
multivariate 0 0 0 0 0 0 0 4 0 0 0 16

weighting scheme tf-idf normalized
covar 0 0 2 7 0 4 5 9 0 6 6 11

random 0 0 0 11 0 3 2 17 0 13 9 24
quantile 0 0 0 0 0 0 0 1 0 3 2 17

histogram 0 2 1 13 1 10 7 19 3 16 13 26
multivariate 0 0 0 5 0 2 0 12 0 12 0 21

Table 7: Number of QLs retrieved in each of 3 TM models; measure: cosine similarity; similarity
threshold for IR: 0.8, 0.7, 0.6 (from left to right)

6.4.2 Compound term queries

Via RGoogleAnalytics (see Listing 7) the following most frequent compound term
search queries were obtained: “random number”, “multivariate statistics”, “black sc-
holes”, see Table 8. The second set of topics for the IR simulation in Listing 13 yields
the results presented in Table 9.

q1 q2 q3
black 0 0 1

multivari 0 1 0
number 1 0 0
random 1 0 0
schole 0 0 1
statist 0 1 0

Table 8: TDM of the compound term queries in the post processed raw TF-form

The results in Table 9 show a similar situation as in the case of “single term queries”.
But GVSM(TT) is clearly better than LSA. LSA50 is best and BVSM is still worst
(concerning the number of hits). One remarkable observation in all Tables (7 and 9) is
that LSA50 clearly outnumbers the other models at the highest IR threshold = 0.8. The
other models have none or very few hits.

20

B TT LSA L50 B TT LSA L50 B TT LSA L50
weighting scheme tf normalized

random n. 0 1 0 7 0 8 2 7 1 8 6 15
multivariate s. 0 0 0 0 0 1 0 6 0 11 0 11

black s. 0 1 0 20 0 44 0 46 0 58 1 55
weighting scheme tf-idf normalized

random n. 0 1 0 9 0 6 1 17 1 14 5 23
multivariate s. 0 0 0 6 0 4 0 15 0 14 0 22

black s. 0 3 0 43 0 43 1 51 0 52 1 59

Table 9: Number of Qs retrieved in each of 3 TM models; measure: cosine similarity; similarity
threshold for IR: 0.8, 0.7, 0.6 (from left to right)

6.5 IR Performance: recall and precision in 3 models

In order to assess the IR effectiveness and validity of the previous results, we have to
examine the relevance of the retrieved documents for each query individually. This is
demonstrated by two examples.
Single term queries
query = c("covar", "random", "quantile", "histogram", "multivariate")

query.tm.folded = query.tm.fold_in(query, tm_list, tf_weight = "ntc")
q_tdm_sim.tm_res = q_tdm_sim.tm.list(query.tm.folded)
q_ir_list = query.similar.doc.inspect(q_tdm_sim.tm_res, sim_threshold = 0.8)
q_ir_list$query_tm_text["histogram"]
returns the retrieved docs for every TM model, see below for the full output
"BVSM: no hits\\GVSM(TT): SPMHistoConstruct (0.9), SPMhistobias2 (0.82)\\LSA:

SPMHistoConstruct (0.9)\\LSA50: SPMhistobias2 (0.97), SPMHistoConstruct (0.96)..."

q_ir_list$query_tm_list[["histogram"]]
[1] "SPMHistoConstruct" "SPMhistobias2" "BCS_hist1" "BCS_HistBinSizes" "BCS_hist2"
[6] "SPMbuffagrid" "SPMbuffahisto" "SPMhistogram" "SPMashstock" "SPMstockreturnhisto"
[11] "SPMhiststock" "SPMsimulatedexponential" "SPMbuffadata"

Listing 8: IR results inspection via TManalyzer

The extended IR results for the search query “histogram” (tf-idf, IR threshold 0.8, num-
bers in brackets show the similarity values) are produced by the function
query.similar.doc.inspect and stored in the variable q_ir_list$query_tm_text, see
Listing 8:
BVSM: no hits; GVSM(TT): SPMHistoConstruct (0.9), SPMhistobias2 (0.82);
LSA: SPMHistoConstruct (0.9); LSA50: SPMhistobias2 (0.97), SPMHistoConstruct (0.96), BCS_hist1
(0.95), BCS_HistBinSizes (0.92), BCS_hist2 (0.91), SPMbuffagrid (0.9), SPMbuffahisto (0.89), SPMhis-
togram (0.89), SPMashstock (0.89), SPMstockreturnhisto (0.87), SPMhiststock (0.87), SPMsimulated-
exponential (0.85), SPMbuffadata (0.82)

Manual inspection of the retrieved QLs for the query “histogram” shows that there are
two false hits (SPMbuffagrid, SPMbuffadata) in the LSA50 model. The other TM models
have maximum precision (i.e. Precision = 1), whereas the precision of LSA50 is 11

13 . The
(relative) recall performance is: LSA50 >recall GVSM(TT) >recall LSA >recall BVSM, see

21

Section 6.2 for IR effectiveness quantities and notations.

The IR results for the search query “random number” (tf-idf, IR threshold 0.7) were
produced in an analogous way as in Listing 8:
BVSM: no hits; GVSM(TT): SFEfibonacci (0.86), SFErandu (0.79), SFErangen2 (0.76), SFErangen1
(0.75), random_walk (0.74), SFEBMuller (0.71); LSA: SFEfibonacci (0.78);
LSA50: BCS_LFG (0.97), SFErandu (0.95), SFEfibonacci (0.95), SFErangen2 (0.95), SFErangen1
(0.94), BCS_RANDU (0.9), BCS_ARM (0.86), BCS_Shapes (0.85), random_walk (0.81), SFEBMuller
(0.8), SFEevt3 (0.78), randomwalk_ar1 (0.77), simulationplot (0.76), SFEtrinomp (0.72), MSMasprob
(0.72), SFEevt2 (0.72), BCS_claytonMC (0.7)

Manual inspection of the retrieved QLs for the query “random number” shows that all hits
are relevant. Hence, we can conclude that all TM models provide maximum precision,
i.e. all retrieved documents are relevant, and:
LSA50 >recall GVSM(TT) >recall LSA >recall BVSM.

The manual inspection of all single term queries’ results has revealed that there are two
false hits (tf-idf, IR threshold 0.8). Incorporating this information into the function
query.similar.doc.inspect (see Listing 9) allows to build three matrices as shown in
Table 10: Mretrieved, Mtrue_positives, Mprecision. We have thus for each query × TM model
combination the number of retrieved documents, the number of retrieved and relevant
documents (true positives) and the precision value. We can conclude that the number
of true positives for all single term queries is maximal in the LSA50 model. Except the
combination “histogram”/LSA50 all other cases (query × TM model combinations) show
maximum precision.
false_hits = list("histogram" = c("SPMbuffagrid", "SPMbuffadata"))

q_ir_list = query.similar.doc.inspect(q_tdm_sim.tm_res, sim_threshold = 0.8,
false_hits = false_hits)

m_retr = q_ir_list$retrieved_m
m_true_positives = q_ir_list$relevant_m
m_precision = q_ir_list$relevant_m / q_ir_list$retrieved_m
m_precision[is.nan(m_precision)] = 0

colnames(m_retr) = colnames(m_true_positives) = colnames(m_precision) =
c("B", "TT", "LSA", "L50")

(m_IR = cbind(m_retr, m_true_positives, round(m_precision, 2)))

Listing 9: IR effectiveness inspection via TManalyzer

B TT LSA L50 B TT LSA L50 B TT LSA L50
covar 0 0 2 7 0 0 2 7 0 0 1 1.00

random 0 0 0 11 0 0 0 11 0 0 0 1.00
quantile 0 0 0 0 0 0 0 0 0 0 0 0.00

histogram 0 2 1 13 0 2 1 11 0 1 1 0.85
multivariate 0 0 0 5 0 0 0 5 0 0 0 1.00

Table 10: IR performance for single term queries, tf-idf, IR threshold 0.8: Mretrieved,
Mtrue_positives, Mprecision (from left to right)

22

7 Cluster Validation

Clustering plays a major role in dealing with high-dimensional data. Being first used
for simple classifications, clustering ended up as an integral part of different disciplines
like archeology, linguistics, bioinformatics, genetics and others (Everitt et al., 2011).
Nowadays a vast amount of various numerical methods are introduced in order to make
the retrieval of information from the clustering partition easier and more efficient and
also to assess how efficient it is.

Our main goal here is to try different clustering and validation methods within the R
software environment and to determine the optimal combination of data configuration,
vector space model, clustering method and clustering criteria settings, thereby evaluating
the resulting partition and eventually finding a reasonable number of clusters. The so-
called “5-level Validation Pipeline” is described in Section 7.1.

Depending on the matrix P (an appropriate linear transformation), we will consider three
TM models, examined in Cristianini et al. (2002) and evaluated in the M3-benchmark
as described in Borke and Härdle (2017): BVSM, GVSM(TT) and LSA. Furthermore,
we will compare three different clustering methods: hierarchical clustering, k-means and
k-medoids (or pam - partitioning around medoids). All of them are rather well-known
and often used, see for more details Everitt et al. (2011).

For validation of clustering methods different measures (also called clustering criteria,
clustering validity indices or quality indices) were introduced. We will consider those
of them implemented in the R packages clusterCrit (Desgraupes, 2016) and NbClust
(Charrad et al., 2014). The optimal number of clusters can be derived by maximiz-
ing/minimizing of the index value or the difference between two successive slopes. The
last means that on a plot with index values Q against the number of selected clusters
K ∈ {Km, . . . , KM}, the best value for K corresponds to an elbow. Suppose, for exam-
ple, we need to maximize the difference between two successive slopes. Let us denote
Vi = Qi+1 −Qi, then K is determined by:

K = arg max
Km<i<KM

(Vi − Vi−1).

Some of the 27 internal quality indices offered by the package clusterCrit are of the
exceptional interest, allowing rather clear interpretation. The following list contains
the names (as used in Desgraupes (2013)) of 12 measures that we have selected for our
benchmark: Ball-Hall, C-Index, Calinski-Harabasz, Davies-Bouldin, Dunn, McClain-Rao,
Ratkowsky-Lance, Ray-Turi, Silhouette, Trace-W, Wemmert-Gancarski and Xie-Beni.

All these clustering validity indices combine information about intracluster compactness
and intercluster isolation, as well as other factors, such as geometric or statistical proper-
ties of the data, the number of data objects and dissimilarity or similarity measurements.
More about the theory, index formulas and additional information can be found in
Brock et al. (2008), Desgraupes (2013) and Charrad et al. (2014).

23

7.1 Validation Pipeline

The experimental design for cluster validation presented here is a direct evolution of
the M3

d1,d2,d3,max design as introduced in Borke and Härdle (2017). Additionally, we
embed another new dimension into the concept, namely different configurations of meta
information, thus expanding M3

d1,d2,d3,max to M4
d1,d2,d3,d4,max. The new M stands for the

new dimension “meta information”.

Figure 6: Validation Pipeline M4
d1,d2,d3,d4,max

Let us call this performance validation approach the Validation Pipeline (Vali-PP).
The main goal of this validation benchmark is to calibrate such a combination of all
5 dimensions (Vali-PP-configurations), that provides the best clustering result, when
applied to YAML data. An intuitive interpretation of this idea could be a pipe with
5 gear wheels (each of them representing one optimization component/parameter), that
takes preprocessed (smart) data as an input and returns an optimal smart clusterization
as an output. A schematic illustration of the described process is displayed in Figure 6.

The main purpose of this analogy is to determine the best angle of rotation for each gear
wheel, so that together their combination lets smart data pass through the pipe in the
most effective way. The term “effectiveness” means here that we should try to find a
compromise between the information gain from our data and the dimension reduction of
data at the same time, omitting unnecessary information and hence reducing the storage
and computational costs.

7.1.1 Vali-PP in a nutshell

Summarized, the validation benchmark M4
d1,d2,d3,d4,max deals with the following 5 dimen-

sions:

• d1: 3 sample configurations of meta information: minimal, maximal, smart
• d2: 3 vector space models / 4 TM configurations: BVSM, GVSM(TT), LSA (au-

tomatic choice of the dimension and own choice of the dimension, e.g. LSA25),
encoded in “standard TM colors”: BVSM, GVSM(TT), LSA, LSA25
• d3: 3 clusteringmethods: k-means, k-medoids, Hierarchical Clustering (HC) (com-

prising average, ward.D and ward.D2 agglomeration methods)

24

• d4: 12 measures (quality indices) for validating the clustering quality (from R
packages clusterCrit and NbClust)
• max: maximal number of clusters: from 2 to 250 (YAML-500), from 2 to 100

(YAML-1140)

Hence, the Vali-PP process encompasses 3 × 4 × 3 × 12 × 249 = 107.568 different com-
binations (Vali-PP-configurations) in the maximum case, each of them needing to be
evaluated.

7.1.2 The new dimension

By “configuration of meta information” we mean a weighted combination of data fields
which are extracted from the YAML meta information and which are used in the sub-
sequent validation process. In the course of our study we propose three sample config-
urations, two extreme cases and one of our own choice. The “configurations of meta
information” can be easily extracted by means of the packages yamldebugger and
TManalyzer. Listing 10 demonstrates the use of the both packages. The function
yaml.list.extract (from TManalyzer) relies on the function yaml.getQField (from
yamldebugger).
library(yamldebugger)
library(TManalyzer)
(obj.names = load("yaml_list_full_20161122.RData", .GlobalEnv)) # 1140 Docs

help(yaml.getQField)
yaml.getQField(yaml_list[[1]], "d")

Meta Configuration I
t_vec = yaml.list.extract(yaml_list, weight = c(q=1, d=1, k=1, p=1))

Meta Configuration II
t_vec = yaml.list.extract(yaml_list)

Meta Configuration III
t_vec = yaml.list.extract(yaml_list, weight = c(d=6, k=10, sa=3, a=4, df=5, e=4))

str(t_vec)
> List of 2
> $ t_vec : chr [1:1140] " MSMLLN Plots the points showing law of large numbers." ...
> $ q_names: chr [1:1140] "MSMLLN" "MSM_LIL" "MSM_VaRandES" "MSMasprob" ...

Listing 10: Extraction of Meta Configurations via yamldebugger and TManalyzer

1. Configuration I: Text documents are represented by descriptions and keywords
data fields only, this case is thus minimum that could be reasonable for text mining
and the most relevant as well.

2. Configuration II: Text documents are represented by all (not technical) data fields
of the meta info, and this case is obviously the maximum one, including though a
considerable amount of potentially uninformative and unreliable content.

3. Configuration III: Text documents are represented by weighted combinations of
the most substantial fields (concerning the amount of words). Weights chosen were
(6, 10, 3, 4, 5, 4) for the fields: “description”, “keywords”, “see also”, “author”,
“datafile” and “example” correspondingly. The logic behind such a choice is that

25

“description” and especially “keywords” reflect the most profound essence of the
text and must thus make the greatest contribution. The next most important
category is “datafile”, since several QLs related to the same observation data set
should be more or less close to each other. Slightly less relevant are “author” and
“example”, because the author can also submit QLs from a completely different
area and “example” often just duplicates the “description” content. Then at the
end comes “see also” with only names of the similar documents in it.

7.2 Experimental Procedure

For the clustering validation part of the Vali-PP, two R packages were used: cluster-
Crit and NbClust. By means of the first library we calculated all 12 quality indices
(measures) as described before. From the second package those eight measures were
taken, which intersect with the measures from clusterCrit, namely: Ball-Hall, C-Index,
Calinski-Harabasz, Davies-Bouldin, Dunn, McClain-Rao, Ratkowsky-Lance and Silhou-
ette. We had several reasons to include another library into our study: 1) to compare
results for the same validation method from different packages; 2) to recalculate results
for Silhouette index which were partially corrupted (and obviously useless) in the clus-
terCrit implementation; 3) to test whether those measures in clusterCrit that did not
provide clear interpretation results could be easier interpreted using the other package.
Within the package clusterCrit we compared the methods k-means, k-medoids and HC
(average agglomeration), whereas from NbClust HC (ward.D and ward.D2 agglomera-
tion) and k-means were selected.

Two data sets were examined. The first one, YAML-500, was extracted from the YAML
meta information of 500 QLs on December 26, 2015, see Section 7.3. The second one,
namely YAML-1140, was collected from 1140 QLs on November 22, 2016 and used in
Section 7.4. The choice of 250 as maximum number of clusters for YAML-500 is justi-
fied as in Section “3 Models, 3 Methods, 3 Measures” in Borke and Härdle (2017).
For YAML-1140 the cluster range within the interval {2, . . . , 100} was selected. Since
the comprehensive M4

d1,d2,d3,d4,250 analysis of the YAML-500 data has revealed the gen-
eral properties of the Vali-PP-configurations, it was sufficient for the second stage to
concentrate on the practically relevant cluster sizes, see last paragraph in Section 7.4.

7.3 Validation Pipeline Results

Table 11 shows the optimal TM model, clustering method and meta configuration (d1 ×
d2 × d3) for each index, see Section 7.1.1 for the notation definitions. The last two
dimensions/wheels of the Vali-PP (the appropriate index d4 and the optimal number of
clusters in the range 2, . . . , max) are to be considered in each particular case separately.
However, some index results do not allow an unambiguous decision: Davies-Bouldin,
Ray-Turi, Xie-Beni and Dunn. In these cases, necessary remarks are provided: EI - easy
to interpret, HI - hard to interpret. Concerning the main results, the following (partly
abbreviated) notations were used: TT for GVSM(TT), LSA25 for LSA space reduced to
25 dimensions, HC for average agglomeration, Ward D for HC (ward.D agglomeration)
and Ward D2 for HC (ward.D2 agglomeration).

26

Index Best model Best clustering method Best conf.
clusterCrit

Ball-Hall (EI) TT10/ LSA2511 HC II
C-Index (EI) TT/LSA25 HC III

Calinski-Harabasz (EI) LSA25 k-medoids12 II
McClain-Rao (EI) LSA25 k-means/k-medoids13 III

Ratkowsky-Lance (EI) TT/LSA25 all I/II
Trace-W (EI) LSA/LSA25 HC II/III

Wemmert-Gancarski (EI) LSA25 k-mean/k-medoids14 III
Davies-Bouldin (HI) LSA25 k-medoids15 II

Ray-Turi(HI) LSA25 HC III
Xie-Beni (HI) BVSM16 HC II
Dunn (HI) BVSM17 HC II

NbClust
Ball-Hall (EI) TT18/ LSA2519 all I/II/III
C-Index (HI) LSA25 Ward D II/III

Calinski-Harabasz (EI) LSA25 Ward D/ Ward D2 II
McClain-Rao (EI) LSA25 Ward D2 III

Ratkowsky-Lance (EI) TT/LSA25 all I/II/III
Davies-Bouldin (EI) LSA25 k-means I/II/III

Silhouette (EI) LSA25 Ward D/ Ward D2 III
Dunn (HI) BVSM20 Ward D2 II

Table 11: Main results of YAML-500 for selected clusterCrit and NbClust quality indices

The results and conclusions in Table 11 were made based on Vali-PP plots of YAML-500
with 4 curves (a curve for each vector space model/configuration d2, in the following
also referred to as Vali-PP graph) showing the value of a given validation index (Y axis)
for each number of clusters from 2 to 250 (X axis). These plots with Vali-PP graphs
were created for each combination of d1 × d3. Altogether, we had 9 (|d1 × d3|) Vali-PP
plots for each index d4, which resulted in 9 ∗ 11 = 99 Vali-PP plots for the package
clusterCrit (11 indices, Silhouette index was skipped) and further 9 ∗ 8 = 72 Vali-PP
plots for the package NbClust (8 indices). All validation results, Vali-PP plots and the
corresponding Quantlets are available at Clustering_Validation_Pipeline.

The overall conclusion can be drawn that, when considered individually, the advantage
10TT model is the best wrt. optimal cluster number selection
11LSA25 model is the best wrt. global behavior of the curves
12k-medoids method is better, but HC is comparable from a certain cluster number size
13HC is also comparable in LSA25, which is the best model for this index
14HC is here comparable wrt. global behavior of the curves
15HC shows more stable behavior in all the models
16all models are very close in HC, in particular LSA and BVSM
17all models, in particular BVSM and LSA, are relatively close and are also in a quite small interval,

regarding that the value range of this index is [0, +∞)
18TT model is the best wrt. optimal cluster number selection
19LSA25 model is the best wrt. global behavior of the curves
20all models, in particular BVSM and LSA, are relatively close and are also in a quite small interval,

regarding that the value range of this index is [0, +∞)

27

https://github.com/Quantlet/Clustering_Validation_Pipeline

of LSA or HC is sometimes not obvious, but their combination is mostly not worse than
any other combination d2 × d3 of a TM model and a clustering method. As for the meta
information dimension d1, no clear distinction can be made, whether configuration II or
III is better. In any case, both of them outperform (or are not worse than) configuration
I, which includes minimal information.

Concerning the results of the same quality indices from different packages (NbClust
vs. clusterCrit), the best TM model is almost always the same: LSA25 (except from
the Dunn index). The indicated optimal clustering method cannot be directly compared
between the both packages, as only the k-means method is present as the “common
element” in both cases. For the first stage of our validation benchmark M4

d1,d2,d3,d4,max it
was sufficient to identify possible optimal combinations d1 × d2 × d3 within each given
package, looking at them separately from different angles: quality indices d4, number of
clusters (2, . . . , max) and various HC agglomeration methods.

7.4 Smart-Vali-PP

Figure 7: Smart-Vali-plots of YAML-500 for C-Index (left: to be minimized) and Silhouette
index (right: to be maximized) from the package NbClust; Standard TM colors: BVSM,
GVSM(TT), LSA, LSA25

The main disadvantage of the manual/visual inspection and summarization of the val-
idation results in Section 7.3 is the tedious and sometimes rather vague analysis of the
Vali-PP plots for any given validation index. As discussed before, there are 3×3 Vali-PP
plots, each of them containing 4 Vali-PP graphs. Furthermore, as shown in Table 11, it is
usually difficult or even impossible to characterize an optimal Vali-PP-configuration for a
given index d4 in an unambiguous way, i.e. to say there is a particular optimal d1×d2×d3
combination (meta/model/method) for all considered cluster sizes {2, . . . , max}. For that
reason an improvised extension of the Validation Pipeline software infrastructure was de-
veloped by Lukas Borke in order to facilitate the validation inspection process. This set
of functions will be referred to as “Smart-Vali-PP” in the following. Smart-Vali-PP is a
component of the overall Vali-PP infrastructure, which is displayed in Figure 9. In the

28

near future, this code collection could be published as a separate R package.

Figure 8: Smart-Vali-plots of YAML-1140 for the indices: C-Index, Wemmert-Gancarski, Ray-
Turi from the clusterCrit package; Standard TM colors: BVSM, GVSM(TT), LSA, LSA25

The Smart-Vali-PP framework produces two essential outputs. One kind are the so-
called “Smart-Vali-plots”, which are generated using the Vali-PP results stored in a
5-dimensional array. For each index the aforementioned 9 plots (d1 × d3 combination)
are merged into a single plot. Together with four model configurations (d2) every Smart-
Vali-plot embeds 36 (|d1 × d2 × d3|) different Vali-PP graphs (encoded in the standard
TM colors) having the cluster size on the X axis. The black curve shows the “optimal

29

function” (over all d1 × d2 × d3 combinations) which can be achieved under the selected
index. Two demonstrative Smart-Vali-plots are presented in Figure 7. There we can
clearly see that the LSA25 model is the optimal one both under C-Index and Silhouette
index.

Figure 8 shows further Smart-Vali-plots created for the indices C-Index, Wemmert-
Gancarski and Ray-Turi. In this case, the current YAML-1140 data set was analyzed.
The plots on the left side display only such Vali-PP graphs which intersect the “optimal
function” at least at one point (one cluster size). The plots on the right side encompass
all Vali-PP graphs, allowing the analysis of the overall shape and trends of all Vali-PP-
configurations d1×d2×d3. The Smart-Vali-PP function plot.optimal.functions from
Listing 15 carries out the Smart-Vali-plots creation.

Conf. d1 Method d3 Model d2 Freq. Cum. rel. prop. Rel. prop.
C-Index

3 3 2 50 0.50 0.50
3 2 2 15 0.66 0.15
3 1 2 14 0.80 0.14
1 1 2 10 0.90 0.10
2 3 4 5 0.95 0.05
1 2 2 3 0.98 0.03
2 3 1 1 0.99 0.01
3 3 1 1 1.00 0.01

Wemmert-Gancarski
2 3 4 68 0.69 0.69
3 3 4 20 0.89 0.20
3 2 2 5 0.94 0.05
3 3 2 3 0.97 0.03
3 2 4 2 0.99 0.02
2 2 4 1 1.00 0.01

Ray-Turi
3 3 4 38 0.38 0.38
1 3 4 20 0.59 0.20
3 3 2 18 0.77 0.18
2 3 4 17 0.94 0.17
2 3 2 4 0.98 0.04
3 2 2 1 0.99 0.01
1 3 2 1 1.00 0.01

Table 12: Smart-Vali-tables of YAML-1140 for the indices: C-Index, Wemmert-Gancarski, Ray-
Turi from the clusterCrit package

The other kind of Smart-Vali-PP outputs are “Smart-Vali-tables” as shown in Table 12.
For each index, the triple d1 × d2 × d3 (representing a particular Vali-PP graph) is ag-
gregated and sorted according to the cluster sizes where this triple coincides with the
“optimal function”. The additional columns “Frequency”, “Cumulative relative propor-
tion” and “Relative proportion” allow to identify and quantify the index optimality for a
given Vali-PP-configuration d1×d2×d3 along the dimension “cluster size”. The function
optimal_share.prettify from Listing 15 carries out the Smart-Vali-tables creation.

30

Both the Smart-Vali-plots and the Smart-Vali-tables are different representations based
on the data structure optimal_share_index, see Listing 15. Looking for instance at the
C-Index in Figure 8 and Table 12, we can easily conclude that the GVSM(TT) Vali-PP
graphs are mostly in proximity to the “optimal function”. Additionally, there are one
LSA50 Vali-PP graph and two BVSM Vali-PP graphs which intersect the goal function
at least at one cluster size. By means of the Smart-Vali-table we can infer that the
GVSM(TT) (d2 = 2) reaches the optimal function at 92 cluster sizes of 99. LSA50
(d2 = 4) accomplishes that at 5 cluster sizes and BVSM (d2 = 1) 2 times. Further we can
see that the Vali-PP-configuration (d1, d2, d3) = (3, 2, 3) appears at 50 of 99 cluster sizes
and hence clearly dominates. The next best configurations are (d1, d2, d3) = (3, 2, 2) and
(d1, d2, d3) = (3, 2, 1), what means that GVSM(TT) and meta configuration III is best in
all three cases, representing 80% of all considered cluster sizes. Concerning the method
(d3) in these three cases, we have the optimality order: 3, 2, 1, i.e. HC, k-medoids,
k-means. All dimension values in d1, d2, d3 are enumerated in the same order as listed in
Section 7.1.1, e.g. d2 = 2 means GVSM(TT) and d1 = 1 means meta Configuration I.

In a similar manner it can be concluded from the Smart-Vali-tables that LSA50 and HC
is optimal in 89% of the cluster sizes under the Wemmert-Gancarski index, and LSA50
and HC is also optimal in 75% of the cluster sizes wrt. the Ray-Turi index. The meta
configuration co-occurrence can be inferred from the Smart-Vali-tables in an analogous
manner. In other words, Smart-Vali-tables permit statistical analysis of the co-occurrence
distribution of the optimal Vali-PP-configurations. Concerning the YAML-1140 data
set, only cluster sizes from 2 up to 100 were analyzed because the current QuantNet
implementation requires cluster sizes in a range from 16 to 64. Thanks to the Smart-
Vali-plots, one can easily see that it needs an initial period of cluster sizes (about 20)
until the index functions start to consolidate their decreasing or increasing trend.

7.5 Vali-PP software and hardware infrastructure

In Figure 9 all software components are displayed which were integrated and developed
in the course of the validation benchmark M4

d1,d2,d3,d4,max. They consist of various R
functions, our R packages (in orange-blue), external R packages (in blue), and the Smart-
Vali-PP component.

Particularly noteworthy features within the Vali-PP software infrastructure are the fol-
lowing. The object optimal_share_index in Listing 15 is basically a 3-dimensional
table counting the number of intersections between every possible Vali-PP-configuration
d1 × d2 × d3 and the “optimal function”. Due to the smart function multi.which from
Listing 14, which was created by Mark van der Loo 21, all 3 Smart-Vali-PP functions
optimal_share.for.index, optimal_share.prettify and plot.optimal.functions
could be realized in a very compact and elegant way.

Since the Vali-PP calculations were time consuming, the whole process was parallelized
over 24 or 32 CPU cores, depending on the used calculation server (Research Data Center,
https://rdc.hu-berlin.de). The dimension “number of clusters” is the ideal quantity
for massive parallelization. This allowed to complete the validation benchmark for the

21https://github.com/markvanderloo

31

https://rdc.hu-berlin.de
https://github.com/markvanderloo

Figure 9: Software infrastructure of the Validation Pipeline components; blue: external R
packages, orange-blue: our R packages; orange: our R functions;

YAML-500 data within one day for every package. In the case of NbClust, it took
sometimes more than four hours to compute the results for a single index. The execu-
tion of clusterCrit ran faster, but still took approximately 10 hours for all 12 indices.
The obvious reason for the better performance of clusterCrit is its C and Fortran 95
optimization 22.

Concerning YAML-1140, the Vali-PP benchmark was performed only for the cluster-
Crit package and cluster sizes up to 100. As discussed before, clusterCrit is better
optimized, has a broader spectrum of quality indices and the upper limit of 100 clusters
satisfies the practical needs. According to the results in Section “3.3 Benchmark” in Des-
graupes (2013), the intCriteria function is quite efficient because the code is optimized
to avoid duplicate calculations and to reuse values already computed for other indices.
The function clusterCritParallel within the Vali-PP infrastructure was therefore ad-
justed. The vector of all selected indices is passed to the intCriteria function at once.
Together with some other improvements like the calculation of the distance matrix in

22https://github.com/cran/clusterCrit/tree/master/src

32

https://github.com/cran/clusterCrit/tree/master/src

advance (for the pam and hclust clustering functions), the following calculation times
were measured, see Table 13. For better handling, the benchmark was executed for each
meta configuration separately, the other four dimensions (Vali-PP-configurations) were
processed in one pass. The full calculation for all meta configurations, and with it the
entire Vali-PP benchmark, took around 2 hours and 20 minutes.

Meta Configuration time in seconds physical/logical cores
I 2410 24/24
II 2664 24/24
III 3364 12/24

Table 13: Vali-PP calculation time for YAML-1140 data, grouped by meta configurations

As the main objective of this section, we introduced and examined the so-called Validation
Pipeline, a functional multi-staged instrument for clustering analysis, allowing multivari-
ate statistical analysis of the distribution of driving factors (Vali-PP-configurations).

8 Discussion

8.1 Conclusion

The new package rgithubS enables a GitHub wide search for code and repositories using
the GitHub Search API and allows to implement different parsers for data extraction
from various software repositories retrieving smart data out of the raw text collection.
Performing similar as Google, it is designed to find results that best meet the personal
needs and which are ranked by best match, as indicated by the score field for each item
returned. The QuantNet@GitHub statistics within rgithubS can be retrieved in real
time. Due to some lightweight parsers of the package, basic mining tasks on QuantNet
can be performed directly in the R console by use of rgithubS without further QuantNet
Mining infrastructure R components.

The QuantNet Style Guide and the yamldebugger package allow a standardized audit
and validation of YAML annotated software repositories. First, the yamldebugger
checks the Quantlet repository structure, the validity of the YAML meta information
and the completeness of the mandatory data fields according to the Style Guide. Second,
it helps to analyze and unify the different YAML data fields, which are subject to varying
spelling and notations. A meaningful and reasonable calibration of the matching list of
the YAML data fields within the yamldebugger is crucial for further extraction of smart
data within the TM and cluster validation steps.

The presented Google Analytics driven QuantNet Test Collection obtained from Google’s
metrics was used to evaluate and calibrate the IR performance. Three common text
mining (TM) models were examined by means of the new TManalyzer package. By
generating three performance measurement matrices: the number of retrieved documents,
the number of retrieved and relevant documents (true positives) and the precision value
for each query × TM model combination, the TManalyzer constitutes a convenient tool

33

for IR design and performance analysis. In this way, we can conclude that the number of
true positives for all considered single term queries is maximal in the LSA50 model.

Further, we introduced the so-called Validation Pipeline (Vali-PP), a functional multi-
staged instrument for clustering analysis, providing multivariate statistical analysis of the
co-occurrence distribution of driving factors of the validation benchmark M4

d1,d2,d3,d4,max.
The Smart-Vali-PP framework, being a component of the overall Vali-PP infrastruc-
ture, allows to identify and quantify the clustering index optimality for a given Vali-PP-
configuration. It can be applied to each of the 27 internal quality indices offered by the
package clusterCrit. Considering the examined quality indices, we can conclude that
the percentage of the optimality of the combination LSA50 and HC is in the range of
70-90% of all cluster sizes. In some cases the GVSM(TT) model reached this percentage
level. We can also infer that the co-occurrence frequency of the meta configurations II
and III is relatively high among the optimal Vali-PP-configurations, which indicates that
more accurate and comprehensive metadata increases the clustering quality. Within the
validation benchmark M4

d1,d2,d3,d4,max, the packages yamldebugger and TManalyzer
were used to produce the meta information configurations and TM models.

8.2 Future Perspectives

The TManalyzer can be directly connected to the parser layer of the “GitHub API
based QuantNet Mining infrastructure” and run as an R based search engine with three
implicit TM models. Hence, the packages rgithubS, yamldebugger and TManalyzer
are the necessary components for a self-contained GitHub mining engine in R. Due to the
general approach, any set of text documents can serve as an object of text analysis. The
yamldebugger acts as a smart data extraction layer and can be omitted or replaced by
another text preprocessing component if another type of data is involved.

The new R packages presented in this paper build the integral components of the “GitHub
API based QuantNet Mining infrastructure in R”. The remaining components, such as
the parser, clustering and D3 export layers, are available in experimental and working
state. Very soon they will be implemented in a new R package, together with our research
findings. Thus, the TM pipeline introduced in the beginning of this paper will be available
in form of a package under the name “tmPipelineQ” and QuantNet’s search engine
called QuantNetXploRer will be finalized. The GitHub API driven QuantNetXploRer
can be already found and used under http://www.quantlet.de.

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

An interview with Donald Knuth. Dr. Dobb’s Journal (April 1996)

34

http://www.quantlet.de

References
Borke, L. (2017a). TManalyzer: Provides IR tools in 3 text mining models: BVSM,
GVSM(TT) and LSA. R package version 0.5.0.
URL: https://github.com/lborke/TManalyzer_dev

Borke, L. (2017b). yamldebugger: YAML parser debugger according to the QuantNet style
guide. R package version 1.0.
URL: https://github.com/lborke/yamldebugger

Borke, L. and Bykovskaya, S. (2017). GitHub Mining Infrastructure in R, forthcoming .

Borke, L. and Härdle, W. K. (2017). Q3-D3-LSA, in W. K. Härdle, H. H. Lu and X. Shen
(eds), Handbook of Big data Analytics, Springer.

Bostock, M., Ogievetsky, V. and Heer, J. (2011). D3 Data-Driven Documents, IEEE
Transactions on Visualization and Computer Graphics 17(12): 2301–2309.
URL: http://dx.doi.org/10.1109/TVCG.2011.185

Brock, G., Pihur, V., Datta, S. and Datta, S. (2008). clValid: An R Package for Cluster
Validation, Journal of Statistical Software 25(1): 1–22.
URL: https://www.jstatsoft.org/index.php/jss/article/view/v025i04

Charrad, M., Ghazzali, N., Boiteau, V. and Niknafs, A. (2014). NbClust: An R package
for determining the relevant number of clusters in a data set, Journal of Statistical
Software 61(6): 1–36.
URL: https://www.jstatsoft.org/article/view/v061i06

Cleverdon, C. W. (1959). The evaluation of systems used in information retrieval (1958:
Washington), Proceedings of the International Conference on Scientific Information -
Two Volumes, National Research Council, Washington: National Academy of Sciences,
pp. 687–698.

Cleverdon, C. W., Mills, J. and Keen, M. (1966). Factors determining the performance
of indexing systems, ASLIB Cranfield project, Cranfield, ASLIB, pp. 37–59.
URL: https://dspace.lib.cranfield.ac.uk/handle/1826/863

Cristianini, N., Shawe-Taylor, J. and Lodhi, H. (2002). Latent Semantic Kernels, Journal
of Intelligent Information Systems 18(2): 127–152.
URL: http://dx.doi.org/10.1023/A:1013625426931

Desgraupes, B. (2013). Clustering Indices, University Paris Ouest, Lab Modal’X.

Desgraupes, B. (2016). clusterCrit: Clustering Indices. R package version 1.2.7.
URL: https://CRAN.R-project.org/package=clusterCrit

Everitt, B. S., Landau, S., Leese, M. and Stahl, D. (2011). Cluster Analysis, John Wiley
& Sons, Ltd.
URL: http://dx.doi.org/10.1002/9780470977811.index

Feinerer, I. and Hornik, K. (2015). tm: Text Mining Package. R package version 0.6-2.
URL: http://CRAN.R-project.org/package=tm

35

Feinerer, I., Hornik, K. and Meyer, D. (2008). Text Mining Infrastructure in R, Journal
of Statistical Software 25(5): 1–54.
URL: http://www.jstatsoft.org/v25/i05/

Feinerer, I. and Wild, F. (2007). Automated Coding of Qualitative Interviews with Latent
Semantic Analysis, in Mayr and Karagiannis (eds), Information Systems Technology
and its Applications, 6th International Conference ISTA, Gesellschaft für Informatik,
Bonn, Germany, pp. 66–77.
URL: http://nm.wu-wien.ac.at/research/publications/b679.pdf

Gousios, G. and Spinellis, D. (2012). Ghtorrent: Github’s data from a firehose, Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on, pp. 12–21.

Herbert, K. G., Wang, J. T. and Liu, J. (2004). Information Retrieval and Data Mining,
in A. B. Tucker (ed.), Computer Science Handbook, Second Edition, 2nd edn, Chapman
& Hall/CRC, pp. 75.1–75.5.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M. and Damian, D.
(2014). The Promises and Perils of Mining GitHub, Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, ACM, New York, NY, USA,
pp. 92–101.
URL: http://doi.acm.org/10.1145/2597073.2597074

Kaushik, A. (2010). Web Analytics 2.0: The Art of Online Accountability and Science of
Customer Centricity, Serious skills, Wiley.
URL: https://books.google.de/books?id=nnZtAwAAQBAJ

Lesk, M. and Salton, G. (1968). Relevance assessments and retrieval system evaluation,
Information Storage and Retrieval 4(4): 343 – 359.
URL: http://www.sciencedirect.com/science/article/pii/0020027168900296

Loeliger, J. (2009). Version Control with Git - Powerful Tools and Techniques for Col-
laborative Software Development, O’Reilly Media, Inc., Sebastopol.

Manning, C. D., Raghavan, P. and Schütze, H. (2008). Introduction to Information
Retrieval, Cambridge University Press, New York, NY, USA.

North, S., Scheidegger, C., Urbanek, S. and Woodhull, G. (2015). Collaborative visual
analysis with RCloud, Visual Analytics Science and Technology (VAST), 2015 IEEE
Conference on, pp. 25–32.

Pearmain, M., Mihailowski, N., Prajapati, V., Shah, K. and Remy, N. (2014). RGoogle-
Analytics: R Wrapper for the Google Analytics API. R package version 0.1.1.
URL: https://CRAN.R-project.org/package=RGoogleAnalytics

Prem, E., Sanz, F. S., Lindorfer, M., Lampert, D. and Irran, J. (2016). Open Digital
Science, Technical report, eutema GmbH (Austria) in co-operation with ZSI and Univer-
sidad de Zaragoza. available at https://www.researchgate.net/publication/303855957.

Rijsbergen, C. J. V. (1979). Information Retrieval, 2nd edn, Butterworth-Heinemann,
Newton, MA, USA.

36

Salton, G. (1968). Automatic Information Organization and Retrieval., McGraw Hill
Text.

Sanderson, M. (2010). Test Collection Based Evaluation of Information Retrieval Systems,
Foundations and Trends R©in Information Retrieval 4(4): 247–375.
URL: http://dx.doi.org/10.1561/1500000009

Scheidegger, C. (2016). github: github API. R package version 0.9.8.
URL: https://github.com/cscheid/rgithub

Scheidegger, C. and Borke, L. (2017). rgithubS: GitHub API bindings for R - Special
edition. Search, statistics, parsers. R package version 0.9.9.
URL: https://github.com/lborke/rgithubS

Widgren, S. and others (2016). git2r: Provides Access to Git Repositories. R package
version 0.14.0.
URL: https://CRAN.R-project.org/package=git2r

Wild, F. (2015). lsa: Latent Semantic Analysis. R package version 0.73.1.
URL: https://CRAN.R-project.org/package=lsa

Wild, F. and Stahl, C. (2007). Investigating Unstructured Texts with Latent Semantic
Analysis, in R. Decker and H.-J. Lenz (eds), Advances in Data Analysis. Proceedings
of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Uni-
versität Berlin, March 8-10, 2006, Springer, Berlin Heidelberg, pp. 383–390.
URL: http://www.springerlink.com/content/g7u377132gq5623g/

Witten, I. H., Moffat, A. and Bell, T. C. (1999). Managing Gigabytes: Compressing and
Indexing Documents and Images, Second Edition, Morgan Kaufmann.
URL: http://www.cs.mu.oz.au/mg/

Xie, Y. (2016a). formatR: Format R Code Automatically. R package version 1.4.
URL: https://CRAN.R-project.org/package=formatR

Xie, Y. (2016b). knitr: A General-Purpose Package for Dynamic Report Generation in
R. R package version 1.15.
URL: http://yihui.name/knitr/

37

A Yamldebugger Application Example

> qnames = yaml.debugger.get.qnames(d_init$RootPath)
[1] "3 Q folder(s) found:"
[1] "ar1_process" "random_walk" "randomwalk_ar1"

> d_results = yaml.debugger.run(qnames, d_init)
[1] "1: ar1_process"
[1] "Simulates the path of a First-order autoregressive (AR-1) process over 50 ..."
[1] "Found_software: r"
[1] "Number of code files: 1 - ar1_process.R"
[1] "Number of pictures: 2 - ar1_process-1.png, ar1_process-2.png"
[1] "--"
[1] "2: random_walk"
[1] "Simulates the path of a random walk over 50 time points. Epsilon terms ..."
[1] "Found_software: r"
[1] "Number of code files: 1 - random_walk.R"
[1] "Number of pictures: 2 - random_walk-1.png, random_walk-2.png"
[1] "--"
[1] "3: randomwalk_ar1"
[1] "Similarity of both random walk and AR-1 (autoregressive process) to actual ..."
[1] "Found_software: r"
[1] "Number of code files: 1 - randomwalk_ar1.R"
[1] "Number of pictures: 6 - randomwalk_ar1_0.8_1.png, randomwalk_ar1_0.8_2.png,

randomwalk_ar1_0.8_3.png, randomwalk_ar1_0.95_1.png, randomwalk_ar1_0.95_2.png,
randomwalk_ar1_0.95_3.png"

[1] "--"

> (OverView = yaml.debugger.summary(qnames, d_results, summaryType = "mini"))
Q-Quali Q folders Q Names Descriptions stats Keywords stats

1 A ar1_process ar1_process 32 word(s), 157 Character(s) 9: 9 (standard), 0 (new)
2 A random_walk random_walk 17 word(s), 93 Character(s) 9: 9 (standard), 0 (new)
3 A randomwalk_ar1 randomwalk_ar1 58 word(s), 273 Character(s) 12: 12 (standard), ...

Listing 11: yamldebugger application example

38

B Example for YAML data field analysis

> subset(OverView, !(‘Q-Quali‘ %in% c("A")))
[1] Q-Quali Q folders Q Names Descriptions stats Keywords stats
<0 rows>

> as.data.frame(d_results$meta_names_distribution)
d_results$meta_names_distribution

Author 3
Description 3
Example 3
Input 3
Keywords 3
Name of Quantlet 3
Published in 3
See also 3
Submitted 3

> yaml.not.Qdfields(d_results$meta_names_distribution)
character(0)

> sapply(d_results$Metainfos, function(yaml){ yaml.Qdfields.nchar.from.meta(yaml) })
[,1] [,2] [,3]

q 11 11 14
p 20 20 20
a 11 11 11
d 222 117 370
k 137 134 177
df 0 0 0
e 82 44 417
i 85 53 85
o 0 0 0
s 31 31 32
sa 27 27 24
ce 0 0 0
cp 0 0 0
cw 0 0 0
od 0 0 0
sf 0 0 0
u 0 0 0

> rowSums(sapply(d_results$Metainfos, function(yaml){ yaml.Qdfields.nchar.from.meta(
yaml) }))

q p a d k df e i o s sa ce cp cw od sf u
36 60 33 709 448 0 543 223 0 94 78 0 0 0 0 0 0

> d_names = unlist(sapply(d_results$Metainfos, function(yaml){
yaml.Qdfields.from.meta(yaml)$found_dnames }))

> (d_names_distr = sort(table(d_names), decreasing = TRUE))
d_names
a d e i k p q s sa
3 3 3 3 3 3 3 3 3

Listing 12: Example for YAML data field analysis via yamldebugger functions based on the
results from Listing 11

39

C Word clouds of YAML keywords

Figure 10: Word clouds of the keywords extracted from the Quantlets’ YAML meta info

The word clouds were created by yaml_wordcloud.

40

https://github.com/QuantLet/yamldebugger_intro/tree/master/yaml_wordcloud

D TManalyzer application example

library(yamldebugger)
library(TManalyzer)
(obj.names = load("yaml_list_full_20161122.RData", .GlobalEnv)) # 1140 Docs

t_vec = yaml.list.extract(yaml_list, weight = c(q=1, d=1, k=1, p=1))
tf_weight = "nnc" for tf weighting; tf_weight = "ntc" for tf-idf weighting
system.time(tm_list <- tm.create.models(t_vec, tf_weight = "nnc"))
[1] "Dim TDM: 1211,1140"
[1] "Dim LSA Auto: 154"

User System Elapsed
12.47 0.06 12.58

Single term queries
query = c("covar", "random", "quantile", "histogram", "multivariate")
Compound term queries
query = c("random number", "multivariate statistics", "black scholes")

query.tm.folded = query.tm.fold_in(query, tm_list, tf_weight = "nnc")
q_tdm_sim.tm_res = q_tdm_sim.tm.list(query.tm.folded)

3 threshold levels for IR
q_ir_list = query.similar.doc.inspect(q_tdm_sim.tm_res, sim_threshold = 0.8)
(m1 = q_ir_list$retrieved_m)
q_ir_list = query.similar.doc.inspect(q_tdm_sim.tm_res, sim_threshold = 0.7)
(m2 = q_ir_list$retrieved_m)
q_ir_list = query.similar.doc.inspect(q_tdm_sim.tm_res, sim_threshold = 0.6)
(m3 = q_ir_list$retrieved_m)
colnames(m1) = colnames(m2) = colnames(m3) = c("B", "TT", "LSA", "L50")
(m_full = cbind(m1, m2, m3))

B TT LSA L50 B TT LSA L50 B TT LSA L50
covar 0 0 0 7 0 0 3 9 0 0 6 9
random 0 0 0 6 0 1 0 7 0 10 3 18
quantile 0 0 0 0 0 1 0 1 0 1 2 6
histogram 0 0 0 3 0 0 2 6 2 2 4 14
multivariate 0 0 0 0 0 0 0 4 0 0 0 16

query.tm.folded$q_tdm
Docs

Terms q1 q2 q3 q4 q5
covar 1 0 0 0 0
histogram 0 0 0 1 0
multivari 0 0 0 0 1
quantil 0 0 1 0 0
random 0 1 0 0 0

Listing 13: IR system designs via TManalyzer

41

E Smart-Vali-PP application example

A which for multidimensional arrays. Mark van der Loo 16.09.2011
A Array of booleans
returns a sum(A) x length(dim(A)) array of multi-indices where A == TRUE
multi.which <- function(A){

if (is.vector(A)) return(which(A))
d <- dim(A)
T <- which(A) - 1
nd <- length(d)
t(sapply(T, function(t){

I <- integer(nd)
I[1] <- t %% d[1]
sapply(2:nd, function(j){

I[j] <<- (t %/% prod(d[1:(j-1)])) %% d[j]
})
I

}) + 1)
}

Listing 14: multi.which for multidimensional arrays

library(clusterCrit)
source("smart_vali_pp.R")
(load("results/obj_pp_d_clusterCrit_1140Q_20161222.RData", .GlobalEnv))

(ind_names = getCriteriaNames(TRUE)[c(1,3,4,5,7,28,31,32,37,39,41,42)])
[1] "Ball_Hall" "C_index" "Calinski_Harabasz" "Davies_Bouldin"
[5] "Dunn" "McClain_Rao" "Ray_Turi" "Ratkowsky_Lance"
[9] "Silhouette" "Trace_W" "Wemmert_Gancarski" "Xie_Beni"

only max/min interpretation
ind_goal_func = c(min, min, max, min, max, min, min, max, max, min, max, min)

i = 2 ; yrange = c(0, 0.4) # clusterCrit//C_index
i = 7 ; yrange = c(0, 12) # clusterCrit//Ray_Turi
i = 11; yrange = c(0, 0.5) # clusterCrit//Wemmert_Gancarski

4-dim array for the selected index i : Meta conf / Methods / Models / nclusters
sel_index_vali = pp_d[i,,,,]
index.optimal.func = apply(sel_index_vali,

length(dim(sel_index_vali)), ind_goal_func[[i]])
optimal_share_index = optimal_share.for.index(sel_index_vali, index.optimal.func)

Main Evaluation 1
optimal_share.prettify(optimal_share_index)
Main Evaluation 2
plot only graphs which intersect the best function at least at one point
plot.optimal.functions(sel_index_vali, index.optimal.func, optimal_share_index,

yrange, ind_names[i])
plot ALL graphs of Vali-PP configurations
plot.optimal.functions(sel_index_vali, index.optimal.func, optimal_share_index,

yrange, ind_names[i], only_partly_best = FALSE)

Listing 15: Smart-Vali-PP application example

42

SFB 649 Discussion Paper Series 2017

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001 "Fake Alpha" by Marcel Müller, Tobias Rosenberger and Marliese Uhrig-

Homburg, January 2017.
002 "Estimating location values of agricultural land" by Georg Helbing, Zhiwei

Shen, Martin Odening and Matthias Ritter, January 2017.
003 "FRM: a Financial Risk Meter based on penalizing tail events occurrence"

by Lining Yu, Wolfgang Karl Härdle, Lukas Borke and Thijs Benschop,
January 2017.

004 "Tail event driven networks of SIFIs" by Cathy Yi-Hsuan Chen, Wolfgang
Karl Härdle and Yarema Okhrin, January 2017.

005 "Dynamic Valuation of Weather Derivatives under Default Risk" by
Wolfgang Karl Härdle and Maria Osipenko, February 2017.

006 "RiskAnalytics: an R package for real time processing of Nasdaq and
Yahoo finance data and parallelized quantile lasso regression methods"
by Lukas Borke, February 2017.

007 "Testing Missing at Random using Instrumental Variables" by Christoph
Breunig, February 2017.

008 "GitHub API based QuantNet Mining infrastructure in R" by Lukas Borke
and Wolfgang K. Härdle, February 2017.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

	AA_Frontpage
	20170306_QMining_Final_DP
	Introduction to GitHub Mining
	Related Work
	QuantNet Search Code in a nutshell
	Yamldebugger
	YAML
	Style Guide
	Yamldebugger package

	Google Analytics
	Introduction to Web Metrics
	RGoogleAnalytics in a nutshell
	Metrics, Dimensions, Event Tracking in Google Analytics
	Most downloaded Quantlets: a code example
	Most Quantlet downloads by country: a code example
	Most frequent search queries: a code example

	IR in a nutshell
	Test Collections
	Effectiveness measures: Precision, Recall
	Google Analytics driven QuantNet Test Collection
	IR system designs in 3 models
	Single term queries
	Compound term queries

	IR Performance: recall and precision in 3 models

	Cluster Validation
	Validation Pipeline
	Vali-PP in a nutshell
	The new dimension

	Experimental Procedure
	Validation Pipeline Results
	Smart-Vali-PP
	Vali-PP software and hardware infrastructure

	Discussion
	Conclusion
	Future Perspectives

	References
	Yamldebugger Application Example
	Example for YAML data field analysis
	Word clouds of YAML keywords
	TManalyzer application example
	Smart-Vali-PP application example

	ZZ_Endpage

