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Wolfgang Karl Härdle1 and Maria Osipenko†2

1CASE - Centre for Applied Statistics and Economics,
Humboldt-Universität zu Berlin, Germany

2School of Business and Economics, Humboldt-Universität zu Berlin

ABSTRACT

Weather derivatives are contingent claims with payoff based on a pre-specified weather index.

Firms exposed to weather risk can transfer it to financial markets via weather derivatives. We

develop a utility-based model for pricing baskets of weather derivatives in over-the-counter

markets under counterparty default risk. In our model, agents maximise the expected utility

of their terminal wealth, while they dynamically rebalance their weather portfolios over a

finite investment horizon. Via partial market clearing, we obtain semi-closed forms for the

equilibrium prices of weather derivatives and for the optimal strategies of the agents. We

give an example on how to price rainfall derivatives on selected stations in China in the

universe of a financial investor and a weather exposed crop insurer.
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1 Introduction

Weather derivatives (WDs) are contingent claims with payoffs determined by future

weather events as temperature, snowfall, and rainfall. Hedging with WDs reduces expo-

sure to the weather conditions and stabilises the profits of a weather exposed agent. Firms

operating in energy, tourism, agriculture, and insurance sectors use WDs to hedge their

weather risks. Peréz-González and Yun (2013) show that weather risk management with

WDs leads to an increase in firm value. Moreover, WDs are also attractive for a purely fi-

nancial investor as their payoffs are acyclic, uncorrelated with financial assets, and, therefore,

contribute to portfolio diversification.

Frequently, the structure of agent’s weather exposure is complicated, such that, it is more

beneficial to purchase a basket of WDs on several underlying weather indices rather than on

a single one to manage weather risks in an optimal way. For a financial investor, positions in

multiple WDs strengthen the positive portfolio diversification effect. To increase the hedging

efficiency and to achieve a higher degree of portfolio diversification, both weather exposed

business and financial investors are, therefore, interested in holding a portfolio of multiple

WDs. While valuing baskets of such derivatives, market participants should also account for

the dependence in the underlying weather indices.

We develop a simple utility-based model for pricing such baskets of customised WDs on

multiple dependent underlyings. With our model, we primary address pricing WDs in over-

the-counter (OTC) markets, where fewer interested agents transfer their specific non-financial

weather risks among themselves through creating and trading customized weather dependent

claims. We allow agents to rebalance their portfolios (or renegotiate the contracts) at some

predetermined time points in their finite investment horizon. Dynamic portfolio optimisation
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under partial market clearing or zero-net-supply condition for all WDs determines their

equilibrium prices.

We choose equilibrium pricing approach based on utility maximisation for several rea-

sons. First, we anticipate that the OTC transactions of WDs involve a limited number of

participants. Thus, the interaction of their individual supply and demand functions will

give the equilibrium price. Further, due to the market incompleteness standard arguments

imposing existence of a unique pricing measure or a perfect replication strategy fail, see

Heath et al. (1992). Models based on pure weather dynamics impose restrictive assumptions

in order to choose the appropriate equivalent martingale measure, see Alaton et al. (2002),

Benth et al. (2007), and López Cabrera et al. (2013). In our model, involved agents con-

struct WD securities in zero net supply, thus, they complete the WD market. Moreover, the

chosen utility-based pricing approach naturally reflects the risk attitudes of each agent and

facilitates the derivation of explicit prices for WDs in a multi-period framework.

Most previous works on utility-based WD pricing either fail to price derivatives on multi-

ple dependent underlyings simultaneously (Carmona and Diko (2005), Lee and Oren (2010),

and Leobacher and Ngare (2011)) or they impose restrictive assumptions on the dynamics

of the underlying weather indices (Horst and Müller (2007), Chaumont et al. (2006)). Con-

sumption based model of Cao and Wei (2004) prices multiple WDs in an extended pure

exchange economy of Lucas (1978) on the macroeconomic level and is not feasible for a lim-

ited number of weather market participants and a short contract duration typical for OTC

markets. We contribute to this literature by providing a utility-based model for pricing

baskets of customised WDs on multiple dependent underlyings. In our framework, market

participants account for possible dependence between the weather indexes that determine

the payoffs of their weather portfolios. Applicability of our pricing model is not restricted to
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any particular type of WDs. Various kinds of OTC WDs can be priced in our framework.

Our further contribution is the introduction of counterparty default risk into the pricing

model for WDs. The importance of counterparty default risk for pricing financial derivatives

was addressed, for example, in Hull and White (1995), Jarrow and Turnbull (1995), and

Wu and Chung (2010). We show that the introduction of a non-zero issuer default proba-

bility significantly depresses the demand for WDs through correcting expectations of future

portfolio payoffs in utility terms downwards.

We illustrate our approach on pricing rainfall derivatives. These derivatives can be used

to hedge agricultural volumetric risks, see Musshoff et al. (2010). Traditionally, volumetric

risk hedging in agriculture is taken over by the crop insurance as Glauber et al. (2002). There-

fore, crop insurer frequently face indirect losses caused by rainfall surplus/deficit through

its impact on crop production. Whenever the weather exposed income of such an insurer

depends on the rainfall outcomes in a number of geographical sites where the insured farm-

ers are operating, a combination of the rainfall derivatives on these sites should be used for

hedging the risks.

We give the pricing example for China. Chinese farmers are exposed to pronounced

weather risks as Turvey and Kong (2010). According to The World Bank (2007) the existing

agricultural insurance schemes are too expensive for Chinese agricultural producers. Trading

WDs can play an important role in transferring a part of the weather exposure from the crop

insurer to financial markets and so make such crop insurance contracts affordable for Chinese

farmers.

Our empirical analysis addresses the effects of increasing investment horizon, default risk,

market volatility and capital costs on the demand and on the supply for WDs and illustrates

WD price movements.
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The structure of the paper is as follows. In section II we, first, derive the multi-asset

dynamic pricing model for WDs in absence of any default risk. Next, we extend the model

to account for the counterparty default risk and a possibility of an alternative financial

investment. Section III shows an example on pricing rainfall derivatives using historical

rainfall data of China and features a discussion of further applications. In section 4 we

summarise our results.

2 Dynamic Pricing Model for Weather Derivatives

In this section, we construct a dynamic pricing model for WDs with multiple assets.

First, we introduce our market design and notation. Then, we derive the equilibrium prices

for WDs without any default risk. Next, we study the implications of the counterparty

default risk and of an alternative financial investment.

2.1 Assumptions and Notation

1. Assets. There are WDs on S weather indices (at different geographical sites and/or on

different weather events) that are priced at times t = 0, 1, . . . , T − 1. At T the payoff

of each WD is determined and the cash settlement takes place.

Besides the WDs, a risk free asset Bt with a known constant per period return rt is

available. Trading with Bt is not restricted in any way, that is, unlimited borrowing

and lending at the interest rt in each t is allowed.

2. Agents. There are J+1 heterogeneous market participants, indexed by i, with risk pref-

erences described by the exponential utility function of the form Ui(x) = − exp(−aix),

where ai > 0 is the risk aversion of agent i. All agents have the same multi-period
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investment horizon of length T . They invest at t = 0 and they consume their terminal

wealth at t = T . At t = 1, . . . , T−1 agents rebalance their weather portfolios and rene-

gotiate the prices for WDs. All agents are endowed with initial wealth of zero monetary

units. We distinguish between J buyers, indicated by subscript j, j = 1, . . . , J , who

hedge weather exposure of their random bounded income Ij which they get at time T ,

and a purely financial investor, indicated by subscript m, who issues WDs. Each buyer

holds a basket of WDs on the relevant weather indices to hedge weather caused fluctu-

ations in her profits. The issuer holds positions in all S WDs. At time t, the portfolio

of agent i includes αi,t = (αi,t,1, . . . , αi,t,S)> shares of the corresponding WDs and βi,t

shares of the asset Bt. Both α·,· and β·,· are real valued, that is, all assets are perfectly

divisible and short sales are allowed. We denote the value of ith agent’s portfolio at

time t as Vi,t, where Vi,t = α>i,tWt + βi,tBt. In each period t of the investment horizon,

agents maximise their expected utility of the terminal wealth with the available WDs

and attain their demand and supply for the WDs. That is, in each period t < T every

agent i determines her self-financing trading strategy (αi,t+1, βi,t+1)
>
t=0,1,...,T , in particu-

lar, she constructs the optimal hedging portfolio given the state of the system at time

t. Partial market clearing with respect to WDs determines the equilibrium prices for

the WDs.

We assume, that the information structure is perfect and symmetric. The information

set at time t, Ft, represents the growing information level of the agents up to time t.

The expectation with respect to Ft is denoted as Et(·).

3. State. The observable state of the system at time t, denoted by Wt, contains all

realisations of relevant system variables at time t. The evolution to the next state

Wt+1 is characterised by the conditional distribution function Φt(w′, w) = Pr(Wt+1 ≤
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w′|Wt = w). We assume that each transition function Φt for t = 0, . . . , T − 1 satisfies

the Feller property Stokey et al. (1989).

Each agent i ∈ J is faced with the following discrete time stochastic control system:

Vi,t+1 = gi,t{Vi,t, (αi,t,s)s∈S,Wi,t}, t = 0, 1, . . . , T (1)

where Vi,t incorporates portfolio value of agent i with Vi,0 = 0. (αi,t,s)s∈S are controls of

the agent in the system (1). The continuous law of motion gi,t : RS+1×R|Sj |×R|Sj | 7→

R|Sj |+1 maps to the next wealth state of the agent.

2.2 Pricing WDs without Default Risk

We now derive a dynamic pricing model for WDs with multiple assets under the market

design introduced by assumptions 1 to 3. For the moment, we assume that there is no default

risk.

The terminal wealth of buyer j at T is her profit Πj,T :

Πj,T = Ij + α>j,TWT + βj,TBT

= Ij + Vj,T

(2)

with Ij being the real-valued income at time T that depends on some of the weather indices

entering the final payoff WT . βj,TBT and α>j,TWT are the payoffs of the risk free asset and of

the basket of the WDs; together they constitute Vj,T , the terminal portfolio value of buyer

j. Let αj,t+1:T denote trading strategies of agent j from t+ 1 to T . Portfolio choice problem
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of buyer j in each t = 0, 1, . . . , T − 1 is:

max
αj,t+1:T∈RS×(T−t)

Et {Uj (Πj,T )}

s.t. α>j,t+1Wt + βj,t+1Bt − Vj,t = 0.

(3)

with Vj,0 = 0 and Uj(Πj,T ) = − exp(−αjΠj,T ). That is, in each period of the investment

horizon buyer j maximises the expected utility of her terminal wealth with respect to all

future trading strategies, subject to a self-financing portfolio.

The terminal wealth of investor m at T is:

Πm,T = −α>m,TWT + βm,TBT = Vm,T (4)

with α>m,TWT and βm,TBT being the payoffs of the WDs portfolio and the risk free asset

respectively. Investor’s portfolio choice problem in each t = 0, 1, . . . , T − 1 is:

max
αm,t+1:T∈RS×(T−t)

Et {Um (Πm,T )}

s.t. α>m,t+1Wt − βm,t+1Bt + Vm,t = 0.

(5)

with Vm,0 = 0 and Um(Πm,T ) = − exp(−αmΠm,T ). In t < T investor m maximises the

expected utility of her terminal wealth with respect to all future trading strategies, subject

to a self-financing portfolio.

Note, that under assumptions 1 to 3, the constraints in the optimization problems 3 and

5 are nonempty, compact and continuous in V·,· and W·, U·(·) is continuous and bounded,

and transition function Φ is Feller (by assumption). Thus, the continuous law of motion g·,·

ensures the existense of optimal solutions to the problems above and the continuity of the
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value function (see Stokey et al. (1989),p.62).

Following Pennacchi (2008), we solve the multi-period portfolio choice problems (3) and

(5) using dynamic programming. Let Ji,t(Vi,t, αi,t+1:T ,Wi,t) denote the expected utility of

agent i in time t. It depends on the agent’s current portfolio value Vi,t, the current state

Wi,t, and the trading strategies αi,t+1:T in the time span t+1 to T (here indicated by subscript

t+ 1 : T ). Let J∗i,t(Vi,t,Wi,t) be the expected utility maximised with respect to the strategies

of agent i from t+ 1 on. Formally, in each t J∗i,t(Vi,t,Wi,t) is obtained by:

J∗i,t(Vi,t,Wi,t) = max
αi,t+1:T∈RS×(T−t)

{Ji,t(Vi,t, αi,t+1:T ,Wi,t)} . (6)

According to the principle of dynamic programming the expected utility of agent i in t can

be rewritten as:

Ji,t(Vi,t, αi,t+1,Wi,t) = Et
[
J∗i,t+1{Vi,t+1(αi,t+1),Wi,t+1}

]
. (7)

Combining (6) and (7), we obtain the recursive expression for J∗i,t(Vi,t,Wi,t):

J∗i,t(Vi,t,Wi,t) = max
αi,t+1∈RS

Et
[
J∗i,t+1{Vi,t+1(αi,t+1),Wi,t+1}

]
(8)

with the boundary condition at T

J∗i,T (Vi,T ,Wi,T ) = Ui(Ii + α>i,TWT + βi,TBT ), (9)

and with βi,TBT = Vi,T − α>i,TWT .

Starting with t = T − 1 and using (8), we recursively find the supply and the demand at
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t for all the WDs, denoted in vector form as:

W i
t (αi,t+1) = {W i

t,1(αi,t+1), . . . ,W
i
t,S(αi,t+1)}>, i = j,m. (10)

Imposing a partial market clearing for WD securities (zero net supply),
∑J

j=1 α
∗
j,t+1,s =

α∗m,t+1,s, delivers the equilibrium prices Wt = Wm
t (α∗m,t+1) for all t = 0, . . . , T − 1, where ∗

identifies the optimal values. The specific forms of buyer’s demand and investor’s supply are

given in Propositions 1 and 2 below.

PROPOSITION 1. Let the utility function of the buyer j be of the exponential form with

risk aversion aj > 0. Then, under assumptions 1 to 3 her reverse demand for WD s,

W j
t,s(αj,t+1), and her optimal utility level J∗j,t(Vj,t,Wj,t) are given recursively by:

W j
t,s(αj,t+1) =

Et{exp(−ajα>j,t+1Wt+1R
T−(t+1))Θj,t+1Wt+1,s}

Et{exp(−ajα>j,t+1Wt+1RT−(t+1))Θj,t+1}R
, (11)

J∗j,t(Vj,t,Wj,t) = − exp(−ajVj,tRT−t)Θj,t, (12)

Θj,t = exp(ajR
T−tα∗>j,t+1Wt)Et{exp(−ajRT−(t+1)α∗>j,t+1Wt+1,s)Θj,t+1}, (13)

for t = 0, . . . , T − 1, Θj,T = exp(−ajIj) and R = 1 + r.

Proof. See the Appendix.

PROPOSITION 2. Let the utility function of the investor be of the exponential form

with risk aversion am > 0. Then, under assumptions 1 to 3 her reverse supply for WD s,
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Wm
t,s(αm,t+1), and her optimal utility level J∗m,t(Vm,t,Wm,t) are given recursively by:

Wm
t,s(αm,t+1) =

Et
[
exp

{
am(α>m,t+1Wt+1,sR

T−(t+1))Θm,tWt+1,s

}]
Et
{

exp
(
amα>m,t+1Wt+1RT−(t+1)

)
Θm,t

}
R

, (14)

J∗m,t(Vm,t,Wm,t) = − exp(−amVm,tRT−t)Θm,t, (15)

Θm,t = exp(−amα∗>m,t+1WtR
T−t)Et

{
exp(amR

T−t+1α∗>m,t+1Wt+1)Θm,t+1

}
(16)

for t = 0, . . . , T − 1, Θm,T = 1 and R = 1 + r.

Proof. The proof is very similar to the proof of Proposition 1 and is omitted.

The results above show that the reverse demand and supply for the sth WD at time t

are determined by the interaction of the terms proportional to the marginal expected utility

of the next period as well as future expected utilities in Θi,t+1 that embrace optimal future

trading behaviour, αi,t+1:T . Moreover, the reverse demand and supply are both influenced

by the capital costs or risk-free rate rt. Changes in rt will, therefore, influence the resulting

WD prices.

The expressions obtained are of a semi-closed form, since the expectations entering (11)

and (14) have, in general, no explicit representation and have to be computed numerically

using, for example, Monte Carlo techniques.

2.3 Default risk

As we already mentioned, OTC derivatives are subject to the counterparty default risk

or credit risk as termed in Golden et al. (2007). In this section we incorporate the issuer

default risk into the pricing model for WDs.
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As in Golden et al. (2007), we consider dichotomous default risk modelled by a payoff

proportion parameter λt with values in {0, 1}. While λt = 1 means that the counterparty

fully meets its obligations in t, λt = 0 inherits the situation where the counterparty does

not perform at all. We assume that λt is independent of all other random variables in the

model, and P (λt+1 = 0) = pt, P (λt+1 = 1) = 1− pt, where pt is the probability of investor’s

default at t+ 1. Parameters λt and pt are known to the buyers by t. Since once the investor

defaults, she is not going to meet any obligations in subsequent periods, if λt = 0 we set

λt+1:T = 0.

Clearly, under the non-zero investor’s default risk, the payoff vector of the WDs is a

multiple of λT , that is, λTWT . If the investor has met all her obligations up to period t < T ,

then the contribution of the next period WD prices is λt+1Wt+1. Hence, the jth buyer’s

demand for WD s in (11) has to be modified to account for the default risk in the following

way:

W j
t,s(αj,t+1) =

Et{exp(−ajα>j,t+1λt+1Wt+1R
T−(t+1))Θ̃j,t+1λt+1Wt+1,s}

Et{exp(−ajα>j,t+1λt+1Wt+1RT−(t+1))Θ̃j,t+1}R
(17)

with

Θ̃j,t = exp(ajR
T−tα∗>j,t+1Wt)

· Et{(1− pt) exp(−ajRT−(t+1)α∗>j,t+1λt+1Wt+1,s)Θ̃j,t+1 + ptΘj,T}, (18)

and Θj,T = exp(−ajIj).

To derive (17) we consider all probable outcomes of λt+1 at each t. Thus, in T − 1, if

λT−1 = 1 we solve the maximisation problem (3) with the payoff of the WDs scaled by λT

and equal to λTWT . As a result, we find α∗j,T > 0, WT−1 > 0, and J∗j,T−1(Vj,T−1,WT ) which
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is equal to:

J∗j,T−1(Vj,T−1,WT−1) = − exp {−ajVj,T−1R}Θ′j,T−1 (19)

with
Θ′j,T−1 = exp{ajα∗>j,TWT−1R}ET−1

[
exp{−aj(α∗>j,TλTWT )}Θj,T

]
. (20)

If λT−1 = 0 α∗j,T = 0, WT−1 = 0, and

J∗j,T−1(Vj,T−1,WT−1) = − exp {−ajVj,T−1R}Θ′j,T−1, (21)

where Θ′j,T−1 = ET−1(Θj,T ).

We move one period backwards to T − 2. If now λT−2 = 1 we maximise:

Jj,T−2(Vj,T−2, αj,T−1,Wj,T−2) =ET−2{J∗j,T−1(Vj,T−1,Wj,T−1)}

=ET−2[− exp {−ajVj,T−1R} Θ̃j,T−1], (22)

Θ̃j,T−1 = exp{ajα∗>j,TWT−1R}ET−1
[
(1− pT−1) exp{−aj(α∗>j,TλTWT )}Θj,T + pT−1Θj,T

]
. (23)

Note, that the expectation in first line of (22) is taken under the joint distribution of λT−1

and the other random variables of the model, and in the second line - only with respect to

the joint distribution of the later ones. J∗j,T−2(Vj,T−2,Wj,T−2) is in this case:

J∗j,T−2(Vj,T−2,Wj,T−2) = − exp {−ajVj,T−2R}Θ′j,T−2 (24)

with

Θ′j,T−2 = exp(ajα
∗>
j,T−1WT−2R)ET−2

[
exp{−aj(α∗>j,T−1λT−1WT−1)}Θ̃j,T−1

]
(25)
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If λT−2 = 0 then α∗j,T−1 = 0, WT−2 = 0, and

J∗j,T−2(Vj,T−2,Wj,T−2) = − exp {−ajVj,T−2R}Θ′j,T−2, (26)

where Θ′j,T−2 = ET−2(Θj,T ). Then, the following expectation reads:

ET−3{J∗j,T−2(Vj,T−2,Wj,T−2)} = ET−3[− exp {−ajVj,T−2R} Θ̃j,T−2] (27)

with

Θ̃j,T−2 = exp(ajα
∗>
j,T−1WT−1R)

· ET−2
[
(1− pT−2) exp{−aj(α∗>j,TλTWT )}Θ̃j,T−1 + pT−2Θj,T

]
. (28)

By backward induction we obtain (17) and (18).

From (17) we observe that a non-zero issuer default probability influences adversely the

demand for the WDs through correcting the expectations of the future portfolio values and

the marginal expected utility of the WD payoffs downwards.

2.4 Alternative Investment

Frequently, the model assumptions implying that agents’ portfolios contain only the

risk free asset besides the WDs will not hold. This will often be the case for the investor’s

portfolio. In the following, we relax this restriction and allow investor to make an alternative

investment on the financial market.

Let’s amend the assumptions made in 2.1 with the following:

1a Assets. Let assumption 1. hold. Let Ft be a quoted price of an exchange traded
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financial asset at time t. While Ft is given, Ft+1 is random, bounded, and predictable

at t. Trading with Ft is not restricted in any way, that is, short and long positions

in the asset in each t are possible. We assume there is no transaction costs on the

asset market. As before, no capital addition or withdrawals are possible throughout

the investment horizon, such that the agents are exposed to self-financing constraints.

For example, Ft can be a share value of an exchange traded fund tracking some financial

portfolio, or it can represent the value of the market portfolio itself at t.

2a Agents. Let assumption 2. hold. Now, issuer m holds additionally fm,t shares of the

exchange traded financial asset with exogenous price Ft. Also, f·,· is real valued, that

is, all assets are perfectly divisible and short sales are allowed. The value of issuer’s

portfolio at time t becomes Vm,t = α>m,tWt − fm,tFt + βm,tBt.

As before, in each period t of the investment horizon, agents maximise their expected

utility of the terminal wealth with the available WDs and attain their demand and

supply for the WDs. That is, in each period t < T issuer m determines her self-

financing trading strategy (αm,t+1, βm,t+1, fm,t+1)
>
t=0,1,...,T , in particular, she constructs

the optimal hedging portfolio given the state of the system at time t. Partial market

clearing with respect to WDs determines the equilibrium prices for the WDs.

3a State. Let assumption 3. hold. The observable state of the system for agent i at time

t, denoted by Wi,t, contains additionally the quoted price Ft.

Under assumptions 1a-3a, the terminal wealth of investor m at T is:

Πm,T = −α>m,TWT − fm,TFT + βm,TBT = Vm,T (29)

with α>m,TWT , fm,TFT , and βm,TBT being the payoffs of the WDs portfolio, the alternative
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financial investment, and the risk free asset respectively. Investor’s portfolio choice problem

in each t = 0, 1, . . . , T − 1 is:

max
αm,t+1:T∈RS×(T−t)

Et {Um (Πm,T )}

s.t. α>m,t+1Wt + fm,t+1Ft − βm,t+1Bt + Vm,t = 0.

(30)

As before, in each t < T investormmaximises the expected utility of her terminal wealth with

respect to all future trading strategies, subject to a self-financing portfolio. The expected

utility of the investor in t Jm,t(Vm,t, αm,t+1:T , fm,t+1:T ,Wt) is now also a function of her trading

strategies on the financial market, denoted as fm,t+1:T .

Keeping in mind these modifications and following the steps of subsection 2.2, we have

to modify the investor’s supply for WD s in (14) in the following way:

Wm
t,s(αm,t+1, fm,t+1) =

Et
[
exp

{
amR

T−(t+1)(α>m,t+1Wt+1,s + fm,t+1Ft+1)Θm,tWt+1,s

}]
Et
[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + fm,t+1Ft+1)Θm,t

}]
R

, (31)

J∗m,t(Vm,t,Wm,t) = − exp(−amVm,tRT−t)Θm,t, (32)

Θm,t = exp{−amRT−t(α∗>m,t+1Wt + f ∗m,t+1Ft)}·

Et
[

exp{amRT−t+1(α∗>m,t+1Wt+1 + f ∗m,t+1Ft)Θm,t+1}
]

(33)

for t = 0, . . . , T − 1, Θm,T = 1 and R = 1 + r. In (33), f ∗m,t+1 should be chosen such that it

satisfies:

Ft =
Et
[
exp

{
amR

T−(t+1)(α>m,t+1Wt+1,s + f ∗m,t+1Ft+1)Θm,tFt+1

}]
Et
[
exp

{
amRT−(t+1)(α>m,t+1Wt+1,s + f ∗m,t+1Ft+1)Θm,t

}]
R

, (34)

We obtained (34) by maximising Jm,t(Vm,t, αm,t+1:T , fm,t+1:T ,Wm,t) with respect to fm,t+1:T

in each t as in subsection 2.2.
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Note, that now the reverse supply for the sth WD also depends on the position in

the alternative financial investment. Thus, any changes in its price process will influence

investor’s supply for the sth WD.

3 Pricing Weather Derivatives Using Weather Data

In this section, we show an example on how to price rainfall derivatives using historical

weather data from China and discuss other applications of the pricing approach presented.

3.1 Pricing Chinese Rain

Chinese farmers are exposed to pronounced weather risks as Turvey and Kong (2010).

According to The World Bank (2007) the existing agricultural insurance schemes are too

expensive for Chinese agricultural producers. One of the causes might be the fact that crop

insurer are exposed to variability in precipitation due to the impact of the later on farmers’

crop production. Trading WDs can play an important role in transferring part of the weather

exposure to financial markets and so make crop insurance affordable for farmers. Since the

weather exposed income of such a crop insurer is generally dependent on the rainfall in

a number of geographical sites where the insured farmers are located, a basket of rainfall

derivatives on the relevant sites should be used for hedging the risks. Motivated by this

example, we illustrate pricing a basket of rainfall options on two weather stations Changde

and Enshi1 located in an agricultural area of China.

1Station numbers given by the World Meteorological Organisation are 57662 for Changde and 57447 for
Enshi.
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3.1.1 Setup

Our representative buyer is an insurer who offers crop insurance to the farmers in the

agricultural area of Changde and Enshi is, therefore, exposed to fluctuations in the local

rainfall amount. The company discovers that its income is highly dependent on the cumula-

tive precipitation in Changde and Enshi during May, and wants to hedge its rainfall exposure

by holding a portfolio of put options on the cumulative rainfall in these sites. Suppose, there

is an investor who wants to issue such rainfall derivatives on the two of the relevant sites:

Changde and Enshi. Then, the parties consider pricing a basket of the two put options

on the cumulative precipitation over May in Changde and Enshi. They construct the put

options as plain vanilla options on the underlying rainfall indices computed as the sums of

monthly rainfall over May measured in each of the sites. Both options mature at the end

of the measurement period, that is, on the 31st of May. We also suppose that the parties

aggree to renegotiate the put prices in the middle of the measurement period: on the 15th

of May.

Let Rz,i denote the rainfall measured at station i on day z. The cumulative precipitation

over a period Z is then
∑

z∈Z Rz,i. Thus, a put option on the cumulative precipitation in Z

in station i with strike Ki (in precipitation units) has the payoff:

kmax{Ki −
∑
z∈Z

Rz,i, 0} (35)

where k specifies the tick value of the option in monetary units.

Suppose, the insurer’s income I1 exhibits a non-linear dependence to the rainfall index in

May of the form I1 ∼ logN{µI(Rz,i), σI(Rz,i)} where µI(Rz,i) = 10+
∏

i∈1,2
∑

z∈MayRz,i/Ki

and σI(Rz,i) = 0.1{1+
∑

i∈1,2(1−Rz,i/Ki)
2} parametrize the dependence of I1 to the rainfall
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of Changde (indexed by 1) and Enshi (indexed by 2) respectively. Further parameters to

specify are: the risk aversion aj = am = 10−4, the strikes K1 = K2 = 100 and the tick value

k = 1 monetary units per mm precipitation measured.

Logarithmic return on the alternative investment in investor’s portfolio is assumed to

follow a normal distribution with zero mean and annual volatility σF = 0.1 in the low

volatility scenario and σF = 0.25 in the high volatility scenario. The value of the alternative

investment in t = 0 is normalized to a hundred monetary units, that is F0 = 100.

We compute the prices for the put options assuming different investment horizons T . If

T = 1, in t = 0 (prior to the 1st of May) the agents negotiate the prices for the specified

options under their current states of the world W1,0 and W2,0 respectively, and at t = T

(here, on the 31st of May) the settlement occurs according to the terminal time with realized

payoffs WT . T = 2 means that the agents additionally renegotiate the prices at t = 1 (here,

on the 15th of May). The renegotiation at t = 1 takes place under the new circumstances

arising from their new statesW1,1 andW2,1 respectively. The final payments are then settled

according to the realizations of W2. In our example, the state Wi,t, i = 1, 2 includes the

evolution of the rainfall, the obeserved price process Wn,n≤t, Ft, λt, pt, and r. The evolution

to the next state Wi,t+1 conditional on the realization of Wi,t is described by conditional

distribution function Φ. The terminal state of the insurer W1,T contains also her realised

income I1.

At t ≤ T denote the index value underlying the payoff in (35) in station i as RXt,i. Then,

RX0,i = 0, RXT,i =
∑

z∈1.−31.MayRz,i, and in case T = 2 RX1,i =
∑

z∈1.−15.MayRz,i. The

corresponding put option price, denoted as Wt,i, corresponds in t = T to the put payoff,

WT,i = max(Ki − RXT,i, 0), and for t < T Wt,i it is defined by the intersection of buyer’s

demand (17) and investor’s supply (14).
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3.1.2 Generation of the correlated rainfall on a daily basis

To conduct the pricing of the rainfall options in the setup described, we will need to

assess the joint distribution of the rainfall in Change and Enshi on a daily basis. We use

the multi-site rainfall generation model proposed by Wilks (1998). We give the basic ideas

of the Wilks model below.

Precipitation at time t in station s′ Rs′,t is modeled as:

Rs′,t = rs′,tXs′,t, (36)

where Xs′,t takes values {0, 1} and represents rainfall occurrence at time t in station s′ and

rs′,t is a positive random variable for the rainfall amount. This structure ensures that Rs′,t

equals zero whenever Xs′,t is zero and there is no rain and Rs′,t equals rs′,t whenever rainfall

occurs. Xs′,t are assumed to form a Markov chain with two states, wet and dry:

Xs′,t =

 1 (wet, ≥ Xmin),

0 (dry, < Xmin).
(37)

We take a first order Markov model where the probability of a wet day depends only on the

state in the previous day. Our justification of this choice is based on the Bayesian information

criteria (BIC), see Katz (1981) and the Table 2, where the lowest value of the test statistics

indicates the appropriate order of the markov chain. The transition probabilities to the wet

state are:

P (Xs′,t = 1|Xs′,t−1 = 0) = p01,s′,t,

P (Xs′,t = 1|Xs′,t−1 = 1) = p11,s′,t. (38)
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The multi-site feature is added to the model through the generation of correlated occur-

rences in the neighbor locations. We define the threshold probability ps′,crit:

pcrit,s′,t =

 p01,s′,t if Xs′,t−1 = 0,

p11,s′,t if Xs′,t−1 = 1,
(39)

and Xs′,t can be generated using

Xs′,t =

 1 if ws′,t ≤ Φ−1(pcrit,s′,t),

0 if ws′,t > Φ−1(pcrit,s′,t).
(40)

Here Φ(·) is cumulative distribution function of standard normal distribution, {ws,t}s∈S ∼

N(0S ,Σ), with Σs,s′ = Corr(ws,t, ws′,t) such that the empirical correlations

Corr(Xs,t, Xs′,t) of the rainfall occurrences are mimicked in the generated rainfall occurrence

series, see Wilks (1998) for further details.

The multi-site rainfall amount conditioned on a rainy day rs,t|Xs,t = 1 follows a mixture of

two exponential distributions with a time dependent mixing parameter γs,t and time changing

means β1,s,t, β2,s,t. Following Wilks (1998) we can generate rainfall amounts at time t in site

s using

rs,t = rmin − βs,t log Φ(vs,t) (41)

where

βs,t =

 β1,s,t if Φ(ws,t)/ps,crit ≤ γs,t,

β2,s,t if Φ(ws,t)/ps,crit > γs,t,
(42)

and vs,t are normal covariates correlated such that the generated rainfall time series mimic

the empirical correlation in the rainfall data.
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Now, we estimate the parameters for the multisite rainfall generation in Changde and

Enshi based on the rainfall data collected in these locations. Table 1 summarizes the param-

eters of the daily rainfall data for Changde and Enshi acquired via Research Data Center of

CRC 649 (Collaborative Research Center 649: Economic risk).

station number latitude longitude start date end date
Changde 57662 29.05 111.68 19510101 20091130

Enshi 57447 30.28 109.47 19510801 20091130

Table 1Description of the rainfall data and stations.

For the estimation we use maximum likelihood. For the acquired rainfall data p01,1,t∈May =

0.39 and p11,1,t∈May = 0.59 whereas p01,2,t∈May = 0.43 and p11,2,t∈May = 0.64 where the

indices 1 and 2 refer to Changde and Enshi respectively. The empirical counter part of

Corr(X1,t∈May, X2,t∈May) appears to be 0.53, in order to mimique this correlation

Corr(w1,t∈May, w2,t∈May) must to be set to 0.76. The empirical counter part of

Corr(r1,t∈May, r2,t∈May|X1,t∈May = 1, X2,t∈May = 1) is 0.16 for the considered data, and in

order to obtain this correlation in the generated rainfall series Corr(v1,t∈May, v2,t∈May) must

be 0.25.

The estimated distributional parameters for ri,t∈May|Xi,∈May = 1, i = {1, 2} are presented

in Table 3.

Table 2BIC criterion for different orders of Markov model for Xt,s, t ∈ [τ1, τ2], s ∈
{Changde,Enshi,Yichang}.

Order/BIC Changde Enshi Yichang

0 70.83 60.02 19.86
1 53.21 43.21 4.53
2 53.47 44.69 9.03
3 65.64 59.72 33.38
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Table 3The estimated parameters for the mixture of two exponential distributions.

Parameter Changde Enshi

γ·,t∈[τ1,τ2] 0.78 0.58
β1,·,t∈[τ1,τ2] 15.90 23.14
β2,·,t∈[τ1,τ2] 0.62 1.86

Using the estimated parameters, we generate 104 correlated rainfall paths in Changde

and Enshi to compute the model prices in our Monte Carlo example.

3.1.3 Results

By altering T , p, r and σF we obtain prices on rainfall calls for Changde and Enshi under

different market scenarios. All prices are normalized to the price obtained for T = 1, p = 0,

r = 0.01 and σF = 0.1 to facilitate the comparison.

Table 4
Prices for put options on cumulative rainfall in different scenarios.

Prices are computed for plain vanilla put options on cumulative precipitation over May in
Changde (CRMay,1) and Enshi (CRMay,2) with strike K = 100 for variing investment horizon
(T ), capital costs (r), default probabilities (pt = p), and market volatility (σF ).

Scenarios Put on CRMay,1 Put on CRMay,2

T = 1 T = 2 T = 1 T = 2
σF = 0.1
r = 1% p = 0 100.00 100.30 100.00 96.68
r = 5% p = 0 99.67 99.95 98.81 96.35
r = 1% p = 0.05 91.22 93.95 86.74 87.45
r = 5% p = 0.05 90.87 93.62 85.95 87.12
σF = 0.25
r = 1% p = 0 100.00 100.31 100.23 96.68
r = 5% p = 0 99.67 99.97 99.71 96.36
r = 1% p = 0.05 91.23 94.23 86.88 87.73
r = 5% p = 0.05 90.92 93.99 86.47 87.51
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Figure 1. Shifts of the demand curves by increasing default risk (top) and capital
costs (bottom). Top: the default risk probability pt = p is changing from 0 (dashed) to
0.01, 0.05, 0.10 (solid lines, thicker with increasing p). Bottom: capital cost p.a. r is changing
from 1% (dashed) to 5%, 10%, 15% (solid lines, thicker with increasing r) for σF = 0.1. Both
plots: the x-axis shows αj,1,1, the buyer’s position in the put option on the rainfall in Changde
during May (CRMay,1) with strike K = 100 and investment horizon T = 1; the y-axis shows
W0,1(αj,1), the price buyer is willing to pay for such an option, where αj,1 = (αj,1,1, αj,1,2)

>

and while αj,1,2, the position in the other put option on the rainfall in Enshi during May
(CRMay,2) is kept constant.
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By a non-zero default probability the demand curve shifts downwards which results in

lower equilibrium prices for the rainfall options. A higher risk-free rate r also results in lower

WD prices to compensate for higher capital costs.

The shift of the demand curve by changing probability to default and capital costs is

shown in Figure 1.

αj,1,1

W
0,

1(α
j,1

)

Figure 2. Shifts of the demand curves by increasing investment horizon T . Buyer’s
demand with investment horizon T = 1 (dashed) and T = 2 (solid). Thinner lines correspond
to the case capital costs r = 5% and probability of issuer’s default pt = p = 0; thicker lines
correspond to capital costs r = 5% and probability of issuer’s default pt = p = 0.05 for
σF = 0.1. The x-axis shows αj,1,1, the buyer’s position in the put option on the rainfall
in Changde during May (CRMay,1) with strike K = 100; the y-axis shows W0,1(αj,1), the
price buyer is willing to pay for such an option, where αj,1 = (αj,1,1, αj,1,2)

> and while αj,1,2,
the position in the other put option on the rainfall in Enshi during May (CRMay,2) is kept
constant.

Figure 2 shows buyer’s demand in t = 0 for different time horizons T . In the ”flexible”

case T = 2 the WD prices are renegotiated at t = 1, and in the case T = 1 no rebalancing

takes place. From Figure 2 we observe that buyer’s demand price elasticity at t = 0 is
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lower in the ”flexible” case. Consistent with the classical result of Allen and Postlewaite

(1984), already at t = 0 individual demand reflects all agents’ expectations including the

expectations about future trading behaviour.

αm,1,1

W
0,

1(α
m

,1
)

Figure 3. Shifts of the supply curves by increasing volatility of the alternative
investment. Investor’s supply with investment horizon T = 1 (dashed) and T = 2 (solid).
Thinner lines correspond to the case of low volatility of the alternative investment; thicker
lines correspond to high volatility. The x-axis shows αm,1,1, the investor’s position in the put
option on the rainfall in Changde during May (CRMay,1) with strike K = 100; the y-axis
shows W0,1(αm,1), the price for which the investor is willing to sell such an option, where
αm,1 = (αm,1,1, αm,1,2)

> and while αm,1,2, the position in the other put option on the rainfall
in Enshi during April and May (CRMay,2) is kept constant.

Figure 3 shows investor’s supply in t = 0 for different time horizons T and for different

levels in the volatility of the alternative investment in investor’s portfolio. In the ”flexible”

case T = 2 the WD prices are renegotiated at t = 1, and in the case T = 1 no rebalancing

takes place. From Figure 3 we observe that the price elasticity of the investor’s supply at

t = 0 is lower in the ”flexible” case. Moreover, the reaction of the supply to the changes
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in market volatility is very subtle in the ”flexible” case (under 1% and is not visible in the

graph), as the downward shift of the supply curve is quite pronounced for T = 1. In this case,

increase in market volatility (or in the volatility of the alternative investment) significantly

stimulates the investor’s supply for WDs.

3.2 Discussion

Our example shows pricing rainfall options. The presented pricing model, however, is not

limited to any particular kind of weather derivatives. In fact, it is possible to price various

weather derivatives with such underlyings as snowfall, sunshine hours, number of sunny

days, number of rainy days, wind speed, and other weather indices of a practical relevance

for retail, tourism and renewable energy operators.

Along with the other assumptions, the premise is the existence of a probabilistic model

that precisely enough describes the distribution and the time evolution of the underlying

weather index. Then, the conditional expectations of agents’ utilities, which determine

their supply and demand, can be approximated using Monte Carlo samples from the fitted

probabilistic model. Applying partial market clearing condition gives the equilibrium prices

for the constructed WDs.

4 Summary

We derive a dynamic utility-based model for pricing baskets of weather derivatives on

multiple dependent underlyings. Via expected utility maximisation, dynamic portfolio opti-

misation over a finite investment horizon, and partial market clearing, we obtain semi-closed

forms for the equilibrium prices of weather derivatives and for the optimal trading strategies.
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We provide extensions of the model to account for counterparty default risk and a possibility

of an alternative financial investment.

As expected, there is an adverse effect of the increasing default risk and capital costs

on the demand for weather derivatives and on their prices. We find, however, a stimulating

effect of increasing market volatility on the supply for weather derivatives.

We apply the proposed model to price the rainfall options using the rainfall data of

agricultural provinces Changde and Enshi in China. We compare the equilibrium prices for

put options on cumulative rainfall over May resulting from different scenarios. The effects of

increasing default risk, capital costs, investment horizon, and market volatility are assessed.

Applicability of the proposed model is not restricted to pricing rainfall derivatives. Var-

ious kind of weather derivatives with agent-based market design can be priced in our frame-

work.

28



References

Alaton, P., Djehiche, B., and Stillberger, D. (2002). On modelling and pricing weather

derivatives. Applied Mathematical Finance, 1(9):1–20.

Allen, F. and Postlewaite, A. (1984). Rational expectations and the measurement of a stock’s

elasticity of demand. Journal of Finance, 39(4):1119–1125.
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Appendix

Proof of Proposition 1: We prove the assertion by backward induction starting with

t = T − 1. Utility maximisation problem of buyer j in T − 1:

max
αj,T∈RS

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1)

s.t. α>j,TWT−1 + βj,TBT−1 − Vj,T−1 = 0.

(43)

The expected utility in T − 1 reads:

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1) = ET−1 {− exp (−ajΠj,T )} . (44)

By plugging the self-financing constraint in (44) we obtain

Jj,T−1(Vj,T−1, αj,T ,Wj,T−1) = ET−1[− exp{−aj(Ij + α>j,TWT +RVj,T−1 −Rα>j,TWT−1)}].

(45)

Taking the first derivative of (45) with respect to αj,T , we win the gradient vector with the

sth entry equal to:

∂Jj,T−1(Vj,T−1, αj,T ,Wj,T−1)

∂αj,T,s
=aj exp{−aj(Vj,T−1 − α>j,TWT−1)R}

· ET−1
[

exp{−aj(Ij + α>j,TWT )}(WT,s −RWT−1,s)
]

(46)

for s = 1, . . . , S. Taking the second derivative of (45) with respect to αj,T gives the Hessian
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matrix H with ss′th entry:

∂2Jj,T−1(Vj,T−1, αj,T ,Wj,T−1)

∂αj,T,s∂αj,T,s′
= −a2j exp{−aj(Vj,T−1 − α>j,TWT−1)R}

· ET−1
[

exp{−aj(Ij + α>j,TWT )}(WT,s −RWT−1,s)(WT,s′ −RWT−1,s′)
]

(47)

for s, s′ = 1, . . . , S. In a similar manner as Çanakoǧlu and Özekici (2009), we check that the

Hessian H defined entry-wise by (47) is negative semi-definite, since for any nonzero x ∈ RS:

x>Hx =− a2j exp{−aj(Vj,T−1 − α>j,TWT−1)R}

· ET−1
[

exp{−aj(Ij + α>j,TWT )}
{ S∑
s=1

xs(WT,s −RWT−1,s)
}2]

(48)

is always smaller or equal to zero. Hence, we obtain the maximiser of (45) by setting the

gradient (46) coordinate-wise to zero, in particular:

ET−1
[

exp{−aj(Ij + αj,TWT )}(WT,s −RWT−1,s)
]

= 0. (49)

In T − 1 the current prices WT−1 are known and can be taken out of the expectation in

(49). Thus, we obtain the reverse demand of the jth buyer for each s ∈ S as:

W j
T−1,s(αj,T ) =

ET−1
[
exp

{
−aj(Ij + α>j,TWT )

}
WT,s

]
ET−1

[
exp

{
−aj(Ij + α>j,TWT )

}]
R

=
ET−1

{
exp(−ajα>j,TWT )Θj,TWT,s

}
ET−1

{
exp(−ajα>j,TWT )Θj,T

}
R

(50)

with Θj,T = exp(−ajIj).

Applying partial market clearing or zero-net-supply condition to all WDs, we find α∗j,T
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and WT−1 = Wm
T−1(α

∗
m,T ). Then, the maximised utility of buyer j at T − 1 is:

J∗j,T−1(Vj,T−1,Wj,T−1) =J{Vj,T−1, α∗j,T ,WT−1,Wj,T−1}

=− exp {−ajVj,T−1R}Θj,T−1 (51)

with
Θj,T−1 = exp{ajα∗>j,TWT−1R}ET−1

[
exp{−aj(α∗>j,TWT )}Θj,T

]
. (52)

J∗j,T−1(Vj,T−1,Wj,T−1) is of the exponential form like the utility function itself, and the in-

duction hypothesis holds for t = T − 1. Assume, that it holds for t = T, T − 1, . . . , k. Then,

in k − 1:

max
αj,k∈RS

Jj,k−1{Vj,k−1, αj,k,Wj,k−1}

s.t. α>j,kWk−1,s + βj,kBk−1 − Vj,k = 0.

(53)

is the constrained utility maximisation problem faced by buyer j. The expected utility in

k − 1 is:

Jj,k−1{Vj,k−1, αj,k,Wj,k−1} =Ek−1
{
J∗j,k(Vj,k,Wj,k)

}
=Ek−1

{
− exp(−ajVj,kRT−k)Θj,k

}
, (54)

where

Θj,k = exp(ajR
T−kα∗>j,k+1Wk)Ek{exp(−ajRT−(k+1)α∗>j,k+1Wk+1,s)Θj,k+1}. (55)
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Now we use the following identity:

Vj,k = R(Vj,k−1 − α>j,kWk−1) + α>j,kWk (56)

to rewrite (54) as a function of αj,k:

Jj,k−1(Vj,k−1, αj,k,Wj,k−1) = Ek−1
(
− exp[−aj{R(Vj,k−1 − α>j,kWk−1) + α>j,kWk}RT−k]Θj,k

)
.

(57)

By taking the derivative of (57) with respect to αj,k we find the gradient with sth entry:

∂Jj,k−1(Vj,k−1, αj,k,Wj,k−1)

∂αj,k,s
= ajR

T−k exp{−aj(Vj,k−1 − α>j,kWk−1)R
T−k+1}

· Ek−1
{
− exp(−ajα>j,kWkR

T−k)Θj,k(Wk,s −RWk−1,s)
}

(58)

As in (48) the Hessian is also negative semi-definite. Thus, the maximiser of (57) is found

by setting the gradient (58) to zero, that is:

Ek−1
{
− exp(−ajα>j,kWkR

T−k)Θj,k(Wk,s −RWk−1,s)
}

= 0. (59)

We obtain the reverse demand of the jth buyer for each s ∈ S as:

W j
k−1,s(αj,k) =

Ek−1
{

exp(−ajα>j,kWkR
T−k)Θj,kWk,s

}
Ek−1

{
exp(−ajα>j,kWkRT−k)Θj,k

}
R

(60)

Partial market clearing in k − 1 determines α∗j,k, Wk−1 = Wm
k−1(α

∗
m,k) and the maximised
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utility of buyer j in this period:

J∗j,k−1(Vj,k−1,Wj,k−1) =Jj,k−1{Vj,k−1, α∗j,k,Wj,k−1}

= − exp {−ajVj,k−1R}Θj,k−1 (61)

with
Θj,k−1 = exp{ajα∗>j,kWk−1R}Ek−1

[
exp{−aj(α∗>j,kWk)}Θj,k

]
, (62)

which completes the proof.
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