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⇤
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Abstract

For many applications, analyzing multiple response variables jointly is desirable
because of their dependency, and valuable information about the distribution can be
retrieved by estimating quantiles. In this paper, we propose a multi-task quantile re-
gression method that exploits the potential factor structure of multivariate conditional
quantiles through nuclear norm regularization. We jointly study the theoretical proper-
ties and computational aspects of the estimating procedure. In particular, we develop
an e�cient iterative proximal gradient algorithm for the non-smooth and non-strictly
convex optimization problem incurred in our estimating procedure, and derive oracle
bounds for the estimation error in a realistic situation where the sample size and num-
ber of iterative steps are both finite. The finite iteration analysis is particular useful
when the matrix to be estimated is big and the computational cost is high. Merits of
the proposed methodology are demonstrated through a Monte Carlo experiment and
applications to climatological and financial study. Specifically, our method provides an
objective foundation for spatial extreme clustering, and gives a refreshing look on the
global financial systemic risk. Supplementary materials for this article are available
online.

KEY WORDS: Factor model; Fast iterative shrinkage-thresholding algorithm; Multivari-

ate Regression; Spatial extreme; Financial risk.
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1. Introduction

In a variety of applications in economics (Koenker and Hallock (2001)), biology (Briol-

lais and Durrieu (2014)), ecology (Cade and Noon (2003)), and atmospheric sciences (for

example, Friederichs and Hense (2007); Bremnes (2004); Reich et al. (2011); Reich (2012)),

the interest is in the conditional quantiles of the response variable. For a single response

variable, quantile regression (Koenker and Bassett; 1978) is widely acknowledged as a very

convenient and e�cient method to estimate conditional quantiles. However, we are often

required to consider a multi-task framework, in which the responses Y = (Y
1

, ..., Y

m

) are

predicted by a common vector X = (X
1

, ..., X

p

), where p,m grow with sample size n. Ex-

isting literature on the multi-task quantile regression either assumes a particular structure

between the response variables and predictors (Fan et al.; 2015), or considers a factor model

where the factors do not depend on the quantile levels (Ando and Tsay; 2011; Chen et al.;

2015) with p,m much smaller than n.

To analyze noncanonical and asymmetric data arising from many applications, we con-

sider a flexible quantile factor model that allows the factor to vary with the quantile level,

while making no assumption on the association between the response and prediction vari-

ables. Given factors f

⌧

k

(X) for k = 1, ..., r
⌧

for a quantile level 0 < ⌧ < 1, we assume the

conditional quantile q

j

(⌧ |X
i

) for Y
j

in Y at ⌧ has a linear expression in terms of f ⌧
k

(X),

q

j

(⌧ |X) =
r⌧
X

k=1

 
kj,⌧

f

⌧

k

(X), j = 1, ...,m, (1.1)

where  
kj,⌧

2 R is the factor loading, and r

⌧

is fixed and much less than the sample size n.

The factors f

⌧

k

(X) are flexible for analyzing Y

j

, which possibly depends on X in a

very irregular way. An important special example is the two-piece normal distribution,

which is a combination of two centered normal distributions with di↵erent variances at the

origin. The two-piece normal distribution is especially suitable for modeling the asymmetric
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likelihood of upward and downward movement, which is exploited by the Bank of England

for making inflation rate prediction intervals (Wallis; 1999, 2014). However, if Y
j

follows a

two-piece normal distribution whose variances for the left and right part of the distribution

are two distinct functions of X, traditional approaches such as principal component analysis

(PCA) fail to correctly estimate the factors for Y , since PCA ignores the fact that they are

asymmetric and non-Gaussian. Consequently, the resulting factors are misleading.

Because the factors f ⌧
k

(X) are latent, direct estimation of the parameters  
kj,⌧

for k =

1, ..., r
⌧

and j = 1, ...,m is not feasible. Therefore, we need additional assumptions. If

the transformations f

⌧

k

(X
i

) are linear in X, that is, f

⌧

k

(X
i

)
def

= '

>
k,⌧

X

i

, where '

k,⌧

=

('
k1,⌧

, ...,'

kp,⌧

)> 2 Rp, we can rewrite the model (1.1) as

q

j

(⌧ |X
i

) = (�
⌧

)>⇤jXi

, i = 1, ..., n, (1.2)

where �
⌧

is defined in an obvious manner, and (�
⌧

)⇤j is the jth column of matrix �
⌧

. We

note that factors f ⌧
k

(X) are frequently assumed linear in X in applied statistics and financial

econometrics; see, for example, Section 2.2 and Chapter 8 of Reinsel and Velu (1998) for

practical examples.

The main focus of this paper is on estimating the matrix �
⌧

in (1.2). After a factorization

of the estimated matrix, we obtain the estimated factors and loadings simultaneously; see

Section 2.2 for further detail. We may identify �
⌧

2 argminS2Rp⇥m
Q

⌧

(S), where Q

⌧

(S)
def

=

E[ bQ
⌧

(S)] and

b

Q

⌧

(S)
def

= (mn)�1

n

X

i=1

m

X

j=1

⇢

⌧

�

Y

ij

�X

>
i

S⇤j
�

. (1.3)

where ⇢
⌧

(u) = u(⌧ � 1{u  0}) is the ”check function” that forces X>
i

S⇤j to be close to the

⌧ quantile of Y
j

as argued in the seminal paper of Koenker and Bassett (1978). b

Q

⌧

is similar

to the loss function used in Koenker and Portnoy (1990).
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The number of unknown parameters mp may be larger than n in our model, which makes

the direct estimation of (1.3) infeasible. We make a key observation that �
⌧

in (1.2) is of rank

r

⌧

, which is assumed much less than p,m. This observation motivates us to the estimator

b�
⌧

def

= arg min
S2Rp⇥m

�

L

⌧

(S)
def

= b

Q

⌧

(S) + �

⌧

kSk⇤
 

, (1.4)

where kSk⇤ is the nuclear norm (sum of singular values) and �

⌧

is a user supplied tuning

parameter. Nuclear norm encourages the sparsity in the rank of the solution b�
⌧

, see Yuan

et al. (2007); Bunea et al. (2011); Negahban and Wainwright (2011); Negahban et al. (2012)

for the application of nuclear norm penalty in a multivariate mean regression framework.

Despite of theoretical properties of b�
⌧

(see appendix), solving (1.4) exactly for the matrix

b�
⌧

is di�cult in practice because the first term on the right of (1.4) is neither smooth nor

strictly convex. Our first contribution is an e�cient algorithm that generates a sequence

of matrices �
⌧,t

, which converges to b�
⌧

as the number of iterations t ! 1. The algo-

rithm combines the popular smoothing procedure of Nesterov (2005) and the Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) of Beck and Teboulle (2009). A convergence

analysis shows that it requires O(1/✏) iterations for the di↵erence in loss function in (1.4)

evaluated at the two neighboring steps to be less than ✏, which is more e�cient than O(1/✏2)

iterations required by the general subgradient method.

The property of the approximating sequence �
⌧,t

is further characterized by a novel error

bound for the Frobenius norm k�
⌧,t

� �
⌧

k
F

under finite sample and finite iterative steps.

We are interested in finite iteration because when p,m are large, one iteration may take a

lot of time as a singular value decomposition is required in each step. Hence, in practice one

cannot compute too many iterations. Our theoretical results provide a rule for determining

the number of iterations that ensures the oracle rate of the resulting estimator. The proof

is founded on one of our intermediate results that the di↵erence �
⌧,t

� �
⌧

lies in a star-

shaped set rather than a cone. This result shares a similar flavor to the estimation for
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high-dimensional matrix, which is not exactly sparse in rank; see Negahban et al. (2012). In

the bulk of the proof of our main theorem, we apply modern random matrix theory which

gives a very sharp bound on the spectral norm of a sum of random matrices. Finally, under

the realistic situation of finite sample and finite iteration, we derive realistic bounds for the

estimation error for factors and loadings, using a state-of-the-art bound of Yu et al. (2015)

on the distance between subspaces spanned by the eigenvectors of two matrices.

We demonstrate the performance of our estimator by a Monte Carlo experiment, with

data generated from a two-piece normal distribution; see (4.1) for the data generating model.

In order to show how our estimator performs for asymmetric data, we consider both high

and low asymmetry. We compare our estimator with an oracle estimator, which is estimated

under the knowledge of the true rank of �
⌧

. The simulation results show that the di↵erence

between k�
⌧,t

� �
⌧

k
F

and the oracle di↵erence k�or

⌧,t

� �
⌧

k
F

is around 5-10% of the oracle

di↵erence. The number of iterations required is generally below 40. Both the error and the

required number of iteration increases when ⌧ is close to 0 and 1.

We remark that the our computational method and theoretical tool may be interesting

for other multi-task learning problems with non-smooth loss functions that are not strictly

convex, such as the support vector machine.

We show that some modern scientific challenges in climatology and finance may be ad-

dressed with our method. In climatology, the study of inference methods for spatial extreme

is a highly active research area (Davison et al.; 2012). We quantify spatial dependence of

extreme temperature across China with our method, which provides an objective rule for

spatial extreme clustering. Spatial clustering based on extreme behavior of atmospheric

variables has attracted much interest recently (Bernard et al.; 2013; Bador et al.; 2015),

because summarizing the data originally observed at a large collection of locations by very

few spatial clusters is essential for avoiding the hefty computational cost (Castruccio et al.;

2015) required by the statistical inference of spatial extremes. For financial study, we show
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via global stock price data that the stock price of firms with large market value and high

leverage (the ratio of short and long term debt over common equity) tend to be more vul-

nerable to systemic risk. Our finding is consistent with the finding of White et al. (2015),

but our computational method is scalable to a higher dimension.

The rest of this paper is organized as follows. Section 2 is devoted to the algorithm for

finding a good approximating sequence �
⌧,t

approximating b�
⌧

defined in (1.4), the estimation

of factors and loadings, the choice of �
⌧

and the analysis of the convergence properties of

the algorithm. In Section 3, the oracle properties of �
⌧,t

and the estimator for factors and

loadings are investigated. In Section 4, a Monte Carlo experiment is presented. In Section

5, we analyze challenging scientific questions using our method. Proofs are shifted to the

supplementary material.

Notations. In the rest of the paper, we sometimes suppress ”⌧” in �
⌧

, b�
⌧

, �
⌧

etc. for

brevity, when it does not cause confusion. Given two scalars x and y, x^y

def

= min{x, y} and

x_y def

= max{x, y}. 1(x  0) is an index function, which is equal to 1 when x  0 and 0 when

x > 0. For a vector v 2 Rp, let kvk
1

, kvk
2

and kvk1 be the vector `
1

, `
2

and `1 norm. For a

matrix A = (A
ij

) 2 Rp⇥m, denote the singular values of A: �
1

(A) � �

2

(A) � ... � �

p^m(A),

and we usually write the singular value decomposition (abbreviated as SVD henceforth)

A = UDV>. We sometimes also write �
max

(A) and �

min

(A) for the largest and smallest

singular values of A. Let kAk = �

max

(A), kAk⇤ and kAk
F

be the spectral, nuclear and

Frobenius norm of a matrix A. If A 2 Rp⇥m, for a probability distribution P

X

for X 2 Rp,

define

kAk2
L2(PX)

def

= m

�1E
PXkA>

X

i

k2
2

. (1.5)

Denote A⇤j and A
i⇤ as the jth column vector and the ith row vector of A. I

p

denotes

the p ⇥ p identity matrix. For any two matrices A,B 2 Rp⇥m, h·, ·i : Rn⇥m ⇥ Rn⇥m ! R
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denotes the trace inner product given by hA,Bi = tr(AB>). Define the empirical measure

of (Y
i

,X

i

) by P
n

, and the true underlying measure by P with the corresponding expectation

as E. For a function f : Rp ! R, and Z

i

2 Rp, define the empirical process G
n

(f) =

n

�1/2

P

n

i=1

{f(Z
i

)� E[f(Z
i

)]}. Define the ”check” function and its subgradient by

⇢

⌧

(u)
def

= u(⌧ � 1{u  0}),  

⌧

(u)
def

= ⌧ � 1(u  0).

For vectors a

1

, ...,a

m

in Rp, denote [a
1

a

2

... a

m

] 2 Rp⇥m a matrix with a

j

being its jth

column. Let 0
p

be a p-vector of zeros.

Definition 1.1 (Sub-Gaussian variable and sub-Gaussian norm). A random variable X

is called sub-Gaussian if there exists some positive constant K

2

such that P(|X| > t) 
exp(1 � t

2

/K

2

2

) for all t � 0. The sub-Gaussian norm of X is defined as kXk
 2 =

sup
p�1

p

�1/2(E|X|p)1/p.

2. Computation

In this section, we discuss an e�cient algorithm that generates a sequence to approximate

the solution of (1.4), which we call ”QISTA”. Section 2.1 describes the ideas of the algorithm,

which is stated formally in Algorithm 1. Section 2.2 explains the computation of factors

and loadings. Section 2.3 discusses the choice of tuning parameter �. Section 2.4 gives an

algorithmic convergence result in Theorem 2.3, whose proof is in the supplementary material.

2.1. A Generalization of FISTA to Non-smooth Loss Function

Obtaining the exact solution for (1.4) is di�cult because b

Q

⌧

(S) defined in (1.3) is neither

smooth nor strictly convex. In this section we describe an algorithm that generates a se-

quence of �
⌧,t

which approximates b�. The major challenge is that the subgradient of bQ
⌧

(S)
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is not Lipschitz, so the FISTA algorithm of Beck and Teboulle (2009) cannot be applied

straightforwardly. To resolve this problem, we need to find a ”nice” surrogate for b

Q

⌧

(S).

To develop the ideas, recall from (1.4) that the objective function to be minimized is

L

⌧

(S) = (mn)�1

n

X

i=1

m

X

j=1

⇢

⌧

�

Y

ij

�X

>
i

S⇤j
�

+ �kSk⇤ = b

Q

⌧

(S) + �kSk⇤, (2.1)

where b

Q

⌧

(S) is neither smooth nor strictly convex. To handle this problem, we introduce

the dual variables ⇥
ij

:

b

Q

⌧

(S) = max
⇥ij2[⌧�1,⌧ ]

(mn)�1

n

X

i=1

m

X

j=1

⇥
ij

�

Y

ij

�X

>
i

S⇤j
�

. (2.2)

See Section S.1.1 in the supplementary material for a proof of (2.2). To smooth this func-

tion, denote the matrix ⇥ = (⇥
ij

) for i = 1, ..., n, j = 1, ...,m, we consider a smooth

approximation to b

Q

⌧

(S) as in equation (2.5) of Nesterov (2005):

b

Q

⌧,

(S)
def

= max
⇥ij2[⌧�1,⌧ ]

n

(mn)�1

e

Q

⌧

(S,⇥)� 

2
k⇥k2

F

o

, (2.3)

where e

Q

⌧

(S,⇥)
def

=
P

n

i=1

P

m

j=1

⇥
ij

�

Y

ij

� X

>
i

S⇤j
�

, and  > 0 is a smoothing regularization

constant depending on m,n and the desired accuracy. When  ! 0, the approximation is

getting closer to the function before smoothing, as shown in Figure 2.1. b

Q

⌧,

(S) defined in

(2.3) has Lipschitz gradient

r b

Q

⌧,

(S)
def

= �(mn)�1X>[[(mn)�1(Y �XS)]]
⌧

, (2.4)

where X = [X
1

X

2

... X

n

]>, [[A]]
⌧

= ([[A
ij

]]
⌧

) performs component-wise truncation on a
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real matrix A to the interval [⌧ � 1, ⌧ ]; in particular,

[[A
ij

]]
⌧

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⌧, if A
ij

� ⌧ ;

A

ij

, if ⌧ � 1 < A

ij

< ⌧ ;

⌧ � 1, if A
ij

 ⌧ � 1.

Observe that (2.4) is similar to the subgradient �X{⌧�1(Y�XS  0)} of bQ
⌧

(S), where the

operator ⌧ � 1(·  0) applies component-wise to the matrix Y �XS with a slight abuse of

notation. The major di↵erence lies in the fact that (2.4) replaces the discrete non-Lipschitz

⌧ � 1(Y �XS  0) with a Lipschitz function [[�1(Y �XS)]]
⌧

. Figure 2.1 illustrates this

in a univariate framework with m = n = 1 and X = 1.

-0
.5

0.
0

0.
5

0.0

κ=0.5 κ=0.2 κ=0.05

Figure 2.1: The solid line is the function  

⌧

(u) = ⌧ � 1(u  0) with ⌧ = 0.5, which has
a jump at the origin. The dashed line corresponds to the smoothing gradient [[�1(Y �
XS)]]

⌧

associated with  = 0.5. As  decreases to 0.05, we observe that the smoothing
approximation function is closer to  

⌧

(u).

Now, we replace the optimization problem involving L

⌧

(S) in (2.1) by the one involving

e

L

⌧

(S)
def

= b

Q

⌧,

(S) + �kSk⇤, (2.5)

where we recall the definition of bQ
⌧,

(S) in (2.3). Since the gradient of bQ
⌧,

(S) is Lipschitz,
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we may apply FISTA of Beck and Teboulle (2009) for minimizing (2.5). Define S

�

(·) to be

the proximity operator on Rp⇥m:

S

�

(S)
def

= U(D� �I
p⇥m

)
+

V>
, (2.6)

where I
p⇥m

is the p⇥m rectangular identity matrix with the main diagonal elements equal

to 1, and the SVD S = UDV>. See Theorem S.4.2 in the supplementary material for more

detail for the proximity operator. We are now ready to state Algorithm 1 for the optimization

problem (1.4). The name of the algorithm reflects the fact that it is an ISTA algorithm for

regression quantiles.

Algorithm 1: Quantile Iterative Shrinkage-Thresholding Algorithm (QISTA)

1 Input: Y, X, 0 < ⌧ < 1, �, ✏ = 10�6, T (chosen as (2.12))  = ✏

2mn

, M = 1

m

2
n

2kXk2;
2 Initialization: �

⌧,0

= 0, ⌦
⌧,1

= 0, step size �
1

= 1;
3 for t = 1, 2, ..., T do

4 �
⌧,t

= S

�/M

�

⌦
⌧,t

� 1

M

r b

Q

⌧,

(⌦
⌧,t

)
�

;

5 �

t+1

=
1+

p
1+4�

2
t

2

;
6 ⌦

⌧,t+1

= �
⌧,t

+ �t�1

�t+1
(�

⌧,t

� �
⌧,t�1

);

7 end
8 Output: �

⌧,T

2.2. Computing Factors and Loadings

To obtain the factors f ⌧
k

(X) = '

>
k,⌧

X

i

and loadings  
kj,⌧

for j = 1, ...,m and k = 1, ..., r
⌧

which are related to �
⌧

as in (1.1), by matrix factorization, we may decompose �
⌧

= �
⌧

 
⌧

,

where �
⌧

2 Rp⇥r and  
⌧

2 Rr⇥m, and identify '

k,⌧

as kth column of �
⌧

and  
kj,⌧

as kj

entry of  
⌧

. However, decomposition �
⌧

= �
⌧

 
⌧

is not unique, since for any invertible

matrix P 2 Rr⇥r, we have �
⌧

 
⌧

= �
⌧

PP�1 
⌧

. Therefore, we need extra r

2

⌧

restrictions to

fix a matrix P.

We apply the constraint in equation (2.14) on page 28 of Reinsel and Velu (1998): if

10



singular value decomposition �
⌧

= U
⌧

D
⌧

V>
⌧

, then we set

 
⌧

= V
⌧

and �
⌧

= D>
⌧

U>
⌧

. (2.7)

We also allow for other choices.

For any t, given �
⌧,t

at t iteration from Algorithm 1, we can estimate the factors and

loadings using (2.7):

b

f

⌧

k

(X
i

) = (�
⌧,t

)>⇤kXi

= �

k,t

(U
⌧,t

)>⇤kXi

,

b 
⌧

= V
⌧,t

,

(2.8)

where V
⌧,t

2 Rm⇥m, D
⌧,t

2 Rp⇥m and U
⌧,t

2 Rp⇥p are from the singular value decomposition

�
⌧,t

= U
⌧,t

D
⌧,t

V>
⌧,t

, and �
k,t

is the kth largest singular value of �
⌧,t

.

Remark 2.1 (Sign identifiability). The sign in (2.7) is in general indeterminable. Nonethe-

less, this issue can often be addressed in practice based on the first factor f ⌧1
1

(X
i

) � f

⌧2
1

(X
i

)

for ⌧

1

> ⌧

2

. For implementation, we suggest estimate both b

f

⌧1
1

(X
i

) and b

f

⌧2
1

(X
i

) (say

⌧

1

= 0.9, ⌧
2

= 0.1), and determine the sign so that b

f

⌧1
1

(X
i

) � b

f

⌧2
1

(X
i

). This approach

works well in our empirical analysis. Though the monotonicity of empirical quantile curves

can be violated (Chernozhukov et al.; 2010; Dette and Volgushev; 2008) and the factors

b

f

⌧1
1

(X
i

) � b

f

⌧2
1

(X
i

) for ⌧

1

� ⌧

2

may cross, working with more extreme quantiles (e.g.,

⌧

1

= 0.9, ⌧
2

= 0.1) can often resolve the problem.

2.3. Tuning

For the implementation of Algorithm 1, it is crucial to appropriately select �. We propose

to select � based on the ”pivotal principle”. We define the random variable

⇤
⌧

= (nm)�1kX>
fW

⌧

k, (2.9)

11



where (fW
⌧

)
ij

= 1(U
ij

 0)�⌧ , {U
ij

} are i.i.d. uniform (0,1) random variables for i = 1, ..., n

and j = 1, ...,m, independent from X

1

, ...,X

n

. The random variable ⇤
⌧

is pivotal condi-

tioning on design X, as it does not depend on unknown �
⌧

. Notice that (nm)�1X>
fW

⌧

=

r b

Q

⌧

(�
⌧

), which is the subgradient of bQ
⌧

(�
⌧

) defined in (3.1) evaluated at the true matrix

�
⌧

. Set

�

⌧

= 2 · ⇤
⌧

(1� ⌘|X), (2.10)

where ⇤
⌧

(1� ⌘|X)
def

= (1� ⌘)-quantile of ⇤
⌧

conditional on X, for 0 < ⌘ < 1 close to 1, for

instant ⌘ = 0.9. The choice of �
⌧

will be justified theoretically in Section 3.

Remark 2.2. Using the theory we develop in Section 3, in principle one can select � based

on (3.7), but this does not adapt to the data X

i

. (2.10) is inspired by the high-dimensional

quantile regression estimation in Belloni and Chernozhukov (2011).

2.4. Algorithmic Convergence Analysis

An analysis of the performance of Algorithm 1 is given by the following theorem.

Theorem 2.3 (Convergence analysis of Algorithm 1). Let {�
⌧,t

}T
t=0

be the sequence generated

by Algorithm 1, b�
⌧

be the optimal solution for minimizing (2.1) and �
⌧,1 = lim

t!1 �⌧,t be

a minimizer of eL
⌧

(S) defined in (2.5). Then for any t and ✏ > 0,

�

�

L

⌧

(�
⌧,t

)� L

⌧

(b�
⌧

)
�

�  3✏(⌧ _ {1� ⌧})2
4

+
4k�

⌧,0

� �
⌧,1k2

F

kXk2
(t+ 1)2✏mn

. (2.11)

On the other hand, if we require L

⌧

(�
⌧,t

)� L

⌧

(b�
⌧

)  ✏, then

t

⌧

� 2
k�

⌧,1 � �
⌧,0

k
F

kXk
✏

p
mn

q

1� 3(⌧_{1�⌧})2
4

. (2.12)
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See Section S.1.2 in the supplementary material for a proof for Theorem 2.3. The first

term on the right-hand side of (2.11) is related to the smoothing error, which cannot be

made small by increasing the number of iterations, but can only be reduced by choosing a

smaller smoothing parameter . The second term is related to the fast iterative shrinkage-

thresholding algorithm (FISTA) of Beck and Teboulle (2009).

Remark 2.4 (Convergence Speed). The algorithm of Beck and Teboulle (2009) yields the

convergence rate O(1/
p
✏). In our case, the smoothing error deteriorates the convergence

rate and at best we have O(1/✏), which is comparable to the rate from a smoothing optimiza-

tion method of Nesterov (2005). Our rate is an improvement from O(1/✏2) of the general

subgradient method.

Remark 2.5 (E↵ect of ⌧). The quantile level ⌧ enters the numerical bound (2.11) by
�

1�
(⌧ _ {1� ⌧})2/2��1/2

, which increases when ⌧ is getting close to the boundary of the interval

(0, 1).

Remark 2.6. Algorithm 1 requires SVD in each iteration, and may be computationally

expensive when p,m are very large. Hence, we will derive the bounds for �
⌧,t

under finite t

in Section 3. An alternative approach is to formulate the optimization problem (1.4) into a

semidefinite program and then apply available solvers. See, for example, Jaggi and Sulovský

(2010). This approach avoids performing SVD in each step, but in general it requires O(1/✏)

steps to reach an ✏-accurate solution.

3. Oracle Properties

In this section we investigate the theoretical properties of the estimator generated by

Algorithm 1. Section 3.1 focuses on the estimator �
⌧,t

from the tth iteration of Algorithm

1, and develops a oracle bound for this matrix. Section 3.2 is concerned with the estimation

of the factors and loadings, which are defined in Section 2.2.
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3.1. Oracle Properties of �⌧,t

In this section, we present the non-asymptotic oracle bounds of the estimator �
⌧,t

gener-

ated by Algorithm 1, which shows that our estimator approximates the true matrix � well

without knowing the support (defined later) of the true matrix. The main result is Theorem

3.6.

In order to develop ideas, we introduce some useful notations. The subgradient for bQ
⌧

(S)

is the matrix

r b

Q

⌧

(S)
def

= (nm)�1

n

X

i=1

X

i

W

⌧,i

(S)> = (nm)�1X>W
⌧

(S) 2 Rp⇥m

, (3.1)

where X = [X
1

...X

n

]> 2 Rn⇥p is the design matrix and

W

⌧,i

(S)
def

=
�

1(Y
ij

�X

>
i

S⇤j  0)� ⌧

�

1jm

, W
⌧

(S) = [W
⌧,1

(S) ... W
⌧,n

(S)]> 2 Rn⇥m

.

We write W

⌧,i

(�)
def

= W

⌧,i

and W
⌧

def

= W
⌧

(�). For developing the error bounds, we make

the following assumptions:

(A1) (Sampling setting) Samples (X
1

,Y

1

), ..., (X
n

,Y

n

) are i.i.d. copies of (X,Y ) random

vectors in Rp+m. F�1

Yij |Xi
(⌧ |x) = x

>�⇤j(⌧).

(A2) (Covariates) Let X ⇠ (0,⌃
X

) whose density exists. Suppose 0 < �

min

(⌃
X

) <

�

max

(⌃
X

) < 1, and there exist constants B

p

, c

1

, c

2

> 0 such that kX
i

k and the

sample covariance matrix b⌃
X

= 1

n

X>X satisfies

P
�

�

min

(b⌃
X

) � c

1

�

min

(⌃
X

), �
max

(b⌃
X

)  c

2

�

max

(⌃
X

), kX
i

k  B

p

 � 1� �

n

, (3.2)

for a sequence �
n

! 0.
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(A3) (Conditional densities) There exist constants f̄ > 0, f > 0 and f̄

0
< 1 such that

max
jm

sup
x,y

�

�

f

Yj |X(y|x)��  f̄ , max
jm

sup
x,y

�

�

�

�

@

@y

j

f

Yj |X(y|x)
�

�

�

�

 f̄

0
, min

jm

inf
x

f

Yj |X(x>�⇤j|x) � f,

where f

Yj |X is the conditional density function of Y
j

on X.

Assumption (A1) allows us to compute with ease the second moment and the tail proba-

bility of some empirical processes (see Remark S.3.4). (A1) may be replaced by m-dependent

or weak dependent conditions, but we would need a modified random matrix theory (see the

proof for the detail of Theorem 3.6). We leave this for future study. In Assumption (A2),

we assume E[X] = 0 for simplicity and it can be easily generalized. B

p

is usually assumed

uniformly bounded by a constant independent of p in multitask learning literature (for ex-

ample, p.2 of Maurer and Pontil (2013) and Theorem 1 of Yousefi et al. (2016)). For the

condition (3.2), when the X is from a p-Gaussian distribution N(0,⌃
X

), Lemma 9 in Wain-

wright (2009) shows that (3.2) holds with c

1

= 1/9, c
2

= 9 and �
n

= 4 exp(�n/2). Vershynin

(2012b) discusses the condition (3.2) for a more general class of random vector X. (A3) is

common in quantile regression literature, see for example Belloni and Chernozhukov (2011);

Belloni et al. (2011).

In what follows, we define the ”support” of matrices by projections.

Definition 3.1. For A 2 Rp⇥m with rank r, the singular value decomposition of A is

A =
P

r

j=1

�(A)u
j

v>
j

. The support of A is defined by (S
1

, S

2

) in which S

1

= span{u
1

, ...,u
r

}
and S

2

= span{v
1

, ...,v
r

}. Define the projection matrix on S

1

: P
1

def

= U
[1:r]

U>
[1:r]

, in which

U
[1:r]

= [u
1

...u
r

] 2 Rp⇥r; P
2

def

= V
[1:r]

V>
[1:r]

, where V
[1:r]

= [v
1

...v
r

] 2 Rm⇥r. Denote

P?
1

= I
p⇥r

�P
1

and P?
2

= I
m⇥r

�P
2

. For any matrix S 2 Rp⇥m, define

PA(S)
def

= P
1

SP
2

; P?
A(S)

def

= P?
1

SP?
2

.
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Define for any a � 0,

K(�; a)
def

=
�

S 2 Rp⇥m : kP?
�(S)k⇤  3kP�(S)k⇤ + a

 

. (3.3)

See Remark 3.2 for more discussion of the set K(�; a).

An important equality we will use repeatedly in the proofs is that for any S,A 2 Rp⇥m,

kSk⇤ = kPA(S)k⇤ + kP?
A(S)k⇤, which essentially corresponds to the decomposability of

nuclear norm. See Definition 1 on page 541 of Negahban et al. (2012). Moreover, the rank

of PA(S) is at most rank(A).

We remind the readers that singular vectors corresponding to nonzero distinct singular

values are uniquely defined, and unique up to a unitary transformation for those correspond-

ing to repeated nonzero singular values. The singular vectors corresponding to 0 singular

values are not unique. However, in Definition 3.1 we do not require a unique choice of

singular vectors as the nuclear norm is invariant to unitary transformations.

Remark 3.2 (Shape of K(�; a)). The shape of K(�; a) is not a cone when a > 0, but is still

a star-shaped set. This set has a similar shape as the set defined in equation (17) on page

544 in Negahban et al. (2012). The reader is referred to their Figure 1 on page 544 for an

illustration of that set.

Remark 3.3. For any � 2 Rp⇥m, from (A2),

k�k2
L2(PX)

= m

�1E
⇥k�>

X

i

k2
2

⇤

= m

�1

m

X

j=1

�>
⇤jE[Xi

X

>
i

]�⇤j � m

�1

�

min

(⌃
X

)k�k2
F

. (3.4)

Moreover, by kP�(�)k
F

 k�k
F

, we have a bound

k�k
L2(PX)

�
⇣

�

min

(⌃
X

)

m

⌘

1/2

k�k2
F

�
⇣

�

min

(⌃
X

)

m

⌘

1/2

kP�(�)k
F

. (3.5)

We first present some preliminary results. The next lemma gives the bound for n�1kX>Wk,
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which leads to a bound for kr b

Q(�)k. The detailed proof can be found in the supplementary

material.

Lemma 3.4. Under assumptions (A1) and (A2),

1

n

kX>Wk  C

⇤
p

�

max

(⌃
X

){⌧ _ (1� ⌧)}
r

p+m

n

, where C

⇤ = 4

r

2
c

2

C

0 log 8 (3.6)

with probability greater than 1 � 3e�(p+m) log 8 � �

n

, where C

0 and c

2

are absolute constants

given by Lemma S.4.3 in the supplementary material and Assumption (A2).

Please see Section S.2.1 for a proof of Lemma 3.4. We will take

� = 2
C

⇤

m

p

�

max

(⌃
X

){⌧ _ (1� ⌧)}
r

p+m

n

. (3.7)

Define for any  > 0,

g

n

()
def

= (⌧ _ {1� ⌧})2nm
2

. (3.8)

Sometimes we write g
n

() = g

n

. The constant g
n

() is the smoothing error, and  controls the

level of smoothing, as explained in Section 2.1. In Algorithm 1 we recommend  = ✏/(2mn),

but we allow for other choices. Define

e⌫

⌧

(a)
def

=
3

8

f

f̄

0 inf
�2K(�,a)

� 6=0

�

P

m

j=1

E[|X>
i

�⇤j|2]
�

3/2

P

m

j=1

E[|X>
i

�⇤j|3] , (3.9)

which controls the strict convexity of Q
⌧

(S).

Lemma 3.5. Under assumptions (A1)-(A3), � is set as (3.7). Let �
⌧,1 be the minimizer
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of eL
⌧

(S) defined in (2.5). Under the condition on r:

C

⌧

(c
3

)

f

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p
r

r

(m+ p)(log p+ logm)

mn

+
p

C

2

(c
3

)g
n

() < e⌫

⌧

(g
n

), (3.10)

then with probability greater than 1� �

n

� 16(pm)1�c

2
3 � 3 exp{�(p+m) log 8},

k�
⌧,1 � �k

L2(PX)

 4
C

⌧

(c
3

)

f

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p
r

r

(m+ p)(log p+ logm)

mn

+ 4
p

C

2

(c
3

)g
n

()

(3.11)

k�
⌧,1��k

F

 p

m/�

min

(⌃
X

)k�
⌧,1��k

L2(PX)

, where C
⌧

(c
3

) = 16
p

log 8{⌧ _ (1� ⌧)}/C 0+

32
p
2c

3

, C 0 and c

2

are absolute constants given by Lemma S.4.3 in the supplementary mate-

rial and Assumption (A2); C
2

(c
3

) = (4f)�1(c
3

C

1

p

B

p

/�

max

(⌃
X

)+3) where C
1

is a universal

constant. r = rank(�) and g

n

() is defined in (3.8).

See Section S.2.2 for a proof of Lemma 3.5. When the level of smoothness g
n

() ! 0 (or

when  ! 0), the bound (3.11) converges to the oracle bound of b� (A.6) in Theorem A.2.

The key ingredient in the proof is a new tail probability bound for the empirical process

G
n

{ bQ
⌧

(�+�)� b

Q

⌧

(�)}, which builds on a sharp bound for the spectral norm of a partial

sum of random matrices. See Maurer and Pontil (2013) and Tropp (2011) for more details

of such a bound.

Define

h

n

()
def

= 4
C

⌧

(c
3

)

f

s

c

2

�

max

(⌃
X

) + B

p

�

2

min

(⌃
X

)

p
r

r

(m+ p)(log p+ logm)

n

+ 4
p

C

2

(c
3

)m�
min

(⌃
X

)�1

g

n

() (3.12)
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which is essentially the convergence rate of k�
⌧,1 � �k

F

. Moreover, define

a

n,t

(, ✏)
def

= (⌧ _ {1� ⌧})2mn+
8c2

2

(k�k2
F

+ h

2

n

)�2

max

(⌃
X

)

(t+ 1)2✏m
. (3.13)

a

n,t

(, ✏) is related to the algorithmic convergence rate (2.11).

Theorem 3.6. Under assumptions (A1)-(A3), and � is set as (3.7). Let {�
⌧,t

}T
t=1

be a

sequence generated by Algorithm 1. Under the growth condition of r,

C

⌧

(c
3

)

f

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p
r

r

(m+ p)(log p+ logm)

mn

+
q

C

2

(c
3

)a
n,t

(, ✏) < e⌫

⌧

(a
n,t

(, ✏)),

(3.14)

then with probability greater than 1� 2�
n

� 32(pm)1�c

2
3 � 6 exp{�(p+m) log 8},

k�
⌧,t

� �k
L2(PX)

 4
C

⌧

(c
3

)

f

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p
r

r

(m+ p)(log p+ logm)

mn

+ 4
q

C

2

(c
3

)a
n,t

(, ✏), (3.15)

k�
⌧,t

� �k
F

 p

m/�

min

(⌃
X

)k�
⌧,t

� �k
L2(PX)

, where C

⌧

(c
3

) = 16
p

log 8{⌧ _ (1� ⌧)}/C 0 +

32
p
2c

3

, C 0 and c

2

are absolute constants given by Lemma S.4.3 in the supplementary mate-

rial and Assumption (A2); C
2

(c
3

) = (4f)�1(c
3

C

1

p

B

p

/�

max

(⌃
X

)+3) where C
1

is a universal

constant. r = rank(�) and a

n,t

(, ✏) is defined in (3.13).

See Section S.2.4 for a proof of Theorem 3.6. In the first term in (3.15), there are three

main components in (A.6), which correspond to the rank, covariates X and conditional

density of Y givenX. When p andm are fixed with respect to n, the errors decrease in n

�1/2.

However, the error will diverge to infinity if p or m grows faster than n, which corresponds

to the result for the multivariate regression for mean, see Negahban and Wainwright (2011),

Koltchinskii et al. (2011) among others. r(p+m) can be interpreted as the true number of
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unknown parameters. The covariates can influence the bounds (A.6) through the condition

number �
max

(⌃
X

)/�
min

(⌃
X

) of the covariance matrix ⌃
X

and B

p

. The estimation at ⌧ close

to 0 or 1 is di�cult as ⌧ _ (1� ⌧) grows when ⌧ moves away from 0.5. For the second term

on the right hand side of (3.15), a
n,t

(, ✏) can be made small by choosing ✏, small and

increasing t, and the bound (3.15) would be close to (A.6).

Remark 3.7 (Comment on e⌫). In Lemma 3.5 and Theorem 3.6, the growth conditions (3.10)

and (3.14) are crucial for guaranteeing the strong convexity of Q
⌧

(S). It is easy to see that

e⌫

⌧

(a
n,t

(, ✏)) < e⌫

⌧

(g
n

) since a

n,t

(, ✏) > g

n

and K(�, g
n

) ⇢ K(�, a
n,t

(, ✏)). We note that

e⌫

⌧

(0) is related to the ”restricted nonlinearity constant” in the Lasso for quantile regression

of Belloni and Chernozhukov (2011). In Section S.4.1, we discuss these growth conditions

in more detail.

Remark 3.8 (Not exactly sparse �). When � is not exactly sparse in rank (the number of

nonzero singular values is not sparse), we may characterize the error by using the devise of

Negahban et al. (2012). Let V ⇢ Rm and U ⇢ Rp be two subspaces with dimension r, let

M = {� 2 Rp⇥m : row space of � ⇢ V , column space of � ⇢ U}; M?
= {� 2 Rp⇥m :

row space of � ⇢ V?
, column space of � ⇢ U?} (defined similarly as in Example 3 on page

542 of Negahban et al. (2012)). For any matrix S 2 Rp⇥m,

PM(S) = PUSPV , P?
M(S) = P>

USP
>
V ,

where PV = VV>, P?
V = I

m⇥r

� PV , V = [v
1

...v
r

], and {v
j

}r
j=1

is a set of orthonormal

basis for V; analogously, PU = UU>, P?
U = I

p⇥r

� PU , U = [u
1

...u
r

], and {u
j

}r
j=1

is a

set of orthonormal basis for U . Moreover, we have the decomposability: for any matrix S,

kSk⇤ = kPM(S)k⇤ + kP>
M(S)k⇤.

It can be shown that when � � 2kr b

Q(�)k, with probability greater than 1 � �

n

�
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16(pm)1�c

2
3 � 3 exp{�(p+m) log 8}, the di↵erence �

⌧,t

= �
⌧,t

� � lies in the set

K(M, 4kP?
M(�)k+ 2a

n,t

(, ✏)/�)

def

=

⇢

� 2 Rp⇥m : kP?
M(�)k  3kPM(�)k+ 4kP?

M(�)k+ 2b
n,t

(, ✏)

�

�

, (3.16)

where b
n,t

(, ✏) > 0 is an appropriately adapted version of a
n,t

(, ✏) for kP?
M(�)k. The oracle

property of �
⌧,t

can be shown via similar argument as showing Theorem 3.6, and we leave

out the detail. The proof for (3.16) is in Section S.4.2.

3.2. Realistic Bounds for Factors and Loadings

In this section we discuss the bounds for the estimated factors and loadings, defined in

(2.8). The bounds will be stated in terms of k�
⌧,t

� �k
F

, and then Theorem 3.6 can be

applied for finding the explicit rate for the factors and loadings.

First we observe that by Mirsky’s theorem, the singular values can be consistently esti-

mated.

Lemma 3.9. Let {�
⌧,t

}T
t=1

be a sequence generated by Algorithm 1, then for any t,

p^m
X

j=1

�

�

j

(�
⌧,t

)� �

j

(�)
 

2  k�
⌧,t

� �k2
F

. (3.17)

The proof of Lemma 3.9 is a straightforward application of Mirsky’s theorem (see, e.g.,

Theorem 4.11 on page 204 of Stewart and Sun (1990)). The detail is omitted.

Theorem 3.10. If the nonzero singular values of matrix �
⌧

are distinct, then with the choice

of b 
⌧

and b

f

⌧

k

(X
i

) in (2.8) for a given t,

1� |(b 
⌧

)>⇤j( ⌧

)⇤j|  2(2k�k+ k�
⌧,t

� �k
F

)k�
⌧,t

� �k
F

min{�2

j�1

(�)� �

2

j

(�), �2

j

(�)� �

2

j+1

(�)} (3.18)
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If, in addition, let the SVDs �
⌧

= U
⌧

D
⌧

V>
⌧

and �
⌧,t

= bU
⌧

bD
⌧

bV>
⌧

, suppose (bU
⌧

)>⇤j(U⌧

)⇤j � 0,

then

�

�

b

f

⌧

k

(X
i

)� f

⌧

k

(X
i

)
�

�  kX
i

k
✓

k�
⌧,t

� �k
F

+ 2�
k

(�)

s

(2k�k+ k�
⌧,t

� �k
F

)k�
⌧,t

� �k
F

min{�2

k�1

(�)� �

2

k

(�), �2

k

(�)� �

2

k+1

(�)}
◆

(3.19)

See Section S.2.6 for a proof for Theorem 3.10. The oracle inequalities in Theorem 3.6

can then be applied to find the exact rate for the loadings and factors.

Remark 3.11. The condition (bU
⌧

)>⇤j(U⌧

)⇤j � 0 essentially says that the sign of (bU
⌧

)⇤j is

correctly chosen, which can usually be done in practice. See Remark 2.1 for more discussion.

Remark 3.12 (Repeated singular values). Theorem 3.10 is under the condition that the sin-

gular values for � are distinct. If there are repeated singular values, then the corresponding

singular vectors are not uniquely defined, and we can only obtain a bound for the ”canon-

ical angle” (see, e.g., Yu et al. (2015)) of the subspaces generated by the singular vectors

associated with the repeated singular values.

4. Simulation

In this section, we check the performance of the proposed method via Monte Carlo

experiments, and compare with an oracle estimator computed under the knowledge of the

true rank.

Given two distinct matrices S
1

,S
2

with nonnegative entries, rank(S
1

) = r

1

and rank(S
2

) =

r

2

, we simulate data from the two-piece normal model (Wallis; 2014)

Y

ij

= ��1

�

(U
ij

)X>
i

�

(S
1

)⇤j1{Uij

 0.5}+ (S
2

)⇤j1{Uij

> 0.5}�, (4.1)

i = 1, ..., n = 500; j = 1, ...,m = 300,
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U

ij

are i.i.d. U(0, 1) independent of X
i

. X
i

2 Rp follows a multivariate U([0, 1]) distribution

for p = 300 with covariance matrix ⌃ in which ⌃
ij

= 0.1 ⇤ 0.8|i�j| for j = 1, ..., p. See Falk

(1999) for more details on simulating X

i

. The conditional quantile function q

j

(⌧ |x) of Y
ij

on x for the distribution of Y
ij

is

q

l

j

(⌧ |x) = ��1(⌧)x>�S
1

1{⌧  0.5}+ S
2

1{⌧ > 0.5}� def

= x

>(�
⌧

)⇤j, (4.2)

where �
⌧

is defined in an obvious manner. The number of repetitions is 500.

In our simulation study, we fix S
1

with rank(S
1

) = 2. However, we consider two models

for S
2

:

I. Model ES (equally sparse): SES

2

with rank(SES

2

) = 2;

II. Model AS (asymmetrically sparse): SAS

2

with rank(SAS

2

) = 6.

The entries of S
1

, SES

2

and SAS

2

will be randomly selected. The specific steps for generating

these matrices are detailed in Section S.4.3. We only note here that the singular values of

matrices S
1

and Sl

2

for l 2 {ES,AS} are randomly selected and are all distinct.

We apply Algorithm 1 with ⌧ = 5%, 10%, 20%, 80%, 90%, 95% to compute the estimator

b�l

⌧

for �l

⌧

, defined in (4.2), where l 2 {ES,AS}. The tuning parameter � is selected as

described in Section 2.3. We stop the algorithm when the change in the loss function L

⌧

(S)

(defined in (2.1)) from two consecutive iterations is less than 10�6. The performance of

b�l

⌧

is measured by the Frobenius error: k�l

⌧,�

� b�l

⌧

k, for l 2 {ES,AS}. The results for

prediction error have similar pattern as the Frobenius error, so we do not report them here.

We also report the average number of iterations for running Algorithm 1. The error of b�l

⌧

is compared with that of an oracle estimator computed using the knowledge of true rank r

1

or rl
2

def

= rank(Sl

2

) depending on ⌧ (or l 2 {ES,AS}). The oracle estimator is computed in

a similar way as Algorithm 1, while we replace the soft thresholding operator S
�

by a hard
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thresholding operator, which truncates all but the first r

1

or r

l

2

singular values to 0. The

iteration stops when the change in the function b

Q

⌧

(S) is less than 10�6.

The mean and standard deviation of the Frobenius errors is in Table 4.2. When the

variance is larger (� = 1), we have greater errors as expected. The errors vary with ⌧ , which

is almost 2 times higher when ⌧ is close to 0.05 and 0.95 than when ⌧ is 0.2 and 0.8. If we

compare the error of b�l

⌧

, for l 2 {ES,AS} to that of the the oracle estimator, the oracle

estimators always have smaller errors for all ⌧ . However, their di↵erence is at most around

5-10% of the oracle error. In addition, the standard deviation of the oracle Frobenius error

is also less than that of b�l

⌧

.

When we compare the errors of the two models ES and AS, we find that their errors

are compatible when ⌧ is less than 0.5. Nonetheless, when ⌧ is greater than 0.5, the errors

of the model AS is around
p

r

AS

2

/r

ES

2

=
p

6/2 ⇡ 1.732 times of that of the model ES.

The oracle estimator also shows a similar pattern. This is consistent with our error bounds,

which predicts that the model with a larger rank would have greater errors.

The mean of number of iterations is reported in Table 4.1. More iterations are required

when ⌧ is close to 0 and 1 and when � is larger. Estimating b�l

⌧

for l = AS requires more

iterations than for l = ES, when ⌧ is greater than 0.5. The pattern coincides with the

algorithmic convergence analysis in Section 2.4.

Table 4.1: Averaged number of iterations.

⌧ 0.05 0.1 0.2 0.8 0.9 0.95
� = 0.5

ES 20.9 18.0 16.0 16.0 18.0 20.3
AS 20.8 18.0 16.0 23.0 25.1 28.7

� = 1

ES 26.5 23.0 21.0 20.6 23.0 26.0
AS 26.5 23.1 21.0 29.1 32.9 37.1
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Table 4.2: Averaged Frobenius errors with standard deviations. ”Or.” denotes the oracle
estimator, which is estimated under the knowledge of true rank. The numbers in parentheses
are standard deviations of the errors.

⌧ 0.05 0.1 0.2 0.8 0.9 0.95
� = 0.5

ES 60.995 48.746 34.302 33.973 48.375 60.604
(0.253) (0.227) (0.209) (0.202) (0.217) (0.247)

ES Or. 57.261 44.926 30.006 29.853 44.735 57.007
(0.191) (0.152) (0.116) (0.118) (0.152) (0.184)

AS 60.978 48.724 34.289 60.487 85.997 108.310
(0.263) (0.220) (0.207) (0.539) (0.567) (0.820)

AS Or. 57.239 44.911 30.002 54.922 80.583 102.663
(0.202) (0.164) (0.120) (0.744) (0.464) (0.572)

� = 1

ES 118.245 93.419 64.289 63.634 92.519 117.365
(0.570) (0.420) (0.387) (0.382) (0.372) (0.438)

ES Or. 113.636 88.781 58.913 58.593 88.365 113.099
(0.427) (0.338) (0.238) (0.221) (0.301) (0.378)

AS 118.259 93.434 64.291 120.338 170.904 217.185
(0.530) (0.412) (0.380) (1.151) (1.273) (1.547)

AS Or. 113.647 88.788 58.911 108.754 161.303 205.371
(0.387) (0.308) (0.224) (0.711) (0.929) (1.188)

Remark 4.1. If the true rank is known, an alternative approach to compute the oracle

estimator is to apply the classical quantile regression equation with Y

ij

on X

i

to get a primary

estimator for �, and then truncate all but r
1

or r

l

2

singular values of the primary estimator

to attain low rankness. However, this gives huge Frobenius and prediction errors, and we do

not report the results here.

5. Empirical Analysis

In this section, we use our method to study important scientific problems in finance

and climatology. Section 5.1 is devoted to spatial clustering based on extreme temperature.

In Section 5.2, we analyze global financial risk. To keep our discussion brief, we omit ”⌧ -
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quantile” when it does not cause confusion; for example, the expression ”⌧ -quantile of Y
j

has high loading in f

⌧

1

(X
i

)” will be shortened to ”Y
j

has high loading in f

⌧

1

(X
i

)”.

5.1. Spatial Clustering with Extreme Temperature

Spatial clustering is particularly crucial for modern climatological modeling in a data-

rich environment, where the size of a grid can be very large. In a relevant study, Bador

et al. (2015) construct spatial clusters in Europe that visualize the spatial dependence in

extreme high temperature in summer. They argue that mean and correlation based methods

fail to capture such distributional features of extreme events. In this section, we apply our

method to a daily temperature data set of the year 2008 from m = 159 weather stations

around China, which is downloaded from the website of Research Data Center of CRC 649

of Humboldt-Universität zu Berlin. The ideas and technique we demonstrate in this section

can be applied on even larger data with big m.

Let Y
ij

be the temperature (in Celsius) at j weather station on i day, where i = 1, ..., n =

365 and j = 1, ...,m. Before applying our method, we remove the common mean of Y
ij

by

fitting a curve with typical smoothing spline, see Section S.4.4 for more details. In Figure

5.1, the lower left subfigure is the fitted mean curve, which shows a seasonal pattern. After

removing the mean, the temperature curves of 159 weather stations are shown in the upper

left panel of Figure 5.1. We note that the de-trended curves also demonstrate seasonality:

the dispersion is larger in winter than in summer.

We apply Algorithm 1 on the de-trended temperature curves. Let b

l

, l = 1, ..., p be

B-spline basis functions with equally distributed knots on [0, 1] interval, we choose X

i

=

(b
1

(i/365), ..., b
p

(i/365)) for i = 1, ..., 365. The number of basis function is selected as p =

dn2/5e = 11, which is slightly larger than the rate suggested by the asymptotic theory if

we assume the curves are smooth. We take ⌧ = 1% and 99%. The tuning parameter � is

selected by the method in Section 2.3, and the estimated value is � = 0.000156.
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Figure 5.1: Upper left panel: The temperature time series in excess to national mean of the
159 weather stations around China; Lower left panel: the fitted temperature common mean
curve estimated by smoothing spline; Right panel: The plot for the first factor, in which the
black lines corresponds to 1% quantile factors and the blue lines corresponds to 99% quantile
factors.

The right panel in Figure 5.1 presents the first factors f 0.01

1

(X
i

) and f

0.99

1

(X
i

). The two

factors enclose a region that is wide in the ends and narrow in the middle. This is related

to the fact that the dispersion in temperature among weather stations tends to be higher

in winter and lower in summer, as shown in the upper left panel in Figure 5.1. The other

factors are rather small in absolute value relative to the first factor, so we do not include

them in the analysis for brevity.

The upper left (right) panels in Figure 5.2 show the locations of the weather stations,

and the color corresponds to the magnitude of the factor loadings to f

0.01

1

(X
i

) (f 0.99

1

(X
i

)). In

the upper left panel in Figure 5.2, stations in northeastern China are highly associated with

the factor f 0.01

1

(X
i

), while the stations in southern China have zero or even slightly negative

association to the factor f

0.01

1

(X
i

). The upper right panel in Figure 5.2 show the opposite

pattern to the factor f 0.99

1

(X
i

). These loadings quantify the spatial correlation in extremely

high (0.99 quantile) or low (0.01 quantile) temperatures at these weather stations, which

provides a foundation for spatial clustering. However, the cuto↵ points of the loadings for
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Figure 5.2: Upper panels: plot of the locations of weather stations. The color scale corre-
sponds to the magnitude of their ⌧ = 0.01 (left) and ⌧ = 0.99 factor loading. Lower panel:
tail to tail plot for temperature data. Each point is a pair ((b 

0.01

)
1j

, (b 
0.99

)
1j

) for weather
stations j = 1, ..., 159.

determining the clusters have to be carefully chosen, which we leave for future study.

The tail to tail plot in Figure 5.2 showing the loadings for the first factor at ⌧ = 1% and

99% demonstrates a nearly ”L” shape, which shows that the temperature of each station

seems to be associated with either the lower tail factor or the upper tail factor, but not both.

We highlight three stations in Tulihe, Dongfang, and Yushu which are located in the far

right, far top, and center in Figure 5.2.
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5.2. Global Financial Risk

Quantifying global financial risk in a high-dimensional setting is a very challenging task.

White et al. (2015) estimate the lower quantiles (⌧ = 0.01) of stock returns from m = 230

largest global financial firms with a vector autoregressive (VAR) model, and show that stock

returns of the firms with large market value and high leverage tend to be more vulnera-

ble to systemic shock. However, their method does not scale up to high dimensionality

because of excessive computational cost, so they estimate bivariate VAR for the quantiles

(q
Yij(⌧), qMi(⌧)) for each stock return Y

j

, where M

i

is a global market index. In the sequel,

we analyze all stocks jointly and compare our findings with the results of White et al. (2015).

We analyze the same set of daily stock closing prices as White et al. (2015) with the same

time frame from January 1, 2000 to August 6, 2010. The dataset is downloaded from Dr.

Manganelli’s personal website. See Table 1 of White et al. (2015) for a detailed breakdown

of the stocks by sector and country, as well as their averaged market value and leverage (the

ratio of short and long term debt over common equity) over the data period. We use daily

log-returns of the stock closing prices and this results in n = 2765.

We consider a multivariate model which jointly incorporates multiple asset returns. Let

Y

i,j

be the asset return for j firm, where j = 1, ...,m and i = 1, ..., n. We consider q
j

(⌧ |X
i

) =

X

>
i

(�
⌧

)⇤j, where

X

i

= (|Y
i�1,1

|, ..., |Y
i�1,m

|, Y �
i�1,1

, ..., Y

�
i�1,m

)> 2 R2m

, (5.1)

and Y

� def

= max{�Y, 0}. The choice of X
i

aims to capture asymmetric contribution of lag

return to the quantile of stock price, which is suggested in the Conditional Autoregressive

Value-at-Risk (CAViaR) literature, see Engle and Manganelli (2004). We estimate � via

the nuclear norm regularized multivariate quantile regression with ⌧ = 0.01 and 0.99. We

estimate the factor and loadings as (2.8) in Section 2.2. To select the tuning parameter �,
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applying the procedure described in Section 2.3 gives � = 0.02468 for ⌧ = 0.01. By symmetry

we also apply the same � for ⌧ = 0.99.

We present the estimated first factors for the quantile regression at ⌧ = 0.01 and 0.99

in Figure 5.3. The other factors are very small in scale compared to the first factor. Both

first factors f 0.01

1

(X
i

) and f

0.99

1

(X
i

) are volatile and moving away from 0 at the end of 2008

and in the first quarter of 2009, and mid 2010, which corresponds to the periods of financial

crisis and European debt crisis. In later analysis, we treat f 0.01

1

(X
i

) as an indicator for global

financial risk.
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Figure 5.3: The time series plots for the first factor. The black lines correspond to 0.01
quantile factors and the blue lines correspond to 0.99 quantile factors.

The left panel of Figure 5.4 is the ”tail to tail” plot with ⌧ = 0.01 and 0.99, in which

each point is the pair of loadings ((b 
0.01

)
1j

, (b 
0.99

)
1j

) defined in (2.8), for j = 1, ..., 230. The

values ((b 
0.01

)
1j

, (b 
0.99

)
1j

) are all positive. The fact that they distribute around the reverse

diagonal line suggests that the log-returns of these stocks are roughly equally associated to

the two extreme quantile factors. However, we observe that the points become more disperse

and deviate from the reverse diagonal line when moving northeast.

The right panel of Figure 5.4 plots the firms based on their averaged market value and

leverage, and the color scale depends on the magnitude of the ⌧ = 0.01 factor loading of

the corresponding stock. Our finding shows that high loadings associated with f

0.01

1

(X
i

)

are usually found for those stocks whose underlying firms have large market value and high
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leverage, which aligns with the results of White et al. (2015). In particular, as shown by the

right panel of Figure 5.4, the firms with certain combinations of market value and leverage

tend to have high loading associated with f

0.01

1

(X
i

) in 0.01 quantile of their stock returns.

This seems to be an interesting direction for future study.

Lastly, we note that the algorithmic convergence results in Section 2.4 apply straightfor-

wardly on financial time series data. However, an extension of the theory in Section 3.1 may

be required in order to bound the estimation error for the time series data.
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Figure 5.4: Left panel: tail to tail plot. Each point is a pair ((b 
0.01

)
1j

, (b 
0.99

)
1j

) for stocks
j = 1, ..., 230; Right panel: the plot of firms based on their averaged market value and
leverage over the data period. The color scale corresponds to the magnitude of their ⌧ = 0.01
factor loading.

APPENDIX: Oracle Properties for Exact Optimizer b�

In this section, we present the bounds for the exact minimizer b� for (1.4). Though b� is

di�cult to obtain in practice and is therefore not very useful, it is however very pedagogical

to study the bounds of b�, as many ideas applied there will be crucial for proving our main

results.

For a this section, define ⌫
⌧

def

= e⌫

⌧

(0). Note that ⌫
⌧

 e⌫

⌧

(g
n

)  ⌫

⌧

(a
n,t

(, ✏)).
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Lemma A.1. Under assumptions (A1)-(A3), � � 2kr b

Q(�)k and the growth condition on

r:

f

�1

p
m

✓

32
p
2c

3

p
r

s

c

2

�

max

(⌃
X

) + B

p

�
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, (A.1)

where c

2

is an absolute constant given by Assumption (A2). Then
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kb�� �k
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(⌃
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)kb�� �k
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p
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X

)kb�� �k
L2(PX)

,

with probability greater than 1� 16(pm)1�c

2
3 � �

n

, where r = rank(�).

Please see Section S.3.1 for a proof of Lemma A.1.

Theorem A.2. Assume that assumptions (A1)-(A3) hold and select � as (3.7). Under the

growth condition on r:
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)
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, (A.5)

where C

⌧

(c
3

)
def

= 16
p

log 8{⌧ _ (1� ⌧)}/C 0 +32
p
2c

3

, C 0 and c

2

are absolute constants given

by Lemma S.4.3 in the supplementary material and Assumption (A2). Then
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kb�� �k
F

 p

m/�

min

(⌃
X

)kb�� �k
L2(PX)

and kb�� �k⇤  4
p

rm/�

min

(⌃
X

)kb�� �k
L2(PX)

,

with probability greater than 1��
n

�16(pm)1�c

2
3 �3 exp{�(p+m) log 8}, where r = rank(�).

Please see Section S.3.2 for a proof of Theorem A.2.

Remark A.3 (Uniformity in ⌧). All the bounds Theorem A.2, 3.5 and 3.6 can be made

uniformly in ⌧ by replacing the constant ⌧_(1�⌧) by 1 and keeping the rest unchanged. This

is based on the observation that ⌧ enters those bounds only through the constant ⌧ _ (1� ⌧).
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SUPPLEMENTARY MATERIAL: FACTORISABLE

MUITI-TASK QUANTILE REGRESSION

In this supplementary material, we provide the proofs and technical detail for the materi-

als shown in the main body. Section S.1 presents the convergence analysis for the algorithm.

Section S.2 presents the proof for the oracle properties of �
⌧,t

. Section S.3 contains the proof

for the oracle properties of b�. Section S.4 discusses technical detail and remarks. Section

S.5 lists some auxiliary results.

S.1: Proofs for Algorithmic Convergence Analysis

S.1.1. Proof of (2.2)

To see that this equation holds, note that for each pair of i, j, when Y

ij

� X

>
i

�⇤j > 0,

⇥
ij

= ⌧ , since ⌧ is the largest ”positive” value in the interval [⌧�1, ⌧ ]. When Y

ij

�X

>
i

�⇤j  0,

⇥
ij

= ⌧ � 1 since ⌧ is the smallest ”negative” value in the interval [⌧ � 1, ⌧ ]. This verifies

the equation.

Remark S.1.1. It is necessary to choose [⌧ � 1, ⌧ ] rather than {⌧ � 1, ⌧} for the support of

⇥
ij

in (2.2) (though both choices fulfill the equation). The previous choice is an interval and

is therefore a convex set, and the conditions given in Nesterov (2005) is fulfilled.

S.1.2. Proof of Theorem 2.3

Recall the definition of L
⌧

(S) and b

Q

⌧

(S) in (2.1), eL
⌧

(S) and b

Q

⌧,

(S) in (2.5) and (2.3).

We note a comparison property in (2.7) of Nesterov (2005), for an arbitrary S 2 Rp⇥m,

b

Q

⌧,

(S)  b

Q

⌧

(S)  b

Q

⌧,

(S) +  max
⇥2[⌧�1,⌧ ]

n⇥m

k⇥k2
F

2
(S.1.1)
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where

max
⇥2[⌧�1,⌧ ]

n⇥m
k⇥k2

F

= max
⇥2[⌧�1,⌧ ]

n⇥m

X

in,jm

⇥2

ij

 (⌧ _ {1� ⌧})2nm.

Recall that b� is a minimizer of L
⌧

(S) defined in (2.1). Thus, for an arbitrary S 2 Rp⇥m,

e

L

⌧

(b�)  L

⌧

(b�)  L

⌧

(S)  e

L

⌧

(S) + (⌧ _ {1� ⌧})2nm
2

, (S.1.2)

where the first inequality is from the first inequality of (S.1.1), the second is the definition

of the minimizer b�, and the third inequality is from the second inequality of (S.1.1). Recall

that �
⌧,1 = lim

t!1 �⌧,t is a minimizer of eL
⌧

(S), then (S.1.2) gives

e

L
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(�
⌧,1)  e

L

⌧

(b�)  e

L

⌧

(�
⌧,1) + (⌧ _ {1� ⌧})2nm

2
, (S.1.3)

where the first is from the definition of �
⌧,1 as a minimizer of eL

⌧

(S) and the second inequality

is from (S.1.2), which holds for any arbitrary matrix S 2 Rp⇥m.

Now we focus on bounding

�

�

L

⌧

(�
⌧,t

)� L

⌧

(b�)
�

� ��L
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. (S.1.4)

The third term on the right-hand side of (S.1.4) is bounded by (S.1.3). For any matrix S,

by the choice of  = ✏/(2mn) in Algorithm 1, we have from (S.1.1) that

�

�

L

⌧

(S)� e

L

⌧

(S)
�

�  

nm(⌧ _ {1� ⌧})2
2

 ✏(⌧ _ {1� ⌧})2
4

. (S.1.5)

Hence, both
�

�

L

⌧

(�
⌧,t

)� e

L

⌧

(�
⌧,t

)
�

� and
�

�

L

⌧

(b�)� e

L

⌧

(b�)
�

� satisfy (S.1.5).

Lemma S.1.3 implies that the gradient of bQ
⌧,

(�) is Lipschitz continuous with Lipschitz
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constant M . By Theorem 4.1 of Ji and Ye (2009) or Theorem 4.4 of Beck and Teboulle

(2009) (applied in general real Hilbert space, see their Remark 2.1), we have

�

�e

L

⌧

(�
⌧,t

)� e

L

⌧

(�
⌧,1)

�

�  2Mk�
⌧,0
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⌧,1k2

F

(t+ 1)2
, (S.1.6)

where M is given in Lemma S.1.3. Since  = ✏/(2mn), M = 2

mn✏

kXk2 by Lemma S.1.3.

Putting the bounds (S.1.3), (S.1.5) and (S.1.6) into (S.1.4), we have
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kXk2
mn✏

. (S.1.7)

Hence, the proof of (2.11) is completed. Setting the right-hand side of (S.1.7) to be ✏ and

solve it for T yields the bound (2.12).

S.1.3. Technical Details for Theorem 2.3

Lemma S.1.2. For any S,⇥ 2 Rp⇥m, eQ
⌧

(S,⇥) can be expressed as eQ
⌧

(S,⇥) = h�XS,⇥i+
hY,⇥i.

Proof of Lemma S.1.2. One can show by elementary matrix algebra that

e

Q

⌧

(S,⇥) =
n

X

i=1

m

X

j=1
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ij
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ij

�X

>
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�
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X

i=1

m

X

j=1

⇥
ij

X

>
i

S⇤j

= hY,⇥i+ h�XS,⇥i.

The proof is therefore completed.

Lemma S.1.3. For any  > 0, bQ
⌧,

(S) is a well-defined, convex and continuously di↵eren-

tiable function in S with the gradient r b

Q

⌧,

(S) = �(mn)�1X>⇥⇤(S) 2 Rp⇥m, where ⇥⇤(S)

3



is the optimal solution to (2.3), namely

⇥⇤(S) = [[(mn)�1(Y �XS)]]
⌧

. (S.1.8)

The gradient r b

Q

⌧,

(S) is Lipschitz continuous with the Lipschitz constant M = (m2

n

2)�1kXk2.

Proof of Lemma S.1.3. In view of Lemma S.1.2, we have from (2.3) that

b

Q

⌧,

(S) = max
⇥ij2[⌧�1,⌧ ]

n

(mn)�1hY,⇥i+ (mn)�1h�XS,⇥i � 

2
k⇥k2

F

o

. (S.1.9)

b

Q

⌧,

(S) matches the form in (2.5) on page 131 of Nesterov (2005), with their b

�(⇥) =

(mn)�1hY,⇥i which is a continuous convex function, and their A = �(mn)�1X which

maps from the vector space Rp⇥m to the space Rn⇥m (the model setting described below

(2.2) on page 129 of Nesterov (2005)), and their d

2

(⇥) = 

2

k⇥k2
F

. Therefore, applying

Theorem 1 of Nesterov (2005), with �

2

= 1, d(⇥) = k⇥k2
F

/2, the gradient r b

Q

⌧,

(S) =

�(mn)�1X>⇥⇤(S) 2 Rp⇥m, where ⇥⇤(S) is the optimal solution to (2.3):

⇥⇤(S) = [[(mn)�1(Y �XS)]]
⌧

,

and the Lipschitz constant of r b

Q

⌧,

(S) is kXk/(n2

m

2), where kXk is the spectral norm of

X (see line 8 on page 129 of Nesterov (2005)). Hence, the proof is completed.

S.2: Proofs for Non-Asymptotic Bounds

S.2.1. Proof for Lemma 3.4

Applying the same E-net argument on the unit Euclidean sphere Sm�1 = {u 2 Rm :

kuk
2

= 1} as in the first part of the proof of Lemma 3 in Negahban and Wainwright (2011)

4



(page 6 to the beginning of page 7 in their supplemental materials), we obtain

P
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n
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✓ |hXv,Wui|
n

� s

◆

.

(S.2.1)

To bound n

�1hXv,Wui = n

�1

P

n

i=1

hv,X
i

ihu,W
⌧,i

i, first we show the sub-Gaussianity of

hu,W
⌧,i

i. Since |W
ij

|  ⌧ _ (1� ⌧). It follows by Lemma S.4.3 (Hoe↵ding’s inequality) that

P
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1� C
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◆

.

It can also be concluded that (see Definition 5.7 and discussion of Vershynin (2012a))

khu,W
⌧,i

ik
 2 =

p

⌧ _ (1� ⌧).

We apply Lemma S.4.3 again to bound n

�1

P

n

i=1

hv,X
i

ihu,W
⌧,i

i. Conditioning on X

i

,

we have
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.

where the second inequality follows from the fact that kvk
2

= 1 and n

�1

P

n

i=1

hv,X
i

i2 
kX>X/nk  c

2

k⌃
X

k on the event that (A2) holds.

To summarize, on the event that (A2) holds,

P

✓

1

n
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 8p+m exp
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Therefore,

1

n

kX>Wk  4 ·
r

2 log 8
{⌧ _ (1� ⌧)}c

2

k⌃
X

k
C

0

r

p+m

n

,

with probability greater than 1� 3e�(p+m) log 8 � �

n

, as e < 3.

S.2.2. Proof for Lemma 3.5

We proceed as the proof for Lemma A.1. To simplify the notations in this proof, let

b�1 = �
⌧,1 � �, ↵

r

def

= 4
p

r/�

min

(⌃
X

), ↵
r,m

def

= m

1/2

↵

r

. Define

c

n

def

= 16
p
2m�1/2

g

n

�

�1

q

c

2

�

max

(⌃
X

) + B

p

p

logm+ log p,

where � is chosen as in (3.7); recall from (S.3.1),

d

n

= 8
p
2↵

r

q

c

2

�

max

(⌃
X

) + B

p

p

logm+ log p.

Let

⌦
1

: event that Assumption (A2) holds;

⌦
2

: event eA(u)  c

3

(ud
n

+ c

n

) for c
3

> 1;

⌦
3

: event
1

n

kX>Wk  C

⇤
p

�

max

(⌃
X

){⌧ _ (1� ⌧)}
r

p+m

n

,

where C

⇤ = 4
p

2 c2
C

0 log 8,

eA(u)
def

= sup
k�kL2(PX )u,�2K(�,gn)

�

�

�

�

G
n



m

�1

m

X

j=1

�

⇢

⌧

{Y
ij

�X

>
i

(�⇤j +�⇤j)}� ⇢

⌧

{Y
ij

�X

>
i

�⇤j}
�

�

�

�

�

�

.

(S.2.2)
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Note that the probability of event P(⌦
1

\⌦
2

\⌦
3

) � 1� �

n

� 16(pm)1�c

2
3 � 3e�(p+m) log 8

from Assumption (A2), Lemma 3.4 and Lemma S.2.3. Set

u =

s

n

�1/2

c

3

c

n

4

f

+
4

f

g

n

+
4

f

(n�1/2

c

3

d

n

+ �↵

r,m

). (S.2.3)

It can be shown via the relation (S.2.6) and similar steps as in the proof for Theorem A.1 in

Section S.3.1 (here, using Lemma S.2.3 and Lemma S.2.2 instead), that on ⌦
1

\⌦
2

we have

an expression similar to (S.3.5),

0 > inf
k�kL2(PX )=u,�2K(�,gn)

Q

⌧

(�+�)�Q

⌧

(�)� n

�1/2

c

3

(d
n

u+ c

n

)� �(↵
r,m

u+ 2g
n

/�)� g

n

,

Finally, since e⌫
⌧

(2g
n

/�) > u/4 by (3.10), we obtain from Lemma S.2.2 (i) that

0 > inf
k�kL2(PX )=u,�2K(�,gn)

1

4
fu

2 � n

�1/2

c

3

(d
n

u+ c

n

)� �(↵
r,m

u+ 2g
n

/�)� g

n

. (S.2.4)

With our choice of u in (S.2.3), the right-hand side of (S.2.4) is 0, and we get a contradiction.

To complete the proof, by the choice for � in (3.7), we can bound the expression in (S.2.3)

by

n

�1/2

c

n

=
16p
2C⇤

m

�1/2

g

n

()m

r

n

p+m

(�
max

(⌃
X

){⌧ _ (1� ⌧)})�1/2

r

c

2

�

max

(⌃
X

) + B

p

logm+ log p

n

 C

16p
2C⇤

g

n

()

s

c

2

+
B

p

�

max

(⌃
X

)

m(logm+ log p)

p+m

 C

1

s

B

p

�

max

(⌃
X

)
g

n

(), (S.2.5)

where C

1

is a constant depending on X. Combining (S.2.5) with other terms in (S.2.3) we

complete the proof of (3.11).
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The bounds in Frobenius norm is from k�k2
L2(PX)

� (�
min

(⌃
X

)/m)k�k2
F

implied by (3.4)

in Remark 3.3. Thus, the proof is completed.

S.2.3. Technical Details for Lemma 3.5

Lemma S.2.1. Suppose � � 2kr b

Q(�)k and �1 = �
⌧,1 � �. Then �1 2 K(�, 2g

n

/�).

Proof for Lemma S.2.1. We recall that �
⌧,1 minimizes eL

⌧

(S), where eL
⌧

(S) is defined in

(2.5). Also recall that L
⌧

(S) is defined in (2.1). For g
n

() defined in (3.8), we have

L

⌧

(�
⌧,1)  e

L

⌧

(�
⌧,1) + g

n

 e

L

⌧

(b�) + g

n

 L

⌧

(b�) + g

n

 L

⌧

(�) + g

n

, (S.2.6)

where the first inequality is by the second inequality in (S.1.1), the second follows by the

definition of �
⌧,1, the third inequality is from the first inequality in (S.1.1), and the last

inequality is from the definition of b�.

Now, by exactly the same argument for obtaining (S.3.7), we have

(�� kr b

Q

⌧

(�)k)kP?
� (�1)k⇤  (�+ kr b

Q

⌧

(�)k)kP�(�1)k⇤ + g

n

.

By � � 2kr b

Q(�)k, we get

1

2
�kP?

� (�1)k⇤  3

2
�kP�(�1)k⇤ + g

n

.

Hence, kP?
� (�1)k⇤  3kP�(�1)k⇤ + 2g

n

/�.

Lemma S.2.2. Under assumptions (A2) and (A3), we have

(i) If � 2 K(�, 2g
n

/�), k�k
L2(PX)

 e⌫

⌧

(2g
n

/�), then Q

⌧

(�+�)�Q

⌧

(�) � 1

4

fk�k2
L2(PX)

,

where e⌫ is defined in (3.9);

(ii) If � 2 K(�, 2g
n

/�), k�k⇤  4
q

rm

�min(⌃X)

k�k
L2(PX)

+ 2g
n

/�, where r = rank(�).
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Proof for Lemma S.2.2. The proof follows by similar argument for obtaining Lemma

S.3.2 and is omitted for brevity.

Lemma S.2.3. Under Assumptions (A1)-(A3),

P
n

eA(u)  8
p
2c

3

(↵
r

u+2m�1/2

g

n

/�)
q

(c
2

�

max

(⌃
X

) + B

p

)
p

logm+ log p
o

� 1�16(pm)1�c

2
3��

n

,

where c

3

> 1, ↵
r

= 4
p

r/�

min

(⌃
X

) and r = rank(�).

Proof of Lemma S.2.3. Proceed analogously as the proof of Lemma S.3.3, we arrive with

the same equation as (S.3.16):

sup
k�kL2(PX )u

�2K(�,gn)

�

�

�

�

n

X

i=1

m

X

j=1

"

ij

X

>
i

�⇤j

�

�

�

�

 sup
k�kL2(PX )u

�2K(�,gn)

m

1/2k�k⇤ max
jm

�

�

�

�

n

X

i=1

"

ij

X

i

�

�

�

�

 m

1/2(↵
m,r

k�k
L2(PX)

+ 2g
n

/�)max
jm

�

�

�

�

n

X

i=1

"

ij

X

i

�

�

�

�

,

Continue as in the proof of Lemma S.3.3, we get an expression similar to (S.3.20),

P{ eA(u) > s|⌦}  8m(p+ 1) exp

✓�µs

4

◆

exp
�

2µ2(↵
r

u+ 2m�1/2

g

n

/�)2(c
2

�

max

(⌃
X

) + B

p

)
 

.

(S.2.7)

Minimize the expression (S.2.7) with respect to µ gives

P{ eA(u) > s|⌦}  8m(p+ 1) exp

⇢

� s

2

128(↵
r

u+ 2m�1/2

g

n

/�)2(c
2

�

max

(⌃
X

) + B

p

)

�

.

Take

s = 8
p
2c

3

(↵
r

u+ 2m�1/2

g

n

/�)
q

(c
2

�

max

(⌃
X

) + B

p

)
p

logm+ log p

to finish the proof.
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S.2.4. Proof of Theorem 3.6

We proceed as the proof for Theorem A.2. To simplify the notations, let �
⌧,t

= �
⌧,t

��,
↵

r

def

= 4
p

r/�

min

(⌃
X

), ↵
r,m

def

= m

1/2

↵

r

. Define

ec

n

def

= 16
p
2m�1/2

a

n,t

(, ✏)��1

q

c

2

�

max

(⌃
X

) + B

p

p

logm+ log p,

where � is chosen as in (3.7); recall from (S.3.1),

d

n

= 8
p
2↵

r

q

c

2

�

max

(⌃
X

) + B

p

p

logm+ log p.

Let

⌦
1

: event that Assumption (A2) holds;

⌦
2

: event �
⌧,t

2 K(�, a
n,t

(, ✏));

⌦
3

: event
1

n

kX>Wk  C

⇤
p

�

max

(⌃
X

){⌧ _ (1� ⌧)}
r

p+m

n

;

⌦
4

: event eB(u)  c

3

(ud
n

+ ec

n

) for c
3

> 1,

where

eB(u) def

= sup
k�kL2(PX )u,

�2K(�,an,t(,✏))

�

�

�

�

G
n



m

�1

m

X

j=1

�

⇢

⌧

{Y
ij

�X

>
i

(�⇤j +�⇤j)}� ⇢

⌧

{Y
ij

�X

>
i

�⇤j}
�

�

�

�

�

�

.

(S.2.8)

Note that the probability of event P(⌦
1

\ ⌦
2

\ ⌦
3

\ ⌦
4

) � 1 � 2�
n

� 32(pm)1�c

2
3 �

6 exp{�(p +m) log 8} from Assumption (A2), Lemma 3.4, Lemma S.2.4 and Lemma S.2.6.
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Set

u =

s

n

�1/2

c

3

ec

n

4

f

+
4

f

a

n,t

(, ✏) +
4

f

(n�1/2

c

3

d

n

+ �↵

r,m

). (S.2.9)

It can be shown via the relation (S.2.11) and similar steps as in the proof for Lemma A.1 in

Section S.3.1 (here, using Lemma S.2.6 and Lemma S.2.5 instead), that on ⌦
1

\⌦
2

\⌦
3

we

have an expression similar to (S.3.5),

0 > inf
k�kL2(PX )=u,

�2K(�,an,t(,✏))

Q

⌧

(�+�)�Q

⌧

(�)� n

�1/2

c

3

(d
n

u+ ec

n

)� �(↵
r,m

u+ 2a
n,t

(, ✏)/�)� a

n,t

(, ✏),

Finally, since e⌫
⌧

(2a
n,t

(, ✏)/�) > u/4 by (3.14), we obtain from Lemma S.2.5 (i) that

0 > inf
k�kL2(PX )=u,

�2K(�,an,t(,✏))

1

4
fu

2 � n

�1/2

c

3

(d
n

u+ ec

n

)� �(↵
r,m

u+ 2a
n,t

(, ✏)/�)� a

n,t

(, ✏). (S.2.10)

With our choice of u in (S.2.9), the right-hand side of (S.2.10) is 0, and we get a contradiction.

The bounds in Frobenius norm is from k�k2
L2(PX)

� (�
min

(⌃
X

)/m)k�k2
F

implied by (3.4)

in Remark 3.3. Thus, the proof is completed.

S.2.5. Technical Details for the Proof of Theorem 3.6

Lemma S.2.4. Let �
⌧,t

= �
⌧,t

� � and � � 2kr b

Q

⌧

(�)k. Suppose (A1)-(A3) hold. Then

�
⌧,t

2 K(�; a
n,t

(, ✏)) with probability 1 � �

n

� 16(pm)1�c

2
3 � 3 exp{�(p +m) log 8}, where

K(�; a
n,t

(, ✏)), a
n,t

(, ✏) are defined in (3.3) and (3.13).

Proof of Lemma S.2.4. Recall the function b

Q

,⌧

(·) defined in (2.3). �
⌧,1 is the minimizer
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of the loss function b

Q

,⌧

(S) + �kSk⇤. Therefore,

0  b

Q

,⌧

(�)� b

Q

,⌧

(�
⌧,1) + �k�k⇤ � �k�

⌧,1k⇤
 b

Q

,⌧

(�)� b

Q

,⌧

(�
⌧,t

) + �k�k⇤ � �k�
⌧,t

k⇤ +
�

�e

L

⌧

(�
⌧,t

)� e

L

⌧

(�
⌧,1)

�

�

 b

Q

⌧

(�)� b

Q

⌧

(�
⌧,t

) + �k�k⇤ � �k�
⌧,t

k⇤ +R

n,t

(, ✏)

 kr b

Q

⌧

(�)k�kP�(�⌧,t

)k⇤ + kP?
� (�⌧,t

)k⇤
�

+ �(kP�(�⌧,t

)k⇤ � kP?
� (�⌧,t

)k⇤) +R

n,t

(, ✏),

(S.2.11)

where the first inequality is from the definition of �1, the second inequality is by the defi-

nition of eL in (2.5), and R

n,t

(, ✏) in the third inequality is defined by

R

n,t

(, ✏)
def

= 2 sup
S2Rp⇥m

�

� b

Q

⌧

(S)� b

Q

,⌧

(S)
�

�+
�

�e

L

⌧

(�
⌧,t

)� e

L

⌧

(�
⌧,1)

�

�; (S.2.12)

the last inequality follows by exactly the same argument for obtaining S.3.7 in Lemma S.3.1.

We note that with probability 1� �

n

� 16(pm)1�c

2
3 � 3 exp{�(p+m) log 8},

R

n,t

(, ✏)  (⌧ _ {1� ⌧})2nm+
4k�

⌧,0

� �
⌧,1k2

F

(t+ 1)2
kXk2
mn✏

 (⌧ _ {1� ⌧})2nm+
8c2

2

(k�k2
F

+ h

2

n

)�2

max

(⌃
X

)

(t+ 1)2✏m

= a

n,t

(, ✏),

where the first inequality is from (S.1.1) and (S.1.6), and the second follows by Lemma

3.5, and kXk2/n = �

2

max

(b⌃
X

)  c

2

�

max

(⌃
X

) with probability greater than 1 � �

n

from

Assumption (A2). The last equality is the definition of a
n,t

(, ✏) in (3.13).

Rearrange expression (S.2.11) to get,

(�� kr b

Q

⌧

(�)k)kP?
� ( b�)k⇤  (�+ kr b

Q

⌧

(�)k)kP�( b�)k⇤ + a

n,t

(, ✏).
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By � � 2kr b

Q

⌧

(�)k,
1

2
�kP?

� ( b�)k⇤  3

2
�kP�( b�)k⇤ + a

n,t

(, ✏).

Hence, kP?
� ( b�)k⇤  3kP�( b�)k⇤ + 2a

n,t

(, ✏)/�.

Lemma S.2.5. Under assumptions (A2) and (A3), we have

(i) If � 2 K(�, 2a
n,t

(, ✏)/�), k�k
L2(PX)

 e⌫

⌧

(2a
n,t

(, ✏)/�), where e⌫ is defined in (3.9),

then Q

⌧

(�+�)�Q

⌧

(�) � 1

4

fk�k2
L2(PX)

;

(ii) If � 2 K(�, 2g
n

/�), k�k⇤  4
q

rm

�min(⌃X)

k�k
L2(PX)

+ 2g
n

/�, where r = rank(�).

Proof for Lemma S.2.2. The proof follows by similar argument for obtaining Lemma

S.3.2 and is omitted for brevity.

Lemma S.2.6. Under assumptions (A1)-(A3),

P
n

B(t)  8
p
2c

3

(↵
r

u+ 2m�1/2

a

n,t

(, ✏)/�)
q

(c
2

�

max

(⌃
X

) + B

p

)
p

logm+ log p
o

� 1� 16(pm)1�c

2
3 � �

n

,

where c

3

> 1, ↵
r

= 4
p

r/�

min

(⌃
X

) and r = rank(�).

Proof for Lemma S.2.6. The proof follows by similar arguments in the proof of Lemma

S.2.3, and replace g

n

by a

n,t

(, ✏) there. We omit the details for brevity.

S.2.6. Proof of Theorem 3.10

In this proof, we abbreviate �2

k

(�), �2

k

(�
⌧,t

), (bV
⌧

)⇤k and (V
⌧

)⇤k, (bU⌧

)⇤k and (U
⌧

)⇤k by

�

k

, b�
k

, bV⇤k and V⇤k, bU⇤k and U⇤k.
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To prove (3.18), since  
⌧

= V
⌧

and b 
⌧

= V
⌧,t

, by Theorem 3 of Yu et al. (2015),

sin cos�1(|bV>
⇤jV⇤j|)  2(2k�k+ k�

⌧,t

� �k
F

)k�
⌧,t

� �k
F

min{�2

j�1

(�)� �

2

j

(�), �2

j

(�)� �

2

j+1

(�)} (S.2.13)

where by the fact that |bV>
⇤jV⇤j|  1,

sin cos�1(|bV>
⇤jV⇤j|) =

q

1� (bV>
⇤jV⇤j)2 =

q

(1� bV>
⇤jV⇤j)(1 + bV>

⇤jV⇤j)

�
q

(1� |bV>
⇤jV⇤j|)2 = 1� �

� bV>
⇤jV⇤j

�

�

.

Similar bound like (3.18) also holds for bU⇤j, by the discussion below Theorem 3 of Yu et al.

(2015).

For a proof for inequality (3.19), by direct calculation,

�

�

b

f

⌧

k

(X
i

)� f

⌧

k

(X
i

)
�

� =
�

�

b�

k

bU>
⇤kXi

� �

k

U>
⇤kXi

�

�

 �

�

b�

k

bU>
⇤k � �

k

U>
⇤k
�

�kX
i

k

 �

�

�

b�

k

� �

k

�

�

�

�bU⇤k
�

�+ �

k

�

�bU⇤k �U⇤k
�

�

�kX
i

k


⇣

�

�

b�

k

� �

k

�

�+ �

k

q

(bU⇤k �U⇤k)>(bU⇤k �U⇤k)
⌘

kX
i

k


⇣

�

�

b�

k

� �

k

�

�+ �

k

q

2(1� bU>
⇤kU⇤k)

⌘

kX
i

k (S.2.14)

where we apply the fact that kbU⇤k
�

� = 1. By assumption bU>
⇤kU⇤k � 0, bU>

⇤kU⇤k = |bU>
⇤kU⇤k|.

Apply Lemma 3.9 and the bound (S.2.13) with V being replaced by U to (S.2.14), then

(3.19) is proved. Thus, the proof for this theorem is completed.

S.3: Proof for Oracle Properties for Exact Optimizer b�
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S.3.1. Proof for Lemma A.1

To simplify the notations in this proof, let b� = b�� �, ↵
r,m

def

= 4
p

2m/�

min

(⌃
X

) and

d

n

def

= 32
p
2
p
r

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p

logm+ log p. (S.3.1)

⌦
1

: event that Assumption (A2) holds;

⌦
2

: event A(t)  tc

3

d

n

for c
3

> 1,

where

A(t)
def

= sup
k�kL2(PX )t,�2K(�)

�

�

�

�

G
n



m

�1

m

X

j=1

�

⇢

⌧

{Y
ij

�X

>
i

(�⇤j +�⇤j)}� ⇢

⌧

{Y
ij

�X

>
i

�⇤j}
�

�

�

�

�

�

.

(S.3.2)

Note that the probability of event P(⌦
1

\ ⌦
2

) � 1 � �

n

� 16(pm)1�c

2
3 from Assumption

(A2) and Lemma S.3.3. Set

t = 4f�1

c

3

n

�1/2

d

n

+ 4�
↵

r,m

f

> 0. (S.3.3)

Suppose to the contrary that k b�k
L2(PX)

> t is true, together with b� 2 K(�) from

Lemma S.3.1, so from the fact that b� minimizes b

Q

⌧

(S) + �kSk⇤,

0 > inf
k�kL2(PX )�t,�2K(�)

b

Q

⌧

(�+�)� b

Q

⌧

(�) + �(k�+�k⇤ � k�k⇤), (S.3.4)

where the strict negativity is from the uniqueness of minimizer b� as argued in Remark 2.1 in

Koenker (2005). As argued in the proof of Theorem 2 of Belloni and Chernozhukov (2011),
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from the facts that

1. b

Q

⌧

(·) + �k · k⇤ is convex;

2. K(�) is a cone,

(S.3.4) forces the value of b

Q

⌧

(� +�) + �k� +�k⇤ on {� : k�k
L2(PX)

� t,� 2 K(�)}
to be less than that evaluated at � = 0. Convexity implies that b

Q

⌧

(� +�) + �k� +�k⇤
evaluated at {� : k�k

L2(PX)

= t,� 2 K(�)} must be smaller than that evaluated at� = 0.

Thus, we have the inequality

0 > inf
k�kL2(PX )=t,�2K(�)

b

Q

⌧

(�+�)� b

Q

⌧

(�) + �(k�+�k⇤ � k�k⇤).

With regard of the definition A(t) in (S.3.2), it can be further deducted that

0 > inf
k�kL2(PX )=t,�2K(�)

Q

⌧

(�+�)�Q

⌧

(�)� n

�1/2A(t) + �(k�+�k⇤ � k�k⇤),

By triangle inequality,
�

�k� + �k⇤ � k�k⇤
�

�  k�k⇤  ↵

r,m

k�k
L2(PX)

= ↵

r,m

t on the set

{k�k
L2(PX)

= t,� 2 K(�)}. Furthermore, on event ⌦
1

\⌦
2

, it holds from Lemma S.3.2 (ii)

that

0 > inf
k�kL2(PX )=t,�2K(�)

Q

⌧

(�+�)�Q

⌧

(�)� n

�1/2

c

3

d

n

t� �↵

r,m

t, (S.3.5)

Finally, since ⌫
⌧

> t/4 by (A.1) and t = k�k
L2(PX)

, we obtain from Lemma S.3.2 (i) that

0 > inf
k�kL2(PX )=t,�2K(�)

1

4
ft

2 � n

�1/2

c

3

d

n

t� �↵

r,m

t. (S.3.6)

With our choice of t in (S.3.3), the right-hand side of (S.3.6) is 0, and we get a contradiction.

Thus, we established the inequality (A.2).

The bounds in Frobenius and nuclear norm are from k�k2
L2(PX)

� (�
min

(⌃
X

)/m)k�k2
F

16



implied by (3.4) in Remark 3.3 and k b�k⇤  ↵

r,m

k b�k
L2(PX)

from the fact that b� 2 K(�)

(Lemma S.3.1) and Lemma S.3.2 (ii). Thus, the proof is completed.

S.3.2. Proof for Theorem A.2

Let events ⌦
1

and ⌦
2

be defined as in the proof of Theorem A.2, and

⌦
3

= the event that
1

n

kX>W
⌧

k  C

⇤
p

k⌃
X

k{⌧ _ (1� ⌧)}
r

p+m

n

.

Note that the probability P(⌦
1

\⌦
2

\⌦
3

) � 1��
n

�16(pm)1�c

2
3�3e�(p+m) log 8. On ⌦

1

\⌦
2

\⌦
3

,

the bounds (A.2) and (3.6) hold. Substituting � with (3.7) in (A.2) yields bounds (A.6).

The bounds in Frobenius and nuclear norm can be deducted by the same argument as in

the proof of Theorem A.2. Hence, the proof is completed.

S.3.3. Technical Details for Theorem A.2

The following lemma asserts that the empirical error b�� � lies in the cone K(�).

Lemma S.3.1. Suppose � � 2kr b

Q(�)k and b� = b� � �. Then kP?
� ( b�)k⇤  3kP�( b�)k⇤.

That is, b� 2 K(�).

Proof for Lemma S.3.1. Recall that b� = b�� �,

0  b

Q

⌧

(�)� b

Q

⌧

(b�) + �(k�k⇤ � kb�k⇤) (b� is the minimizer of bQ
⌧

(S) + �kSk⇤)

 kr b

Q

⌧

(�)kk b�k⇤ + �(k�k⇤ � kb�k⇤)

 kr b

Q

⌧

(�)k�kP�( b�)k⇤ + kP?
� ( b�)k⇤

�

+ �(kP�(�)k⇤ � kP?
� (b�)k⇤ � kP�(b�)k⇤)

 kr b

Q

⌧

(�)k�kP�( b�)k⇤ + kP?
� ( b�)k⇤

�

+ �(kP�( b�)k⇤ � kP?
� ( b�)k⇤), (S.3.7)
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where the second inequality follows from the definition of subgradient:

b

Q

⌧

(b�)� b

Q

⌧

(�) � hr b

Q

⌧

(�), b�� �i,

and Hölder’s inequality; the third inequality is from the fact that P?
� (�) = 0 and for any S,

kSk⇤ = kP�(S)k⇤ + kP?
� (S)k⇤ (the discussion after Definition 3.1) ; the fourth inequality is

from the triangle inequality.

Rearrange expression (S.3.7) to get,

(�� kr b

Q

⌧

(�)k)kP?
� ( b�)k⇤  (�+ kr b

Q

⌧

(�)k)kP�( b�)k⇤.

Choose � � 2kr b

Q

⌧

(�)k,
1

2
�kP?

� ( b�)k⇤  3

2
�kP�( b�)k⇤.

Hence, kP?
� ( b�)k⇤  3kP�( b�)k⇤.

Lemma S.3.2. Under assumptions (A2), (A3), we have

(i) If k�k
L2(PX)

 4⌫
⌧

, where ⌫
⌧

= e⌫

⌧

(0), and � 2 K(�), then Q

⌧

(� +�) � Q

⌧

(�) �
1

4

fk�k2
L2(PX)

;

(ii) If � 2 K(�), k�k⇤  4
q

rm

�min(⌃X)

k�k
L2(PX)

, where r = rank(�).

Proof for Lemma S.3.2.

1. Let Q

⌧,j

(�⇤j) = E[⇢
⌧

(Y
ij

� X

>
i

�⇤j)]. From Knight’s identity (Knight; 1998), for any

v, u 2 R,

⇢

⌧

(u� v)� ⇢

⌧

(u) = �v 

⌧

(u) +

Z

v

0

�

1{u  z}� 1{u  0}�dz. (S.3.8)

Putting u = Y

ij

�X

>
i

�⇤j in (S.3.8), and v = X

>
i

�⇤j, E[�v 

⌧

(u)] = 0 for all j and i, by

the definition of � = argminS E[ bQ⌧

(S)]. Therefore, using law of iterative expectation
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and mean value theorem, we have by (A3) that

Q

⌧,j

(�⇤j +�⇤j)�Q

⌧,j

(�⇤j)

= E



Z

X

>
i �⇤j

0

F

Yj |Xi(X
>
i

�⇤j + z|X
i

)� F

Yj |Xi(X
>
i

�⇤j|Xi

)dz

�

= E



Z

X

>
i �⇤j

0

zf

Yj |Xi(X
>
i

�⇤j|Xi

) +
z

2

2
f

0
Yj |Xi

(X>
i

�⇤j + z

†|X
i

)dz

�

� f

E
⇥

(X>
i

�⇤j)2
⇤

4
+ f

E
⇥

(X>
i

�⇤j)2
⇤

4
� 1

6
f̄

0E[|X>
i

�⇤j|3] (S.3.9)

for z† 2 [0, z]. Now, for � 2 K(�), the condition

k�k
L2(PX)

 4⌫
⌧

=
3

2

f

f̄

0 inf
�2K(�)

� 6=0

�

P

m

j=1

E[|X>
i

�⇤j|2]
�

3/2

P

m

j=1

E[|X>
i

�⇤j|3]

implies

fm

�1

m

X

j=1

E
⇥

(X>
i

�⇤j)2
⇤

4
� 1

6
f̄

0
m

�1

m

X

j=1

E[|X>
i

�⇤j|3]

Therefore,

Q

⌧

(�+�)�Q

⌧

(�) � fm

�1

m

X

j=1

E(X>
i

�⇤j)2

4
=

1

4
fk�k2

L2(PX)

.

2. By the decomposability of nuclear norm, � 2 K(�) and (3.5) in Remark 3.3, we can

estimate

k�k⇤ = kP�(�)k⇤ + kP?
� (�)k⇤  4kP�(�)k⇤  4

p
rkP�(�)k

F

 4

r

rm

�

min

(⌃
X

)
k�k

L2(PX)

.
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Lemma S.3.3. Under Assumptions (A1)-(A3),

P

⇢

A(t)  t32
p
2c

3

p
r

s

c

2

�

max

(⌃
X

) + B

p

�

min

(⌃
X

)

p

logm+ log p

�

� 1� 16(pm)1�c

2
3 � �

n

,

where c

3

> 1 and r = rank(�).

Proof for Lemma S.3.3. To simplify notations, let ↵
r

def

= 4
p

r/�

min

(⌃
X

). Let {"
ij

}
in,jm

be independent Rademacher random variables independent from Y

ij

and X

i

for all i, j.

Denote P
"

and E
"

as the conditional probability and the conditional expectation with respect

to {"
ij

}
in,jm

, given Y

ij

and X

i

. Denote

�

⌧

ij

(·) def

= ⇢

⌧

{Y
ij

�X

>
i

�⇤j � ·}� ⇢

⌧

{Y
ij

�X

>
i

�⇤j}. (S.3.10)

�

⌧

ij

(·) is a contraction in the sense that �⌧
ij

(0) = 0, and for all a, b 2 R,

�

�

�

⌧

ij

(a)� �

⌧

ij

(b)
�

�  |a� b|. 8i = 1, ..., n, j = 1, ...,m. (S.3.11)

First, we note that for any � satisfying � 2 K(�) and k�k
L2(PX)

 t,

Var

✓

G
n

✓

m

�1

m

X

j=1

�

⌧

ij

(X>
i

�⇤j)

◆◆

= Var

✓

m

�1

m

X

j=1

�

⌧

ij

(X>
i

�⇤j)

◆

 m

�1

m

X

j=1

E
⇥

(�⌧
ij

(X>
i

�⇤j))
2

⇤

 m

�1

m

X

j=1

E
⇥

(X>
i

�⇤j)
2

⇤  t

2

, (S.3.12)

where the first equality and the second inequality follows from elementary computations and

i.i.d. assumption (A1), the third inequality is a result of (S.3.11), and the last inequality

applies (3.4) in Remark 3.3.

To apply Lemma 2.3.7 of van der Vaart and Wellner (1996), we observe from Chebyshev’s
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inequality that for any s > 0,

inf
k�kL2(PX )t,�2K(�)

P

✓

�

�

�

�

G
n

✓

m

�1

m

X

j=1

�

⌧

ij

(X>
i

�⇤j)

◆

�

�

�

�

<

s

2

◆

= 1� sup
k�kL2(PX )t,�2K(�)

P

✓

�

�

�

�

G
n

✓

m

�1

m

X

j=1

�

⌧

ij

(X>
i

�⇤j)

◆

�

�

�

�

� s

2

◆

� 1� 4
t

2

s

2

.

Taking s � p
8t, we have

1

2
 inf

k�kL2(PX )t,�2K(�)
P

✓

�

�

�

�

G
n

✓

m

�1

m

X

j=1

�

⌧

ij

(X>
i

�⇤j)

◆

�

�

�

�

<

s

2

◆

.

Thus, applying Lemma 2.3.7 of van der Vaart and Wellner (1996), we have

P{A(t) > s}  4P

✓

sup
k�kL2(PX )t

�2K(�)

�

�

�

�

n

�1/2

m

�1

n

X

i=1

m

X

j=1

"

ij

�

⌧

ij

(X>
i

�⇤j)

�

�

�

�

>

s

4

◆

. (S.3.13)

Now we restrict the A(t) on the event ⌦ on which (3.2) in (A2) holds, with P(⌦) � 1� �

n

.

Applying Markov’s inequality, for an arbitrary constant µ > 0, the right-hand side of (S.3.13)

can be bounded by

P{A(t) > s|⌦}

 4 exp

✓�µs

4

◆

E



E
"



exp

⇢

µ sup
k�kL2(PX )t

�2K(�)

�

�

�

�

n

�1/2

m

�1

n

X

i=1

m

X

j=1

"

ij

�

⌧

ij

(X>
i

�⇤j)

�

�

�

�

��

�

�

�

�

⌦

�

.

(S.3.14)

Now recall (S.3.11), the comparison theorem for Rademacher processes (Lemma 4.12 in
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Ledoux and Talagrand (1991)) implies the right-hand side of (S.3.14) is bounded by

P{A(t) > s|⌦}

 4 exp

✓�µs

4

◆

E



E
"



exp

⇢

2µ sup
k�kL2(PX )t

�2K(�)

�

�

�

�

n

�1/2

m

�1

n

X

i=1

m

X

j=1

"

ij

X

>
i

�⇤j

�

�

�

�

��

�

�

�

�

⌦

�

. (S.3.15)

To obtain a bound for the right-hand side of (S.3.15), we note that

�

�

�

�

n

X

i=1

m

X

j=1

"

ij

X

>
i

�⇤j

�

�

�

�

=

�

�

�

�

tr
⇣h

n

X

i=1

"

i1

X

i

n

X

i=1

"

i2

X

i

...

n

X

i=1

"

im

X

i

i>
�
⌘

�

�

�

�

 k�k⇤ sup
a2Sp�1

�

�

�

�

m

X

j=1

⇣

n

X

i=1

"

ij

X

>
i

a

⌘

2

�

�

�

�

1/2

 m

1/2k�k⇤ max
jm

�

�

�

�

n

X

i=1

"

ij

X

i

�

�

�

�

, (S.3.16)

where the first inequality is from Hölder’s inequality, and the second inequality is elementary.

Now we apply random matrix theory to bound the right-hand side of (S.3.16). Using

matrix dilations (see, for example Section 2.6 of Tropp (2011)), we have

�

�

�

�

n

X

i=1

"

ij

X

i

�

�

�

�

=

�

�

�

�

n

X

i=1

"

ij

0

B

@

0
p

X

i

X

>
i

0

1

C

A

�

�

�

�

. (S.3.17)

Notice that the random matrix "
ij

0

B

@

0
p

X

i

X

>
i

0

1

C

A

is self adjoint and symmetric conditional
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on X

i

. We now obtain

E
"



exp

⇢

2µ sup
k�kL2(PX )t

�2K(�)

�

�

�

�

n

�1/2

m

�1

n

X

i=1

m

X

j=1

"

ij

X

>
i

�⇤j

�

�

�

�

��

 E
"



exp

⇢

2µ↵
r

tmax
jm

n

�1/2

�

�

�

�

n

�1/2

n

X

i=1

"

ij

X

>
i

�

�

�

�

��

 mmax
jm

E
"



exp

⇢

2µ↵
r

tn

�1/2

�

�

�

�

n

�1/2

n

X

i=1

"

ij

0

B

@

0
p

X

i

X

>
i

0

1

C

A

�

�

�

�

��

 m2(p+ 1)max
jm

exp

⇢

4µ2

↵

2

r

t

2

�

max

✓

n

�1

n

X

i=1

log E
"



exp

⇢

"

ij

0

B

@

0
p

X

i

X

>
i

0

1

C

A

��◆�

(S.3.18)

where the first inequality is from Lemma S.3.2(ii) and (S.3.16), the second inequality follows

from (S.3.17), Lemma S.3.2 (ii) (� 2 K(�)), and the fact that

E[max
jm

exp(|Z
j

|)]  mmax
jm

E[exp(|Z
j

|)], for any random variable Z

j

2 R.

The third inequality is by Theorem (ii) of Maurer and Pontil (2013) by the symmetric

distribution of "
ij

, where for a self adjoint matrix A,

exp(A)
def

= I+
1
X

j=1

Aj

j!

log(exp(A))
def

= A.
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From equation (2.4) on page 399 of Tropp (2011), for any j,

E
"



exp

⇢

"

ij

0

B

@

0
p

X

i

X

>
i

0

1

C

A

��

=
1

2

✓

exp

⇢

0

B

@

0
p

X

i

X

>
i

0

1

C

A

�
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where ”A 4 B” means the B � A is positive semidefinite for two matrices A,B. From

equation (2.8) on page 399 of Tropp (2011), the logarithm defined above preserves the order

4. Hence, the last inequality in (S.3.18) is bounded by
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where the last inequality follows from a bound for the spectral norm for block matrices in

equation (2) of Theorem 1 in Bhatia and Kittaneh (1990), and Assumption (A2).

Putting (S.3.19) into (S.3.14), we obtain
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Minimizing the expression (S.3.20) with respect to µ gives
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Taking
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Notice that by the above choice, s � p
8t for large enough p,m, so that the symmetrization

(S.3.13) is valid. Recall that P(⌦) � 1� �

n

. The proof is then completed.

Remark S.3.4. Note that both Lemma 2.3.7 of van der Vaart and Wellner (1996) and

Lemma 4.12 of Ledoux and Talagrand (1991) applied in the proof of Lemma S.3.3 can be

applied on arbitrary (Y
ij

,X

i

), regardless whether they are i.i.d. or not. The random matrix

theory applied in the proof may also be generalized to matrix martingales; see Section 7 of

Tropp (2011) for more details.

Remark S.3.5. It can be observed that Lemma S.3.3 is valid uniformly for any 0 < ⌧ < 1.

S.4: Miscellaneous Technical Detail

S.4.1. Detail on Remark 3.7

Suppose kXk  B for some constant B > 0 almost surely, if not, under (A2) this holds

with high probability. For any � 2 K(�, a), where a = 0, 2g
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where the first inequality is from Hölder’s inequality, the second is from Lemma S.3.2 (ii),

Lemma S.2.2 (ii), and Lemma S.2.5 (ii). Hence,
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(S.4.1)

Below we discuss three cases corresponding to the conditions required for the theoretical

results in Section 3.

Case I: a = 0. (A.1) holds when r is small and n is large enough. In particular, the

right-hand side of (S.4.1) is large when r is small enough. On the other hand, the left-hand

side of (A.1) is small whenever n is large enough, because that is a constant multiplied by

the rate of kb�� �k
L2(PX)

.

Case II: a = 2g
n

()/�. (3.10) holds when r(resp. n) is su�ciently small(resp. large), and

the smoothing error g

n

() is su�ciently small. If  = ✏/(2mn), we need to select ✏ small

enough.

Case III: a = 2a
n,t

(, ✏)/�. (3.14) holds when r(resp. n) is su�ciently small(resp. large),

and the rate a

n,t

(, ✏) is su�ciently small. a

n,t

(, ✏) is made small when we increase t and

choose a small ✏, if  = ✏/(2mn).

S.4.2. Detail on Remark 3.8

We first note an inequality

k�
⌧,t

k⇤ � k�k⇤  2kP?
M(�)k⇤ + kPM(�

⌧,t

)k⇤ � kP?
M(�

⌧,t

)k⇤, (S.4.2)

which can be shown by exactly the same argument for showing inequality (52) in Lemma

3 on page 27 in the supplementary material of Negahban et al. (2012), because the nuclear

norm is decomposable with respect to (M,M?
).
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It can be shown by similar argument for showing (S.2.11) that
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where the first inequality follows by the first three lines in (S.2.11), and the second inequality

is from (S.4.2).

Rearrange expression (S.4.3) to get,
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As argued in the proof for Lemma S.2.4, we have P(R
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(, ✏)  a

n,t

(, ✏)) � 1 � �

n

�
16(pm)1�c

2
3 � 3 exp{�(p+m) log 8}. Thus, the proof for (3.16) is completed.

S.4.3. Details for Generating matrices S1 and S2 in Section 4

Given (r
1

, r

2

), S
1

and S
2

are selected with the following procedure:

1. Generate vectors {a
1

, ...,a

r1} and {b
1

, ..., b

r2}, where a

j1 , bj2 2 Rp, and a

j1k1 , bj2k2 ⇠
U(0, 1) i.i.d. for j

1

= 1, ..., r
1

, j
2

= 1, ..., r
2

, k
1

, k

2

= 1, ..., p;

2. Set the columns of S
1

and S
2

by (S
1

)⇤j =
P

r1

k=1

↵

k,j

a

k

and (S
2

)⇤j =
P

r2

k=1

�

k,j

b

k

for

j = 1, ...,m, where ↵
k,j

, �
k,j

are independent random variables in U [0, 1] for k = 1, ..., p

and j = 1, ...,m.
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In our simulation, the first two nonzero singular values for S
1

are (�
1

(S
1

), �
2

(S
1

)) =

(179.91, 26.51) and the rest singular value is 0. For SES

2

, the first two nonzero singular

values are (�
1

(SES

2

), �
2

(SES

2

)) = (175.48, 25.74) and the rest is 0. For SES

2

, the first six

nonzero singular values are (�
1

(SAS

2

), ..., �
6

(SAS

2

)) = (473.40, 29.87, 25.66, 23.89, 23.58, 22.16)

and the rest is 0.

S.4.4. Detail on Mean Removing

Estimation of mean function and smoothing are done jointly by minimizing

bµ(s)
def

= arg min
µ2S

n

X

i=1

m

X

j=1

⇥

Y

ij

� µ(i/365)
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2
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Z

[D2

µ(s)]2ds (S.4.4)

where ⌘ > 0 is a smoothing parameter selected by generalized cross-validation, and S is a

space of cubic B-splines. The computation is performed with the command smooth.spline

in R.

S.5: Auxiliary Lemmas

Definition S.4.1. Let X = Rp⇥n with inner product hA,Bi = tr(A>B) and k · k be the

induced norm. f : X ! R a lower semicontinuous convex function. The proximity operator

of f , S
f

: X ! X :

S

f

(Y)
def

= arg min
X2X

⇢

f(X) +
1

2
kX�Yk2

�

, 8Y 2 X .

Theorem S.4.2 (Theorem 2.1 of Cai et al. (2010)). Suppose the singular decomposition of

Y = UDV> 2 Rp⇥m, where D is a p ⇥ m rectangular diagonal matrix and U and V are
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unitary matrices. The proximity operator S

�

(·) associated with �k · k⇤ is

S

�

(Y)
def

= U(D� �I
pm

)
+

V>
, (S.5.1)

where I
pm

is the p⇥m rectangular identity matrix with diagonal elements equal to 1.

Lemma S.4.3 (Hoe↵ding’s Inequality, Proposition 5.10 of Vershynin (2012a)). Let X
1

, ..., X

n

be independent centered sub-gaussian random variables, and let K = max
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k
 2. Then for
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where C

0
> 0 is a universal constant.

Lemma S.4.4 (Hoe↵ding’s Inequality: classical form). Let X
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be independent random

variables such that X
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P

✓

�

�

�

�

n

X

i=1

X

i

�

�

�

�

� t

◆

 2 exp

✓

� 2t2
P

n

i=1

(b
i

� a

i

)2

◆

.

29



 
 
 
 

SFB 649 Discussion Paper Series 2016 
 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 
 
 
001 "Downside risk and stock returns: An empirical analysis of the long-run 

and short-run dynamics from the G-7 Countries" by Cathy Yi-Hsuan 
Chen, Thomas C. Chiang and Wolfgang Karl Härdle, January 2016. 

002 "Uncertainty and Employment Dynamics in the Euro Area and the US" by 
Aleksei Netsunajev and  Katharina Glass, January 2016. 

003 "College Admissions with Entrance Exams: Centralized versus 
Decentralized" by Isa E. Hafalir, Rustamdjan Hakimov, Dorothea Kübler 
and Morimitsu Kurino, January 2016. 

004 "Leveraged ETF options implied volatility paradox: a statistical study" by 
Wolfgang Karl Härdle, Sergey Nasekin and Zhiwu Hong, February 2016. 

005 "The German Labor Market Miracle, 2003 -2015: An Assessment" by 
Michael C. Burda, February 2016. 

006 "What Derives the Bond Portfolio Value-at-Risk: Information Roles of 
Macroeconomic and Financial Stress Factors" by Anthony H. Tu and 
Cathy Yi-Hsuan Chen, February 2016. 

007 "Budget-neutral fiscal rules targeting inflation differentials" by Maren 
Brede, February 2016. 

008 "Measuring the benefit from reducing income inequality in terms of GDP" 
by Simon Voigts, February 2016. 

009 "Solving DSGE Portfolio Choice Models with Asymmetric Countries" by 
Grzegorz R. Dlugoszek, February 2016. 

010 "No Role for the Hartz Reforms? Demand and Supply Factors in the 
German Labor Market, 1993-2014" by Michael C. Burda and Stefanie 
Seele, February 2016. 

011 "Cognitive Load Increases Risk Aversion" by Holger Gerhardt, Guido P. 
Biele, Hauke R. Heekeren, and Harald Uhlig, March 2016. 

012 "Neighborhood Effects in Wind Farm Performance: An Econometric 
Approach" by Matthias Ritter, Simone Pieralli and Martin Odening, March 
2016. 

013 "The importance of time-varying parameters in new Keynesian models 
with zero lower bound" by Julien Albertini and Hong Lan, March 2016. 

014 "Aggregate Employment, Job Polarization and Inequalities: A 
Transatlantic Perspective" by Julien Albertini and Jean Olivier Hairault, 
March 2016. 

015 "The Anchoring of Inflation Expectations in the Short and in the Long 
Run" by Dieter Nautz, Aleksei Netsunajev and Till Strohsal, March 2016. 

016 "Irrational Exuberance and Herding in Financial Markets" by Christopher 
Boortz, March 2016. 

017 "Calculating Joint Confidence Bands for Impulse Response Functions 
using Highest Density Regions" by Helmut Lütkepohl, Anna Staszewska-
Bystrova and Peter Winker, March 2016. 

018 "Factorisable Sparse Tail Event Curves with Expectiles" by Wolfgang K. 
Härdle, Chen Huang and Shih-Kang Chao, March 2016. 

019 "International dynamics of inflation expectations" by Aleksei Netšunajev 
and Lars Winkelmann, May 2016. 

020 "Academic Ranking Scales in Economics: Prediction and Imdputation" by 
Alona Zharova, Andrija Mihoci and Wolfgang Karl Härdle, May 2016. 

 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 



 
 
 
 

SFB 649 Discussion Paper Series 2016 
 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 
 
 
021 "CRIX or evaluating blockchain based currencies" by Simon Trimborn 

and Wolfgang Karl Härdle, May 2016. 
022 "Towards a national indicator for urban green space provision and 

environmental inequalities in Germany: Method and findings" by Henry 
Wüstemann, Dennis Kalisch, June 2016. 

023 "A Mortality Model for Multi-populations: A Semi-Parametric Approach" 
by Lei Fang, Wolfgang K. Härdle and Juhyun Park, June 2016. 

024 "Simultaneous Inference for the Partially Linear Model with a Multivariate 
Unknown Function when the Covariates are Measured with Errors" by 
Kun Ho Kim, Shih-Kang Chao and Wolfgang K. Härdle, August 2016. 

025 "Forecasting Limit Order Book Liquidity Supply-Demand Curves with 
Functional AutoRegressive Dynamics" by Ying Chen, Wee Song Chua and 
Wolfgang K. Härdle, August 2016. 

026 "VAT multipliers and pass-through dynamics" by Simon Voigts, August 
2016. 

027 "Can a Bonus Overcome Moral Hazard? An Experiment on Voluntary 
Payments, Competition, and Reputation in Markets for Expert Services" 
by Vera Angelova and Tobias Regner, August 2016. 

028 "Relative Performance of Liability Rules: Experimental Evidence" by Vera 
Angelova, Giuseppe Attanasi, Yolande Hiriart, August 2016. 

029 "What renders financial advisors less treacherous? On commissions and 
reciprocity" by Vera Angelova, August 2016. 

030 "Do voluntary payments to advisors improve the quality of 
financial advice? An experimental sender-receiver game" by Vera 
Angelova and Tobias Regner, August 2016. 

031 "A first econometric analysis of the CRIX family" by Shi Chen, Cathy Yi-
Hsuan Chen, Wolfgang Karl Härdle, TM Lee and Bobby Ong, August 
2016. 

032 "Specification Testing in Nonparametric Instrumental Quantile 
Regression" by Christoph Breunig, August 2016. 

033 "Functional Principal Component Analysis for Derivatives of Multivariate 
Curves" by Maria Grith, Wolfgang K. Härdle, Alois Kneip and Heiko 
Wagner, August 2016. 

034 "Blooming Landscapes in the West? - German reunification and the price 
of land." by Raphael Schoettler and Nikolaus Wolf, September 2016. 

035 "Time-Adaptive Probabilistic Forecasts of Electricity Spot Prices with 
Application to Risk Management." by Brenda López Cabrera , Franziska 
Schulz, September 2016. 

036 "Protecting Unsophisticated Applicants in School Choice through 
Information Disclosure" by Christian Basteck and Marco Mantovani, 
September 2016. 

037 "Cognitive Ability and Games of School Choice" by Christian Basteck and 
Marco Mantovani, Oktober 2016. 

038 "The Cross-Section of Crypto-Currencies as Financial Assets: An 
Overview" by Hermann Elendner, Simon Trimborn, Bobby Ong and Teik 
Ming Lee, Oktober 2016. 

039 "Disinflation and the Phillips Curve: Israel 1986-2015" by Rafi Melnick 
and Till Strohsal, Oktober 2016. 

 
 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 



 
 
 
 

SFB 649 Discussion Paper Series 2016 
 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 
 
 
040 "Principal Component Analysis in an Asymmetric Norm" by Ngoc M. Tran, 

Petra Burdejová, Maria Osipenko and Wolfgang K. Härdle, October 2016. 
041 "Forward Guidance under Disagreement - Evidence from the Fed's Dot 

Projections" by Gunda-Alexandra Detmers, October 2016. 
042 "The Impact of a Negative Labor Demand Shock on Fertility - Evidence 

from the Fall of the Berlin Wall" by Hannah Liepmann, October 2016. 
043 "Implications of Shadow Bank Regulation for Monetary Policy at the Zero 

Lower Bound" by Falk Mazelis, October 2016. 
044 "Dynamic Contracting with Long-Term Consequences: Optimal CEO 

Compensation and Turnover" by Suvi Vasama, October 2016. 
045 "Information Acquisition and Liquidity Dry-Ups" by Philipp Koenig and 

David Pothier, October 2016. 
046 "Credit Rating Score Analysis" by Wolfgang Karl Härdle, Phoon Kok Fai 

and David Lee Kuo Chuen, November 2016. 
047 "Time Varying Quantile Lasso" by Lenka Zbonakova, Wolfgang Karl 

Härdle, Phoon Kok Fai and Weining Wang, November 2016. 
048 "Unraveling of Cooperation in Dynamic Collaboration" by Suvi Vasama, 

November 2016. 
049 "Q3-D3-LSA" by Lukas Borke and Wolfgang K. Härdle, November 2016. 
050 "Network Quantile Autoregression" by Xuening Zhu, Weining Wang, 

Hangsheng Wang and Wolfgang Karl Härdle, November 2016. 
051 "Dynamic Topic Modelling for Cryptocurrency Community Forums" by 

Marco Linton, Ernie Gin Swee Teo, Elisabeth Bommes, Cathy Yi-Hsuan 
Chen and Wolfgang Karl Härdle, November 2016. 

052 "Beta-boosted ensemble for big credit scoring data" by Maciej Zieba and 
Wolfgang Karl Härdle, November 2016. 

053 "Central Bank Reputation, Cheap Talk and Transparency as Substitutes 
for Commitment: Experimental Evidence" by John Duffy and Frank 
Heinemann, December 2016. 

054 "Labor Market Frictions and Monetary Policy Design" by Anna Almosova, 
December 2016. 

055 "Effect of Particulate Air Pollution on Coronary Heart Disease in China: 
Evidence from Threshold GAM and Bayesian Hierarchical Model" by 
Xiaoyu Chen, December 2016. 

056 "The Effect of House Price on Stock Market Participation in China: 
Evidence from the CHFS Micro-Datal" by Xiaoyu Chen and Xiaohao Ji, 
December 2016. 

057 "Factorisable Multi-Task Quantile Regression" by Shih-Kang Chao, 
Wolfgang K. Härdle and Ming Yuan, December 2016. 

 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 


	AA_Frontpage
	20160707_Cha_Hae_Yua_FASTEC
	Introduction
	Computation
	A Generalization of FISTA to Non-smooth Loss Function
	Computing Factors and Loadings
	Tuning
	Algorithmic Convergence Analysis

	Oracle Properties
	Oracle Properties of ,t
	Realistic Bounds for Factors and Loadings

	Simulation
	Empirical Analysis
	Spatial Clustering with Extreme Temperature
	Global Financial Risk
	Proof of (2.2)
	Proof of Theorem 2.3
	Technical Details for Theorem 2.3
	Proof for Lemma 3.4
	Proof for Lemma 3.5
	Technical Details for Lemma 3.5
	Proof of Theorem 3.6
	Technical Details for the Proof of Theorem 3.6
	Proof of Theorem 3.10
	Proof for Lemma A.1
	Proof for Theorem A.2
	Technical Details for Theorem A.2
	Detail on Remark 3.7
	Detail on Remark 3.8
	Details for Generating matrices S1 and S2 in Section 4
	Detail on Mean Removing


	ZZ_Endpage

