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Abstract

More and more data are observed in form of curves. Numerous applications in finance,
neuroeconomics, demographics and also weather and climate analysis make it necessary to
extract common patterns and prompt joint modelling of individual curve variation. Focus
of such joint variation analysis has been on fluctuations around a mean curve, a statistical
task that can be solved via functional PCA. In a variety of questions concerning the above
applications one is more interested in the tail asking therefore for tail event curves (TEC)
studies. With increasing dimension of curves and complexity of the covariates though one
faces numerical problems and has to look into sparsity related issues.

Here the idea of FActorisable Sparse Tail Event Curves (FASTEC) via multivariate
asymmetric least squares regression (expectile regression) in a high-dimensional framework
is proposed. Expectile regression captures the tail moments globally and the smooth loss
function improves the convergence rate in the iterative estimation algorithm compared with
quantile regression. The necessary penalization is done via the nuclear norm. Finite sample
oracle properties of the estimator associated with asymmetric squared error loss and nuclear
norm regularizer are studied formally in this paper.

As an empirical illustration, the FASTEC technique is applied on fMRI data to see if
individual’s risk perception can be recovered by brain activities. Results show that factor
loadings over different tail levels can be employed to predict individual’s risk attitudes.
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1 Introduction

Data are observed more and more in form of curves, thus prompting a joint modelling
to extract common patterns and also individual curves variations. Such data curve mod-
elling occurs e.g., in neuroeconomics, weather and climate analysis, demographics among
many other disciplines. A well known tool in these situations is Functional data analysis
(FDA) that studies the variation of random curve objects in a high dimensional content.
Leading references are Ramsay and Silverman (2002, 2005). Treating these random ob-
jects as curves FDA provides insight into main factors, typically extracted as principal
components via a Karhunen-Loève decomposition. A commonly used approach is to fit
the individual observation Y·j ∈ Rn (j indicates individuals) via a basis or series approx-
imation and then to enter a spectral analysis e.g., based on the Fourier coefficients of
the series expansion. This leads via inspection of the eigenvalues to a lower dimensional
factor model. This approach has been successfully employed in many situations, see, e.g.,
Yao et al. (2003); Hall et al. (2006).

Focus of such joint variation analysis has been on fluctuations around a mean curve, a
statistical task that can be solved via functional principal component analysis. However,
in a variety of questions concerning the above applications one is more interested in the
tail variations asking therefore for tail event curves (TEC) studies. TEC studies may be
performed through smooth approximation of conditional tail probabilities. More gener-
ally though one needs to look at functions based on conditional tail events; it helps to
discover "extreme curves" which are aberrant from the majorities. Modeling this way
the TECs require to deviate from Hilbert L2 geometry and to introduce asymmetric
norms or loss functions, Koenker and Bassett (1978); Newey and Powell (1987); Breck-
ling and Chambers (1988), and more recent work on principal component analysis with
asymmetric norm by Tran et al. (2016). Also in climate weather analysis and electricity
load forecasting, distributional forecasts characterized by tail measures are shown to be
powerful, Cabrera and Schulz (2016).

In scatterplot smoothing and multivariate settings, quantile regressions have been studied
under different approaches. A survey is given by Serfling (2002). Computational chal-
lenges arise in high-dimensional multi-task quantile regression due to the non-smooth
absolute loss. Asymmetric least squares (ALS) regression (Efron, 1991), known as ex-
pectile regression as well, can capture the complete conditional distribution as quantile
regression does. While associated with a smooth differentiable loss, it is more desir-
able if we have to pay attention to the computational convenience and efficiency in a
high-dimensional framework. Expectile as a generalization of mean is more and more
appealing in financial econometrics since it is more sensitive to the magnitude of extreme
losses, Taylor (2008); Kuan et al. (2009); Xu et al. (2015). It plays a crucial role in risk
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management because of its conventional interpretation: it specifies the sufficient amount
of money required to maintain a position given a gain-loss ratio (Bernardo and Ledoit,
2000). For industry investors this notion of loss is certainly more attractive than the
pure probability of a loss as given via the definition of quantile. Moreover, among other
popular risk measures such as Value at Risk (VaR) and expected shortfall (ES), expectile
is the only one enjoys elicitable law-invariant properties (Ziegel, 2016), which are desired
in forecasts and risk diversification.

On the other hand, with increasing dimension of curves and complexity of the covariates
though one faces numerical problems and has to look into sparsity related issues. A
natural way to reduce the burden of this estimation task is to introduce a penalty term.
Yuan et al. (2007) proposed a penalization approach with nuclear norm, the sum of
the singular values of the coefficient matrix, as the penalty. Numerically the estimator
can be readily obtained since it involves a convex optimization. Moreover, it leads via
thresholdings of the eigenvalues to a low dimensional factor model. Compared with
previous research such as the reduced rank approach by Izenman (1975), the number
of factors does not need to be predetermined. The dimension reduction and coefficient
estimation can be done simultaneously, thus leading to a handy tool in data analysis of
many curves.

Following these lines of thoughts we propose FActorisable Sparse Tail Event Curves
(FASTEC) via multivariate asymmetric least squares regression. We employ FISTA
technique developed by Beck and Teboulle (2009) to solve the optimization. Expectile
regression captures the tail moments globally and the smooth loss function improves the
convergence rate in the iterative procedure compared with the quantile regression case
(Chao et al., 2015). The finite sample oracle properties of the estimator are established
formally.

As an empirical illustration, FASTEC is applied on functional Magnetic Resonance Imag-
ing (fMRI) data recorded during investment decisions experiment. To be more specific,
multivariate factorisable sparse asymmetric least squares regression is employed to jointly
model all response curves with multivariate functional data. We expect that individual’s
risk perception is predictable with one’s brain reactions, particularly after taking tail
risks into consideration.

The rest of the paper is arranged as follows. Section 2 introduces the model setting, esti-
mation method and finite sample oracle properties of the estimator. Section 3 illustrates
the empirical application with fMRI data. Detailed proofs are provided in appendices.
The codes to implement the algorithms are publicly accessible via www.quantlet.de.
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2 Model and Estimation

2.1 Model Setting

We start with defining some notations. For a matrix S = (slj) = [S·1...S·m] ∈ Rp×m,
where S·j ∈ Rp be the column vectors. Let ‖S‖F, ‖S‖∗ and ‖S‖ be the matrix Frobenius,
nuclear and spectral norm. Denote σmin(S) and σmax(S) the smallest and largest singular
values. For a vector v ∈ Rp, ‖v‖2 is the Euclidean norm. Define 〈〈A,B〉〉 def= tr(A>B).

Let {(Xi, Yi1, ..., Yim)}1≤i≤n be i.i.d. samples, with Yij ∈ R and Xi ∈ Rp. We note that
Yij and Yik may be dependent, and m and p can diverge with n. For τ ∈ (0, 1), the
conditional expectile ej(τ |Xi) of Yij given Xi is defined by

ej(τ |X)
def
= arg min

θ
E[ρτ (Yij − θ)|X], (2.1)

with ρτ (u)
def
= |τ − 1{u < 0}||u|2. In particular, we assume a factor structure:

ej(τ |Xi) =
r∑

k=1

ψj,k(τ)f τk (Xi), (2.2)

where f τk (Xi) is the kth factor, r is the number of factors (much less than p) and ψj,k(τ)

are the factor loadings. Furthermore, factors are constructed by linear combinations of
covariates Xi:

f τk (Xi) = X>i ϕk(τ). (2.3)

Substituting (2.3) into (2.2) yields

ej(τ |Xi) = X>i γj(τ), (2.4)

where γj(τ) = (
∑r

k=1 ψj,k(τ)ϕk,1(τ), . . . ,
∑r

k=1 ψj,k(τ)ϕk,p(τ))> as the unknown coefficient
vector. Define Γ

def
= [γ1 ...γm], the factor model (2.2) implies that Γ is of rank r, and

the model (2.4) corresponds to a multivariate linear regression model. For standard
regression with square loss, Reinsel and Velu (1998) propose to estimate Γ with reduced-
rank regression under the knowledge of r. However, r is usually unknown in practice.
Yuan et al. (2007) propose to perform the multivariate regression with nuclear norm
penalty, which does not require the knowledge of r. The latter inspire the use of nuclear
norm penalty in the next section. It is important to note that both methods can only
apply to small number of p and m, and do not scale up to large dimensions.

Suppose an estimator Γ̂ is available, we can estimate the kth factor f̂ τk (Xi) = X>i ϕ̂k(τ) =

σkX
>
i U·k and the factor loadings for the jth curve ψ̂j(τ) = Vj·, where U and V are
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unitary matrices obtained from singular value decomposition: Γ̂ = UDV>.

2.2 Algorithm

To estimate our model under factor model (2.2), we combine asymmetric loss with nuclear
norm penalty. To be more specific, it is proposed to estimate Γ defined in Section 2.1 by
solving:

Γ̂τ (λ)
def
= arg min

Γ∈Rp×m
F (Γ), (2.5)

F (Γ)
def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij −X>i Γ·j) + λ‖Γ‖∗, (2.6)

where λ is a tuning parameter, Γ·j is the jth column of Γ. The second term nuclear norm
‖Γ‖∗ is defined by

∑min(p,m)
l=1 σl(Γ) given the singular values of Γ (square roots of non-zero

eigenvalues of both Γ>Γ and ΓΓ>): σ1(Γ) ≥ σ2(Γ) ≥ . . . ≥ σmin(p,m)(Γ). We note that
(2.6) is a convex optimization problem that can be solved efficiently. The number of
factors r in (2.2) does not need to be specified. To simplify the notation, we denote Γ̂

for Γ̂τ (λ) hereinafter.

To solve the optimization problem (2.6), we apply the fast iterative shrinkage-thresholding
algorithm (FISTA) of Beck and Teboulle (2009). FISTA is a popular algorithm for
optimization problems of the form:

min
Γ
{g(Γ) + h(Γ)}, (2.7)

where g is a smooth convex function with Lipschitz continuous gradient ∇g,

‖∇g(Γ1)−∇g(Γ2)‖F ≤ L∇g‖Γ1 − Γ2‖F, ∀Γ1,Γ2 ∈ Rp×m, (2.8)

where L∇g is the Lipschitz constant of ∇g and h is a continuous convex (possibly nons-
mooth) function (Ji and Ye, 2009). In view of (2.6), this corresponds to

g(Γ)
def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij −X>i Γ·j), (2.9)

h(Γ)
def
= λ‖Γ‖∗. (2.10)

The Lipschitz constant of ∇g is L∇g = 2(mn)−1 max(τ, 1− τ)‖X‖2F will be calculated in
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(A.4) in Appendix A.1. The FISTA algorithm is described in Algorithm 1.

Algorithm 1: Fast Iterative Shrinkage Thresholding Algorithm
Input: {Yi}ni=1, {Xi}ni=1, λ
Output: Γ̂ = ΓT

1 Initialization: Γ0 = 0, Ω1 = 0, step size δ1 = 1;
2 for t = 1, 2, . . . , T do
3 Γt = SVTλ

(
Ωt − L−1∇g∇g(Ωt)

)
;

4 δt+1 =
1+
√

1+4δ2t
2

;
5 Ωt+1 = Γt + δt−1

δt+1
(Γt − Γt−1);

6 end

The subroutine SVTλ in Algorithm 1 is the singular value thresholding given by SVTλ
(
S
) def

=

US

(
DS − (λ/L∇g)Ip×m

)
+
V>S , where SVD implies S = USDSV>S , Ip×m is a rectangular

identity matrix with main diagonal elements equal to 1, and (S)+ = (max{0, sij}).

Theorem 2.1 (Bounds for loss difference and convergence rate in Algorithm 1). Let
{Γt}Tt=0 be the sequence obtained by the iteration of Algorithm 1. Then

|F (Γt)− F (Γ̂)| ≤ 4(mn)−1 max(τ, 1− τ)‖X‖2F‖Γ0 − Γ̂‖2F
(t+ 1)2

. (2.11)

If for ε > 0, |F (Γt)− F (Γ̂)| ≤ ε, then

t ≥
2
√

max(τ, 1− τ)‖X‖F‖Γ0 − Γ̂‖F√
mnε

− 1. (2.12)

The bound (2.11) comes from an explicit calculation of the Lipschitz constant of the
gradient of g. The proof of Theorem 2.1 can be found in Appendix A.1.

Theorem 2.1 shows the convergence rate in our model is O(1/
√
ε), which is better than

O(1/ε) by quantile regression and O(1/ε2) by general subgradient method, see Theorem
3.2 and Remark 3.1 in Chao et al. (2015). In view of (2.15), when τ is approaching 0 or
1, the number of iteration that is required to achieve an ε-solution would increase.

Furthermore, utilizing the strong convexity of g, we can obtain a bound for ‖Γt − Γ̂‖2F.
For this purpose, additional assumption on the design X is required.

(A1) Suppose EX = 0, EXX> = Σ with σmin(Σ) > 0 and σmax(Σ) < ∞. for some
sequence 0 < an < 1, constants c1, c2 > 0,

P

[
σmin

(
X>X

n

)
≥ c1σmin(Σ), σmax

(
X>X

n

)
≤ c2σmax(Σ)

]
≥ 1− an. (2.13)
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Assumption (A1) holds for Gaussian designX with c1 = 1/9, c2 = 9 and an = 4 exp(−n/2).
See ?.

Theorem 2.2. Given (A1), the sequence Γt obtained Algorithm 1 satisfies

‖Γt − Γ̂‖2F ≤
36

n(t+ 1)2
max(τ, 1− τ)

min(τ, 1− τ)

‖X‖2F
σmin(Σ)

‖Γ0 − Γ̂‖2F, (2.14)

with probability greater than 1− an. If for ε > 0, ‖Γt − Γ̂‖2F ≤ ε, then

t ≥ 6

√
max(τ, 1− τ)

min(τ, 1− τ)

‖X‖F‖Γ0 − Γ̂‖F√
nσmin(Σ)ε

− 1. (2.15)

The proof of Theorem 2.2 is in Section A.2.

2.3 Oracle Inequalities

In this section, we derive bounds for the sequence generated by Algorithm 1 Γt and the
true matrix Γ. These results heavily rely on the strong convexity of ρτ . The nuclear
norm is decomposable with respect to two appropriately chosen subspaces in the sense
that

R(Γ + ∆) = R(Γ) +R(∆), ∀Γ ∈M,∆ ∈M⊥
, (2.16)

where

M(U, V ) = {Θ ∈ Rp×m| row(Θ) ⊆ U, col(Θ) ⊆ V },

M⊥
(U, V ) = {Θ ∈ Rp×m| row(Θ) ⊆ U⊥, col(Θ) ⊆ V ⊥},

(2.17)

where U and V are two subspaces U ⊆ Rp and V ⊆ Rm, represent the left and right
singular vectors of the target matrix Γ respectively, row(Θ) and col(Θ) denote the row
and column spaces of Θ.

We make the following assumptions.

(A2) There exists c > 0 such that for uij
def
= Yij −X>i Γ·j, P(|uij| > s) ≤ exp(1− s2/c2),

∀s ≥ 0) with sub-gaussian norm ‖uij‖ψ2

def
= sup

p≥1
p−1/2(E |uij|p)1/p, and let Ku

def
=

max
1≤j≤m

‖uij‖ψ2 .

(A3) Conditional on Xi, uij are independent from Xi and independent over j.

(A2) regulates the tail of Yij. (A3) is required for obtaining bounds on tail probabilities
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that are important for our main theorem. However, this assumption can be restrictive in
practice.

Theorem 2.3. Under (A1)-(A3), λ = 2cm−1 max(τ, 1−τ)Ku

√
‖Σ‖

√
p+m
n

, the sequence
Γt obtained by Algorithm 1 satisfies

‖Γt − Γ‖2F ≤c′′
{
Rt/n+ 1

}{p+m

n
ζ2τ dim(M) +

√
p+m

n
ζτ‖ΓM⊥‖∗

}
+
c′′Rt

n
‖Γ0 − Γ‖2F,

(2.18)

with probability greater than 1 − 3 · 8−(p+m) − an, where c′′ > 0 is an absolute constant,

Rt
def
= 1

(t+1)2
ητ‖X‖2F
σmin(Σ)

, ητ
def
= max(τ,1−τ)

min(τ,1−τ) , ζτ
def
=

ητ
√
‖Σ‖

σmin(Σ)
Ku and ΓM⊥

def
= arg min

Z∈M⊥
‖Z− Γ‖F.

The optimal bound is obtained by minimizing the right hand side of (2.18) with respect
to all pairs (M,M⊥

), which will also balance dim(M) and ‖ΓM⊥‖∗. When holding all
other quantities fixed, as long as p+m increases slower than n, the the right hand side of
(2.18) goes to 0 as n tends to infinity. The quantity Rt characterizes how computational
cost enters the oracle bound. We can increase the number of iteration in Algorithm 1 to
shrink Rt, but this also increases the computational cost. Similar to Theorem 2.1 and
B.1, when τ is approaching to the boundary of (0, 1), the upper bounds will increase.
Furthermore, heavier tail for Yij makes higher Ku, and leads to weaker error bounds.

Remark 2.1. As explained in Section 2.1, we estimate ψj,t(τ) by Vj·,t in the SVD
Γt = UtDtV

>
t . By Theorem 3.10 of Chao et al. (2015), we have ψj,t(τ):

1− |ψ>j (τ)ψj,t(τ)| ≤ 2(2‖Γ‖+ ‖Γt − Γ‖F)‖Γt − Γ‖F
min

{
σ2
j−1(Γ)− σ2

j (Γ), σ2
j (Γ)− σ2

j+1(Γ)
} , (2.19)

where ψ̂j(τ) is the true loadings. Theorem 2.3 can be used with (2.19) to get an explicit
bound.

3 Empirical Analysis: Predicting Risk Attitude with

fMRI Data

In this section, we apply FASTEC on fMRI data to predict the risk attitude of humans
on investment decisions. How human’s brain responds to reward and risk is an ongoing
research topic in neuropsychology, financial economics and neuroeconomics (Heekeren
et al., 2008; Camerer, 2007; Schultz, 2015). Previous research mainly focuses on identi-
fying the region of interest (ROI) using significantly positive Blood Oxygenation Level
Dependent (BOLD) signal (see Schultz (2015) and the references therein). However, only
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a few research uses fMRI BOLD on predicting the risk attitude of a subject or even
future actions. Helfinstein et al. (2014) train support vector machines with fMRI BOLD
recorded in a Ballon Analog Risk Task (BART) on several combinations of brain regions,
and this classifier can predict subjects’ next choice with over 70% accuracy. Majer et al.
(2015) and van Bömmel et al. (2014) retrieve factor loadings from a dynamic model and
apply these loadings on predicting subjects’ risk attitude.

In our empirical analysis, we focus on predicting the subjects’ risk attitude using the
fMRI responses, but we differ from previous study in that we separately analyze the
positive and negative fMRI BOLD signal observed in the cortical regions. The positive
BOLD signal is known to be closely associated with increased neuronal activities, but the
interpretation of large negative BOLD response (NBR) is still controversial. Mullinger
et al. (2014) argue that the best explanation for NBR at the cortical layer might be a
decrease in cerebral blood flow (CBF) with a lesser reduction in the neuronal activity,
which is measured by the cerebral metabolic rate of oxygen consumption (CMRO2).
This explanation is proven to be an important complement or even a more plausible
explanation than the more classical blood/vascular stealing hypothesis (see the references
cited by Mullinger et al. (2014)). However, Mullinger et al. (2014) also argue that there
may exist deeper neuronal reasons for NBR than simply inversion of the neurovascular
coupling mechanism of positive BOLD response. Following the interpretation of NBR of
Mullinger et al. (2014), we suspect that NBR also contains information for predicting the
risk attitude. Using our expectile based approach, we are able to use the positive and
negative BOLD response information in a very specific way.

3.1 Data

Our data come from a rapid event-related design experiment on investment decision, and
this data set is firstly analyzed in Majer et al. (2015). The experiment is done as follows:
19 subjects were requested to make choices in 256 investment decision tasks and each task
lasts 7 seconds. The fMRI is taken every two seconds, and there are 1400 images for each
subject. We have also acquired the answer for each task from each subject. Majer et al.
(2015) identify three brain regions Anterior insula (left and right aINS) and dorsomedial
prefrontal cortex (DMPFC) via spectral clustering method. We will only focus on the
BOLD response of the voxels in these three regions.

We integrate the information of each region (left and right aINS and DMPFC) spatially
by taking quantile of the BOLD response over all voxels. At each fMRI scan i of sth
subject, we take quantile with levels ω ∈ {0.1, 0.5, 0.9} of BOLD response over all voxels
in the regions b = 1 (aINS_L), b = 2 (aINS_R) and b = 3 (DMPFC) to construct a
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single time series νi(s, b, ω), where i = 1, ..., N = 1400. Figure 3.1 gives an illustration
of the BOLD time series of each cluster. For each cluster, the series of 19 subjects at
ω are averaged (the solid lines) and the band shows the dispersion of the 19 time series
in ω. We observe that the series for ω = 0.9 is largely positive, which summarize the
information of positive BOLD response, while the series for ω = 0.1 is mainly negative,
which corresponds to the negative BOLD response. The series for ω = 0.5 is stationary
and varying around the origin.

3.2 Method

3.2.1 Factor loadings at each region b and quantile level ω

There are many ways to define Yij using BOLD series, and this can have big impact to
predictive performance. For each ω and a single region b, we consider two approaches to
obtain the variable Yij:

(C1) "Whole time series": set Y b,ω
ij = νi(j, b, ω), where i = 1, ..., n with n = N , j =

1, ..., 19 (subject). Thus, we have m = 19 curves in each region b and at each
quantile ω.

(C2) "Task-wise" perspective: we divide the whole time series in each region b and at each
quantile level ω into subseries based on the the start and the end of each task. Let
Iq ∈ {1, ..., N} be the set which contains the index of the images taken during the
qth task. In our data, Iq usually contains 3-4 components. We interpolate the points
{νi(s, b, ω)}i∈Iq for each fixed s, b, and ω. Denote the value on the interpolated
curve at ith point in n equally distant grid on the interval (min(Iq),max(Iq)) by
ν̃i(s, b, q, ω), where i = 1, ..., n = 50. Let Y b,ω

ij = ν̃i(s, b, q, ω) with j = 256(s−1)+q,
where s = 1, ..., 19 (index for subject) and q = 1, ..., 256 (index for tasks) for each
ω, b. Thus, there are m = 19 ∗ 256 = 4864 curves in each b and ω.

The variable Xi needs to be flexible enough to capture the shape of the fMRI sequence.
For this purpose, we use cubic B-spline basis {Bk}pk=1 with regularly spaced knots on
[0, 1], and set Xi =

(
B1(i/n), B2(i/n), ..., Bp(i/n)

)>, where i = 1, ..., n and n is subject
to which approach is taken. B-splines have nice computational properties for estimating
the hemodynamic response, see Degras and Lindquist (2014) for more detail. We select
p = dn0.8e of basis functions in each approach above, where d·e takes the smallest integer
that is greater than the argument. The power 0.8 is greater than the optimal rate 0.4,
because the nuclear norm penalty potentially reduces the overfitting. As the result, there
are 329 basis functions in the approach (C1) and 23 in (C2).
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We compute the matrix Γ̂b,ω with expectile level τ = 0.1, 0.5, 0.9 using Yij and Xi by
Algorithm 1, where Yij is chosen under either (C1) or (C2). We select λb,ω by five fold
cross-validation. To be more specific, we divide the whole sample into 5 groups along
i = 1, . . . , N , e.g., under (C1) each group with 280 observations would be held out as
the validation group in turns. About more detailed results in the determination of tuning
parameters, we refer to Appendices D.2. Applying Algorithm 1 with the selected λ, we
obtain Γ̂b,ω. Using SVD Γ̂b,ω = Ûb,ω

τ D̂b,ω
τ (V̂b,ω

τ )>, where (V̂b,ω
τ )> is regarded as factor

loadings. We note that the size of matrix V̂b,ω
τ is 19 × 19 if we define Y b,ω

ij by following
(C1) and 4864×4864 by following (C2). Note that the sign of the factor loadings cannot
be determined exactly.

3.2.2 Predicting risk attitude

To measure the predictive performance, we need to estimate the the subjects’ "oracle"
risk attitude βs, where s = 1, ..., 19 denotes the subject. We follow the approach of Majer
et al. (2015) and estimate βs by the answer given by the subjects to each task with
logistic regression. In essence, higher βs means the subject s is less risk-averse. More on
the computation of βs is provided in Appendices D.1.

In order to use the loadings V̂b,ω
τ to predict βs, we apply standard linear regression models.

In particular, in the case (C1), we construct a model for βs using the first two factor
loadings

βs = αω,τ0 + αω,τ11

∣∣(V̂1,ω
τ )s1

∣∣+ αω,τ12

∣∣(V̂2,ω
τ )s1

∣∣+ αω,τ13

∣∣(V̂3,ω
τ )s1

∣∣
+ αω,τ21

∣∣(V̂1,ω
τ )s2

∣∣+ αω,τ22

∣∣(V̂2,ω
τ )s2

∣∣+ αω,τ23

∣∣(V̂3,ω
τ )s2

∣∣+ εs, s = 1, ..., 19, (3.1)

where {αω,τ0 , αω,τ11 , α
ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } ∈ R7 are the intercept and the coefficients

associated with the regions left and right Anterior insula, and dorsomedial prefrontal
cortex. In the case (C2), define the averaged loadings of all tasks for each s

µb,ω,τs
def
=

1

256

256∑
q=1

∣∣(V̂b,ω
τ )256(s−1)+q,1

∣∣.
We construct another model for βs using µb,ω,τs :

βs = ᾱω,τ0 + ᾱω,τ11 µ
1,ω,τ
s + ᾱω,τ12 µ

2,ω,τ
s + ᾱω,τ13 µ

3,ω,τ
s

+ ᾱω,τ21 µ
1,ω,τ
s + ᾱω,τ22 µ

2,ω,τ
s + ᾱω,τ23 µ

3,ω,τ
s + εs, s = 1, ..., 19, (3.2)

where {ᾱω,τ0 , ᾱω,τ11 , ᾱ
ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } ∈ R7. We take the absolute value of the

loadings V̂b,ω
τ because we are only interested in the magnitude of the loadings.
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3.2.3 In-sample and out-of-sample performance

To compare model (3.1) and (3.2), we show their in-sample and out-of-sample perfor-
mance. For in-sample performance, R2 of both regression (3.1) and (3.2) is computed.
In addition, in order to determine whether (3.1) and (3.2) correctly predict the order of
risk-aversion of the subjects (rather than the exact value of βs), we calculate Spearman’s
and Kendall’s rank correlation between the fitted β̂s (in-sample) and βs.

To measure the out-of-sample performance, we calculate {β̃s}19s=1 by leave-one-out algo-
rithm. The steps are as below:

(1) Fix s, where s = 1, ..., 19. Use the values of the remaining 18 subjects to find the
coefficients {αω,τ0 , αω,τ11 , α

ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } in model (3.1) and

{ᾱω,τ0 , ᾱω,τ11 , ᾱ
ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } in model (3.2) by standard linear regression.

(2) Compute β̃s by the trained models (3.1) and (3.2).

(3) Repeat steps (1) and (2) for each s = 1, ..., 19.

(4) Calculate the Spearman’s correlation and Kendall’s rank correlation between {β̃s}19s=1

and {βs}19s=1.

3.3 Results

In Table 3.1, we present the in-sample fitting and out-of-sample performance for models
(3.1) and (3.2) with the constrained model that uses only the 1st factor (αω,τ21 = αω,τ22 =

αω,τ23 = 0 in (3.1) and ᾱω,τ21 = ᾱω,τ22 = ᾱω,τ23 = 0 in (3.2)) and the whole model, under various
(τ, ω) combinations.

For the in-sample fitting results, cases with ω = 0.1 and ω = 0.9 perform much better
than ω = 0.5. This shows that both negative or positive BOLD can lead to good model
fitting, which suggests that negative BOLD may also explain the variation of risk attitude
well. In particular, the level τ that are closer to the maximum of the curves of ω = 0.9

and to the minimum of the of the curves of ω = 0.9, which is consistent with our prior
belief from Figure 3.1. Moreover, task-wise curves seem to perform better than the whole
series.

For the out-of-sample performance, the constrained model (3.2) with the negative BOLD
(ω = 0.1, τ = 0.1) nearly always outperforms all other cases. In contrast, positive BOLD
(ω = 0.9) under the same model performs poorly. This provides a new evidence that
negative BOLD may be more relevant than the positive BOLD for predicting the risk

12



attitude. Moreover, the uncontrained model improves the prediction performance in most
cases, particularly for the prediction by unconstrained (3.2) under ω = 0.9 and higher τ
levels.
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Figure 3.1: In each region, the ω quantiles of the BOLD response over all the voxels
between 1000-1120 seconds of the experiment is shown. In each subfigure (region), lowest
(resp., middle, highest) solid lines represent the median of ω = 0.1 (resp., ω = 0.5, 0.9)
quantiles of all 19 subjects, and the upper and lower boundaries of the bands present the
maximum and the minimum of the ω quantiles of the 19 subjects. Vertical lines indicate
the occurrence of stimuli.
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APPENDIX

APPENDIX A: Proofs for Section 2.2

A.1 Proof for Theorem 2.1

Theorem 4.4 in Beck and Teboulle (2009) gives the upper bound of the loss difference in
the t−th step of the iteration by

|F (Γt)− F (Γ̂)| ≤ 2L∇g‖Γ0 − Γ̂‖2F
(t+ 1)2

, (A.1)

where L∇g is the Lipschitz constant of ∇g(Γ) defined in (2.8).

We note that

ρ′τ (u) =

2τu for u ≥ 0;

2(1− τ)u for u < 0.
(A.2)

Hence, the gradient is

∇g(Γ) = −(mn)−1X>
{
W ◦ (Y −XΓ)

}
, (A.3)

where W(Γ) = (wij) ∈ Rn×m, wij
def
= 2

{
τ + 1(Yij ≤X>i Γ·j)(1− 2τ)

}
, "◦" represents the

Hadamard product.

To simplify the notations, define U(Γ) = (Yij −X>i Γ·j) ∈ Rn×m. For all Γ1,Γ2 ∈ Rp×m,
let U1 = U(Γ1), U2 = U(Γ2), W1 = W(Γ1) and W2 = W(Γ2).

‖∇g(Γ1)−∇g(Γ2)‖F = (mn)−1‖X>(W1 ◦U1)−X>(W2 ◦U2)‖F
≤ (mn)−1‖X‖F‖W1 ◦U1 −W2 ◦U2‖F (by submultiplicity)

= (mn)−1‖X‖F
[ n∑
i=1

m∑
j=1

{
ρ′τ (u1,ij)− ρ′τ (u2,ij)

}2]1/2
≤ (mn)−1‖X‖F

[ n∑
i=1

m∑
j=1

{
2 max(τ, 1− τ)

}2
(u1,ij − u2,ij)2

]1/2
= 2(mn)−1 max(τ, 1− τ)‖X‖F‖Y −XΓ1 − (Y −XΓ2)‖F
≤ 2(mn)−1 max(τ, 1− τ)‖X‖2F‖Γ1 − Γ2‖F (by submultiplicity),

(A.4)

where the fourth line makes use of the fact that ρ′τ (u) is Lipschitz continuous with Lips-
chitz constant 2 max(τ, 1− τ), see Chao et al. (2016).
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Plug L∇g = 2(mn)−1 max(τ, 1− τ)‖X‖2F into (A.1) yields

|F (Γt)− F (Γ̂)| ≤ 4(mn)−1 max(τ, 1− τ)‖X‖2F‖Γ0 − Γ̂‖2F
(t+ 1)2

. (A.5)

Moreover, setting the right hand side of (A.5) to be ε (∀ε > 0) and solving for t gives

t ≥
2
√

max(τ, 1− τ)‖X‖F‖Γ0 − Γ̂‖F√
mnε

− 1. (A.6)

A.2 Proof for Theorem 2.2

Following the proof of Theorem 1 in Fadili and Peyré (2011), define

I(Γt)
def
= g(Γt)− g(Γ̂)− 〈〈∇g(Γt),Γt − Γ̂〉〉, (A.7)

J(Γt)
def
= h(Γt)− h(Γ̂) + 〈〈∇g(Γt),Γt − Γ̂〉〉, (A.8)

the sum of them gives
I(Γt) + J(Γt) = F (Γt)− F (Γ̂). (A.9)

According to Lemma C.2, we have

I(Γt) ≥ κ‖Γt − Γ̂‖2F

=
1

9
m−1 min(τ, 1− τ)σmin(Σ)‖Γt − Γ̂‖2F (A.10)

where the second line holds with probability greater than 1− an under (A1).

Since Γ̂ is the optimizer of (2.5), therefore,

0 ∈ ∇g(Γ̂) +∇h(Γ̂), (A.11)

which implies
−∇g(Γ̂) ∈ ∇h(Γ̂). (A.12)

As a result, we have
h(Γt)− h(Γ̂) ≥ 〈〈−∇g(Γt),Γt − Γ̂〉〉, (A.13)

i.e., J(Γt) ≥ 0.
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Plugging (A.10) and (A.13) into (A.9) yields,

‖Γt − Γ̂‖2F ≤
9m

min(τ, 1− τ)σmin(Σ)

{
F (Γt)− F (Γ̂)

}
≤ 36

n(t+ 1)2
max(τ, 1− τ)

min(τ, 1− τ)

‖X‖2F
σmin(Σ)

‖Γ0 − Γ̂‖2F, (A.14)

with probability greater than 1− an. The second line comes from the result of Theorem
2.1.

APPENDIX B: Proofs for Theorem 2.3

By triangle inequality, we have

‖Γt − Γ‖2F = ‖Γt − Γ̂ + Γ̂− Γ‖2F ≤ 2‖Γt − Γ̂‖2F + 2‖Γ̂− Γ‖2F. (B.1)

Combining the results of Lemma B.2 and Theorem 2.2, it follows that

‖Γt − Γ‖2F ≤183c2
p+m

n

max(τ, 1− τ)2

min(τ, 1− τ)2
‖Σ‖

σmin(Σ)2
K2
u dim(M)

+ 144c

√
p+m

n

max(τ, 1− τ)

min(τ, 1− τ)

√
‖Σ‖

σmin(Σ)
Ku‖ΓM⊥‖∗

+
72

n(t+ 1)2
max(τ, 1− τ)

min(τ, 1− τ)

‖X‖2F
σmin(Σ)

‖Γ0 − Γ̂‖2F, (B.2)

holds with probability greater than 1− 3× 8−(p+m) − an.
Furthermore, given

‖Γ0 − Γ̂‖2F = ‖Γ0 − Γ + Γ− Γ̂‖2F ≤ 2‖Γ0 − Γ‖2F + 2‖Γ− Γ̂‖2F, (B.3)

and applying Lemma B.2 again we complete the proof of Theorem 2.3.

Now we show auxiliary results used in the proof of Theorem 2.3. The next theorem is an
application of Theorem 1 of Negahban et al. (2012).

Theorem B.1 (Error bounds for the estimator). Under (A1), any optimal solution Γ̂ in
the problem (2.5) with λ ≥ 2‖∇g(Γ)‖ satisfies the bound

‖Γ̂− Γ‖2F ≤
9m2λ2{

c1 min(τ, 1− τ)σmin(Σ)
}2 dim(M) +

36mλ

min(τ, 1− τ)σmin(Σ)
‖ΓM⊥‖∗,

(B.4)

with probability greater than 1− an, where ΓM⊥ = arg min
Z∈M⊥

‖Z− Γ‖F.
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Proof for Theorem B.1. The proof is an application of Theorem 1 of Negahban et al.
(2012). We will verify its conditions (G1) and (G2). For condition (G1), we note that
the nuclear norm ‖ · ‖∗ is decomposable with respect to (M,M⊥

) defined in (2.17). For
condition (G2), note that on the event

Ω1
def
=

{
σmin(

X>X

n
) ≥ c1σmin

(
Σ

)
, σmax

(
X>X

n

)
≤ c2σmax(Σ)

}
, (B.5)

the loss function g is restrictive strongly convex with coefficients κ and ξ = 0 (we replace
τL in Negahban et al. (2012) by ξ) shown in Lemma C.2. We note that the nuclear norm
and the spectral norm of a matrix are dual, and their subspace compatibility constant
Ψ(M) ≤ dim(M).

Lemma B.1. Under (A1)-(A3),

P

(
‖∇g(Γ)‖ ≤ cm−1 max(τ, 1− τ)Ku

√
‖Σ‖

√
p+m

n

)
≥ 1− 3× 8−(p+m) − an, (B.6)

where c > 0 is an absolute constant.

Proof for Lemma B.1. Throughout the proof, we restrict on the event Ω1 in (B.5).
Recall the expression from (A.3) that

∇g(Γ) = −(mn)−1X>
{
W ◦ (Y −XΓ)

}
.

and the matrix U(Γ) = (uij) = (Yij −X>i Γ·j) ∈ Rn×m. Following the proof of Lemma 3
in Negahban and Wainwright (2011), we have

P

(
n−1‖X>(W ◦U)‖ ≥ 4s

)
= P

(
sup

β∈Sp−1,

α∈Sm−1

n−1|β>X>(W ◦U)α| ≥ 4s

)

≤ 8p+m sup
β∈Sp−1,

α∈Sm−1

P

(
n−1|〈Xβ, (W ◦U)α〉| ≥ s

)

≤ 8p+m sup
β∈Sp−1,

α∈Sm−1

P

(
n−1

n∑
i=1

〈β,Xi〉〈α, (W ◦U)i〉 ≥ s

)
,

(B.7)

where Sm−1 def
= {α ∈ Rm : ‖α‖2 = 1} is the Euclidean sphere in m-dimensions. ∀s ≥ 0,

there exists C > 0 such that P
(
|uij| > s

)
≤ exp

(
1− s2/C2

)
. Since |wij| ≤ max(τ, 1− τ),
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we have

P

(
|wijuij| > s

)
≤ P

(
max(τ, 1− τ)|uij| > s

)
= P

(
|uij| >

s

max(τ, 1− τ)

)
≤ exp

(
1− s2

max(τ, 1− τ)2C2

)
. (B.8)

It means for each j ∈ {1, . . .m}, wijuij are sub-gaussian. Moreover, the maximal sub-
gaussian norm is bounded by

max
1≤j≤m

‖wijuij‖ψ2 = max
1≤j≤m

sup
p≥1

p−1/2
(
E |wijuij|p

)1/p
≤ max(τ, 1− τ) max

1≤j≤m
sup
p≥1

p−1/2
(
E |uij|p

)1/p
= max(τ, 1− τ)Ku. (B.9)

Then by Hoeffding’s inequality (Proposition 5.10 of Vershynin, 2012), we can conclude
that

〈
α, (W ◦U)i

〉
is also sub-guassian,

P

(〈
α, (W ◦U)i

〉
≥ s

)
= P

(∣∣ m∑
j=1

αjwijuij
∣∣ ≥ s

)
≤ exp

(
1− C ′s2

max(τ, 1− τ)2K2
u‖α‖22

)
= exp

(
1− C ′s2

max(τ, 1− τ)2K2
u

)
, (B.10)

where C ′ > 0 is an absolute constant. Furthermore, its sub-gaussian norm is bounded by

∥∥〈α, (W ◦U)i
〉∥∥

ψ2
= sup

p≥1
p−1/2

{
E
∣∣〈α, (W ◦U)i〉

∣∣p}1/p

= sup
p≥1

p−1/2
(

E
∣∣ m∑
j=1

αjwijuij
∣∣p)1/p

≤ max(τ, 1− τ)sup
p≥1

p−1/2
(

E
∣∣ m∑
j=1

αjuij
∣∣p)1/p

≤ max(τ, 1− τ)MKu, (B.11)

where M > 0 is an absolute constant. The last line comes from Khintchine inequality
(Corollary 5.12 of Vershynin, 2012) and recall that ‖α‖2 = 1. Applying Hoeffding’s
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inequality again we can obtain

P

(
n−1

n∑
i=1

〈
β,Xi

〉〈
α, (W ◦U)i

〉
≥ s

)
≤ exp

(
1− C ′′s2n

max(τ, 1− τ)2M2K2
un
−1
∑n

i=1〈β,Xi〉2

)
≤ exp

(
1− C ′′s2n

max(τ, 1− τ)2M2K2
un
−1‖Xβ‖22

)
,

≤ exp

(
1− C ′′s2n

c2 max(τ, 1− τ)2M2K2
u‖Σ‖

)
,

(B.12)

where C ′′ is an absolute constant. Combining (B.7) and (B.12) gives

P

(
n−1
∥∥X>(W ◦U)

∥∥ ≥ 4s

)
≤ exp

(
1− C ′′s2n

9 max(τ, 1− τ)2M2K2
u‖Σ‖

+ (p+m) log 8

)
.

(B.13)

Set s = 1
4
cmax(τ, 1−τ)Ku

√
‖Σ‖

√
p+m
n

, where c def
= 4·

√
2 log 89M2

C′′
, then we can conclude

from the fact P (Ω1) ≥ 1− an,

P

(
n−1
∥∥X>(W ◦U)

∥∥ ≤ cmax(τ, 1− τ)Ku

√
‖Σ‖

√
p+m

n

)
≥
[
1− exp

(
1− (p+m) log 8

)]
× (1− an)

≥
[
1− 3× 8−(p+m)

]
× (1− an)

≥ 1− 3× 8−(p+m) − an (as p+m > 1). (B.14)

This finishes the proof.

Lemma B.2. Under (A1)-(A3), selecting λ = 2cm−1 max(τ, 1 − τ)Ku

√
‖Σ‖

√
p+m
n

, for

n ≥ 2 min(m, p), any optimal solution Γ̂ in the problem (2.5) satisfies the bound

‖Γ̂− Γ‖2F ≤c′
p+m

n

max(τ, 1− τ)2

min(τ, 1− τ)2
‖Σ‖

σmin(Σ)2
K2
u dim(M)

+ c′
√
p+m

n

max(τ, 1− τ)

min(τ, 1− τ)

√
‖Σ‖

σmin(Σ)
Ku‖ΓM⊥‖∗, (B.15)

with probability greater than 1− 3× 8−(p+m) − an, where c, c′ > 0 are absolute constants.

Proof of Lemma B.2. Recall that Ω1 is defined as (B.5), and let the event that
(B.6) holds as Ω2. On event Ω1 ∩ Ω2, (B.15) can be achieved by simply plugging λ =

2cm−1 max(τ, 1− τ)Ku

√
‖Σ‖

√
p+m
n

into (B.4). We note that

P(Ω2 ∩ Ω1) = P(Ω2|Ω1) P(Ω1) ≥
[
1− 3× 8−(p+m)

]
× (1− an)

≥ 1− 3× 8−(p+m) − an (as p+m > 1). (B.16)
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APPENDIX C: Auxiliary Results

Lemma C.1. For any u, δ ∈ R and τ ∈ (0, 1),

ρτ (u+ δ)− ρτ (u)− ρ′τ (u)δ ≥ min(τ, 1− τ)δ2. (C.1)

Proof of Lemma C.1. When u = 0, we have ρτ (u) = ρ′τ (u) = 0, therefore

ρτ (δ) = |τ − 1{δ < 0}|δ2 ≥ min(τ, 1− τ)δ2.

If u > 0, u+ δ < 0 (δ < 0), we have

ρτ (u+ δ)− ρτ (u)− ρ′τ (u)δ −min(τ, 1− τ)δ2 =

(1− 2τ)(δ + u)2 ≥ 0 for τ ≤ 1− τ ;

(1− 2τ)(u+ 2δ)u > 0 for τ > 1− τ.

If u > 0, u+ δ > 0 (δ > 0), we have

ρτ (u+ δ)− ρτ (u)− ρ′τ (u)δ −min(τ, 1− τ)δ2 =

(2τ − 1)(u+ 2δ)u ≥ 0 for τ ≤ 1− τ ;

(2τ − 1)(u+ δ)2u > 0 for τ > 1− τ.

In the other two cases,

ρτ (u+ δ)− ρτ (u)− ρ′τ (u)δ =

τδ2 ≥ min(τ, 1− τ)δ2 for u > 0, u+ δ ≥ 0;

(1− τ)δ2 ≥ min(τ, 1− τ)δ2 for u < 0, u+ δ ≤ 0.

Therefore, we can conclude that

ρτ (u+ δ)− ρτ (u)− ρ′τ (u)δ ≥ min(τ, 1− τ)δ2.

Lemma C.2. g(Γ) defined in (2.9) is κ-strongly convex and differentiable with κ =

m−1 min(τ, 1− τ)σmin(X>X
n

).

Proof of Lemma C.2. Denote ũij
def
= Yij −X>i (Γ·j + ∆·j) and uij

def
= Yij −X>i Γ·j, for
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i = 1, . . . , n, j = 1, . . . ,m, we have

〈〈∇g(Γ),∆〉〉 = tr
(
∇g(Γ)>∆

)
= −(mn)−1

m∑
j=1

p∑
l=1

∆lj

n∑
i=1

ρ′(uij)Xil

= −(mn)−1
n∑
i=1

m∑
j=1

{ p∑
l=1

∆ljρ
′(uij)Xil

}
= −(mn)−1

n∑
i=1

m∑
j=1

{
ρ′(uij)X

>
i ∆·j

}
. (C.2)

Therefore,

g(Γ + ∆)− g(Γ)− 〈〈∇g(Γ),∆〉〉 = (mn)−1
n∑
i=1

m∑
j=1

{
ρ(ũij)− ρ(uij) + ρ′(uij)X

>
i ∆·j

}
≥ (mn)−1 min(τ, 1− τ)

n∑
i=1

m∑
j=1

(X>i ∆·j)
2 (by Lemma C.1)

= (mn)−1 min(τ, 1− τ)‖X∆‖2F
= (mn)−1 min(τ, 1− τ) tr(∆>X>X∆)

≥ m−1 min(τ, 1− τ)σmin

(X>X

n

)
‖∆‖2F. (C.3)

APPENDIX D: Additional Details for Section 3

D.1 Risk Attitude Parameter

The risk attitude parameter β is estimated by logistic model via maximum likelihood
estimation (MLE)

P{risky choice|x} =
1

1 + exp[−σ{x̄− βS(x)− 5}]

P{sure choice|x} = 1− 1

1 + exp[−σ{x̄− βS(x)− 5}]
(D.1)

where x is the return stream displayed to the individual, its mean and standard deviation
are x̄ and S(x).

The estimated risk attitude parameters for 19 subjects in order are plotted in Figure 3.2,
also see Majer et al. (2015). Negative parameters imply risk-seeking behaviours; while
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positive parameters indicate averse risk patterns. We can see most of the individuals
are risk-averse and the two extremes #1 and #19 are the most risk-averse and most
risk-seeking persons respectively.

Subject s

β s

1 9 24 16 6 23 3 14 4 11 13 21 8 18 2 17 5 7 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 3.2: Estimated risk attitude for 19 subjects.

D.2 Tuning Parameters by Cross-Validation

Choosing ω = 0.1, b = 1 (aINS_L cluster) in (C1) case as an example, Figure 3.3 il-
lustrates the cross-validation error function in terms of λ under different τ levels. The
optimal tuning parameters determined by 5-fold cross-validation under all cases are re-
ported in Table 3.2.
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ω=0.1, aINS_L cluster, C1 case

Figure 3.3: The cross-validation error function in terms of tuning parameter λ, with
τ =0.1, 0.5, and 0.9, respectively.
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Whole series (C1) Task-wise (C2)
τ 0.1 0.5 0.9 0.1 0.5 0.9

ω=0.1
aINSL 0.0442 0.0552 0.0383 0.0008 0.0006 0.0008
aINSR 0.0303 0.0421 0.0293 0.0004 0.0008 0.0004
DMPFC 0.0348 0.0504 0.0198 0.0004 0.0007 0.0006

ω=0.5
aINSL 0.0181 0.0403 0.0153 0.0004 0.0006 0.0003
aINSR 0.0137 0.0393 0.0157 0.0006 0.0004 0.0005
DMPFC 0.0195 0.0391 0.0143 0.0006 0.0002 0.0007

ω=0.9
aINSL 0.0253 0.0408 0.0275 0.0006 0.0004 0.0004
aINSR 0.0243 0.0442 0.0200 0.0008 0.0002 0.0006
DMPFC 0.0193 0.0474 0.0206 0.0005 0.0008 0.0008

Table 3.2: Tuning parameters by 5-fold cross validation.
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