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Abstract. It is shown that the n-player lottery contest admits a best-response potential

(Voorneveld, 2000, Economics Letters). This is true also when the contest technology

re�ects the possibility of a draw. The result implies, in particular, the existence of a

nontrivial example of a strictly competitive game that is best-response equivalent to a

game with identical payo¤ functions.
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1. Introduction

Potential games are interesting because they allow conclusions not only regarding existence

and uniqueness of a Nash equilibrium, but also regarding the outcome of dynamic and

boundedly rational adjustment processes. Since Monderer and Shapley�s (1996) seminal

contribution, the literature has produced increasingly �exible variants of the initial concepts.

One such generalization has led to the notion of a best-response potential (Voorneveld, 2000;

Kukushkin, 2004; Dubey et al., 2006; Uno, 2007, 2011; Park, 2015). According to the

de�nition, a game with continuous strategy spaces admits a best-response potential if there

is a game with identical payo¤ functions that is best-response equivalent (henceforth BR-

equivalent, etc.) to the original game, i.e., that has the same BR-correspondence, mapping

any pro�le of pure strategies to a set of pure strategy pro�les, as the original game.

This paper has two parts. In the �rst part, we show that the n-player lottery contest

admits a BR-potential. This holds true regardless of whether the contest allocates the prize

with probability one (Haavelmo, 1954; Tullock, 1975; Bell et al., 1975; Baron, 1994) or

there is a probability of a draw (Loury, 1979; Dasgupta and Nti, 1998; Blavatskyy, 2010;

Jia, 2012).1 In the second part of the paper, we exploit the useful strategic equivalence

between contests and zero-sum games,2 so as to derive a perplexing implication of our

result. Speci�cally, it is shown that a zero-sum game may be BR-equivalent to a game with

identical payo¤ functions.

The lottery contest and its natural generalizations have found widespread application

in economics and political theory (cf. Konrad, 2009). It corresponds to a Cournot game

with isoelastic inverse demand and constant marginal costs. Deschamps (1975) proved

convergence of �ctitious play in a two-player Cournot oligopoly with strictly declining BR-

functions. Thorlund-Peterson (1990) extended this result to an arbitrary number of �rms

that hold point beliefs. Even an exact potential is possessed by a Cournot game with

linear demand (Slade, 1994). More generally, su¢ cient conditions for the existence of a

BR-potential have been found for aggregative games that allow monotone BR-selections

(Huang, 2002; Dubey et al., 2006; Jensen, 2010). However, all these methods do not apply

1Like this paper, Dasgupta and Nti (1998) allow for both cases.
2By strategic equivalence, we mean here vNM-equivalence (Morris and Ui, 2004), which will be de�ned

later in the paper. The vNM-equivalence between contests and zero-sum games, which is implicit in the early
work by Moulin and Vial (1978), was used by Pavlov (2013) to study correlated equilibria in the �rst-price
all-pay auction. More recent applications include network con�icts (Ewerhart and Valkanova, 2016) and
decomposable normal-form games (Hwang and Rey-Bellet, 2017).
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to the lottery contest whose BR-function is not monotone (cf. Dixit, 1987). Also more

recent examples of games that allow a BR-potential (Dragone et al., 2012; Bourlès et al.,

2015) do not cover the case of the lottery contest.

2. The lottery contest admits a BR-potential

In a lottery contest, with noise parameter a � 0, common valuation V > 0, and n � 2

players, each player i 2 f1; :::; ng simultaneously and independently chooses an e¤ort xi � 0,

and subsequently receives a payo¤ of

uai (x1; :::; xn) =

8><>:
xi
a+ x

V � xi if a+ x > 0

V=n if a+ x = 0,

(1)

where x = x1 + ::: + xn denotes aggregate e¤ort. This game is known to possess a unique

pure-strategy Nash equilibrium that is necessarily symmetric (Dasgupta and Nti, 1998).3

An n-person game G = (X1; :::; Xn; u1; :::; un) with strategy spaces Xi and payo¤ func-

tions ui : X � X1 � ::: � Xn ! R for players i = 1; :::; n is called a BR-potential game

(Voorneveld, 2000) if there exists a function P : X ! R such that

argmax
xi2Xi

P (xi; x�i) = argmax
xi2Xi

ui(xi; x�i) (2)

for any i = 1; :::; n and any x�i = (x1; :::; xi�1; xi+1; :::; xn) 2 X�i � X1� :::�Xi�1�Xi+1�

:::�Xn.

The following observation has, to the author�s knowledge, not been documented in the

literature.4

Proposition 1. For any a � 0, the n-player lottery contest is a BR-potential game.

Proof. Consider �rst the case a > 0. We claim that, in this case,

P a(x1; :::; xn) =

8<:ax+X
j<k

xjxk

9=;V � 13(a+ x)3 (3)

3For a = 0, Dasgupta and Nti (1998) assume a di¤erent tie-breaking rule, viz. u0i (0; :::; 0) = 0 for
i = 1; :::; n. The BR-correspondence is the same, however.

4Cf., e.g., the surveys by Chowdhury and Sheremata (2015) and González-Sánchez and Hernández-Lerma
(2016).
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is a BR-potential for the lottery contest. Indeed, di¤erentiating (3), we �nd

@P a(xi; x�i)

@xi
= (a+ x�i)V � (a+ x)2, (4)

where x�i = x1 + :::+ xi�1 + xi+1 + :::+ xn. Moreover,

@2P a(xi; x�i)

@x2i
= (�2) � (a+ x) < 0, (5)

i.e., the problem of maximizing P a(:; x�i) subject to xi � 0 is strictly concave. The unique

solution x�i � x�i (x�i; a) is given by

x�i =

8<:
p
(a+ x�i)V � a� x�i if x�i � V � a

0 if x�i > V � a.
(6)

But this is just player i�s best-response function in the lottery contest with noise parameter

a. Hence,

argmax
xi�0

P a(xi; x�i) = argmax
xi�0

uai (xi; x�i), (7)

as claimed. Consider next the case a = 0. Denote by �(x) the number of nonzero entries of

the vector x = (x1; :::; xn). We claim that, in this case,

P 0(x1; :::; xn) =

8>>>>>><>>>>>>:

(
X
j<k

xjxk)V � 1
3x
3 if �(x1; :::; xn) � 2

�1
3xjV

2 if �(x1; :::; xn) = 1 and xj > 0

�1
3
n�1
n V 3 if �(x1; :::; xn) = 0

(8)

is a BR-potential for the lottery contest. To see this, suppose �rst that x�i has at least two

nonzero entries. Then, certainly �(x1; :::; xn) � 2, so that from (8),

P 0(x1; :::; xn) = (
X
j<k

xjxk)V �
1

3
x3. (9)

Moreover, u0i (:; x�i) is di¤erentiable, so that in straightforward extension of the case a > 0

considered above,

argmax
xi�0

P 0(xi; x�i) = argmax
xi�0

u0i (xi; x�i). (10)

Suppose next that x�i has precisely one nonzero entry xj > 0. Then, �(x1; :::; xn) = 2 if

xi > 0, and �(x1; :::; xn) = 1 if xi = 0. Hence, using (8) another time,

P 0(x1; :::; xn) =

8<:
xixjV � 1

3(xi + xj)
3 if xi > 0

�1
3xjV

2 if xi = 0.
(11)
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We have to show that the problem of maximizing P 0(:; x�i) subject to xi � 0 has the

unique solution that is given by the best-response function of the lottery contest with noise

parameter a = 0, i.e., by x�i =
p
xjV � xj if xj � V and by x�i = 0 if xj > V . From the

above, it clearly su¢ ces to show that the problem max
xi�0

P 0(xi; x�i) has an interior solution

if and only if xj < V . But indeed, using (11), one can easily check that for xj > 0,

lim
xi!0
xi>0

P 0(xi; x�i) = �
1

3
x3j > �

1

3
xjV

2 = P 0(0; x�i) (12)

if and only if xj < V , as illustrated in Figure 1.

Figure 1. Constructing a BR-potential in the case a = 0.

Finally, suppose that all entries of x�i are zero. Then, again from (8), P 0(xi; x�i) = �1
3xiV

2

if xi > 0, but P 0(0; x�i) < 0, so that argmax
xi2Xi

P 0(xi; x�i) = ?. Similarly, u0i (xi; x�i) =

V � xi if xi > 0, but u0i (0; x�i) = V=n, so that argmax
xi2Xi

u0i (xi; x�i) = ?. This proves that

P 0 is indeed a BR-potential for the lottery contest with noise parameter a = 0. �

Park (2015) has argued that, in cases where preferences are complete but the BR-set may be

empty, the BR-potential should generate the same preferences over strategies as the original

payo¤ function. To check that this condition holds for the BR-potential (8) constructed

above, note that for x�i = 0,

P 0(xi; x�i) =

8<:
�1
3xiV

2 if xi > 0

�1
3
n�1
n V 3 if xi = 0.

(13)

Thus, the BR-potential induces a preference for lower strategies among positive strategies

xi > 0, and an indi¤erence between xi = 0 and xi = n�1
n V . This is likewise true for
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preferences re�ecting player i�s original payo¤s when x�i = 0, which are given by

u0i (xi; x�i) =

8<:
V � xi if xi > 0

V=n if xi = 0.
(14)

Thus, the BR-potential constructed in the proof of Proposition 1 does satisfy Park�s condi-

tion.

Proposition 1 easily extends to the class of contests in which the contest success function

is a strict convex combination of a purely random allocation and the above speci�cation

(Haavelmo, 1954; Baron, 1994). The same is true for Amegashie�s (2006) contest success

function with noise that creates a lottery contest without the possibility of a draw yet

minimum e¤orts. Further generalizations would clearly be interesting.

3. An implication

In this section, we show that a zero-sum game may be BR-equivalent to a game with

identical payo¤ functions.

Note �rst that this type of non-trivial example is impossible for the stronger notion

of vNM-equivalence (Morris and Ui, 2004).5 Indeed, suppose that a two-person zero-sum

game with payo¤ functions u1(x1; x2) = �u2(x1; x2) is vNM-equivalent to a game in which

players have the identical payo¤ function u(x1; x2). Then, there exist constants �1 > 0,

�2 > 0, and functions �1 = �1(x2), �2 = �2(x1) such that

�1u1(x1; x2) + �1(x2) = u(x1; x2) = �2u2(x1; x2) + �2(x1). (15)

Using the zero-sum property, this implies

u1(x1; x2) =
�2(x1)� �1(x2)

�1 + �2
. (16)

Repeating these arguments for player 2, the game is seen to be vNM-equivalent to two

independent decision problems. Consistent with this observation, games with identical

payo¤ functions and zero-sum games have traditionally been considered as polar cases in a

broad spectrum of possible forms of strategic interaction.

5According to Morris and Ui (2004), two games are vNM-equivalent if, for each player, the payo¤ function
in one game is equal to a positive constant times the payo¤ function in the other game, plus a term that
depends only on the opponents�strategies.
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The following result shows that this dichotomy must be considered with care.

Proposition 2. For any n � 2, there exists a nontrivial n-person zero-sum game that is

BR-equivalent to a game with identical payo¤ functions.

Proof. It follows from Hwang and Rey-Bellet (2017, Example 2) that the lottery contest

with noise parameter a = 0 is vNM-equivalent to a zero-sum game.6 Since vNM-equivalence

implies BR-equivalence, the claim is now immediate from Proposition 1. �
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