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Aggregate Fluctuations in Adaptive Production Networks✩

Michael D. Königa

aDepartment of Economics, University of Zurich, Schönberggasse 1, CH 8001 Zurich, Switzerland.

Abstract

We study production networks where firms’ products can be described by a set of input and output
characteristics, and links are formed only if the output characteristics of a seller match the input
characteristics of a customer. We introduce a fully endogenous network formation model with mo-
nopolistically competitive firms, in which firms exit due to exogenous shocks, or the propagation of
shocks through the network. Firms can replace suppliers they have lost due to exit subject to switch-
ing costs and search frictions. This enables us to study the impact of shocks on aggregate production
in an adaptive network, and we show that depending on the nature of the shocks, adaptivity can
make the network more or less stable.

Key words: production networks, shocks, supply chains, resilience, aggregate fluctuations
JEL: D85, L24, O33

1. Introduction

Production networks have played a crucial role in determining the robustness of the output and
production of an economy during crises such as the dot-com bubble or the recent financial crisis.
However, the formation of these networks at the level of firms and their behavior in the presence of
shocks is only barely understood.1 In this paper we develop a simple model of a monopolistically
competitive economy where firms use the intermediate goods of other firms as inputs for production
while their output, in turn, is used as intermediate input by other firms, and for final good consump-
tion. Firms’ production recipes can be described by a set of input and output characteristics, and
input-output links are formed only if the output characteristics of a seller match the input charac-
teristics of a buyer [cf. Hausmann and Hidalgo, 2011]. Our model builds on Acemoglu et al. [2006],
and is similar to the input-output economy considered in Chaney [2013]. We show that sales (and

✩I would like to thank Daron Acemoglu, Marios Angeletos, Nico Voigtlaender, Matt Jackson and seminar participants
at the University of Zurich for their helpful comments.

Email address: michael.koenig@econ.uzh.ch (Michael D. König)

1For example Carvalho [2014] describes the area of progress that needs to be made in our understanding of production
networks as follows: “...Relative to sectors, progress on firm-level production networks needs to deal with three added
complications: First, on the theory side, it is more difficult to brush aside the complexities of market structure (as
I have done here by appealing to identical, perfectly competitive firms inside each sector). Second, at this level
of disaggregation it is clear that we have to distinguish between easily substitutable inputs and crucial, hard-to-
substitute, inputs where firms are locked-in and switching costs are large. Third, relative to sector-level data, input-
output information at the firm-level is in very short supply.”
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profits) of a firm are determined by the Bonacich centrality of the firm in the network of technological
complementarities between intermediate goods [cf. Acemoglu et al., 2012; Ballester et al., 2006]. For
certain parameter choices we can further simplify the model and show that profits are proportional
to the number of buyers of a firm.

We then introduce a dynamic process for the formation of the production network with entry and
exit, where the network dynamically adjusts to exogenous (small and large) shocks. Firms are hit by
shocks which may lead them to exit, and these shocks can propagate to their customers, also leading
them to exit. Firms can replace exiting suppliers with new suppliers subject to search frictions or
switching costs. The existing literature, such as Acemoglu et al. [2012], does not investigate the
capacity of the network to adjust to shocks, neither do they study the role of switching costs, and
thus might not fully capture the impact of shocks within an adaptive production network. Our
framework allows us to investigate the region in between the two extreme cases of no adaptivity and
full adaptivity.

We further show that a mix of random small and large shocks with rewiring can give rise to “self-
organized critically” [cf. Bak, 1996; Bak et al., 1993; Krugman, 1996; Scheinkman and Woodford,
1994], with frequent crashes and recoveries of the supply chain network [cf. Horvath, 1998]. The
basic mechanism is one in which the resilience of large firms to small shocks and rewiring leads large
firms to accumulate many links. However, when rare large shocks hit these large firms then the entire
network breaks down. This gives rise to an endogenous business cycle [Matsuyama, 1999].

Finally, our model enables us to study the impact of shocks on aggregate production in an adaptive
network, and we show that the relationship between network structure and aggregate fluctuations is
not simple or monotonic. Moreover, we show that, contrary to conventional wisdom, greater network
adaptivity does not necessarily make the network more stable nor resilient.

Relation to the Literature. Acemoglu et al. [2012] analyze the propagation of shocks at the
sectoral level within an exogenously given input-output network between sectors. Differently to
these authors, we fully endogenize the production network and analyze its formation over time with
firm entry and exit. Carvalho [2009] also analyzes the propagation of shocks in a network between
sectors, but assumes that links between sectors are drawn at random and sectors which are associated
with general purpose technologies have a higher probability to supply to other sectors. Differently
to Carvalho [2009], we study the network at the firm level, and do not consider a random graph for
this network, but a dynamic process with entry and exit.

Atalay et al. [2011] have studied the formation of production networks, but in a mechanistic way,
without providing a micro-foundation for why links are formed, but assuming that links are formed
at random or through preferential attachment. Differently to Atalay et al. [2011] in our model firms
come in different types, depending on their input and output characteristics, and links are formed
only if the output characteristics of a seller match the input characteristics of a customer. While in
Atalay et al. [2011] the accumulation of links is mainly an age effect, in our model it is a technology
effect. Moreover, we allow for the propagation of shocks, where firms that have lost their suppliers are
themselves more likely to exit, while Atalay et al. [2011] do not consider such an effect. Furthermore,
Atalay et al. [2011] assume that firms exit at random, while here we assume that less profitable
firms are more likely to exit the market. We show that this gives rise to self organized critically and
frequent crashes and recoveries of the economy [cf. Bak et al., 1993; Horvath, 1998; Scheinkman and
Woodford, 1994].

In a related paper, Hausmann and Hidalgo [2011] introduce heterogeneity in terms of firms’
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product characteristics, and how the match between input and output characteristics form an input-
output network structure. However, the authors do not analyze the evolution of the network over
time, and how it reacts to exogenous shocks.

Oberfield [2011] develops a model for production networks at the firm level with bilateral two-part
pricing for intermediate input goods. Similarly, we study an input-output model of production with
monopolistically competitive firms based on Acemoglu et al. [2006] and Chaney [2013]. However,
differently to Oberfield [2011], where the production network is static, here we study the dynamic
formation of the network and the adjustment of the network to firm-specific shocks.

Recently, Carvalho and Voigtländer [2014] investigate the formation of input-output networks
based on the characteristics of the different varieties produced by firms and their suppliers, similar
to the models studied in Jackson and Rogers [2007]; König [2011]. However, the authors do not
investigate the adaptivity of the network against shocks, and their analysis is based on simulation
studies, while here we provide an analytically tractable framework.

Lim [2016] analyzes an endogenous production network formation model and applies it to a
similar dataset as we do here. However, in his model the formation of a buyer-supplier link depends
only on the sizes of the two firms involved in the link, and he does not incorporate firm exit, nor
the replacement of suppliers or customers lost due to exit. Moreover, differently to Lim [2016] we
evaluate the welfare loss due to exit of a firm in an adaptive production network.

We investigate the impact of profit shocks (which can be interpreted as a fixed cost or credit
constraints) on the network structure, and the feedback of structural changes in the network on
the output of the economy. The impact of shocks is also at the center of the analysis in Bigio
and Jennifer [2013] and Kelly et al. [2012]. However, in the first the network is exogenous, while
in the latter, micro-foundations for why links are formed are missing, and results are based on
numerical simulations instead of an analytic treatment as we do here. Finally, our model is related
to previous studies in the mathematics, computer science and physics literature, such as Juher and
Saldaña [2011]; Karrer and Ghoshal [2008]; Kong and Roychowdhury [2008]; Kong et al. [2008];
Moore et al. [2006]; Saldaña [2007],2 who study random network growth processes with random node
decay. However, these works do not provide proper micro-foundations for the formation of links, or
the removal of nodes. Instead, here we derive this process from an economic model of production in
input-output networks with monopolistically competitive firms based on Acemoglu et al. [2006].

Barrot and Sauvagnat [2016] study the propagation of shocks due to natural disasters on the
customers of firms in a production network of the U.S. economy using similar data as we do here.
They find a significant effect of a shock to a supplier of a firm. Differently to Barrot and Sauvagnat
[2016] we develop a theoretical model that allows for the network to respond to shocks and thus we
make the production network endogenous.

2In particular, Kong and Roychowdhury [2008]; Kong et al. [2008] study undirected networks and do not allow
for the rewiring of links. They also do not allow for “shock propagation”, i.e. the fact that firms’ who have lost a
supplier are more likely to exit themselves in future periods. However, they do not allow firms to replace lost suppliers
(rewiring), as we do here.
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2. Firms’ Profits and Production

Similar to Acemoglu et al. [2006] we consider a production function of the following form3,4

xi =
1

αα(1− α)1−α
z

n∑

j=1

l1−α
ji xαji, (2.1)

with α ∈ (0, 1), productivity z, labor input, lji, for intermediate input j, and the quantity of
intermediate inputs, xji, produced by firm j and sold to firm i. We assume that the input specific
labor input can be written as lji = liwji, where the total labor force of firm i is given by li and
∑n

j=1wji = 1 [cf. Acemoglu et al., 2012]. We can write wji = aji/d
−
i with aji ∈ {0, 1} indicating a

possible supply link from j to i in the production network,5 and d−i =
∑n

j=1 aji is the in-degree of
firm i. For the remainder of this section we normalize the productivity to one, i.e. we set z = 1 in
the production function in Equation (2.1). We then can state the following proposition regarding
the firms’ profits and total output in equilibrium for any given network structure G.

Proposition 1. Consider the production function of Equation (2.1) for a given network G ∈ Gn

representing the input-output relationships between firms, let the wage be h > 0 and define φ ≡
1

h2−αα
4−3α
1−α .

(i) The Nash equilibrium profits are given by πi = (1−α)h
c bi(W, φ), where b(W, φ) ≡ (In −

φW)−1u is the Bonacich centrality of W with parameter φ and total output is given by
Y = h

c

∑n
i=1 bi(W, φ).

(ii) In the limit of small φ profits of firm i are a linear function of the number of customers of i,

i.e. πi =
(1−α)h

c

(
1 + φd+i

)
+ O

(
φ2
)
, and output is proportional to the number of firms, i.e.

Y = n(1+φ)h
c +O

(
φ2
)
.

In the following sections we will assume that φ is small, and that the first-order Taylor approx-
imation in part (ii) of Proposition 1 holds. The main implication is that the profit of firm i is a
linearly increasing function of the number d+i of customers of i. Similarly, Klette and Kortum [2004]
assume that the profit of a firm is proportional to the number of products it is selling.

3. Network Formation and Entry-Exit Dynamics

In the following we introduce two alternative models that govern the formation of the buyer-supplier
network G and the entry and exit of firms. In Section 3.1 we introduce a model with ex ante

3See also Chaney [2013] and Oberfield [2011].

4Instead of Equation (2.1) we can also consider a more general CES production function. However, with the specific
form of Equation (2.1) we can greatly simplify the computation of equilibrium prices, and thus make the model more
tractable.

5The possibility of a supply relationship from j to i hinges on the technological constraints imposed by the output
characteristics of firm j and the input requirements of firm i, so that aji ∈ {0, 1} is an indicator function for whether
the product of firm j matches the input requirements of firm i. This will be discussed in more detail in Section 3.2.
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homogeneous firms, while in Section 3.2 we analyze a model with ex ante heterogeneous firms, where
the heterogeneity is represented by varying input and output characteristics across firms.

3.1. Homogeneous Firms

We first determine the exit probability of a firm. Assume that firm i is hit by a cost shock ζ. The
probability of firm i to exit after the cost shock ζ is given by

P (πi − ζ < 0) = P (πi − c̄− ε < 0)

= 1− P (ε < πi − c̄)

= 1− Fε (πi − c̄)

=

(
πi − c̄

ε̄

)−χ

,

where we have assumed that the cost ζ has deterministic component c̄ and a random component
ε which is Pareto distributed with parameter χ, lower bound ε̄ and cdf Fε(x) = 1 −

(
x
ε̄

)−χ
. Using

the fact that (cf. Proposition 1) πi ≈ (1−α)h
c

(
1 + φd+i

)
, normalizing (1−α)h

c = 1 gives πi − c̄ ≈
(1 − c̄) + φd+i . Further, setting ε̄ = φ and c̄ = 1 − φ so that 1−c̄

φ = 1 and assuming that χ = 1, we
can simplify the exit probability of firm i to

P (πi − ζ < 0) =
1

1 + d+i
. (3.1)

As larger firms have a lower probability to exit, we call this preferential survival [cf. Kong et al.,
2008]. This is consistent with the empirical evidence [cf. e.g. Evans, 1987].

After having defined the shocks, we are now able to introduce a Markov chain that describes the
formation of the production network. Firms that are hit by a small shock exit with a probability
that depends on their customer base (or profits, respectively), while if they are hit by a large shock
they exit independently of size.

Definition 2. We consider a Markov chain (Gt)
∞
t=0 comprising a sequence of networks G0, G1, . . .

where Gt = (Nt, Et) with Nt being the set of firms and Et the set of buyer-supplier relationships
(edges/links) between them. Starting from an initial state G0, in every step from t to t + 1 the
following events happen:

Entry At every period t = 1, 2, . . . , a new firm i is born and selects a randomly chosen firm j among
the incumbents as a supplier.

Exit (i) Large Shocks: With probability δ ∈ [0, 1] a randomly selected firm exits.

(ii) Small Shocks: With probability r ∈ [0, 1] a randomly selected firm is hit by an additive
shock (fixed cost) ζ following a Pareto distribution, and if the firm’s after shock profit is
negative, it exits.

(iii) Shock Propagation: With probability ρ ∈ [0, 1] a firm which does not have a supplier exits.

Rewiring If a firm looses a supplier due to exit, with probability γ ∈ [0, 1] it attempts to replace it
with a firm drawn uniformly at random among the incumbents.
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ij

P (aji = 1) = 1
nt

(a) Entry of a firm i and uniform attachment to an incum-
bent firm j with probability P (aji = 1) = 1

nt
.

i

δ
nt

+ r
nt
P (πit − ζ < 0)

(b) The exit of a firm i due to a large shock with probabil-
ity δ

nt
or small shock with probability r

nt
P (πit − ζ < 0).

i

ρ

(c) Shock propagation leading to the exit of a firm i with
in-degree zero with probability ρ.

i

j

k

P (aki = 1) = 1
nt

γ

(d) Replacement of a supplier j that has exited with prob-
ability γ. Then a new firm k becomes the supplier to i
with probability P (aki = 1) = 1

nt
.

Figure 1: The different events that happen during the time evolution of the Markov chain introduced in Definition 2:
(a) entry, (b) exit due to a large or small shock, (c) shock propagation and (d) replacement of a supplier after exit.
Filled circles indicate firms that have not exited, while empty circles indicate firms that have exited. All shocks are
assumed to be Zipf distributed (i.e. χ = 1).
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The different events that happen during the time evolution of the Markov chain introduced in
Definition 2 are illustrated in Figure 1.

The parameter γ is a measure of the adaptivity of the network. It is similar to macroeconomic
models of price stickiness, where the opportunity for firms to reset their prices in any particular
period is a random event, and the probability that they are unable to do so is known as the “Calvo
probability” [cf. Calvo, 1983].

The following proposition characterizes the out-degree distribution, that is, the distribution over
the number of customers across firms, together with the firms’ age distribution, assuming that γ = 0,
so that there is no rewiring (i.e. replacement of lost suppliers due to exit).

Proposition 3. Assume that γ = 0 (without rewiring), let τ be the asymptotic fraction of firms with
in-degree zero and κ denote the average shifted inverse out-degree.

(i) Assume that ρ > 0. Then the expected number of firms is given by

nt =

(
1− e−tρτ

)
(1− rκ− δ)

ρτ
, (3.2)

with the limit

lim
t→∞

nt =
1− δ − rκ

ρτ
.

(ii) Let a ≡ ρτ
1−δ−rκ , b ≡ a (δ + rκ̃), then under the mean field approximation the distribution of the

firm’s lifetime, T , is given by
P(T > t) = e−(br+aδ+ρ)t. (3.3)

(iii) Under the assumption of weak degree correlations, the asymptotic out-degree distribution is
given by

P+(k) =




1 + (2 + r(1− κ))Γ(C+)Γ(C−)

∞∑

k=1

Γ(k + 2)
(

1
δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

×
Γ(k + 2)

(
1

δ+κr

)k+1
(2 + r(1− κ))Γ(C+)Γ(C−)

Γ(1 + C+ + k)Γ(1 + C− + k)
, (3.4)

where

C± ≡ 2 + δ ±
√

(2− δ − rκ)2 − 2r(2δ + κ(2− δ − rκ)) + (κ− 4)κr2

2(δ + κr)
.

with P+(k) ∼
(

1
δ+κr

)k+1 (
e
k

)k
k

1
2
−C+−C−

for large k, while κ is determined by κ =
∑∞

k=0
1

1+kP
+(k).

The next proposition characterizes the out-degree distribution, that is, the distribution over the
number of customers across firms, together with the firms’ age distribution, assuming that γ > 0,
allowing for rewiring and replacement of lost suppliers due to exit.

Proposition 4. Assume that γ > 0 (with rewiring), let τ be the asymptotic fraction of firms with
in-degree zero and κ denote the average shifted inverse out-degree.
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(i) Assume that ρ > 0. Then the expected number of firms is given by

nt =

(
1− e−tρτ

)
(1− rκ− δ)

ρτ
, (3.5)

with the limit

lim
t→∞

nt =
1− δ − rκ

ρτ
.

(ii) Denote by a ≡ ρτ
1−δ−rκ

(
1 + γ(1 + k̄)

)
, b ≡ ρτ

1−δ−rκ (δ + rκ̃), c ≡ ρτ
1−δ−rκ . Then under the mean

field approximation the firm’s lifetime T distribution is given by

P(T > t) =

(
b

aebt − a+ b

)r

exp

(

−ρe−c(1−γ)t

c(1− γ)
− ρ

(

− 1

c(1− γ)
+ t

)

− cδt

)

, (3.6)

and P(T > t) ∼ e−(br+cδ+ρ)t as t becomes large.

(iii) Under the assumption of weak degree correlations, the asymptotic out-degree distribution is
given by

P+(k) =




1 +

(1 + γ (1 + rκ̃− rκ) k̄)Γ(C+)Γ(C−)

δ + rκ

∞∑

k=1

Γ(k + 2)
(
1+γk̄(1−rκ+rκ̃)

δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 +C− + k)






−1

×
Γ(k + 2)

(
1+γk̄(1−rκ+rκ̃)

δ+κr

)k+1
(2− rκ+ r + γk̄(1− rκ+ rκ̃))Γ(C+)Γ(C−)

(δ + rκ)Γ(1 + C+ + k)Γ(1 + C− + k)
, (3.7)

where

C± ≡ 1

2(δ + κr)

[

2 + δ + γk̄(1− rκ+ rκ̃)±
((

2 + 3δ + 2κr + γk̄ (1 + rκ̃− rκ)
)2

−4(δ + κr)
(
4 + r + 2δ + 2γk̄ (1 + rκ̃− rκ)

))1/2
]

,

with P+(k) ∼
(

1
δ+κr

)k+1 (
e
k

)k
k

1
2
−C+−C−

for large k, while κ is determined by κ =
∑∞

k=0
1

1+kP
+(k),

κ̃ is determined by κ̃ = 1
k̄

∑∞
k=0

k
1+kP

+(k), and k̄ is determined by k̄ =
∑∞

k=0 kP
+(k).

The left panel in Figure 2 shows the out-degree distribution, P+(k), from a simulation of the
stochastic process in Definition 2 and the predictions of Equation (2). The right panel in Figure
2 shows the relative output loss, ∆Y (respectively, the number of surviving firms), compared to
the case with γ = 1 (no shock propagation) for varying values of γ ∈ [0, 1]. We observe that high
switching costs, respectively, low rewiring probabilities γ, are associated with considerable output
losses. The out-degree distribution, P+(k), in Equations (3.4) and (3.7), respectively, is a power-
law distribution.6 The power-law degree distribution is consistent with earlier works on production

6Further, note that the out-degree distribution P+(k) can be used to compute the coefficient of variation, as it
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Figure 2: (Left panel) The out-degree distribution, P+(k), from a simulation of the stochastic process in Definition 2
and the predictions of Equation (3.7). (Right panel) The relative output loss ∆Y (respectively, the number of surviving
firms) compared to the case with γ = 1 (no shock propagation) for varying values of γ ∈ [0, 1].

networks [cf. Atalay et al., 2011], and implies a Pareto firm size distribution as we find it in the data
[Gabaix, 2009]. The lifetime distribution, P(T > t), in Equations (3.3) and (3.6), respectively, is
asymptotically exponential, confirming previous empirical studies [cf. Coad, 2010].

3.2. Heterogeneous Input-Output Characteristics

Similar to Hausmann and Hidalgo [2011],7 we assume that each firm is characterized by a tuple
hi = (h−

i ,h
+
i ) of a zero-one vector of input characteristics h−

i ∈ {0, 1}N and output characteristics
h+
i ∈ {0, 1}N of length N .8 An illustration of these input and output characteristics is shown in

Figure 3.
Further, following Hausmann and Hidalgo [2011] we assume that each input characteristic h−ik

is one with probability p ∈ [0, 1] and zero otherwise. Similarly, each output characteristic h+ik is
one with probability q ∈ [0, 1] and zero otherwise for all k = 1, . . . , N . Under this assumption of
independently drawn input/output characteristics, each stock of input characteristics |S(h−

i )| follows
a Binomial distribution with success probability p (i.e. P(h−ik = 1) = p for all i = 1, . . . , n and
k = 1, . . . , N), and each stock of output characteristics |S(h+

i )| follows a Binomial distribution with
success probability q (i.e. P(h+ik = 1) = q for all i = 1, . . . , n and k = 1, . . . , N).9

uniquely defines the first and second moments.

7See also Hidalgo and Hausmann [2009]; Hidalgo et al. [2007]. Note, however, that differently to the current setup
these authors study a static network at the country level.

8Note that the output characteristics of a firm can be obtained from the primary and secondary SIC codes in the
Compustat database, and the input characteristics from the information on suppliers and their primary and secondary
product characteristics in the Compustat Segments database.

9A firm i with a large stock of output characteristics |S(h+
i )| produces a good that can be used by many firms as

input. This refers to so called “general purpose technologies” [cf. Bresnahan and Trajtenberg, 1995; Helpman, 1998;
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Figure 3: Illustration of the vectors of input and output characteristics of firm i being a customer of firm j.

After having defined the propensities of firms to become suppliers, we are now able to introduce
a Markov chain that describes the formation of the production network.

Definition 5. We consider a Markov chain (Gt)
∞
t=0 comprising a sequence of networks G0, G1, . . .

where Gt = (Nt, Et) with Nt being the set of firms and Et the set of buyer-supplier relationships
(edges/links) between them. Starting from an initial state G0, in every step from t to t + 1 the
following events happen:

Entry At every period t = 1, 2, . . . , a new firm is born and its input and output characteristics are
drawn independently with probabilities p ∈ [0, 1] and q ∈ [0, 1], respectively. Then an incumbent
firm whose output characteristics match the entrant’s input characteristics becomes the supplier
to the entrant.

Exit (i) Large Shocks: With probability δ ∈ [0, 1] a randomly selected firm exits.

(ii) Small Shocks: With probability r ∈ [0, 1] a randomly selected firm is hit by an additive
shock (fixed cost) ζ following a Pareto distribution, and if the firm’s after shock profit is
negative, it exits.

(iii) Shock Propagation: With probability ρ ∈ [0, 1] a firm which does not have a supplier exits.

Rewiring If a firm looses a supplier due to exit, with probability γ ∈ [0, 1] it attempts to replace it
with a firm whose output characteristics match the firm’s input characteristics.

An illustration of the different events taking place during the evolution of the Markov chain is
given in Figure 4.

The following proposition characterizes the out-degree distribution, that is, the distribution over
the number of customers across firms, and a firm’s lifetime distribution.

Proposition 6. Assume that each input characteristic is drawn independently with probability p ∈
[0, 1] and each output characteristic is drawn independently with probability q ∈ [0, 1]. Further, denote

Jovanovic and Rousseau, 2005].
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ij

P (aji = 1) =
ηj
nt

(a) Entry of a firm i and uniform attachment to an incum-
bent firm j with probability P (aji = 1) =

ηj
nt

.

i

δ
nt

+ r
nt
P (πit − ζ < 0)

(b) The exit of a firm i due to a large shock with probabil-
ity δ

nt
or small shock with probability r

nt
P (πit − ζ < 0).

i

ρ

(c) Shock propagation leading to the exit of a firm i with
in-degree zero with probability ρ.

i

j

k

P (aki = 1) = ηk
nt

γ

(d) Replacement of a supplier j that has exited with prob-
ability γ. Then a new firm k becomes the supplier to i
with probability P (aki = 1) = ηk

nt
.

Figure 4: The different events that happen during the time evolution of the Markov chain introduced in Definition 5:
(a) entry, (b) exit due to a large or small shock, (c) shock propagation and (e) replacement of a supplier after exit.
Filled circles indicate firms that have not exited, while empty circles indicate firms that have exited.
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by a ≡
(
1 + γk̄(δ + rκ+ ρτ)

) ρτ
1−δ−rκ , b ≡

ρτ(δ+rκ)
1−δ−rκ and

ηmax ≡ (1− p)N
(

1 +
p

q(1− p)

)N

− 1 =

(

1− p

(

1− 1

q

))N

− 1, (3.8)

with σ̃ ≡
√

Nq(1− q) ln
(

1 + p
q(1−p)

)

and µ̃ ≡ Nq ln
(

1 + p
q(1−p)

)

+N ln(1− p).

(i) Assume that ρ > 0. Then the expected number of firms is given by

nt =

(
1− e−tρτ

)
(1− rκ− δ)

ρτ
, (3.9)

with the limit

lim
t→∞

nt =
1− δ − rκ

ρτ
.

(ii) The firm’s lifetime T distribution is given by

P(T > t) =

∫ ηmax

0
e
−
(

ρ+ b
δ+rκ

(

δ+ rb
aη

))

t
dη. (3.10)

(iii) The out-degree distribution is given by

P+
t (k) =

∫ ηmax

0
P+
t (η, k)

1√
2πσ̃2

1

η
e−

(ln η−µ̃)2

2σ̃2 dη. (3.11)

where

P+
t (η, k) =

b

(δ + rκ)(b− aη)

(
aηi − bk

aηi − b

) ρ
b
−1+ 1

δ+rκ

(

δ+ rb
aηi

)

.

4. Adaptivity, Network Concentration and Aggregate Volatility

In this section we analyze the relationship between network concentration measured by the out-
degree coefficient of variation, CV+

k , and aggregate volatility, σn, defined as the standard deviation
of the number of firms nt over a predefined time window w given by

σn =

√
√
√
√

t∑

s=t−w

(

gs −
1

w

t∑

s′=t−w

gs′

)2

,

where the growth rate in the number of firms is given by

gt =
nt − nt−1

nt−1
.

Figure 5 shows the number of firms, nt, and the volatility, σn over time t with large shocks without
rewiring γ = 0 (left panels), weak adaptivity γ = 0.5 (middle panels) and strong adaptivity γ = 1
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(right panels). It is assumed that the small shocks are negligible, i.e. we have set r = 0, and there
is no replacement of suppliers that have exited (after a shock). Note that in this case we observe
that with increasing γ the average number of surviving firms is reduced, while the volatility and the
coefficient of variation in the out-degree are increased. The mechanism underlying this relationship
is that due to the firms replacing their suppliers with larger firms (before a shock), the network
becomes increasingly concentrated on large firms. However, when a large firm is hit by a shock and
forced to exit in such a concentrated network, this triggers a cascade of exits of many firms linked to
it. Figure 7 shows the volatility, σn, the out-degree coefficient of variation, CV+

k and the volatility
versus the out-degree coefficient of variation across different values of the rewiring probability γ.
Both, σn and CV+

k are increasing with ν.
In contrast, Figure 6 shows the same quantities as in Figure 5, but with non-negligible small

shocks, r = 0.15, which can be better absorbed by large firms, and the replacement of suppliers that
have exited at a cost that can be better absorbed by large firms (χ = 2). In this case we observe that
with increasing γ the average number of surviving firms is increased, while the volatility declines and
the coefficient of variation of the out-degree is increasing. We thus observe the opposite relationship
of Figure 5. This is due to the fact that now large firms can absorb shocks (direct or indirect through
the exit of their suppliers), and hence, an increasingly concentrated network relying on these firms
becomes more resilient and reduces volatility. Figure 8 shows for the same parameter values that σn
is decreasing with ν, CV+

k are increasing with γ.
Figures 7 and 8 show the volatility, σn, the out-degree coefficient of variation, CV+

k and the
volatility versus the out-degree coefficient of variation across different values of the rewiring proba-
bility γ. In the case of r = 0 (no small shocks, and no preferential survival) both, σn and CV+

k are
increasing with γ. In contrast, in the case of r = 0.15 (with small shocks and preferential survival) we
have that σn is decreasing with γ while CV+

k is increasing with γ. This shows that in the presence of
small shocks and preferential survival the relationship between network concentration and aggregate
volatility can be reversed. This is because when larger firms are better able to absorb shocks then a
network that is more concentrated can become more resilient.
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Figure 5: The number of firms, nt, (top panels) and the volatility, σn (bottom panels) over time t with large shocks
without rewiring γ = 0 (left panels), weak adaptivity γ = 0.5 (middle panels) and strong adaptivity γ = 1 (right
panels). The remaining parameters are T = 5000, χ = 1, ρ = 0.5, r = 0 and δ = 0.01. Simulations are averaged over
5 independent realizations. Note that we have assumed that the small shocks are negligible, i.e. we have set r = 0,
and there is no advantage of large firms to escape the propagation of shocks, γ = 0. In this case we observe that with
increasing ν the average number of surviving firms is reduced, while the volatility and the coefficient of variation in
the out-degree are increased.

14



γ = 0

1000 2000 3000 4000 5000
0

100

200

300

400

t

n
t

γ = 0.5

1000 2000 3000 4000 5000
0

200

400

600

800

t
n
t

γ = 1

1000 2000 3000 4000 5000
0

500

1000

1500

t

n
t

1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

t

σ
n

σn = 0.0066368

1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

t

σ
n

σn = 0.0036533

1000 2000 3000 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

t

σ
n

σn = 0.0019477

Figure 6: The number of firms, nt, (top panels) and the volatility, σn, (bottom panels) over time t with large shocks
without rewiring γ = 0 (left panels), weak rewiring γ = 0.5 (middle panels) and strong rewiring γ = 1 (right panels).
The remaining parameters are T = 5000, ρ = 0.5, r = 0.15 and δ = 0.03. Simulations are averaged over 5 independent
realizations. Note that we have assumed non-negligible small shocks, r = 0.15, which can be better absorbed by large
firms, and preferential rewiring of large firms due to the propagation of shocks. In this case we observe that with
increasing γ the average number of surviving firms is increased, while the volatility declines and the coefficient of
variation in the out-degree is increasing.
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Figure 7: The volatility, σn (left panel), the out-degree coefficient of variation, CV+
k (middle panel) and the volatility

versus the out-degree coefficient of variation across different values of the rewiring probability ν. Simulations are
averaged over 5 independent realizations. The parameters are T = 5000, χ = 1, ρ = 0.5, r = 0, and δ = 0.01. Both, σn

and CV+
k are increasing with ν.
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Figure 8: The volatility, σn (left panel), the out-degree coefficient of variation, CV+
k (middle panel) and the volatility

versus the out-degree coefficient of variation across different values of the rewiring probability ν. Simulations are
averaged over 5 independent realizations. The parameters are T = 5000, χ = 2, ρ = 0.5, r = 0.15 and δ = 0.03. While
σn is decreasing with ν, CV+

k is increasing with ν.

5. Conclusion

In this paper we study the formation of production networks with endogenous entry and exit. We
introduce a fully endogenous model of production networks with monopolistically competitive firms,
in which firms exit due to exogenous shocks. Firms can replace suppliers they have lost due to exit
subject to switching costs and search frictions. This enables us to study the impact of shocks on
aggregate production in an adaptive network, and we show that the relationship between network
structure and aggregate fluctuations is not simple or monotonic. Moreover, we show that, contrary
to conventional wisdom, greater network adaptivity does not necessarily make the network more
stable.
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Appendix

A. Proofs

Proof of Proposition 1. We first consider part (i) of the proposition. In the following we solve
the problem of the firm in two stages. In the first stage, firms choose the optimal input quantities
to minimize the input cost subject to producing a certain level of output and taking prices of the
intermediate input goods as given. In the second stage, given these optimal input choices, firms set
the price of their output for each buyer separately.

The firm minimizes the cost of inputs, labor li and intermediate inputs (xji)
n
j=1, subject to

producing a given level of output x̄. The firm’s problem can thus be written as follows

min
li,{xji}nj=1






hli +

n∑

j=1

ajixjipji







s.t. xi =
1

αα(1− α)1−α
l1−α
i

n∑

j=1

w1−α
ji xαji = x̄, (A.1)

where h is the exogenous wage rate. The Lagrangian is given by

Li = hli +
n∑

j=1

ajixjipji − λi




1

αα(1− α)1−α
l1−α
i

n∑

j=1

w1−α
ji xαji − x̄



 .

The FOC wrt. xji is given by

∂Li

∂xji
= ajipji − λi

1

αα(1− α)1−α
l1−α
i αw1−α

ji xα−1
ji = 0.

This can be rearranged as

xi =
1

α
liλ

α
1−α

n∑

j=1

wjip
α

α−1

ji .

The FOC wrt. li is given by

∂Li

∂li
= h− λi(1− α)

xi
li

= 0,

so that
li = λi(1− α)

xi
h

Inserting yields

λi = h1−α





n∑

j=1

wjip
α

α−1

ji





α−1

≡ Pi,
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where Pi is the Dixit-Stiglitz price index. From the FOC wrt. xji we further find that

xji = xki
wji

wki

(
pki
pji

) 1
1−α

.

Inserting into the production function yields

xi =
1

αα(1− α)1−α
l1−α
i p

α
1−α

ki w−α
ki xαki

n∑

j=1

wjip
α

α−1

ji .

Further, using the fact that
n∑

j=1

wjip
α

α−1

ji = hP
1

α−1

i

and

li =
(1− α)Pixi

h

we can write

xki =
α

h
P

2−α
1−α

i wkip
1

α−1

ki xi.

Total expenditures of firm i for intermediate inputs can then be written as

Ci =
n∑

j=1

ajipjixji + hli

=
α

h
P

2−α
1−α

i xi

n∑

j=1

wjip
α

α−1

ji + hli

= αPixi + (1− α)Pixi

= Pixi,

so that the marginal cost of production is given by the price index

MCi ≡
Ci

xi
= Pi.

Firms choose the price to maximize profits. The profit function of the firm can then be written as
follows

πi =
n∑

j=1

(pijxij − Pixij) .

Using the fact that

xij =
α

h
wijP

2−α
1−α

j p
− 1

1−α

ij xj ,

we can write

πi =
n∑

j=1

(

p
1− 1

1−α

ij − Pip
− 1

1−α

ij

)
α

h
wijP

2−α
1−α

j xj.
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The FOC wrt. pij is given by

∂π

∂pij
=

(

− α

1− α
p
− 1

1−α

ij +
1

1− α
p
− 1

1−α
−1

ij

)
α

h
wijP

2−α
1−α

j xj = 0,

from which we find that the firm charges a constant markup, 1
α , over marginal cost

pij =
1

α
Pi ≡ pi,

and hence we have that

pi =
1

α
h1−α





n∑

j=1

wjip
α

α−1

j





α−1

. (A.2)

The profit of firm i is then given by

πi = pixi − Pixi = (1− α)pixi = (1− α)si,

and so the profit of firm i is proportional to its sales si = pixi. Next, denoting by p̃i ≡ p
1

α−1

i , we can
write Equation (A.2) as follows

p̃i =
1

α
h1−α

n∑

j=1

wjip̃
α
j .

This is a generalized linear system similar to the one studied in Allen et al. [2014], where nonlinear
versions of the Perron-Frobenius Theorem apply to show existence and uniqueness of the solution.10

Making the Ansatz p̃i = p̃ we get

p̃ =
1

α
h1−αp̃α

n∑

j=1

wji.

By assumption, we have that
∑n

j=1wji = 1 so that we obtain

p̃ = α
1

α−1h,

and the price is given by
pi = p̃α−1 = αhα−1.

Hence, by solving the price equilibrium in Equation (A.2) we find that all firms charge the same price
pi = p = αh−(α−1) for all i = 1, . . . , n. A similar price homogeneity is obtained in Ciccone [2002] and

10See also Krause [1986]; Nussbaum and Lunel [1999] and Lecture 5 in the trade notes by Treb Allen
(https://sites.google.com/site/treballen/teaching/econ-460).
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the recent model by Carvalho and Voigtländer [2014].11 The market clearing condition implies that

xi =

n∑

j=1

xij + qi,

where qi is the consumption of good i. The utility of the consumer representing Cobb–Douglas
preferences is given by

ui = A

c∏

j=1

q
1
c

j ,

with the budget constraint
∑c

i=1 piqi = h
∑c

i=1 li = h and 1 ≤ c ≤ n being the number of goods
consumed.12 The optimal consumption level is given by qi =

h
pic

. Inserting into the market clearing
condition then gives

xi =

n∑

j=1

aijxij +
h

pic
,

Multiplying with pi and inserting optimal input levels yields

si = pixi =
h

c
+

1

h
α

3−2α
1−α

n∑

j=1

wij
p

α
α−1

i

p
1

α−1

j

sj.

Inserting the price then yields

si =
h

c
+

1

h2−α
α

4−3α
1−α

︸ ︷︷ ︸

≡φ

n∑

j=1

wijsj,

where we have denoted by φ ≡ 1
h2−αα

4−3α
1−α . We have that 0 ≤ φ and limα→1 φ = 1

e . An illustration

of the function φ ≡ 1
h2−αα

4−3α
1−α for h = 1 and varying values of α ∈ (0, 1) can be seen in Figure A.1.

It follows that the vector of sales s = (p1x1, p2x2, . . . , pnxn)
⊤ must satisfy13

11In particular, Carvalho and Voigtländer [2014] state that “...Thus, in expectation our model features a symmetric
equilibrium with all new varieties facing the same marginal cost and therefore charging the same price. Note, however,
that variety producers use different sets of inputs. Thus, the out-degree may be asymmetric if some varieties are
more popular suppliers than others. Nevertheless, the total demand for an input affects neither its pricing nor its own
adoption of inputs. Consequently, in our setup, symmetry of prices is compatible with asymmetry in the number of
forward linkages.”

12We may assume that the consumer makes a uniform random draw of 1 ≤ c ≤ n goods from a basket with a total
of n available goods.
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Figure A.1: The function φ ≡ 1
h2−αα

4−3α
1−α for h = 1 and varying values of α ∈ (0, 1).

s =
h

c
u+ φWs

⇔ (In − φW)s =
h

m
u

⇔ s =
h

c
(In − φW)−1u
︸ ︷︷ ︸

b(W,φ)

,

where b(W, φ) = (In − φW)−1u is the Bonacich centrality of W with parameter φ [Ballester et al.,
2006; Bonacich, 1987].14 The profit of the firm can then be written as follows15

πi =
(1− α)h

c
bi(W, φ). (A.3)

Next, we consider part (ii) of the proposition. Note that we can write the Bonacich centrality

13From the expression of s = h
c
u+ φWs we see that the sales vector s is a linear combination of the homogeneous

term h
c
u and the interaction term φWs. When the second term dominates (for small h), we have that s ≈ φWs, and

the sales vector s is the eigenvector of the matrix W.

14The matrix In − φW is invertible if |φ| < λPF(W) = 1, where the last equality follows from the fact that W is a
row stochastic matrix and so its principal eigenvalue is one.

15Total sales and total profits are thus proportional to the sum of the Bonacich centralities
∑n

i=1 bi(W, φ), and hence,
the firm which reduces total profits and total sales the most is determined by i∗ = argmaxi=1,...,n bi(G,α)/Ni(G,φ)
with bi(G,φ) being the Bonacich centrality of firm i in G and Ni(G,φ) being the generating function of the number of
closed walks that start and terminate at node i [Ballester et al., 2006].
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as16

b(W, φ) = (In − φAD−1)−1u =

∞∑

k=0

φk(AD−1)ku = u+ φAD−1u+O
(
φ2
)
.

With

[AD−1u]i =






A







1
d−1

0 . . .

0 1
d−2

. . .

0 0
. . .












1
1
...












i

=






A







1
d−1
1
d−2
...













i

=
n∑

j=1

aij
1

d−j
,

we then can write the Bonacich centrality of firm i as

bi(W, φ) = 1 + φ
n∑

j=1

aij
1

d−j
+O

(
φ2
)
,

and sales of firm i are given by

si =
h

c
bi(W, φ) =

h

c



1 + φ

n∑

j=1

aij
1

d−j



+O
(
φ2
)
.

Hence, we can write the profit of firm i as follows

πi =
(1− α)h

c



1 + φ
n∑

j=1

aij
1

d−j



+O
(
φ2
)
. (A.4)

Moreover, total profits can be written as

Π =
n∑

i=1

πi =
(1− α)h

c



n+ φ
n∑

i=1

n∑

j=1

aij
1

d−j



+O
(
φ2
)
=

n(1 + φ)(1 − α)h

c
+O

(
φ2
)
, (A.5)

where we have used the fact that
∑n

i=1

∑n
j=1 aij

1
d−j

=
∑n

j=1
1
d−j

∑n
i=1 aij =

∑n
j=1

1
d−j

d−j = n. Simi-

larly, total output is given by

Y =

n∑

i=1

si =
n(1 + φ)h

c
+O

(
φ2
)
. (A.6)

Hence, up to leading order terms in φ, both, total profits, Π, and total output, Y , are increasing with
the number of firms, n. Our measure of welfare will thus be proportional to the number of firms in

16Observe that Google’s Page rank centrality satisfies the following equation: xi = 1+φ
∑n

k=1 aik
1

d
+
k

xk. In contrast,

the Bonacich centrality satisfies xi = 1+φ
∑n

k=1 aikxk, and the eigenvector centrality satisfies xi = φ
∑n

k=1 aikxk with
φ = 1/λPF. Denoting by D the diagonal matrix with diagonal entries given the out-degrees of the nodes, we can write
x = u+φAD

−1
x, and we can write the Page rank centrality vector as follows x = (In−φAD

−1)−1
u = D(D−φA)−1

u.
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Figure A.2: Total output, Y (left panel), and total profits, Π =
∑n

i=1 πi (right panel), using Equation (A.3) and the
approximation in Equations (A.6) and (A.5), respectively, indicated with a dashed line for varying values of α ∈ (0, 1)
with h = c = 1 with parameters n = 1000.

the economy. Similarly, volatility in output is equivalent to volatility in the number of firms.
Finally, note that due to price equalization, a firm is indifferent from having only a single supplier

or multiple suppliers. In particular, assuming that the establishment of a buyer-supplier relationship
comes at a (small) fixed cost, a firm’s optimal sourcing decision is to buy from a single supplier only
[cf. Oberfield, 2011]. The profit of firm i is then given by

πi =
(1− α)h

c



1 + φ
n∑

j=1

aij
1

d−j



+O
(
φ2
)
=

(1− α)h

c

(
1 + φd+i

)
+O

(
φ2
)
.

This concludes the proof of the proposition.

Proof of Proposition 3. We assume that γ = 0 (without rewiring). An illustration of the different
events taking place during the evolution of the Markov chain is given in Figure A.3. We first give a
proof of part (i) of the proposition. Let Nt be the number of firms at time t. Then we have that

Nt+1 = Nt + 1−
Nt∑

i=1

1{firm i exits due to a large shock}

−
Nt∑

i=1

1{firm i exits due to a small shock}

−
Nt∑

i=1

1{firm i exits because d−it = 0}1{d−it=0}.

Taking the expectation conditional on the filtration Ft (everything that has happened up to time t)
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P (aji = 1) = 1
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(a) Entry of a firm i and uniform at-
tachment to an incumbent firm j with
probability P (aji = 1) = 1

nt
.

i

δ
nt

+ r
nt
P (πit − ζ < 0)

(b) The exit of a firm i due
to a large shock with probability
δ
nt

or small shock with probability
r
nt

P (πit − ζ < 0).

i

ρ

(c) Shock propagation leading to the
exit of a firm i with in-degree zero
with probability ρ.

Figure A.3: The different events that happen during the time evolution of the Markov chain introduced in Definition 2:
(a) entry, (b) exit due to a large or small shock, and (c) shock propagation. Filled circles indicate firms that have not
exited, while empty circles indicate firms that have exited. All shocks are assumed to be Zipf distributed (i.e. χ = 1).

yields

E (Nt+1|Ft)−Nt = 1−
Nt∑

i=1

P ({firm i exits due to a large shock})

−
Nt∑

i=1

P ({firm i exits due to a small shock})

−
Nt∑

i=1

P
(
{firm i exits because d−it = 0}

)
1{d−it=0}.

Using the fact that

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

1 + d+it
=

r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,

where we have introduced the shifted out-degree d̃+it ≡ d+it + 1, this can be written as

E (Nt+1|Ft)−Nt = 1− δ − r

Nt

Nt∑

i=1

1

d̃+it
− ρNt

1

Nt

Nt∑

i=1

1{d−it=0}

= 1− δ − rκ− ρτNt, (A.7)
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where17

τ =
1

Nt

Nt∑

i=1

1{d−it=0}

denotes the fraction of firms with in-degree zero, and we have denoted by

κ ≡ 1

Nt

Nt∑

i=1

1

d̃+it
. (A.8)

Taking the (unconditional) expectation on both sides of Equation (A.21), and denoting by nt =
E (Nt+1) = E (E (Nt+1|Ft)), gives [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dnt

dt
= 1− δ − rκ− ρτnt. (A.9)

The solution to this differential equation is given by

nt =
(
ρτn0 + (1− δ − rκ)(eρτt − 1)

) e−ρτt

ρτ
, (A.10)

with the limit

lim
t→∞

nt =
1− δ − rκ

ρτ
. (A.11)

With the initial condition, n0 = 0, we get

nt =

(
1− e−tρτ

)
(1− rκ− δ)

ρτ
.

Next we prove part (ii) of the proposition. Let d−it be the in-degree of firm i at time t, conditional
on not having exited before time t. Then we have that

d−i,t+1 = d−it −
Nt∑

j=1

aji,t1{j exits because of a large shock}

−
Nt∑

j=1

aji,t1{j exits because of a small shock}

−
Nt∑

j=1

aji,t1{j exits because d−jt = 0}1{d−jt=0},

for all t > i and the initial condition (at the date of entry) d−ii = 1. Taking the expectation conditional

17Note that τ converges to E(1
{d−

it
=0}

) = P({d−it = 0}) = 1− P({d−it = 1}) = 1− E(d−it) = 1− k−
it .
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on Ft gives

E

(

d−i,t+1|Ft

)

− d−it = −
Nt∑

j=1

aji,tP ({j exits because of a large shock})

−
Nt∑

j=1

aji,tP ({j exits because of a small shock})

−
Nt∑

j=1

aji,tP
(

{j exits because d−jt = 0}
)

1{d−jt=0}.

Using the fact that P (πit − ζ < 0) = 1
d̃+it

, and that

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,

we then get

E

(

d−i,t+1|Ft

)

− d−it = −
Nt∑

j=1

aji,t
δ

Nt
−

Nt∑

j=1

aji,t
r

Nt

1

d̃+jt
−

Nt∑

j=1

aji,tρτ.

We can write this as follows

E

(

d−i,t+1|Ft

)

− d−it = − 1

Nt

Nt∑

j=1

aji,t

(

δ +
r

d̃+jt
+ ρτNt

)

. (A.12)

Taking the (unconditional) expectation on both sides of Equation (A.26), denoting by k−i,t+1 =

E

(

d−i,t+1

)

= E

(

E

(

d−i,t+1|Ft

))

and k̄t ≡ 1
Nt

∑Nt

j=1 d̃
+
jt, gives [cf. Darling and Norris, 2008; Kurtz,

1971; Wormald, 1995]

dk−it
dt

= − 1

nt
k−it

(

δ +
r

1 + k̄t
+ ρτnt

)

.
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Inserting the asymptotic number of firms from Equation (A.25) gives

dk−it
dt

= − ρτ

1− δ − rκ
k−it

(

δ +
r

1 + k̄t
+ ρτ

1− δ − rκ

ρτ

)

= − ρτ

1− δ − rκ
k−it

(

1 + r

(
1

1 + k̄t
− κ

))

= − ρτ

1− δ − rκ
k−it

(

1 + r

(
1

1 + k̄t
− κ

))

.

When (1 + k̄t)
−1 ≈ κ = limt→∞

1
Nt

∑Nt

i=1
1

1+d+it
this can be written as

dk−it
dt

= − ρτ

1− δ − rκ
k−it , (A.13)

with the initial condition k−ii = 1, and the solution

k−it = e−
(t−i)ρτ
1−δ−rκ . (A.14)

This shows that the in-degree of firm i is exponentially decaying.
Next, let d̃+it be the shifted out-degree of firm i at time t, conditional on not having exited before

time t. Then we have that

d̃+i,t+1 = d̃+it + 1{i→t} −
Nt∑

j=1

aij,t1{j exits due to a large shock}

−
nt∑

j=1

aij,t1{j exits due to a small shock},

for all t > i+ 1 and the initial condition d̃+ii = 1. Taking the expectation conditional on Ft gives

E

(

d̃+i,t+1|Ft

)

− d̃+it = P ({i → t})−
Nt∑

j=1

aij,tP ({j exits due to a large shock})

−
Nt∑

j=1

aij,tP ({j exits due to a small shock}) .

Using the fact that

P ({i → t}) = 1

Nt
,

P ({firm j exits due to a large shock}) = δ

Nt
,

P ({firm j exits due to a small shock}) = r

Nt

1

d̃+jt
,
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we can write this as follows

E

(

d̃+i,t+1|Ft

)

− d̃+it =
1

Nt
−

Nt∑

j=1

aij,t
δ

Nt
−

Nt∑

j=1

aij,t
r

Nt

1

d̃+jt
.

This can be written as

E

(

d̃+i,t+1|Ft

)

− d̃+it =
1

Nt
−

Nt∑

j=1

aij,t

(

δ

Nt
+

r

Nt

1

d̃+jt

)

.

Taking the expectation on both sides of the equation and denoting by k+it = E

(

d̃+it

)

yields [cf. Darling

and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dk+it
dt

=
1

nt
−
(

δ +
r

1 + k̄t

)
k+it
nt

.

In the stationary state we have that k̄t = k̄, limt→∞ nt =
1−δ−rκ

ρτ , so that we can write this as follows

dk+it
dt

= a− bk+it ,

where we have denoted by

a ≡ ρτ

1− δ − rκ
,

b ≡ ρτ

1− δ − rκ
(δ + rκ̃) = a (δ + rκ̃) .

With the initial condition k+ii = 1 the solution is given by

k+it =
a+ (b− a)e−b(t−i)

b
, (A.15)

with the limit
lim
t→∞

k+it =
a

b
= (δ + rκ̃)−1 .

Next, let Sit be the indicator variable indicating whether firm i is still alive at time t. Then we have
that

Si,t+1 = Sit

(

1− 1{i exits due to a large shock} − 1{i exits due to a small shock} − 1{i exits because d−it = 0}1{d−it=0}

)

.

Taking the expectation with respect to Ft gives

E (Si,t+1|Ft) = Sit (1− P ({i exits due to a large shock})− P ({i exits due to a small shock})
−P
(
{i exits because d−it = 0}

)
1{d−it=0}

)

.
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Using the fact that

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,

gives

E (Si,t+1|Ft) = Sit

(

1− δ

Nt
− r

Nt

1

d̃+it
− ρ1{d−it=0}

)

,

or equivalently

E (Si,t+1|Ft)− Sit = −Sit

(

δ

Nt
+

r

Nt

1

d̃+it
+ ρ1{d−it=0}

)

.

Taking the expectation and denoting by sit = E (Sit) and k+it = E

(

d̃+it

)

then gives [cf. Darling and

Norris, 2008; Kurtz, 1971; Wormald, 1995]

dsit
dt

= −sit

(
δ

nt
+

r

nt

1

k+it
+ ρP

(
{d−it = 0}

)
)

, (A.16)

with the initial condition sii = 1. Note that by assumption d−it can be either zero or one, so that

P
(
{d−it = 0}

)
= 1− P

(
{d−it = 1}

)

= 1− E
(
d−it
)

= 1− k−it . (A.17)

Inserting Equation (A.32) into Equation (A.31) gives

dsit
dt

= −sit

(
δ

nt
+

r

nt

1

k+it
+ ρ(1− k−it )

)

, (A.18)

With k−it from Equation (A.14) and k+it from Equation (A.15) we then get

dsit
dt

= −sit

(

aδ +
arb

a+ (b− a)e−b(t−i)
+ ρ

(

1− e−a(t−i)
))

,

or equivalently

d ln sit
dt

= −
(

aδ +
arb

a+ (b− a)e−b(t−i)
+ ρ

(

1− e−a(t−i)
))

. (A.19)
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With the initial condition sii = 1 the solution is given by

sit =

(

b

b− a
(
1− eb(t−i)

)

)r

× exp




ρ

b



e−a(t−i)

(

aeb(t−i)

a− b

)a/b(

B
aeb(t−i)

a−b

(

−a

b
, 0
)

−B
aeb(t−i)

a−b

(

1− a

b
, 0
))

+

(
a

a− b

)a/b (

B a
a−b

(

1− a

b
, 0
)

−B a
a−b

(

−a

b
, 0
))
)

− (t− i)(aδ + ρ)

)

.

When a+ (b− a)e−b(t−i) ≈ a and 1− e−a(t−i) ≈ 1 for large t we can simplify Equation (A.34) to

d ln sit
dt

= − (aδ + rb+ ρ) ,

and the solution is given by
sit = e−(br+aδ+ρ)(t−i), (A.20)

which is an exponentially decaying function.
We next prove part (iii) of the proposition. Let N+

t (k) denote the number of firms with out-degree
k at time t. Taking the expectation with respect to Ft gives

E
(
N+

t+1(k)|Ft

)
−N+

t (k) =
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρN−+
t (0, k)

− kN+
t (k)

(

δ

Nt
+

r

Nt

∞∑

l=0

P+
t (l|k) 1

l + 1
,

)

,

where N−+
t (0, k) denotes the number of firms with in-degree 0 and out-degree k and P+

t (l|k) ≡
P(d+j,t = l|di,t = k, aij,t = 1). Assuming that there are only weak degree correlations we then can
write

N−+
t (0, k) = P

(
d+it = k, d−it = 0

)
Nt

=
(

P
(
d+it = k

)
P
(
d−it = 0

)
+Cov

(

1{d−it=0},1{d+it=k}

))

Nt

≈ P
(
d+it = k

)
P
(
d−it = 0

)
Nt

=
N+

t (k)N−
t (0)

Nt
,

where we have assumed that Cov
(

1{d−it=0},1{d+it=k}

)

≈ 0, and

P+
t (l|k) ≡ P(d+j,t = l|di,t = k, aij,t = 1) ≈ P(d+j,t = l) =

N+
t (l)

Nt
.
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Inserting gives

E
(
N+

t+1(k)|Ft

)
−N+

t (k) =
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρτN+
t (k)

− kN+
t (k)

(

δ

Nt
+

r

Nt

∞∑

l=0

N+
t (l)

Nt

1

l + 1

)

=
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρτN+
t (k)

− k

(
δ

Nt
+

r

Nt
κ

)

N+
t (k),

where τ =
N−

t (0)
Nt

denotes the asymptotic fraction of firms with in-degree zero and κ ≡∑∞
k=0

N+
t (k)
Nt

1
k+1 =

∑∞
k=0 P

+
t (k) 1

k+1 . We then can write [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dN+
t (k)

dt
=

1

Nt

(

N+
t (k − 1)−

(

1 + δ +
r

1 + k
+ ρN−

t (0) + k(δ + rκ)

)

N+
t (k)

)

.

In the stationary state, where
dN+

t (k)
dt = 0, we then have that

N+(k) =
1

1 + δ + r
1+k + ρN−(0) + k(δ + rκ)

N+(k − 1),

from which we get

N+(k) = N+(0)
k∏

l=1

1

1 + δ + r
1+l + ρN−(0) + (δ + rκ)l

= N+(0)
Γ(k + 2)

(
1

δ+κr

)k+1
(1 + δ +N−(0)ρ+ r)Γ(C+)Γ(C−)

Γ(1 + C+ + k)Γ(1 + C− + k)
,

where

C± ≡ 1 + κr + 2δ +N−(0)ρ±
√

(N−(0)ρ+ 1)2 − 2r(2δ + κ+ κN−(0)ρ) + (κ− 4)κr2

2(δ + κr)
.

Note that N+(0) = N −∑∞
k=1N

+(k), and consequently

N+(0) = N




1 + (1 + δ +N−(0)ρ+ r)Γ(C+)Γ(C−)

∞∑

k=1

Γ(k + 2)
(

1
δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

.
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The out-degree distribution P+(k) = N+(k)
N is then given by

P+(k) =




1 + (1 + δ +N−(0)ρ + r)Γ(C+)Γ(C−)

∞∑

k=1

Γ(k + 2)
(

1
δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

×
Γ(k + 2)

(
1

δ+κr

)k+1
(1 + δ +N−(0)ρ+ r)Γ(C+)Γ(C−)

Γ(1 + C+ + k)Γ(1 + C− + k)
.

For large k we have that

Γ(k + 2)

Γ(C+ + k + 1)Γ(C− + k + 1)
∼ kΓ(k + 1)

kC+kC−Γ(k + 1)Γ(k + 1)

∼ k−C+−C−+1

Γ(k + 1)

∼ ekk−C+−C−−k+ 1
2√

2π
,

where we have used the fact that for large k, limk→∞
Γ(k+α)
Γ(k)kα = 1, α ∈ R, and Stirling’s formula,

Γ(k + 1) ∼
√
2πk

(
k
e

)k
, as k → ∞. The out-degree distribution is then asymptotically given by

P+(k) ∼
(

1

δ + κr

)k+1 ( e

k

)k
k

1
2
−C+−C−

.

Next, recall that the number of firms, Nt, evolves according to

dNt

dt
= 1− δ − rκt − ρN−

t (0),

with κt =
∑∞

k=0
1

1+kP
+
t (k), so that in the stationary state we obtain

N−(0) =
1− δ − rκ

ρ
.

Inserting yields

P+(k) =




1 + (2 + r(1− κ))Γ(C+)Γ(C−)

∞∑

k=1

Γ(k + 2)
(

1
δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

×
Γ(k + 2)

(
1

δ+κr

)k+1
(2 + r(1− κ))Γ(C+)Γ(C−)

Γ(1 + C+ + k)Γ(1 + C− + k)
,
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Figure A.4: Simulation results (◦) and theoretical predictions (−−) of the model without rewiring (γ = 0). (Top left
panel) The number of firms nt over time t. (Top right panel) The survival probability sit of a specific firm i = 600
over time t. (Bottom left panel) The in-degree k−

it of a specific firm i = 600 over time t. (Bottom right panel) The
probability P

(

k−
it = 0

)

that the in-degree of a specific firm i = 600 is zero over time t. The parameters used are
δ = 0.01, ρ = 0.5, r = 0.2, ρ = 0.25 and T = 700 averaged over 500 independent Monte Carlo simulations.

where

C± ≡ 2 + δ ±
√

(2− δ − rκ)2 − 2r(2δ + κ(2 − δ − rκ)) + (κ− 4)κr2

2(δ + κr)
.

while κ is determined by

κ =

∞∑

k=0

1

1 + k
P+(k).

This nonlinear equation can be solved for κ numerically using for example an iterated fixed point
algorithm.

Proof of Proposition 4. We assume that γ > 0 (with rewiring). An illustration of the different
events taking place during the evolution of the Markov chain is given in Figure A.5. We start with

35



ij

P (aji = 1) = 1
nt

(a) Entry of a firm i and uniform attachment to an incum-
bent firm j with probability P (aji = 1) = 1

nt
.

i

δ
nt

+ r
nt
P (πit − ζ < 0)

(b) The exit of a firm i due to a large shock with probabil-
ity δ

nt
or small shock with probability r

nt
P (πit − ζ < 0).

i

ρ

(c) Shock propagation leading to the exit of a firm i with
in-degree zero with probability ρ.

i

j

k

P (aki = 1) = 1
nt

γ

(d) Replacement of a supplier j that has exited with prob-
ability γ. Then a new firm k becomes the supplier to i
with probability P (aki = 1) = 1

nt
.

Figure A.5: The different events that happen during the time evolution of the Markov chain introduced in Definition
2: (a) entry, (b) exit due to a large or small shock, (c) shock propagation and (d) replacement of a supplier after exit.
Filled circles indicate firms that have not exited, while empty circles indicate firms that have exited. All shocks are
assumed to be Zipf distributed (i.e. χ = 1).
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the proof of part (i) of the proposition. Let Nt be the number of firms at time t. Then we have that

Nt+1 = Nt + 1−
Nt∑

i=1

1{firm i exits due to a large shock}

−
Nt∑

i=1

1{firm i exits due to a small shock}

−
Nt∑

i=1

1{firm i exits because d−it = 0}1{d−it=0}.

Taking the expectation conditional on the filtration Ft (everything that has happened up to time t)
yields

E (Nt+1|Ft)−Nt = 1−
Nt∑

i=1

P ({firm i exits due to a large shock})

−
Nt∑

i=1

P ({firm i exits due to a small shock})

−
Nt∑

i=1

P
(
{firm i exits because d−it = 0}

)
1{d−it=0}.

Using the fact that

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,

this can be written as

E (Nt+1|Ft)−Nt = 1− δ − r

Nt

Nt∑

i=1

1

d̃+it
− ρτNt

= 1− δ − rκ− ρτNt, (A.21)

where

τ =
1

Nt

Nt∑

i=1

1{d−it=0}

denotes the fraction of firms with in-degree zero, and we have denoted by

κ ≡ 1

Nt

Nt∑

i=1

1

d̃+it
. (A.22)
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Taking the (unconditional) expectation on both sides of Equation (A.21), and denoting by nt =
E (Nt+1) = E (E (Nt+1|Ft)), gives [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dnt

dt
= 1− δ − rκ− ρτnt. (A.23)

The solution to this differential equation is given by

nt =
(
ρτn0 + (1− δ − rκ)(eρτt − 1)

) e−ρτt

ρτ
, (A.24)

with the limit

lim
t→∞

nt =
1− δ − rκ

ρτ
. (A.25)

With the initial condition, n0 = 0, we obtain

nt =

(
1− e−tρτ

)
(1− rκ− δ)

ρτ
.

Next, we consider part (ii) of the proposition. Let d−it be the in-degree of firm i at time t,
conditional on not having exited before time t. Then we have that

d−i,t+1 = d−it −
Nt∑

j=1

aji,t1{j exits because of a large shock}1{i fails to replace j}

−
Nt∑

j=1

aji,t1{j exits because of a small shock}1{i fails to replace j}

−
Nt∑

j=1

aji,t1{j exits because d−jt = 0}1{d−jt=0}1{i fails to replace j},

for all t > i and the initial condition (at the date of entry) d−ii = 1. Taking the expectation conditional
on Ft gives

E

(

d−i,t+1|Ft

)

− d−it = −
Nt∑

j=1

aji,tP ({j exits because of a large shock})P ({i fails to replace j})

−
Nt∑

j=1

aji,tP ({j exits because of a small shock})P ({i fails to replace j})

−
Nt∑

j=1

aji,tP
(

{j exits because d−jt = 0}
)

1{d−jt=0}P ({i fails to replace j}) .

38



Using the fact that P (πit − ζ < 0) = 1
d̃+it

, and that

P (i fails to replace j) = 1− γ,

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,

we then get

E

(

d−i,t+1|Ft

)

− d−it = −
Nt∑

j=1

aji,t
δ

Nt
(1− γ)−

Nt∑

j=1

aji,t
r

Nt

1

d̃+jt
(1− γ)−

Nt∑

j=1

aji,tρτ (1− γ) .

We can write this as follows

E

(

d−i,t+1|Ft

)

− d−it = − 1

Nt
(1− γ)

Nt∑

j=1

aji,t

(

δ +
r

d̃+jt
+ ρτNt

)

. (A.26)

Taking the (unconditional) expectation on both sides of Equation (A.26), and denoting by k−i,t+1 =

E

(

d−i,t+1

)

= E

(

E

(

d−i,t+1|Ft

))

, gives [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dk−it
dt

= − 1

nt
(1− γ) k−it

(

δ +
r

1 + k̄t
+ ρτnt

)

.

Inserting the asymptotic number of firms from Equation (A.25) gives

dk−it
dt

= − ρτ(1− γ)

1− δ − rκ
k−it

(

δ +
r

1 + k̄t
+ ρτ

1− δ − rκ

ρτ

)

= − ρτ(1− γ)

1− δ − rκ
k−it

(

1 + r

(
1

1 + k̄t
− κ

))

= − ρτ(1− γ)

1− δ − rκ

(

1 + r

(
1

1 + k̄t
− κ

))

k−it . (A.27)

When (1 + k̄t)
−1 ≈ κ this can be written as

dk−it
dt

= − ρτ(1− γ)

1− δ − rκ
k−it . (A.28)

With the initial condition k−ii = 1, the solution is given by

k−it = e−
ρτ(1−γ)
1−δ−rκ

(t−i). (A.29)

This shows that the in-degree of firm i is exponentially decaying.
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Next, let d̃+it be the shifted out-degree of firm i at time t, conditional on not having exited before
time t. Then we have that

d̃+i,t+1 = d̃+it + 1{i→t} −
Nt∑

j=1

aij,t1{j exits due to a large shock}

−
nt∑

j=1

aij,t1{j exits due to a small shock}

+

Nt∑

j=1

Nt∑

k=1

akj,t1{k exits due to a large shock}1{j rewires the link to i}

+

Nt∑

j=1

Nt∑

k=1

akj,t1{k exits due to a small shock}1{j rewires the link to i}

+
Nt∑

j=1

Nt∑

k=1

akj,t1{k exits because d−kt = 0}1{j rewires the link to i}1{d−kt=0},

for all t > i+ 1 and the initial condition d̃+ii = 1. Taking the expectation conditional on Ft gives

E

(

d̃+i,t+1|Ft

)

− d̃+it = P ({i → t})−
Nt∑

j=1

aij,tP ({j exits due to a large shock})

−
Nt∑

j=1

aij,tP ({j exits due to a small shock})

+

Nt∑

j=1

Nt∑

k=1

akj,tP ({k exits due to a large shock})P ({j rewires the link to i})

+

Nt∑

j=1

Nt∑

k=1

akj,tP ({k exits due to a small shock})P ({j rewires the link to i})

+
Nt∑

j=1

Nt∑

k=1

akj,tP
(
{k exits because d−kt = 0}

)
P ({j rewires the link to i})1{d−kt=0}.
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Using the fact that

P ({i → t}) = 1

Nt
,

P ({firm j exits due to a large shock}) = δ

Nt
,

P ({firm j exits due to a small shock}) = r

Nt

1

d̃+jt
,

P
(
{firm k exits because d−kt = 0}

)
= ρ,

P ({j rewires the link to i}) = γ
1

nt
,

we can write this as follows

E

(

d̃+i,t+1|Ft

)

− d̃+it =
1

Nt
−

Nt∑

j=1

aij,t
δ

Nt
−

Nt∑

j=1

aij,t
r

Nt

1

d̃+jt

+

Nt∑

j=1

Nt∑

k=1

akj,t
δ

Nt
γ
1

nt

+

Nt∑

j=1

Nt∑

k=1

akj,t
r

Nt

1

d̃+kt
γ
1

nt

+

Nt∑

j=1

Nt∑

k=1

akj,t1{d−
kt
=0}ργ

1

nt
.

This can be written as

E

(

d̃+i,t+1|Ft

)

− d̃+it =
1

Nt
−

Nt∑

j=1

aij,t

(

δ

Nt
+

r

Nt

1

d̃+jt

)

+ γ
1

nt

Nt∑

j=1

Nt∑

k=1

akj,t

(

δ

Nt
+

r

Nt

1

d̃+kt
+ ρ1{d−

kt
=0}

)

.

Taking the expectation on both sides of the equation and denoting by k+it = E

(

d̃+it

)

yields [cf. Darling

and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dk+it
dt

=
1

nt
− k+it

nt

(

δ +
r

1 + k̄t

)

+ γ
1

nt
nt

1 + k̄t
nt

(

δ +
r

1 + k̄t
+ ρτnt

)

=
1

nt

(

1 + γ

(

δ +
r

1 + k̄t
+ ρτnt

)

(1 + k̄t)

)

− 1

nt

(

δ +
r

1 + k̄t

)

k+it .
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In the stationary state we have that k̄t = k̄, limt→∞ nt =
1−δ−rκ

ρτ , so that we can write this as follows

dk+it
dt

= a− bk+it ,

where we have denoted by

a ≡ ρτ

1− δ − rκ

(
1 + γ (δ + rκ̃+ 1− δ − rκ) (1 + k̄)

)
,

=
ρτ

1− δ − rκ

(

1 + γ

(

1 + r

(
1

1 + k̄
− κ

))

(1 + k̄)

)

≈ ρτ

1− δ − rκ

(
1 + γ(1 + k̄)

)

b ≡ ρτ

1− δ − rκ
(δ + rκ̃) .

With the initial condition k+ii = 0 the solution is given by

k+it =
a+ (b− a)e−b(t−i)

b
, (A.30)

with the limit

lim
t→∞

k+it =
a

b
=

(

1 + γ

(

1 + r

(
1

1 + k̄
− κ

))

(1 + k̄)

)

(δ + rκ̃)−1 ≈
(
1 + γ(1 + k̄)

)
(δ + rκ̃)−1 .

Next, let Sit be the indicator variable indicating whether firm i is still alive at time t. Then we
have that

Si,t+1 = Sit

(

1− 1{i exits due to a large shock} − 1{i exits due to a small shock} − 1{i exits because d−it = 0}1{d−it=0}

)

.

Taking the expectation with respect to Ft gives

E (Si,t+1|Ft) = Sit (1− P ({i exits due to a large shock})− P ({i exits due to a small shock})
−P
(
{i exits because d−it = 0}

)
1{d−it=0}

)

.

Using the fact that

P ({firm i exits due to a large shock}) = δ

Nt
,

P ({firm i exits due to a small shock}) = r

Nt

1

d̃+it
,

P
(
{firm i exits because d−it = 0}

)
= ρ,
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gives

E (Si,t+1|Ft) = Sit

(

1− δ

Nt
− r

Nt

1

d̃+it
− ρ1{d−it=0}

)

,

or equivalently

E (Si,t+1|Ft)− Sit = −Sit

(

δ

Nt
+

r

Nt

1

d̃+it
+ ρ1{d−it=0}.

)

.

Taking the expectation and denoting by sit = E (Sit) and k+it = E

(

d̃+it

)

then gives [cf. Darling and

Norris, 2008; Kurtz, 1971; Wormald, 1995]

dsit
dt

= −sit

(
δ

nt
+

r

nt

1

k+it
+ ρP

(
{d−it = 0}

)
)

, (A.31)

with the initial condition sii = 1. Note that by assumption d−it can be either zero or one, so that

P
(
{d−it = 0}

)
= 1− P

(
{d−it = 1}

)

= 1− E
(
d−it
)

= 1− k−it . (A.32)

Inserting Equation (A.32) into Equation (A.31) gives

dsit
dt

= −sit

(
δ

nt
+

r

nt

1

k+it
+ ρ(1− k−it )

)

, (A.33)

With k−it from Equation (A.14), k+it from Equation (A.15) and denoting by c = 1/ limt→∞ nt =
ρτ

1−δ−rκ , we then get

dsit
dt

= −sit

(

cδ +
arb

a+ (b− a)e−b(t−i)
+ ρ

(

1− e−c(1−γ)(t−i)
))

,

or equivalently

d ln sit
dt

= −
(

cδ +
arb

a+ (b− a)e−b(t−i)
+ ρ

(

1− e−c(1−γ)(t−i)
))

. (A.34)

With the initial condition sii = 1 the solution is given by

sit =

(
b

aeb(t−i) − a+ b

)r

exp

(

−ρe−c(1−γ)(t−i)

c(1− γ)
− ρ

(

− 1

c(1− γ)
− i+ t

)

− cδ(t − i)

)

.
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When a+(b− a)e−b(t−i) ≈ a and 1− e−c(1−γ)(t−i) ≈ 1 for large t we can simplify Equation (A.34) to

d ln sit
dt

= − (cδ + rb+ ρ) ,

and the solution is given by
sit = e−(br+cδ+ρ)(t−i), (A.35)

which is an exponentially decaying function.
We next give a proof of part (iii) of the proposition. Let N+

t (k) denote the number of firms with
out-degree k at time t. Then we have that

E
(
N+

t+1(k)|Ft

)
−N+

t (k) =
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρN−+
t (0, k)

− kN+
t (k)

(

δ

Nt
+

r

Nt

∞∑

l=0

P+
t (l|k) 1

l + 1

)

+
γ

Nt
Nt(k − 1)

(
∞∑

l=0

N+
t (l)l

(
δ

Nt
+

r

Nt

1

l + 1

)

+

∞∑

l=0

ρN−+
t (0, l)l

)

− γ

Nt
Nt(k)

(
∞∑

l=0

N+
t (l)l

(
δ

Nt
+

r

Nt

1

l + 1

)

+
∞∑

l=0

ρN−+
t (0, l)l

)

,

where N−+
t (0, k) denotes the number of firms with in-degree 0 and out-degree k and P+

t (l|k) ≡
P(d+j,t = l|di,t = k, aij,t = 1). Assuming that there are only weak degree correlations we then can
write

N−+
t (0, k) = P

(
d+it = k, d−it = 0

)
Nt

≈ P
(
d+it = k

)
P
(
d−it = 0

)
Nt

=
N+

t (k)N−
t (0)

Nt
,

and

P+
t (l|k) ≡ P(d+j,t = l|di,t = k, aij,t = 1) ≈ P(d+j,t = l) =

N+
t (l)

Nt
.

Inserting gives

E
(
N+

t+1(k)|Ft

)
−N+

t (k) =
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρ
N−

t (0)

Nt
N+

t (k)

− kN+
t (k)

(

δ

Nt
+

r

Nt

∞∑

l=0

N+
t (l)

Nt

1

l + 1

)

+
γ

Nt
(Nt(k − 1)−Nt(k))

(

(δ + ρN−
t (0))

1

Nt

∞∑

l=0

lN+
t (l) +

r

Nt

∞∑

l=0

l

l + 1
N+

t (l)

)

.
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Denoting by

k̄t ≡
1

Nt

∞∑

l=0

lN+
t (l),

κt ≡
1

Nt

∞∑

l=0

1

l + 1
N+

t (l),

and

κ̃t ≡ k̄−1
t

1

Nt

∞∑

l=0

l

l + 1
N+

t (l),

we can write this as

E
(
N+

t+1(k)|Ft

)
−N+

t (k) =
1

Nt
N+

t (k − 1)− 1

Nt
N+

t (k)− δ

Nt
N+

t (k)− r

Nt

1

1 + k
N+

t (k)− ρ
N−

t (0)

Nt
N+

t (k)

+
γ

Nt
(Nt(k − 1)−Nt(k)) k̄t

(

δ + ρN−
t (0) + rk̃t

)

− 1

Nt
k(δ + rκt)N

+
t (k).

We then can write [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dN+
t (k)

dt
=

1

Nt

((
1 + γk̄t

(
δ + rκ̃t + ρN−

t (0)
))

N+
t (k − 1)

−
(

1 + δ +
r

1 + k
+ ρN−

t (0) + γk̄t
(
δ + rκ̃t + ρN−

t (0)
)
+ k(δ + rκt)

)

N+
t (k)

)

.

In the stationary state, where
dN+

t (k)
dt = 0, we then have that

N+(k) =
1 + γ (δ + rκ̃+ ρN−(0)) k̄

1 + δ + r
1+k + ρN−(0) + γ (δ + rκ̃+ ρN−(0)) k̄ + k(δ + rκ)

N+(k − 1),

from which we get

N+(k) = N+(0)

k∏

l=1

1 + γ (δ + rκ̃+ ρN−(0)) k̄

1 + δ + r
1+l + ρN−(0) + γ (δ + rκ̃+ ρN−(0)) k̄ + l(δ + rκ)

= N+(0)
Γ(k + 2)

(
1+γk̄(δ+ρN−(0)+rκ̃)

δ+κr

)k+1
(1 + δ +N−(0)ρ + r + γk̄(δ + ρN−(0) + rκ̃))Γ(C+)Γ(C−)

(δ + rκ)Γ(1 + C+ + k)Γ(1 + C− + k)
,

where

C± ≡ 1

2(δ + κr)

[
1 + κr + 2δ +N−(0)ρ+ γk̄(δ + ρN−(0) + rκ̃)

±
((

1 + 4δ +N−(0)ρ + 3κr + γk̄
(
rκ̃+ δ +N−(0)ρ

))2

−4(δ + κr)
(
2 + r + 4δ + 2N−(0)ρ + 2κr + 2γk̄

(
rκ̃+ δ +N−(0)ρ

)))1/2
]

.
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Note that N+(0) = N −∑∞
k=1N

+(k), and consequently

N+(0) = N




1 +

(1 + γ (δ + rκ̃+ ρN−(0)) k̄)Γ(C+)Γ(C−)

δ + rκ

∞∑

k=1

Γ(k + 2)
(
1+γk̄(δ+ρN−(0)+rκ̃)

δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

.

The out-degree distribution P+(k) = N+(k)
N is then given by

P+(k) =




1 +

(1 + γ (δ + rκ̃+ ρN−(0)) k̄)Γ(C+)Γ(C−)

δ + rκ

∞∑

k=1

Γ(k + 2)
(
1+γk̄(δ+ρN−(0)+rκ̃)

δ+κr

)k+1

Γ(1 +C+ + k)Γ(1 + C− + k)






−1

×
Γ(k + 2)

(
1+γk̄(δ+ρN−(0)+rκ̃)

δ+κr

)k+1
(1 + δ +N−(0)ρ+ r + γk̄(δ + ρN−(0) + rκ̃))Γ(C+)Γ(C−)

(δ + rκ)Γ(1 + C+ + k)Γ(1 + C− + k)
.

For large k we have that

Γ(k + 2)

Γ(C+ + k + 1)Γ(C− + k + 1)
∼ kΓ(k + 1)

kC+kC−Γ(k + 1)Γ(k + 1)

∼ k−C+−C−+1

Γ(k + 1)

∼ ekk−C+−C−−k+ 1
2√

2π
,

where we have used the fact that for large k, limk→∞
Γ(k+α)
Γ(k)kα = 1, α ∈ R, and Stirling’s formula,

Γ(k + 1) ∼
√
2πk

(
k
e

)k
, as k → ∞. The out-degree distribution is then asymptotically given by

P+(k) ∼
(

1

δ + κr

)k+1 ( e

k

)k
k

1
2
−C+−C−

.

Next, recall that the number of firms, Nt, evolves according to

dNt

dt
= 1− δ − rκt − ρN−

t (0),

with κt =
∑∞

k=0
1

1+kP
+
t (k), so that in the stationary state we obtain

N−(0) =
1− δ − rκ

ρ
.
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Inserting yields

P+(k) =




1 +

(1 + γ (1 + rκ̃− rκ) k̄)Γ(C+)Γ(C−)

δ + rκ

∞∑

k=1

Γ(k + 2)
(
1+γk̄(1−rκ+rκ̃)

δ+κr

)k+1

Γ(1 + C+ + k)Γ(1 + C− + k)






−1

×
Γ(k + 2)

(
1+γk̄(1−rκ+rκ̃)

δ+κr

)k+1
(2− rκ+ r + γk̄(1− rκ+ rκ̃))Γ(C+)Γ(C−)

(δ + rκ)Γ(1 +C+ + k)Γ(1 + C− + k)
,

where

C± ≡ 1

2(δ + κr)

[
2 + κr + δ − rκ+ γk̄(1− rκ+ rκ̃)

±
((

2 + 3δ − rκ+ 3κr + γk̄ (1 + rκ̃− rκ)
)2

−4(δ + κr)
(
2 + r + 4δ + 2(1 − δ − rκ) + 2κr + 2γk̄ (1 + rκ̃− rκ)

))1/2
]

,

while κ is determined by

κ =
∞∑

k=0

1

1 + k
P+(k),

κ̃ is given by

κ̃ =
1

k̄

∞∑

k=0

k

1 + k
P+(k),

and k̄ is determined by

k̄ =

∞∑

k=0

kP+(k),

The above nonlinear equations for κ, κ̃ and k̄ can be solved numerically using for example an iterated
fixed point algorithm.

Figure A.6 shows simulation results and theoretical predictions for the out-degree distribution,
P+(k), in Equation (3.7) with rewiring.

Proof of Proposition 6. Figure A.7 illustrates the different events that happen during the time
evolution of the Markov chain introduced in Definition 5.

Part (i) of the proposition is identical to the proof of Proposition 4.
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Figure A.6: Simulation results (◦) and theoretical predictions (−−) for the out-degree distribution, P+(k), in Equation
(3.7) with rewiring (γ = 0.1).

ij

P (aji = 1) =
ηj
nt

(a) Entry of a firm i and uniform attachment to an incum-
bent firm j with probability P (aji = 1) =

ηj
nt

.

i

δ
nt

+ r
nt
P (πit − ζ < 0)

(b) The exit of a firm i due to a large shock with probabil-
ity δ

nt
or small shock with probability r

nt
P (πit − ζ < 0).

i

ρ

(c) Shock propagation leading to the exit of a firm i with
in-degree zero with probability ρ.

i

j

k

P (aki = 1) = ηk
nt

γ

(d) Replacement of a supplier j that has exited with prob-
ability γ. Then a new firm k becomes the supplier to i
with probability P (aki = 1) = ηk

nt
.

Figure A.7: The different events that happen during the time evolution of the Markov chain introduced in Definition
5: (a) entry, (b) exit due to a large or small shock, (c) shock propagation and (e) replacement of a supplier after exit.
Filled circles indicate firms that have not exited, while empty circles indicate firms that have exited.
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For the proof of part (ii) of the proposition, we use the fact that

P (i fails to replace j) = 1− γ,

P ({i → t}) = ηi
Nt

,

P ({firm j exits due to a large shock}) = δ

Nt
,

P ({firm j exits due to a small shock}) = r

Nt

1

d+jt
,

P

(

{firm j exits because d−jt = 0}
)

= ρ,

P ({j rewires the link to i}) = γ
ηi
Nt

,

where nt is still given by Equation (A.24), and similarly, the change in the in-degree of firm i is given
by Equation (A.28), that is [cf. Darling and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dk−it
dt

= − ρτ (1− γ)

1− δ − rκ
k−it . (A.36)

where we have assumed that k̄−1
t ≈ κ. With the initial condition k−ii = 1, the solution is given by

k−it = e−
ρτ(1−γ)
1−δ−rκ

(t−i). (A.37)

This shows that the in-degree of firm i is exponentially decaying.
For the change in the out-degree of firm i we now obtain

E

(

d+i,t+1|Ft

)

− d+it =
ηi
Nt

−
Nt∑

j=1

aij,t
δ

Nt
−

Nt∑

j=1

aij,t
r

Nt

1

d+jt

+

Nt∑

j=1

Nt∑

k=1

akj,t
δ

Nt
γ
ηi
Nt

+

Nt∑

j=1

Nt∑

k=1

akj,t
r

Nt

1

d+kt
γ
ηi
Nt

+

Nt∑

j=1

Nt∑

k=1

akj,t1{d−
kt
=0}ργ

ηi
Nt

.
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This can be written as

E

(

d+i,t+1|Ft

)

− d+it =
ηi
Nt

−
Nt∑

j=1

aij,t

(

δ

Nt
+

r

Nt

1

d+jt

)

+ γ
ηi
Nt

Nt∑

j=1

Nt∑

k=1

akj,t

(
δ

Nt
+

r

Nt

1

d+kt
+ ρ1{d−kt=0}

)

.

Taking the expectation on both sides of the equation and denoting by k+it = E
(
d+it
)
yields [cf. Darling

and Norris, 2008; Kurtz, 1971; Wormald, 1995]

dk+it
dt

=
ηi
nt

− k+it
nt

(

δ +
r

k̄t

)

+ γ
ηi
nt

nt
k̄t
nt

(

δ +
r

k̄t
+ ρτnt

)

=

(

1 + γ

(

δ +
r

k̄t
+ ρτnt

)

k̄t

)
ηi
nt

−
(

δ +
r

k̄t

)
k+it
nt

.

In the stationary state we have that k̄t = k̄, and limt→∞ nt =
1−δ−rκ

ρτ , so that we can write this as
follows

dk+it
dt

= aηi − bk+it , (A.38)

where we have denoted by

a ≡
(

1 + γ

(

δ + r
1

k̄t
+ ρτ

)

k̄t

)
ρτ

1− δ − rκ
≈
(
1 + γk̄(δ + rκ+ ρτ)

) ρτ

1− δ − rκ
,

b ≡
(

δ + r
1

k̄t

)
ρτ

1− δ − rκ
≈ ρτ(δ + rκ)

1− δ − rκ
,

and we have assumed that 1
k̄t

≈ κ. With the initial condition k+ii = 1 (for the shifted out-degree) the
solution is given by

k+it =
aηi + (b− aηi)e

−b(t−i)

b
, (A.39)

with the limit

lim
t→∞

k+it =
aηi
b

≈
(
1 + γk̄(δ + rκ+ ρτ)

)

δ + rκ
ηi.

For the probability that firm i is still alive at time t Equation (A.33) still holds, that is

dsit
dt

= −sit

(
δ

nt
+

r

nt

1

k+it
+ ρ(1− k−it )

)

.

With k−it from Equation (A.37) and k+it from Equation (A.39) we then get

dsit
dt

= −sit

(
bδ

δ + rκ
+

rb2

(δ + rκ)(aηi + (b− aηi)e−b(t−i))
+ ρ

(

1− e−
ρτ(1−γ)
1−δ−rκ

(t−i)

))

,
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or equivalently

d ln sit
dt

= −
(

bδ

δ + rκ
+

rb2

(δ + rκ)(aηi + (b− aηi)e−b(t−i))
+ ρ

(

1− e−
ρτ(1−γ)
1−δ−rκ

(t−i)

))

,

with the initial condition sii = 1. When aηi + (b− aηi)e
−b(t−i) ≈ aηi and e−

ρτ(1−γ)
1−δ−rκ

(t−i) ≈ 0, we can
simplify this to

d ln sit
dt

= −
(

bδ

δ + rκ
+

rb2

aηi(δ + rκ)
+ ρ

)

,

and the solution is given by

sit = e
−
(

ρ+ b
δ+rκ

(

δ+ rb
aηi

))

(t−i)
. (A.40)

Next, we give a proof of part (iii) of the proposition. The out-degree distribution is given by

P+
t (k) =

∫

P+
t (η, k)f(η)dη,

where

P+
t (η, k) =

1

nt

t∑

i=1

sit1{k+it=k}

=
1

nt

∫ t

1
sitδ(k − k+it )di

=
1

nt

∫ ℓ

0
sitδ(k − k+it )

∣
∣
∣
∣

di

dk

∣
∣
∣
∣
dk

=
1

nt

∣
∣
∣
∣

dk+it
di

∣
∣
∣
∣

−1

sit

∣
∣
∣
∣
∣
i:k+it=k

,

where we have used the inverse function theorem
(
f−1

)′
(b) = 1

f ′(a) with b = f(a). From Equation

(A.39) we have that
dk+it
di

= (b− aηi)e
−b(t−i).

Further, from setting k+it = k in Equation (A.39) and solving for i we obtain

i = t+
ln
(
aηi−bk
aηi−b

)

b
.

Hence,

t− i = − ln

(
aηi − bk

aηi − b

) 1
b

.
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Inserting the above expression for i into Equation (A.40) we get for the lifetime distribution

sit =

(
aηi − bk

aηi − b

) ρ
b
+ 1

δ+rκ

(

δ+ rb
aηi

)

,

and

P+
t (η, k) =

1

nt

∣
∣
∣
∣

dk+it
di

∣
∣
∣
∣

−1

sit

∣
∣
∣
∣
∣
i:k+it=k

=
b

(δ + rκ)(b− aη)
eb(t−i)sit

∣
∣
∣
∣
i=t+

ln(aη−bk
aη−b )
b

=
b

(δ + rκ)(b− aη)

(
aηi − bk

aηi − b

)ρ
b
−1+ 1

δ+rκ

(

δ+ rb
aηi

)

.

Integrating over η yields the out-degree distribution

P+
t (k) =

∫

P+
t (η, k)f(η)dη

=

∫ ηmax

0
P+
t (η, k)

1√
2πσ̃2

1

η
e−

(ln η−µ̃)2

2σ̃2 dη, (A.41)

where we have denoted by

ηmax ≡ (1− p)N
(

1 +
p

q(1− p)

)N

− 1 =

(

1− p

(

1− 1

q

))N

− 1, (A.42)

and

σ̃ ≡
√

Nq(1− q) ln
(

1 + p
q(1−p)

)

µ̃ ≡ Nq ln
(

1 + p
q(1−p)

)

+N ln(1− p), (A.43)

with the pdf of a log-normally distributed random variable

f(η) =
1√
2πσ̃2

1

η
e−

(ln η−µ̃)2

2σ̃2 .
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B. Heterogenous Input-Output Characteristics

Assuming that links are drawn according to whether a firm’s output characteristics match another
firm’s input characteristics we can obtain the following proposition for the out-degree distribution.

Proposition 7. If we denote by a ≡ (1− p)N and b ≡ 1 + p
q(1−p) , then the out-degree distribution is given by

P+(k) =

(
N

max
(
0,min

(
N,
[
ln
(
1 + k

a

)
/ ln(b)

]))

)

qmax(0,min(N,[ln(1+ k
a )/ ln(b)]))

× (1 − q)N−max(0,min(N,[ln(1+ k
a )/ ln(b)])), (B.1)

while the in-degree distribution is given by P−(k) = δk,1.

Proof of Proposition 7. Observe that in a large population, there exists at least one firm with any vector
of output characteristics. Hence, for any firm i with input characteristics vector h−

i there exists at least
one firm j such that h−

i ∩ h+
j = h−

i . We assume that a firm with input characteristics h−
i draws uniformly

at random from all firms j which have these output characteristics, i.e. it must hold that if h−
ik = 1 then

h+
jk = 1 for all k = 1 . . . , N for a firm j to qualify as a supplier to firm i.18,19 Let the support of h be

given by S(h) and its cardinality is given by | S(h)| = 〈h,u〉, counting the number of nonzero entries in h,
and 〈·, ·〉 denoting the scalar product in {0, 1}N . Consider a vector si of size |S(si)| = i corresponding to a
subset of the output characteristics of a firm with k output characteristics in total, i ≤ k. Note that there
are |{si ∈ {0, 1}N : | S (si)| = i ≤ k}| =

(
k
i

)
such subsets of size i of a vector with k characteristics in

total. Let Xj
si

∈ {0, 1} be the indicator variable for a firm j which needs the input characteristics si, i.e.

h−
i = si, to receive a link (being a customer) from a firm who possesses the output characteristics si. There

are npi(1 − p)N−i firms which need exactly the characteristics si, and there are nqi firms which possess the
characteristics in si (note that these firms might also possess additional characteristics). The probability that
a firm j which needs si forms an incoming link to (buys from) a firm which has si as output characteristics is
then given by

P(Xj
si
= 1) =

1

nqi
.

18Note however, that the converse h−
jk = 1 ⇒ h+

ik = 1 is not required to hold. This means that a firm can buy a
product which has more characteristics than are actually required for the input of the firm.

19In an extension of the current model following Eeckhout and Jovanovic [2002]; Stigler [1961] we could assume
that finding a new supplier proceeds by first taking κ independent draws from the population of firms. Let the
match of a firm i’s input characteristics with the other firms’ output characteristics be denoted by mij = |S(h−

i ∩
h
+
j )| ≤ min(|S(h−

i )|, |S(h+
j )|). For each i let the cumulative distribution of mij be Fi(a) =

∑a

b=0 Pi(b), and Pi(b) the
corresponding probability mass function. Then the maximum value max1≤j≤κ{mij} is distributed as Gi(a) = Fi(a)

κ

and has a probability mass function of gi(a) = κFi(a)
κ−1Pi(a). The parameter κ measures the directedness of search.

In the limit of κ → ∞, the firm selects the best matching firm, while in the limit of κ → 1 the firm selects at random.

With this assumption, the expected value of the match is given by E (max1≤j≤k{mij}) =
∑| S(h−

i
)|

a=0 aκFi(a)
κ−1Pi(a).
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Figure B.1: An illustration of firms with input characteristics si being customers of a firm j which has the output
characteristics h

+
j such that h+

j ∩ si = si.

This is because the firms which have si as output characteristics are drawn uniformly at random by j, and
there are nqi such firms. Observe that Xj

si
is a Bernoulli random variable with success probability 1

nqi . Let

Ssi =
∑

j:h−

j
=si

Xj
si

count the number of links created to firms with input characteristics si from a firm which has the output
characteristics si. Note that this is a sum of npi(1− p)N−i independent random variables. An illustration can
be seen in Figure B.1. Further, let

Sk =
∑

si:| S(si)|=i≤k

Ssi

count the number of links created to firms which require in total i input characteristics for all i ≤ k. Note
that |{si ∈ {0, 1}N : | S(si)| = i ≤ k}| =

(
k
i

)
, so that Sk

i is a sum over over
(
k
i

)
sums, each being a sum of

npi(1− p)N−i independent random variables. To see this note that for a firm j with output characteristics hj

such that | S(h+
j )| = k ≥ i there are

(
k

1

)

np(1− p)N−1

firms which need exactly one of the characteristics as input, there are

(
k

2

)

np2(1− p)N−2

firms which need exactly two of the output characteristics of firm j as input, . . ., and there are

(
k

i

)

npi(1− p)N−i

2



firms which need exactly i of the k output characteristics of firm j as input.
Since Xj

si
is a Bernoulli random variable with success probability 1

nqi , its generating function is given by

GXj
si

(z) = 1− 1

nqi
+ z

1

nqi
.

Similarly, Ssi is the sum of independent random variables, and its generating function is

GSsi
(z) =

∏

j:h−

j
=si

GXj
si

(z) =

(

1− 1

nqi
+ z

1

nqi

)n(1−p)N−ipi

.

The generating function of Sk is then given by

GSk(z) =
∏

si:| S(si)|=i≤k

GSsi
(z) =

∏

si:| S(si)|=i≤k

∏

j:h−

j
=si

GXj
si

(z) =

k∏

i=1

(

1− 1

nqi
+ z

1

nqi

)(ki)n(1−p)N−ipi

.

It then follows that

G′
Sk(z) =

k∑

j=1

k∏

i6=j

(

1− 1

nqi
+ z

1

nqi

)(ki)n(1−p)N−ipi

×
(
k

j

)

n(1− p)N−jpj
(

1− 1

nqj
+ z

1

nqj

)(kj)n(1−p)N−jpj−1
1

nqj
,

so that20

E(d+i
∣
∣ |S(h+)| = k) = E

(
Sk
)

= G′
Sk(1)

=

k∑

j=1

(
k

j

)
(1 − p)N−jpj

qj

= (1− p)N

((

1 +
p

q(1 − p)

)k

− 1

)

.

The cumulant generating function of Sk is given by

RSk(z) ≡ lnGSk(z)

=

k∑

i=1

(
k

i

)

n(1− p)N−ipi
(

1− 1

nqi
+ z

1

nqi

)

= (1− p)N

(

n

((
1

1− p

)k

− 1

)

+ (z − 1)

((
p

q − pq
+ 1

)k

− 1

))

.

20Note that when p = q we obtain the mean field approximation in Theorem 5 in Anderson [2012], which has been
derived in a related context.
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Mean and variance can then be computed from RSk(0)′ and RSk(0)′′. However, since all second and higher
derivatives of the cumulant are zero, we have a constant random variable. Denoting by a ≡ (1 − p)N and
b ≡ 1 + p

q(1−p) , it follows that the out-degree distribution is given by

P+(k) = E

(

1

n

n∑

i=1

1{d+
i
=k}

)

= P(d+i = k)

=

N∑

j=1

P(d+i = k
∣
∣ |S(h+

i )| = j)P(|S(h+
i )| = j)

=
N∑

j=1

1{k=max(0,min(N,[a(bj−1)]))}

(
N

j

)

qj(1− q)N−j

=

(
N

max
(
0,min

(
N,
[
ln
(
1 + k

a

)
/ ln(b)

]))

)

qmax(0,min(N,[ln(1+ k
a )/ ln(b)]))

× (1 − q)N−max(0,min(N,[ln(1+ k
a )/ ln(b)])),

while the in-degree distribution is given by P−(k) = δk,1.

For large k (respectively, for small a = (1−p)N , when N is large), we can make the approximation

ln
(
1 + k

a

)
≈ ln k − ln a. Moreover, we have the following bounds for the binomial coefficient

(
n
k

)k ≤
(
n
k

)
≤
(
ne
k

)k
. We then obtain a lower bound for the out-degree distribution

P+(k) =

(
N

f(k)

)f(k)

qf(k)(1− q)N−f(k),

and an upper bound is given by

P
+
(k) =

(
Ne

f(k)

)f(k)

qf(k)(1− q)N−f(k),

where f(k) = max (0,min (N, [(ln k − ln a) / ln(b)])). An example for the out-degree distribution can be
seen in Figure B.2.21

The probability that an incumbent i becomes a supplier to the entrant t with k output charac-

21In an extension of the model we can assume that firms produce more than one product. Let a firm produce ℓ
products. Then the in-degree of a firm will be ℓ, while the out- degree follows from a similar calculation as above after
we have replaced the number of firms n with nℓ.
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Figure B.2: The out-degree distribution from a simulation of the network (◦) and the theoretical prediction (--) of
Equation (B.1). The parameters used are α = 0.75, η = 0.9, p = 0.2, q = 0.6, N = 50 and n = 10000.

teristics is then given by

P({i → t}|| S(h+
i )| = k) =

k∑

j=1

(
k

j

)
pj(1− p)N−j

ntqj

=
(1− p)N

nt

((

1 +
p

q(1 − p)

)k

− 1

)

≡ η(k)

nt
,

while the probability that any incumbent forms a link to the entrant is

nt∑

i=1

N∑

k=1

P({i → t}|| S(h+
i )| = k)P(| S(h+

i )| = k) = nt

N∑

k=1

(
N

k

)

qk(1− q)N−k (1− p)N

nt

((

1 +
p

q(1− p)

)k

− 1

)

= 1− (1 − p)N −−−−→
N→∞

1.

The term (1 − p)N corresponds to the probability of the event that an entrant does not require any
input to produce. We can write η(ν) = a(bν − 1), where

a ≡ (1 − p)N ,

b ≡ 1 + p
q(1−p) ,

and ν (the stock of output characteristics of a firm) follows a binomial distribution, Bin(N, q). For
large N we can approximate Bin(N, q) with a normal distribution with mean µ = Nq and standard
deviation σ =

√

Nq(1− q), that is, we can write the pdf of ν as follows

fν(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 =
1

√

2πNq(1− q)
e−

(x−Nq)2

2Nq(1−q) .
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It then follows for the cumulative distribution of η

Fη(y) = P (a(bν − 1) ≤ y)

= P

(

bν ≤ 1 +
y

a

)

= P

(

ν ≤ ln
(
1 + y

a

)

ln b

)

=

∫
ln(1+ y

a )
ln b

−∞

1
√

2πNq(1− q)
e−

(x−Nq)2

2Nq(1−q) dx.

Differentiating with respect to y of Fη(y) gives the corresponding pdf

fη(y) = F ′
η(y) =

1
√

2πNq(1− q)

1

(a+ y) ln b
e−







ln(1+ y
a )

ln b
−Nq







2

2Nq(1−q) .

When the term a = (1− p)N is small, then we can write this as

fη(y) = F ′
η(y) =

1
√

2πNq(1− q)

1

y ln b
e−

( ln y−ln a
ln b

−Nq)
2

2Nq(1−q)

=
1√

2π
√

Nq(1− q) ln b

1

y
e
− (ln y−ln a−Nq ln b)2

2Nq(1−q)(ln b)2 .

Denoting by

σ̃ ≡ σ ln b =
√

Nq(1− q) ln
(

1 + p
q(1−p)

)

µ̃ ≡ µ ln b+ ln a = Nq ln
(

1 + p
q(1−p)

)

+N ln(1 − p), (B.2)

we obtain the pdf of a log-normally distributed random variable22

fη(y) =
1√
2πσ̃2

1

y
e−

(ln y−µ̃)2

2σ̃2 .

22The log-normal distribution is given by

fη(y) =
1√
2πσ̃y

e
−

(ln y−µ̃)2

2σ̃2 .

Taking logs delivers

ln fη(y) = − (ln y)2

2σ̃2
+

(

µ̃

σ̃2
− 1

)

ln y − log
(√

2πσ̃
)

− µ̃2

2σ̃2
.

When σ̃ becomes large, ln fη(y) becomes a linear function of ln y, and we get fη(y) ∼ y
−
(

1−
µ̃

σ̃2

)

, that is, a power-law
with exponent 1− µ̃

σ̃2 . This approximation is good as long as y is not much larger than µ̃ [cf. e.g. Mitzenmacher, 2004;
Sornette, 2000].
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