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Changes in Persistence
in Outlier Contaminated Time Series

Tristan Hirsch and Saskia Rinke1

Leibniz University Hannover

Abstract

Outlying observations in time series influence parameter estimation and testing proce-

dures, leading to biased estimates and spurious test decisions. Further inference based

on these results will be misleading. In this paper the effects of outliers on the perfor-

mance of ratio-based tests for a change in persistence are investigated. We consider two

types of outliers, additive outliers and innovative outliers. Our simulation results show

that the effect of outliers crucially depends on the outlier type and on the degree of

persistence of the underlying process. Additive outliers deteriorate the performance of

the tests for high degrees of persistence. In contrast, innovative outliers do not nega-

tively influence the performance of the tests. Since additive outliers lead to severe size

distortions when the null hypothesis under consideration is described by a nonstation-

ary process, we apply an outlier detection method designed for unit-root testing. The

adjustment of the series results in size improvements and power gains. In an empirical

example we apply the tests and the outlier detection method to the G7 inflation rates.

JEL-Numbers: C15, C22

Keywords: Additive Outliers · Innovative Outliers · Change in Persistence ·
Outlier Detection · Monte Carlo

1Corresponding Author. Leibniz University Hannover, School of Economics and Management, Institute
of Statistics, Königsworther Platz 1, D-30167 Hannover, Germany. E-Mail: rinke@statistik.uni-

hannover.de. Phone: +49-511-762-3082. Fax: +49-511-762-3923.

- 1 -



1 Introduction

Since the introduction of additive outliers (AOs) and innovative outliers (IOs) by Fox

(1972), the effect of outliers on statistical inference in time series has been investigated.

Martin and Yohai (1986) consider the effect of outliers on parameter estimation. They

show that isolated outliers induce a downward bias of the AR coefficients, whereas

patches of outliers induce an upward bias. Franses and Haldrup (1994) assess the effect

of AOs on the Dickey and Fuller (1979) unit-root test and find that the null hypothesis of

a random walk is rejected too often (cf. also Shin et al., 1996). Besides, they also consider

the Johansen (1991) trace test for cointegration and find cointegration too often. Hence,

they conclude that AOs yield spurious stationarity as well as spurious cointegration and

expect similar results in case of a temporary change. Also the performance of linearity

tests is deteriorated in the presence of outliers and nonlinear models are preferred to

linear models. According to van Dijk et al. (2002) this is due to the fact that nonlinear

models can generate data resembling an outlier contaminated linear process. So, van

Dijk et al. (1999) find that the test for smooth transition nonlinearity of Luukkonen

et al. (1988) becomes oversized in the presence of AOs. In extreme scenarios the size

distortion improves but power losses occur. In contrast, IOs do not seriously deteriorate

the performance of the test. Therefore, they conclude that the influence of AOs is

much more severe than the effects of IOs. Ahmad and Donayre (2016) find evidence for

size distortions but power improvements due to outliers for the test against threshold

autoregressive nonlinearity of Hansen (1996, 1997).

The effect of outliers on tests for a change in persistence has not been assessed yet.

Therefore, in this paper we investigate the performance of the ratio-based tests of Kim

(2000); Kim et al. (2002) and of Leybourne et al. (2007) in outlier contaminated pro-

cesses. Both tests are based on a ratio of the subsample cumulative sum of squared

residuals. Outliers influence the test statistic via the residuals and thus can lead to

spurious test decisions.

In our simulation studies we vary the outlier magnitude, the sample size, and the change

magnitude to assess their individual effects. Furthermore, we apply the outlier detection

method of Shin et al. (1996) which is designed for unit-root testing and compare the

performance of the tests in the contaminated and in the adjusted series.

The rest of the paper is organized as follows. In Section 2 the model framework and the

different outlier types are introduced. In Section 3 the tests for a change in persistence

are explained. Section 4 introduces the outlier detection and removal methods. In

Section 5 the simulation set-up and the simulation results are presented. Section 6

contains a real data example of the G7 inflation rates. Finally, Section 7 concludes.
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2 Modeling Outliers and Changes in Persistence

Outliers can only be defined in the context of a certain model under consideration

(cf. Davies and Gather, 1993; van Dijk et al., 1999). In our analysis we will focus on

autoregressive processes of order 1 with and without a change in persistence,

Φ(L) xt = εt, t = 1, . . . ,T, (2.1)

where T is the sample size, Φ(L) = 1−φ1L1{t ≤ bτ ·T c} −φ2 L1{t > bτ ·T c}, L is the lag

operator, 1{·} is the indicator function, bτ · T c is the change point, and εt ∼ N(0,σ2
ε).

There is no change in persistence if φ1 = φ2, τ = 0, or τ = 1. A common way to model

outliers in the context of linear time series is the general replacement model of Martin

and Yohai (1986),

yt = xt (1−δt) + ζtδt, t = 1, . . . ,T.

The observable contaminated process yt consists of the unobservable core process xt and

the contaminating process ζt. The random variable δt takes the values −1 and 1, each

with the probability π/2, and 0 otherwise, where the probability π is the outlier proba-

bility. Allowing δt to take positive and negative values, enables us to model symmetric

contaminations. The core process is the AR(1) model of Eq. (2.1).

Depending on the specification of the contaminating process ζt, different types of out-

liers are generated, i.e. AOs, IOs, level shifts, and temporary changes (cf. Galeano and

Peña, 2013). In the context of time series mostly AOs and IOs are considered (cf. Fox,

1972; van Dijk et al., 1999). For AOs the contaminating process ζt and the respective

contaminated process yt are given by

ζt = xt + ζ,

and yt = xt + ζδt,

where ζ is the constant outlier magnitude depending on the standard deviation of the

core process, σx. An IO contamination ζt and its observable process yt can be modeled

as

ζt = xt + ζ/Φ(L)

and yt = xt +
(
ζ/Φ(L)

)
δt.

AOs only have a one-time effect on the series since they do not affect the core process xt.

In contrast IOs have a one-time effect on the errors but influence several observations
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through the dynamics of the core process. Therefore, IOs have different effects in sta-

tionary and in nonstationary core processes. In contrast to IOs in stationary processes,

the effect of an IO in a unit-root process is permanent and similar to a level shift.

3 Tests for a Change in Persistence

Several procedures exist to test for a change in persistence. They include the ratio-based

tests of Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), and Leybourne et al.

(2007) among others, the sub-sample augmented Dickey-Fuller-type test of Leybourne

et al. (2003), and the variance ratio test of Leybourne et al. (2004). All tests assume a

constant persistence under the null hypothesis, either I(0) like in Kim (2000) or I(1) like

in Leybourne et al. (2007). The alternative is a change from I(0) to I(1) (I(0)→ I(1)) or

a change from I(1) to I(0) (I(1)→ I(0)). We will focus on the test of Kim (2000); Kim

et al. (2002) (the Kim test) since it is frequently applied and on the test of Leybourne

et al. (2007) (the Leybourne test) due to its good size and power properties. The idea

of the tests is to divide the time series into two subsamples and take the ratio of the

subsample cumulative sum (CUSUM) of squared residuals. For both tests simulated

critical values are tabulated for the relevant sample sizes and significance levels of the

simulation study in Section 5.

3.1 The Kim Test

Kim (2000) and Kim et al. (2002) test the null hypothesis of constant I(0) against a

change in persistence I(0)→ I(1) with the test statistic

KbτT c =
(T −bτT c)−2 ∑T

t=bτT c+1

(∑t
i=bτT c+1 ṽi,τ

)2

bτT c−2 ∑bτT c
t=1

(∑t
i=1 v̂i,τ

)2 ,

where v̂t,τ are the residuals from the OLS regression of yt on a constant term for observa-

tions up to bτT c to obtain invariance to a constant. Similarly, ṽt,τ are the OLS residuals

from the regression of yt on a constant term for t = bτT c+1, . . . ,T . Since the true change

point τ∗ is unknown, Kim (2000), Kim et al. (2002), and Busetti and Taylor (2004) use

the sequence of statistics {KbτT c} for τ ∈ Λ, where the change fraction τ∗ is assumed to

lie in Λ = [τl, τu], an interval in (0,1) which is symmetric around 0.5, typically [0.2,0.8].
Following Leybourne et al. (2007) we will only consider the maximum test. Then, the
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test statistic and the estimated change fraction are given by

MX = max
τ∈Λ

KbτT c,

τ̂ = argsup
τ∈Λ

Ξ(τ),

with Ξ(τ) =
(
(T −bτT c)−2 ∑T

t=bτT c+1 ṽ2
i,τ

)(
bτT c−2 ∑bτT c

t=1 v̂2
i,τ

)−1
. The null hypothesis will be

rejected if the value of the test statistic MX is smaller or larger than the lower or upper

tail critical value, respectively.

In Table 3.1 simulated upper and lower tail critical values of the Kim test for different

sample sizes are given. They are based on 100 000 replications.

Quantile

T 0.005 0.025 0.050 0.950 0.975 0.995

50 0.534 0.910 1.185 16.878 21.588 35.050

100 0.594 0.992 1.292 17.047 21.591 34.001

250 0.647 1.087 1.402 17.776 22.425 36.033

500 0.681 1.111 1.438 17.932 22.646 35.489

1000 0.679 1.140 1.475 18.202 23.084 36.036

Table 3.1: Simulated Critical Values of the Kim Test

3.2 The Leybourne Test

In contrast to the Kim test, Leybourne et al. (2007) test the null hypothesis of constant

I(1) against a change in persistence from I(0)→ I(1) or I(0)→ I(1) with the following

two-tailed test statistic

R =
K f (τ)
Kr(τ)

=
bτT c−2 ∑bτT c

t=1 v̂2
t,τ

(T −bτT c)−2 ∑(T−bτT c)
t=1 ṽ2

t,τ

, (3.1)

where K f (τ) is the forward test statistic with v̂t,τ as defined above and Kr(τ) is the test

statistic for the reversed series. Note that a change I(1)→ I(0) is equivalent to a change

I(0)→ I(1) in the reversed series, ỹt ≡ yT−t+1, occurring at time T −bτ∗T c.
Leybourne et al. (2007) show that K f (τ) converges in probability to zero for a change

I(0)→ I(1) for all τ ≤ τ∗ and is of Op(1) if the persistence changes from I(1)→ I(0) for

all τ. Kr(τ) converges in probability to zero if I(1)→ I(0) for all τ > τ∗ and is of Op(1)

- 5 -



if I(0)→ I(1) for all τ. So, if the true change point τ∗T is known, a test of the null

hypothesis I(1) against a change in persistence, either I(0)→ I(1) or I(1)→ I(0), can be

based on Eq. (3.1), because a ratio of K f (τ∗) and Kr(τ∗) collapses to zero for I(0)→ I(1)
and diverges to positive infinity for I(1)→ I(0). Because the true change fraction τ∗

is unknown, the test is based on the infima of K f (τ) and Kr(τ) for τ ∈ Λ. The null

hypothesis of I(1) throughout will be rejected if R exceeds or falls below the upper or

the lower tail critical value, respectively. The estimated change fraction τ̂ is given by

arg infτ∈Λ K f (τ) for a change I(0)→ I(1) and by arg infτ∈Λ Kr(τ) for a change I(1)→ I(0).
In Table 3.2 simulated upper and lower tail critical values of the Leybourne test for

different sample sizes are given. They are based on 100 000 replications.

Quantile

T 0.005 0.025 0.050 0.950 0.975 0.995

50 0.131 0.213 0.276 3.600 4.686 7.616

100 0.117 0.194 0.256 3.950 5.149 8.572

250 0.104 0.180 0.239 4.177 5.502 9.531

500 0.100 0.177 0.234 4.278 5.684 10.017

1000 0.101 0.177 0.234 4.327 5.773 10.152

Table 3.2: Simulated Critical Values of the Leybourne Test

Leybourne et al. (2007) show that the test is conservative against a constant I(0) process.

Thus, in contrast to the Kim test the Leybourne test does not spuriously detect changes

in persistence.

4 Outlier Detection and Removal Methods

There are several publications emphasizing the deteriorating effect of outliers on the

performance of estimation and testing methods (cf. Franses and Haldrup (1994); van

Dijk et al. (1999); Ahmad and Donayre (2016) among others). Two strands of procedures

exist in order to handle outlier contaminated series. Either the outliers have to be

detected and removed before parameters are estimated and tests are conducted, or the

approaches have to be robust against outliers (cf. e.g. van Dijk et al., 1999). Several

outlier detection methods have been proposed starting with Chang et al. (1988) and

Tsay (1988). The approach of Tsay (1988) works under the initial assumption of an

uncontaminated series and consists of specification and estimation in an outer loop and

detection and removal of outliers in the inner loop (cf. Figure 4.1). In a first step the
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critical value C as well as the order of an ARMA model have to be selected and the

corresponding parameters are estimated. The inner loop starts with the calculation of

the residuals and the estimation of the error term variance σ̂2
ε. For each outlier type

j = AO, IO and each observation t = 1, . . . ,T the test statistic λ j,t = ζ̂ j,t/σ̂ j, where ζ̂ j,t is

the estimated outlier effect and σ̂ j is the corresponding standard deviation depending

on σ̂ε, is calculated to test the null hypothesis of no outlier of type j at observation t,

H0 : ζ̂ j,t = 0 H1 : ζ̂ j,t , 0.

Let t j denote the observation with the highest probability of being an outlier of type j.

In order to identify t j, Tsay (1988) takes the maximum of the test statistics λ j,t over all

t. The maximum of both λAO,tAO and λIO,tIO denotes the final test statistic λ to determine

the outlier type and position. If λ exceeds the critical value C the outlier is removed

depending on the type and the inner loop further iterates.

select model order

and critical value C

parameter

estimation

calculate residuals and

estimate error term variance

calculate test statistics

λAO, t,   λIO, t,   t = 1, …, T

find maximum for both outlier types
λAO, tAO

= max
t

λAO, t,   λIO, tIO = max
t

λIO, t

find maximum of test statistics

λ = max{λAO, tAO
, λIO, tIO}

λ ≥ C

remove outlier

accor. to type

λ < Cno outliers in the series

inner loop
outer loop

Figure 4.1: The Outlier Detection and Removal Method of Tsay (1988)

If the inner loop is completed after one single iteration, the algorithm stops and the

series is uncontaminated. If however the inner loop stops after iterating several times

to remove outliers, the outer loop starts again to check a refined model.

The described algorithm detects outliers sequentially, which is computationally easier

and performs well if there exists only a single outlier in the series but can lead to biased

- 7 -



estimates if there are multiple outliers (cf. Chen and Liu, 1993). Therefore, Chen and

Liu (1993) propose a procedure consisting of three different stages.

In the first stage the algorithm of Tsay (1988) is applied to detect possible outliers.

Given the information of the first stage about the estimated time points where outliers

occur, the outlier effects can be estimated jointly and the significance of the outliers is

assessed. Insignificant outliers are deleted one-by-one until all remaining outlier effects

are significant. Finally the model parameters are estimated. Given this information, in

the third stage the procedure starts again with the refined parameter estimates.

According to Galeano and Peña (2013) the procedure of Chen and Liu (1993) is the

standard approach for outlier detection in linear time series. However, it has three

major drawbacks, firstly, the type of outlier (IO or level shift) may not be correctly

identified which affects the adjustment of the series, secondly, the algorithm depends

on initial parameter estimates, may resulting in the break down of the procedure due

to biased initial values, and finally, patches of outliers may not be identified due to the

masking effect. Sánchez and Peña (2003) further modify the approach in order to solve

these problems. For example, they calculate robust initial estimates by eliminating

influential points (cf. also Peña, 1991) and use lower critical values C to be able to

identify patches of outliers. Although further extensions lead to improved results, the

computational burden increases enormously. Moreover, the main aim of the detection

algorithms is to obtain unbiased parameter estimates for an ARMA model.

Since we are primarily interested in the demeaned series, we apply the algorithm of Shin

et al. (1996) which focuses on outlier detection for unit-root testing and works under

the assumption of the series being a random walk. This approach can be valuable in

our analysis, since the test by Leybourne et al. (2007) is I(1) under the null hypothesis.

However, the test of Kim (2000); Kim et al. (2002) is I(0) under the null hypothesis and

Shin et al. (1996) admit that their outlier detection algorithm does not perform well if

the process under consideration exhibits only a small degree of persistence. Nevertheless,

our results in the simulation studies show that the performance of the Kim test is not

deteriorated by outliers if the process only exhibits a low degree of persistence. Due

to the assumption of a random walk, the procedure of Shin et al. (1996) does not need

an initial model selection and parameter estimates, thus minimizing the computational

effort.

The idea of the Shin et al. (1996) algorithm is illustrated in Figure 4.2. An AO only

affects one single observation but two consecutive residuals, i.e. the differences between

two consecutive observations, et = yt − yt−1. Thus, a test can be based on the differ-

ence between the residuals. Since the difference may be negative, the absolute value is

considered.
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(b) Residuals as the First Difference of the Random Walk
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(c) Absolute value of the First Difference of Residuals

Figure 4.2: Idea of the Shin et al. (1996) Algorithm

Due to the fact that it is not known a priori when an AO occurs, the maximum of the

absolute differences is determined. Let tAO = argmax2≤ t≤T−1
∣∣∣et+1 − et

∣∣∣, then tAO is the

observation that is most likely to be contaminated by an AO. To test whether there

occurs an AO at tAO, |etAO+1− etAO | is standardized by the estimated standard deviation

of etAO+1− etAO . The general test statistic is given by

λ =
1√
2σ̂

(
max

2≤t≤T−1
|et+1− et|

)
,

where σ̂2 = (T − 3)−1
(
(
∑T

t=2 e2
t )− e2

tAO
− e2

tAO+1

)
is a robust estimator of σ2

ε. If the test
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statistic equals or exceeds a critical value C, an AO is detected. We follow Shin et al.

(1996) and use the critical value C = 3. A further discussion of the distribution of λ can

be found in the appendix.

Shin et al. (1996) recommend to replace an AO contaminated observation with its lagged

value to adjust the series. This procedure only takes into account the information up to

tAO and leads to constant parts in the time series, resulting in a larger residual etAO+1.

Therefore, we suggest to use the full sample information and to replace the outlying

observation ytAO by its best full sample prediction, i.e. the mean of the lagged value and

the future value, ŷtAO = (ytAO−1 +ytAO+1)/2. The procedure is repeated until no additional

outliers are detected, i.e. λ <C.

The approach can be adjusted to detect IOs (cf. Shin et al., 1996). However, as we will

show in the following section, this is not necessary, since IOs do not seriously affect the

performance of the tests for a change in persistence.

5 Simulation Study

In our simulation study we consider the linear model given in Eq. (2.1) without con-

taminations (ζ = 0) and with AOs as well as IOs of different outlier magnitudes ζ with

an outlier probability of π = 0.05 (cf. Ahmad and Donayre, 2016). The errors form a

Gaussian white noise process. In order to assess the performance of the tests, we apply

them to the uncontaminated, contaminated, and adjusted series. To adjust the series

we use the modified algorithm of Shin et al. (1996) with a critical value of C = 3. We

vary the following parameters,

sample size T = {50,100,250,500,1000},

persistence φ1,φ2 = {0.00,0.25,0.50,0.75,0.95,1.00},

outlier magnitude ζ = {0σx,1σx,2σx,3σx}.

For every series 200 additional observations are simulated as a burn-in period to avoid

a starting value bias. All initial values are set to zero. The simulation results are based

on 1000 replications. The following figures and tables report the simulation results for

τ = 0.5. In general we find that the power of the tests is higher if the change point occurs

early in the series under the condition that the stationary part of the series is at least

as large as the nonstationary part.
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5.1 Performance in Uncontaminated Series

Table 5.1 tabulates the size properties of the Kim and the Leybourne test in uncontam-

inated series for different sample sizes T and different levels of significance α.

significance level α

T 1% 5% 10%

50 0.009 0.049 0.093

100 0.011 0.052 0.110

250 0.009 0.045 0.094

500 0.008 0.048 0.095

1000 0.010 0.050 0.093

(a) Kim Test I(0)

significance level α

T 1% 5% 10%

50 0.011 0.046 0.105

100 0.011 0.047 0.097

250 0.010 0.042 0.094

500 0.010 0.052 0.107

1000 0.009 0.046 0.102

(b) Leybourne Test I(1)

Table 5.1: Size Properties

The size of the Kim and of the Leybourne test coincides with the nominal size. Since

the critical values depend on the number of observations, the tests perform well in terms

of size for all sample sizes.

Table 5.2 tabulates the power results of the Kim test for I(0)→ I(1) and of the Leybourne

test for both I(0)→ I(1) and I(1)→ I(0).

significance level α

T 1% 5% 10%

50 0.779 0.868 0.907

100 0.947 0.978 0.982

250 0.997 0.998 0.999

500 1.000 1.000 1.000

1000 1.000 1.000 1.000

(a) Kim Test
I(0)→ I(1)

significance level α

T 1% 5% 10%

50 0.017 0.081 0.156

100 0.084 0.262 0.400

250 0.408 0.690 0.803

500 0.798 0.935 0.977

1000 0.963 0.997 0.999

(b) Leybourne Test
I(1)→ I(0)

significance level α

T 1% 5% 10%

50 0.087 0.246 0.393

100 0.238 0.504 0.666

250 0.612 0.858 0.934

500 0.882 0.979 0.995

1000 0.987 1.000 1.000

(c) Leybourne Test
I(0)→ I(1)

Table 5.2: Power Properties

The power of both tests increases with the sample size. However, in small samples the

power of the Kim test is already high and it converges to 1 with an increasing number
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of observations. In contrast, the power of the Leybourne test crucially depends on the

sample size. In very small samples T = 50 the power is only slightly higher than its

size. Also for T = 100 the power is relatively low. For sample sizes of T ≥ 250 the power

increases and the test decision is reliable. With an increasing number of observations

the power of the test converges to 1.

All presented results are valid for φ1,φ2 = {0,1}. In general, the size of the Kim test

increases if the degree of persistence increases and the power decreases with a decreasing

change magnitude |φ1 − φ2| (cf. Fig. A.3 and A.4). For the Leybourne test the size

decreases to zero if the process becomes stationary. The power decreases if |φ1 − φ2|
decreases (cf. Fig. A.5 and A.6).

5.2 Performance in Contaminated Series

Figure 5.1 illustrates the effects of AOs and IOs on the size of the Kim test for different

sample sizes, outlier magnitudes ζ, and significance levels. The results show that there

is no difference between the effects of AOs and IOs on the size of the Kim test. This

is due to the fact that the degree of persistence of the core process is zero under the

null hypothesis and an IO can only affect one observation exactly like an AO. The effect

of outliers is mostly pronounced for large outlier magnitudes ζ and small to moderate

sample sizes. The higher the persistence of the simulated processes, the higher are the

size distortions in small samples (cf. Fig. A.3 and A.4). However, the size is not

deteriorated seriously, but holds the nominal significance level.

The power of the Kim test is not affected by AO contaminations if ζ is small. Only for

large outlier magnitudes ζ = 3σx the power of the test decreases in small samples. The

power of the test is not affected by IO contaminations (cf. Fig. 5.2).

Figure 5.3 presents the size of the Leybourne test in outlier contaminated series for

different sample sizes, outlier magnitudes, and levels of significance. In the left panel

the results for AOs can be found. The introduction of AOs decreases the size of the

Leybourne test for all sample sizes and all significance levels. This implies that the

test becomes undersized. The size distortion increases with the sample size and the

outlier magnitude. For large sample sizes combined with large outlier magnitudes the

size converges to zero. This is due to the fact that an AO contaminated unit-root process

can be confused with a stationary process (cf. Franses and Haldrup, 1994). Since the

size of the Leybourne test converges to zero for a constant I(0) process, the size of the

Leybourne test decreases to zero in AO contaminated series.

In the right panel of Figure 5.3 the size properties of the Leybourne test in IO contam-

inated time series are depicted. The size distortions are less severe compared to AO

contaminations (cf. also van Dijk et al., 1999). Only in small samples and for large
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outlier magnitudes the size differs from the nominal significance level.

In terms of size the Leybourne test is more affected by outliers than the Kim test due

to the higher degree of persistence under the null hypothesis. The effect of AOs is more

serious than the effect of IOs.

Figures 5.4 and 5.5 illustrate the power properties of the Leybourne test for I(0)→ I(1)
and I(1)→ I(0), respectively. For both alternatives the results are qualitatively the same.

For a change I(0)→ I(1) the power is slightly higher across sample sizes, significance

levels, and outlier magnitudes. This coincides with the findings in the uncontaminated

series (cf. Tab. 5.2). In the left panels the effects of AOs on the power properties are

depicted. The power decreases and approaches zero for increasing outlier magnitudes

because the contaminated series can be confused with a stationary I(0) process. In

contrast, IOs do not decrease the power, but lead to power gains since the stationary

and the nonstationary part of the series markedly differ (cf. Fig. 5.6a).
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.1: Size of the Kim Test (I(0)) for Additive and Innovative Outliers with Different
Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.2: Power of the Kim Test (I(0)→ I(1)) for Additive and Innovative Outliers with
Different Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.3: Size of the Leybourne Test (I(1)) for Additive and Innovative Outliers with
Different Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.4: Power of the Leybourne Test (I(0)→ I(1)) for Additive and Innovative Outliers
with Different Outlier Magnitudes ζ and Different Levels of Significance
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.5: Power of the Leybourne Test (I(1)→ I(0)) for Additive and Innovative Outliers
with Different Outlier Magnitudes ζ and Different Levels of Significance
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5.3 Performance in Adjusted Series

The results in Figures 5.1 and 5.2 show that the performance of the Kim test does not

suffer from size distortions or power losses due to outliers for low degrees of persistence.

Hence, it is not necessary to adjust the series before applying the test. Moreover, the

modified algorithm of Shin et al. (1996) is developed for nonstationary time series and

thus does not perform well in series with a low degree of persistence. Although the

application of the Kim test to the adjusted series results in power gains, it also suffers

from an increased size (cf. Fig. A.3 and A.4).

Figure 5.7 shows the size properties of the Leybourne test in the adjusted series. In all

uncontaminated series the size is not affected by the adjustment procedure. Therefore,

the algorithm does not spuriously detect outliers. Applying the modified algorithm

of Shin et al. (1996) to AO contaminated series increases the size of the test back to

its nominal significance level in all sample sizes independent of the outlier magnitude.

In IO contaminated series the application of the algorithm does not influence the size

properties. In fact, the size is not deteriorated by IOs, anyway.

Figures 5.8 and 5.9 present the power properties of the Leybourne test in the adjusted

series. In the uncontaminated series the power is not affected by the adjustment of the

series. The application of the modified algorithm of Shin et al. (1996) to AO contam-

inated series increases the power especially in series with large outlier magnitudes and

equals the power in the uncontaminated series. In IO contaminated series the power

increases and is higher than in the uncontaminated series. This is due to the fact that

the algorithm can detect IOs only in the stationary part and thus, the differentiation

between the stationary and the nonstationary part becomes easier (cf. Fig. 5.6).
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Figure 5.6: Influence of the Adjustment on an IO Contaminated Series with a Change in
Persistence (I(0)→ I(1))

- 19 -



200 400 600 800 1000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Number of observations

S
iz

e

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.7: Size of the Leybourne Test (I(1)) for Additive and Innovative Outliers with
Different Outlier Magnitudes ζ and Different Levels of Significance.

- 20 -



200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of observations

P
ow

er

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(a) AOs and α = 1%

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of observations

P
ow

er

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(b) IOs and α = 1%
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(c) AOs and α = 5%

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of observations

P
ow

er

ζ = 0σx

ζ = 1σx

ζ = 2σx

ζ = 3σx

1

(d) IOs and α = 5%
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(e) AOs and α = 10%
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(f) IOs and α = 10%

Figure 5.8: Power of the Leybourne Test (I(0)→ I(1)) for Additive and Innovative Outliers
with Different Outlier Magnitudes ζ and Different Levels of Significance.
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(a) AOs and α = 1%
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(b) IOs and α = 1%
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(c) AOs and α = 5%
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(d) IOs and α = 5%
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(e) AOs and α = 10%
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Figure 5.9: Power of the Leybourne Test (I(1)→ I(0)) for Additive and Innovative Outliers
with Different Outlier Magnitudes ζ and Different Levels of Significance.
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6 Empirical Example

In this section we apply the tests for a change in persistence of Kim (2000); Kim et al.

(2002) and of Leybourne et al. (2007) and the outlier detection method of Shin et al.

(1996) to inflation data of the G7 countries. Following Busetti and Taylor (2004), we use

quarterly CPI data from the OECD retrieved from FRED from 1970Q1 until 2014Q4

and define the inflation rates as

πt = log(CPIt)− log(CPIt−1).

Thus, our data set consists of 180 observations for each country. We use the R package

X13 for seasonal adjustment. The properties of the series change over time. During the

Great Inflation in the 1970s and early 1980s inflation rates appear to exhibit a higher

degree of persistence. At the beginning of the 1980s there is an overall decrease in the

persistence. This period is referred to as the Great Moderation. The transition of the

Great Inflation to the Great Moderation could present a change in persistence.

In Table 6.1 the critical values of both tests for a sample size of T = 180 are presented.

Quantile

0.005 0.025 0.050 0.950 0.975 0.995

Kim 0.625 1.049 1.358 17.490 22.153 34.887

Leybourne 0.109 0.186 0.246 4.101 5.469 9.382

Table 6.1: Simulated Critical Values for T = 180

The test statistics of the Kim and Leybourne test applied to the G7 inflation rates

for the original and the adjusted series are given in Table 6.2. Bold numbers indicate

the rejection of the null hypothesis. In the original series the Kim test rejects the null

hypothesis for Japan at the 10% significance level with an estimated change in 2005Q4.

The Leybourne test rejects the null hypothesis in the original series for France at the 10%
significance level and for the USA at the 1% level with the estimated changes in 1991Q4

and 1991Q1, respectively. After adjusting the series with the modified algorithm of Shin

et al. (1996) the Kim test does not reject the null hypothesis for any country. In contrast,

the Leybourne test rejects the null hypothesis for France at the 5% significance level
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and for Great Britain, Italy and Japan at the 10% significance level with the estimated

changes in 1985Q2, 1990Q3, 1996Q1 and 1981Q4.

CAN FRA GBR GER ITA JPN USA

Kim Test 4.0159 8.9347 3.0654 2.6954 4.5738 1.1486 6.9269

Leybourne Test 2.9018 4.3994 2.2575 1.7306 1.6157 2.7578 23.0157

(a) Original Series

CAN FRA GBR GER ITA JPN USA

Kim Test 3.7260 8.1539 2.3005 2.5883 6.6409 1.9316 5.8816

Leybourne Test 3.1757 6.0435 5.0082 1.9686 4.9083 4.5627 3.8323

(b) Adjusted Series

Table 6.2: Test Statistics of the Kim and Leybourne Test

In Figure 6.1 the original and the adjusted series of the G7 inflation rates are presented.

The estimated change points are indicated by dashed lines.
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Figure 6.1: Inflation Rates of the G7 Countries

In order to support the test results, we conduct the unit-root test of Dickey and Fuller

(1979).

Given the estimated change points the ADF test is conducted for the respective sub-

samples. The p-values in Table 6.3 confirm the results of the tests for a change in

persistence. Except for Japan in the original series and Italy the test detects a unit
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root in the first subsample and stationarity in the second subsample. This points to

a change in persistence from I(1) to I(0) for France (in both series), the USA (in the

original series), as well as Great Britain and Japan (in the adjusted series). Although

the results for Italy are not as conclusive as for other countries, the p-values differ among

the two subsamples. In the first subsample the null hypothesis can be rejected at the

10% level, whereas in the second subsample the p-value falls below 2%. Therefore we

conclude that there occurs a change in persistence from I(1) to I(0) in the Italian series,

which is also supported by the time series plot in Figure 6.1. In contrast, for Japan

in the original series the p-values and the time series plot do not indicate a change in

persistence. We deduce that the result of the Kim test is due to a type I error and that

there is no change in persistence.

FRA JPN USA

1st subsample 0.2625 0.0817 0.2176

2nd subsample < 0.01 0.0980 < 0.01

(a) Original Series

FRA GBR ITA JPN

1st subsample 0.5386 0.2486 0.0741 0.3337

2nd subsample 0.0296 < 0.01 0.0195 0.0442

(b) Adjusted Series

Table 6.3: Subsample p-values of the ADF-Test

Summarizing our results we find different test decisions for the original and the adjusted

series for four of the G7 countries. In Great Britain, Italy, and Japan the Leybourne

test cannot detect a change in persistence in the original series due to outlier contami-

nations but confuses the series with a stationary process. After adjusting the series the

Leybourne test rejects the null hypothesis in favor of a change in persistence from I(1)
to I(0) which is supported by the results of the subsample ADF tests.

7 Conclusion

In this paper the effect of two different types of outliers on the performance of the tests for

a change in persistence of Kim (2000); Kim et al. (2002) and of Leybourne et al. (2007)

are assessed. We find that the Kim test is not seriously affected by outliers. Especially

the size of the test is not deteriorated. Due to the low degree of persistence under the
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null hypothesis of the test, AOs and IOs have the same effect on the series under the null

hypothesis. The contaminated stationary process is identified as a stationary process

and thus the size is not affected. Therefore, we conclude that it is not necessary to

detect and remove outliers before applying the test. In contrast, the Leybourne test

suffers from severe size and power distortions due to AOs. IOs do not affect the size but

can even lead to power gains. As a result, we recommend to adjust the contaminated

series and remove AOs before applying the test. The modified algorithm of Shin et al.

(1996) performs well and is easy to implement. After adjusting the series, the size of the

test coincides with the nominal significance levels and the power converges to 1 with an

increasing sample size. In the empirical application we use the tests to find changes in

persistence in the G7 inflation rates. We detect a change in persistence for France in the

original and the adjusted series, and for Great Britain, Italy, and Japan after adjusting

the series.

A Appendix

A.1 Limiting Distribution

Suppose the core process of the data generating process is a random walk, which coin-

cides with the null hypothesis of the Leybourne test,

xt = xt−1 +εt, t = 1, . . . ,T,

where εt ∼ N(0,σ2
ε). The observable series {yt} is contaminated with AOs of magnitude

ζ if δt = ±1,

yt = xt + ζδt.

For an AO at t = s, we obtain

ys−1 = xs−1 = xs−2 +εs−1 ys = xs + ζ = xs−1 +εs + ζ ys+1 = xs+1 = xs +εs+1.

Under the assumption of {yt} being a random walk, the residuals are given by

es = εs + ζ es+1 = εs+1− ζ,

where es ∼ N(ζ,σ2
ε) and es+1 ∼ N(−ζ,σ2

ε) (cf. Shin et al., 1996). The linear combination

es+1−es follows a normal distribution with µ=−2ζ and σ2 = 2σ2
ε. If the random variable

X ∼ N(µ,σ2), then Z = |X| follows a folded normal distribution (cf. Leone et al., 1961),
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with the density function

f (z) =
1√

2πσ2

[
exp

(
− (z−µ)

2σ2

)
+ exp

(
− (z +µ)

2σ2

)]
.

Under the null hypothesis the series {yt} is uncontaminated and therefore ζ = 0. Thus,

es,es+1 ∼N(0,σ2
ε), es+1−es ∼N(0,2σ2

ε), and |es+1−es| follows a folded normal distribution

with density function

f (|es+1− es|) =
1√
πσ2

ε

exp
(
− (|es+1− es|)2

4σ2
ε

)
.

This coincides with twice the right tail of the normal distribution N(0,2σ2
ε).

The test statistic

λ∗ =
1√
2 σ̂2

ε

(|et+1− et|) t = 2, . . . , (T −1),

where σ̂2
ε is a robust estimator for the error term variance σ2

ε, hence follows a standard

folded normal distribution. Critical values can be obtained according to qλ
∗

1−α = z1−α/2
for α ≤ 0.5, where z is a quantile of the standard normal distribution.

Figure A.1 and Table A.1 illustrate the convergence of the test statistic λ∗ to the standard

folded normal distribution.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

std. folded N
T = 102

T = 103

T = 104

T = 105

T = 106

λ∗

f(
λ
∗ )

1

Figure A.1: Estimated Density of λ∗ and the Standard Folded Normal Distribution
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0.01 0.05 0.1 0.9 0.95 0.99

T = 102 0.0109 0.0412 0.0704 1.8610 2.2003 2.7312

T = 103 0.0109 0.0641 0.1323 1.6383 2.0642 2.6630

T = 104 0.0146 0.0681 0.1294 1.6431 1.9664 2.6194

T = 105 0.0129 0.0613 0.1242 1.6518 1.9667 2.5872

T = 106 0.0124 0.0629 0.1256 1.6448 1.9623 2.5773

std. folded N 0.0125 0.0627 0.1257 1.6448 1.9600 2.5758

Table A.1: Quantiles of the Estimated Density of λ∗ and of the Standard Folded Normal
Distribution

Since it is not known a priori when an AO occurs, the maximum of the absolute difference

between two consecutive residuals is taken,

λ =
1√
2 σ̂2

ε

(
max

2≤ t≤ (T−1)
|et+1− et|

)
.

According to the extreme value theory, the maximum of random variables from a dis-

tribution of the exponential family follows the Gumbel distribution (cf. Gumbel, 1958,

pp. 164f, Kotz and Nadarajah, 2000, p. 59) with density function

f (x) =
1
β

exp
(
− x−µ

β
+ exp

(
− x−µ

β

))
.

However, the test statistic λ does not follow a standard Gumbel distribution (µ = 0
and β = 1) since the standard Gumbel distribution allows for negative realizations (cf.

Tab. A.2), whereas the absolute does not. In order to determine appropriate critical

values, we calculate λ for random walks of different sample sizes T = {102,103,104,105},
each with 1000 replications. We find that the distribution of λ crucially depends on

the sample size. For an increasing number of observations, the distribution shifts to the

right and the quantiles increase (cf. Tab. A.2).
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0.01 0.05 0.1 0.9 0.95 0.99

T = 102 2.1052 2.2251 2.3351 3.3154 3.5183 4.0632

T = 103 2.8462 2.9854 3.0545 3.8856 4.0141 4.3855

T = 104 3.4985 3.6176 3.6831 4.4230 4.6072 4.8394

T = 105 4.0520 4.1789 4.2331 4.8525 4.9963 5.3274

std. Gumbel -1.5272 -1.0972 -0.8340 2.2504 2.9702 4.6001

Table A.2: Quantiles of the Estimated Density of λ and of the Standard Gumbel Distribution

In addition to the sample size, the distribution of λ also depends on the number of

iterations. If the test is applied more than once to the (adjusted) series, the distribution

shifts to the left. For an increasing number of iterations (detection of the maximum in

the adjusted series), the distribution asymptotically converges to the standard folded

normal distribution. The estimated quantiles of λ based on 10000 replications for differ-

ent sample sizes T = {100,500,1000} and different numbers of iterations {1,2,9,100} are

illustrated in Figure A.2.
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Figure A.2: Estimated Quantiles of λ after Different Iterations
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From Figure A.2 we conclude that a critical value for λ cannot be derived from a limiting

distribution since it is not clear beforehand how many iterations are needed to remove

AOs from the series. Applying a large critical value reduces the risk of falsely identifying

outliers, but may prevent the algorithm from detecting true outliers. In contrast, using

a small critical value guarantees that outliers are correctly identified, but will also lead

to spurious detection of outliers. The critical value of C = 3 recommended by Shin et al.

(1996) seems to balance this trade-off. On the one hand the probability for a standard

folded normal distributed random variable to exceed a value of C = 3 only amounts to

0.270%. Therefore, we do not expect the algorithm to detect many falsely classified

outliers or to get stuck in an endless loop. On the other hand according to Figure A.2

the critical value of C = 3 is small enough for the test not to be conservative.
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A.2 Power Plots
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(f) Adjusted Series, T = 100, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure A.3: Power of the Kim Test for Additive Outliers, Different Degrees of Persistence,
and α = 5%.
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(a) Original Series, T = 100, ζ = 0
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(d) Adjusted Series, T = 1000, ζ = 0
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(e) Original Series, T = 100, ζ = 3
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(f) Adjusted Series, T = 100, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure A.4: Power of the Kim Test for Innovative Outliers, Different Degrees of Persistence,
and α = 5%.
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(d) Adjusted Series, T = 1000, ζ = 0
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(f) Adjusted Series, T = 100, ζ = 3
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(g) Original Series, T = 1000, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure A.5: Power of the Leybourne Test for Additive Outliers, Different Degrees of
Persistence, and α = 5%.
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(f) Adjusted Series, T = 100, ζ = 3
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(h) Adjusted Series, T = 1000, ζ = 3

Figure A.6: Power of the Leybourne Test for Innovative Outliers, Different Degrees of
Persistence, and α = 5%.
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