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Abstract

Many researchers seek factors that predict the cross-section of stock returns. The

standard methodology sorts stocks according to their factor scores into quantiles and forms

a corresponding long-short portfolio. Such a course of action ignores any information on

the covariance matrix of stock returns. Historically, it has been difficult to estimate the

covariance matrix for a large universe of stocks. We demonstrate that using the recent

DCC-NL estimator of Engle et al. (2016) substantially enhances the power of tests for

cross-sectional anomalies: On average, ‘Student’ t-statistics more than double.

KEY WORDS: Cross-section of returns, dynamic conditional correlations, GARCH,

Markowitz portfolio selection, nonlinear shrinkage.
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1 Introduction

The search for factors that predict the cross-section of stock returns generates an abundant

literature. Instead of “factors”, some authors may use alternative terms such as signals,

predictors, characteristics, anomalies, cross-sectional patterns, forecasting variables, etc. What

we mean specifically is a function of historical data that can explain the cross-section of

subsequent stock returns: discriminate between the stocks that will tend to outperform their

peers and the ones that will tend to underperform their peers. Both Green et al. (2013) and

Harvey et al. (2015) find more than 300 articles and factors in this strand of literature.

At least since Fama and French (1992), the preferred method for establishing the validity

of factors has been to sort stocks into portfolios. For example, one can form a long-short

dollar-neutral portfolio by going long the stocks that are in the top quintile according to their

factor scores, and short the bottom quintile. Instead of quintiles, some authors may prefer

terciles, deciles, etc. The long-short portfolio is then held for a certain period of time, at which

point it is rebalanced according to freshly updated factor data. This procedure generates a

time series of portfolio returns. The factor is deemed successful if the portfolio return exceeds

some benchmark, generally zero percent, at the usual level of statistical significance. Thus, the

central quantity is the ‘Student’ t-statistic of the long-short portfolio return. This test is called

predictive in the sense that, at any point in time, portfolio formation rules involve only data

that was acquired earlier. Such investment strategies are realistic and can be implemented by

a quantitative fund manager.

This status quo poses a conundrum: How come we have a quantitative investment strategy

that does not employ the covariance matrix of asset returns? Indeed, the historical foundation

of finance as a mathematically rigorous discipline can be traced back to the discovery of

Markowitz (1952) portfolio selection. He proved that optimal portfolio weights depend not

only on (a factor that proxies for) the first moment of returns, but also on the second moment:

the covariance matrix — or, to be precise, its inverse. A more powerful test for cross-sectional

anomalies can be designed by replacing the traditional sorting procedure with a portfolio

formation rule that incorporates the (inverse) covariance matrix, at least in theory.

From theory to practice there is a gap: The true covariance matrix is unobservable, therefore

it needs to be estimated somewhow. At the epoch when the standard procedure for testing

factors crystallized around sorting, there was no covariance matrix estimator that could cope

with inversion in large dimensions. Indeed, Michaud (1989) described portfolio optimization as

an “error-maximization procedure”. Ledoit and Wolf (2004) show that the textbook estimator,

the sample covariance matrix, is ill-conditioned when the dimension is not negligible with

respect to sample size: inverting it amplifies any estimation error. This unfortunate behavior

is pushed to a numerical extreme when the number of stocks exceeds the number of time series

observations, at which point the supposedly optimal portfolio weights blow up to plus or minus

infinity for no reason whatsoever — which violates economic sense. Even with two years of

daily data at hand, this systemic breakdown happens as soon as we consider the universe of

S&P 500 constituents.
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Abandoning the theory of Markowitz portfolio selection would amount to ‘throwing the

baby out with the bathwater’. The way forward instead is to consider an improved covariance

matrix estimator that fixes the weaknesses of the sample covariance matrix, so that the

profession as a whole can move beyond sorting. This is the purpose of the present paper.

As it turns out, covariance matrix estimation has been an active field of research over the

recent years. Substantive progress has been achieved in two complementary directions.

The first direction is time series. Variances and covariances move over time, and they need

to be tracked accordingly, which the sample covariance matrix is not geared to do. Early

success in this area was achieved in the univariate case by the ARCH model of Engle (1982),

followed by generalizations such as the GARCH model of Bollerslev (1986), and too many

others to review here. Extension to the multivariate case, however, has been slowed down

by the curse of dimensionality. The main breakthroughs in this challenging area have been:

(i) volatility targeting (Engle and Mezrich, 1996); (ii) the Dynamic Conditional Correlation

(DCC) model of Engle (2002); and (iii) composite likelihood estimation (Pakel et al., 2014).

Together they solve the difficulties attributable to the time-varying aspects of the covariance

matrix — but only provided that cross-sectional issues intrinsic to the estimation of large-

dimensional unconditional covariance matrices can be fixed on their own terms.

This leads us to the second direction where substantive progress has been accomplished: the

cross-section. Stein (1986) showed that, absent a priori structural information, the eigenvectors

of the sample covariance matrix can be preserved, but its eigenvalues must be nonlinearly

shrunk towards their cross-sectional average due to systematic in-sample overfitting. He

also hinted that a nonstandard asymptotic theory might shed some light: large-dimensional

asymptotics, where the matrix dimension is assumed to go to infinity along with the sample size.

However, much work remained to be done by a variety of authors such as Silverstein and Bai

(1995) until Ledoit and Péché (2011) derived the theoretically optimal nonlinear shrinkage

formula, and Ledoit and Wolf (2012, 2015) developed a statistical implementation that works

even when dimension exceeds sample size: the NonLinear (NL) shrinkage estimator of the

unconditional covariance matrix.

The state-of-the-art developments in these two streams of covariance matrix estimation

literature are brought together for the first time in the DCC-NL model of Engle et al. (2016).

These authors examine the performance of Markowitz-optimal portfolios subject to two linear

constraints: the unit vector (for the global minimum variance portfolio) and the momentum

factor. They find that indeed the DCC-NL estimator generates economically and statistically

significant improvements in both cases.

There are two important differences between the present paper and Engle et al. (2016).

First, we do not just look at two linear constraints in the Markowitz optimization problem

but instead at a large ensemble of 60-plus different factors culled from the literature on cross-

sectional anomalies. Second, we use long-short portfolios instead of portfolios whose weights

sum up to one.

Our main original contribution is to demonstrate that using the DCC-NL estimator of

the covariance matrix in a large investment universe multiplies the ‘Student’ t-statistics
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for cross-sectional anomaly detection, on average, by a factor of more than two relative to

sorting. Therefore, it is everybody’s interest to move beyond the theoretically and empirically

underpowered procedure of sorting.

The power boost from using DCC-NL is significant because it enables factor candidates

that have a short history to get a chance at getting detected. Multiplying the t-statistic by

two is equivalent to multiplying the number of years in the dataset by approximately four.

Thus, if a given factor requires 40 years of historical data to achieve statistical significance

with sorting, with DCC-NL the same factor can attain the same level of statistical significance

in only ten years. This is especially relevant for all factors that are extracted from traffic on

social networks, as these have only been active on a massive scale for a relatively small number

of years. Given the explosion in data collection driven by the precipitous fall in storage cost

per petabyte in recent years, this is just the tip of the iceberg: Big data is young data.

On a separate but equally important note, given that Harvey et al. (2015) claim that the

significance threshold for t-statistics should be raised from two to three due to multiple-testing

issues, it will be much harder for subsequent authors to meet this hurdle. Any candidate needs

all the power boost he or she can get. Having a more accurate telescope to detect elusive

objects always constitutes scientific progress.

The methodology we use in this paper — that is, harnessing a wide variety of cross-sectional

anomalies to shed new light on an important problem in financial econometrics — is very

much in tune with recent developments in other strands of the literature that are unrelated to

covariance matrix estimation. For example, Hou et al. (2015) argue that the usefulness of a

parsimonious model of expected stock returns should be judged against its ability to explain

away a large number of cross-sectional anomalies. McLean and Pontiff (2016) measure the

speed of convergence of financial markets towards informational efficiency by computing the

decay rate of a large number of cross-sectional anomalies subsequent to academic publication.

Just as the merit for inventing DCC-NL does not belong to the present paper, the burden

of proving that it is better than the multitude of covariance matrix estimators that have been

proposed by countless authors does not fall on the present paper either. DCC-NL is the

default choice at this juncture because it is the only one that addresses concomitantly the two

major issues in the estimation of the covariance matrix of stock returns, namely conditional

heteroskedasticy and the curse of dimensionality. Our point is only to establish that DCC-NL,

as representative of best practices in covariance matrix estimation, has enough accuracy to

reinstate the covariance matrix in its rightful place at the center of the Markowitz (1952)

program and empirical asset pricing: The time has come to abandon the practice of sorting.

The paper is organized as follows. Section 2 gives a brief presentation of the DCC-NL

covariance matrix estimator. Section 3 describes the empirical methodology for comparing

test power with and without DCC-NL. Section 4 contains the empirical results. Section 5

concludes. Appendix A contains all figures and tables; Appendix B details the technique of

‘Winsorization’ that is applied to cross-sectional vectors of factors in our empirical work; and

Appendix C details the set of factors we consider and how these factors are constructed in

practice.
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2 The DCC-NL Estimator of the Covariance Matrix

This brief recapitulation is only intended to make the present paper self-contained. The

interested reader is referred to Engle et al. (2016) for the original exposition.

2.1 Time Variation in the Second Moments

The modelling and estimation of time-varying variances, covariances, and correlations requires

aggregating the contributions from three different ideas.

2.1.1 Dynamic Conditional Correlation (DCC)

A key idea promoted by Engle (2002) is that modelling conditional heteroskedasticity is easy

and successful in the univariate case, so we should take care of that prior to looking at the

covariance matrix as a whole. Thus, for every asset i = 1, . . . , N , we fit a GARCH(1,1) or

similar model to the series i individually. Dividing the raw returns by the corresponding

conditional standard deviations yields devolatilized returns that have unit variance. Call st

the N -dimensional column vector of devolatilized residuals at time t ∈ {1, 2, . . . , T}. Then the

dynamics of the pseudo-correlation matrix Qt can be specified as:

Qt = Θ + α st−1s
′

t−1 + β Qt−1 , (2.1)

where α and β are non-negative scalars satisfying α+β < 1 that govern the dynamics, and Θ is

an N -dimensional symmetric positive definite matrix. Qt is called a pseudo-correlation matrix

because its diagonal terms are close, but not exactly equal, to one. Therefore the following

adjustment is needed to recover the proper correlation matrix Rt:

Rt
..= Diag(Qt)

−1/2QtDiag(Qt)
−1/2 , (2.2)

where Diag(·) denotes the function that sets to zero all the off-diagonal elements of a matrix.

2.1.2 Volatility Targeting

The second ingredient is the notion of “variance targeting” introduced by Engle and Mezrich

(1996). Although originally invented in a univariate context, the extension to the multivariate

case of interest here is straightfoward (Engle, 2002, Eq. (11)). The basic idea is that a suitable

rescaling of the matrix Θ in equation (2.1) can be interpreted as the unconditional covariance

matrix. Therefore, it can be estimated using standard techniques that ignore time series effects,

separately from the other parameters. This approach yields the reparametrized model

Qt = Γ (1− α− β) + α st−1s
′

t−1 + β Qt−1 , (2.3)

where Γ is the long-run covariance matrix of the devolatilized returns st for t = 1, . . . , T .1

1Since the devolatilized returns all have unit variance, Γ is actually a proper correlation matrix, that is, its

diagonal elements are all equal to one.
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2.1.3 Composite Likelihood

After having dealt with the conditional variances and partialled out the problem of estimating

the unconditional covariance matrix, the only remaining task is to estimate the dynamic

correlation parameters α and β. These two scalars play the same role as their counterparts

in the more familiar ARMA(1,1) and GARCH(1,1) models, but for conditional correlation

matrices.

When the matrix dimension is large, say N = 1000, the standard likelihood maximization

technique would require inverting T matrices of dimension 1000 × 1000 at every iteration,

which is numerically challenging. Pakel et al. (2014) found a more efficient solution called the

2MSCLE method: combine the individual likelihoods generated by 2× 2 blocks of contiguous

variables. Maximizing this composite likelihood yields asymptotically consistent estimators

for α and β, as long as the DCC model is well-specified. The intuition is that every individual

correlation coefficient shows traces of the dynamic parameters α and β in its own time series

evolution, so a sufficiently large subset of individual correlations will reveal (a consistent

approximation of) the true parameters. The advantage of this procedure is that it is numerically

stable and fast in high dimensions; for example, Engle et al. (2016) manage to take it to a large

universe of N = 1000 stocks.

2.1.4 DCC Estimation Procedure

To summarize, the estimation of the DCC model unfolds in three steps:

1. Fit a univariate GARCH(1,1) model to every stock return series individually, and divide

the raw returns by their conditional standard deviations to devolatilize them.

2. Estimate the unconditional covariance matrix of devolatilized returns somehow.

3. Maximize the 2MSCLE composite likelihood to obtain consistent estimators of the two

parameters of correlation dynamics in a numerically stable and efficient way.

At this juncture, it becomes apparent from step 2 that we need an estimator of the

unconditional covariance matrix of devolatilized returns that performs well when the dimension

is large.2

2.2 Estimation of Large-Dimensional Unconditional Covariance Matrices

The reader is invited to peruse Ledoit and Wolf (2012, 2015) for a more detailed treatment.

2Note that in practice the devolatilized returns have to be based on estimated univariate GARCH models

rather than the ‘true’, unobservable univariate GARCH models.

6



2.2.1 Spectral Decomposition

The textbook estimator of Γ is the sample covariance matrix C ..=
∑T

t=1 sts
′

t/T . Both matrices

admit spectral decompositions:

C =
N∑

i=1

λi · uiu
′

i and Γ =
N∑

i=1

τi · viv′

i , (2.4)

where (λ1, . . . , λN ;u1, . . . ,uN ) denotes a system of eigenvalues and eigenvectors of the

sample covariance matrix C, and (τ1, . . . , τN ;v1, . . . ,vN ) denotes a system of eigenvalues and

eigenvectors of the population covariance matrix Γ . Eigenvalues are indexed in ascending order

without loss of generality.

In the traditional asymptotic framework, where the sample size T goes to infinity, while

the number of assets N remains constant, the sample eigenvalue λi is a consistent estimator

of its population counterpart τi, and the sample eigenvector ui is a consistent estimator of its

population counterpart vi, for i = 1, . . . , N . However, this asymptotic framework is not robust

against the curse of dimensionality. When N is no longer negligible with respect to T , the

sample spectrum is far from its population counterpart.

This is why it is necessary to turn to another asymptotic framework that offers a different

family of analytical solutions. Unlike the formulas from traditional asymptotics, they work

also if N is not negligible with respect to T , and even if N is greater than T . The key

assumption is that the ratio N/T converges to some limit c ∈ [0,+∞) called the concentration

(ratio). This framework is called large-dimensional asymptotics, and it includes traditional

(fixed-dimensional) asymptotics as a special case when the concentration c is equal to zero.

Thus, it is a generalization of traditional asymptotics that is able to cope with the curse of

dimensionality by making necessary corrections (whose intensity increases in c) to the standard

formulas.

2.2.2 Portfolio Selection

Stein (1986) argued that, in the absence of a priori knowledge about the structure of the

eigenvectors of the (unobservable) population covariance matrix Γ , estimators should preserve

the sample covariance matrix eigenvectors (u1, . . . ,uN ), and correct the sample eigenvalues

only. This framework is called rotation-equivariant because the economic outcome is immune

to repackaging the N original stocks into a collection of N funds investing in these stocks,

as long as the funds span the same investment universe as the stocks.

It is easy to show that, among rotation-equivariant estimators of the covariance matrix,

the one that performs the best across all possible linear constraints for the purpose of portfolio

selection in terms of minimizing out-of-sample variance is:

C̃ ..=
N∑

i=1

(
u′

iΓui︸ ︷︷ ︸
φi

)
· uiu

′

i . (2.5)
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This makes economic sense because u′

iΓui is the out-of-sample variance of the portfolio whose

weights are given by the ith sample eigenvector ui. Thus we notice the emergence of a third

quantity, after the sample eigenvalue λi = u′

iCui, and the population eigenvalue τi = v′

iΓvi:

the hybrid φi
..= u′

iΓui, which represents the best we can do with the sample eigenvectors.

The key is that, under large-dimensional asymptotics, the vectors λ ..= (λi)i=1,...,N ,

τ ..= (τi)i=1,...,N , and φ ..= (φi)i=1,...,N are all far apart from one another. It is only as the

concentration c goes to zero, that is, as we approach standard (fixed-dimension) asymptotics,

that their mutual differences vanish. When c > 0, which is the case when the investment

universe is large, appropriate corrections must be applied to go from λ to τ to φ.3 Qualitatively,

λ, τ , and φ have the same cross-sectional average, but λ is more dispersed than τ , which in

turn is more dispersed than φ.

2.2.3 NonLinear (NL) Shrinkage Estimator of the Covariance Matrix

The ideal would be to have two deterministic functions ΛN,T and ΦN,T from [0,+∞)N to

[0,+∞)N mapping out the two important expectations:

τ 7−→ΛN,T (τ ) ..=
(
ΛN,T
1 (τ ) , . . . ,ΛN,T

N (τ )
)
=

(
E[λ1] , . . . ,E[λN ]

)
=

(
E[u′

1Cu1] , . . . ,E[u
′

NCuN ]
)

τ 7−→ΦN,T (τ ) ..=
(
ΦN,T
1 (τ ) , . . . , ΦN,T

N (τ )
)
=

(
E[φ1] , . . . ,E[φN ]

)
=

(
E[u′

1Γu1] , . . . ,E[u
′

NΓuN ]
)

Then we would use the observed eigenvalues of the sample covariance matrix, λ, to reverse-

engineer an estimator of the population eigenvalues by solving the optimization problem

τ̂ ..= argmin
t∈[0,+∞)N

1

N

N∑

i=1

(
ΛN,T
i (t)− λi

)2
, (2.6)

and the nonlinear shrinkage estimator of the covariance matrix would follow as

Ĉ ..=
N∑

i−1

ΦN,T
i (τ̂ ) · uiu

′

i . (2.7)

Due to tractability issues, however, we only know approximations to the functions ΛN,T

and ΦN,T that are valid asymptotically as the universe dimension N goes to infinity along with

the sample size T , with their ratio N/T converging to the concentration c. Ledoit and Wolf

(2012, 2015) show that replacing the true expectation functions with their approximations

can be done at no loss asymptotically. Therefore, this procedure yields a nonlinear shrinkage

estimator of the covariance matrix that is optimal in the large-dimensional asymptotic limit.

Qualitatively speaking, the effect of composing ΦN,T with the inverse of ΛN,T (or

approximations thereof) moves the sample eigenvalues closer to one another, while preserving

their cross-sectional average. The effect is increasing in N/T and highly nonlinear; for example,

isolated eigenvalues that lie near the bulk of the other eigenvalues move in the direction of

the bulk more than those distant from the bulk.
3Correcting these relationships when the ratio of variables to observations is significant is analogous to

correcting Newtonian relationships when the ratio of velocity to speed of light is significant (Einstein, 1905).
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2.3 DCC-NL Model

In summary, the estimation of the DCC-NL model of Engle et al. (2016) proceeds as follows:

1. Fit univariate GARCH models to devolatilize returns.

2. Compute the sample covariance matrix of devolatilized returns.

3. Decompose it into eigenvalues and eigenvectors.

4. Invert an approximation of the function ΛN,T to estimate population eigenvalues.

5. Apply an approximation of the function ΦN,T to shrink eigenvalues nonlinearly.

6. Recompose with the sample eigenvectors to estimate the unconditional covariance

matrix Γ in (2.3).

7. Transform the resulting estimator of Γ from a covariance matrix to a proper correlation

matrix.4

8. Maximize the 2MSCLE composite likelihood to estimate the correlation dynamics.

9. Recombine the estimated conditional correlation matrix with the estimated univariate

GARCH processes to obtain an estimated conditional covariance matrix.

The outside steps (1–2 and 7–9) compose the DCC part, while the inside steps (3–6) compose

the NL part of the DCC-NL estimation procedure. The final product is a time-series of N -

dimensional conditional covariance matrix estimates, which we call (Ht)t=1,...,T . More explicit

formulas are in Engle et al. (2016).

3 Empirical Methodology

The goal is to construct long-short portfolios exposed to a given factor. The size of the

investment universe is denoted by N , and stocks in this universe are indexed by i. Days on

which investment and trading takes place are indexed by t. The cross-sectional vector of factor

scores observable at the beginning of day t is denoted by mt
..= (mt,1, . . . ,mt,N )′. A long-short

portfolio is defined by a weight vector wt
..= (wt,1, . . . , wt,N )′ that satisfies

∑

wt,i<0

|wt,i| =
∑

wt,i>0

|wt,i| = 1 . (3.1)

Note that the weights of such a long-short portfolio necessarily sum to zero.

3.1 Portfolios Based on Sorting

Let B be the number of quantiles considered; for example, B = 3 for terciles, B = 5 for

quintiles, and B = 10 for deciles. Let d be the largest integer that is smaller than or equal

to N/B. Finally, let {(1), (2), . . . , (N)} be permutation of {1, 2, . . . , N} that results in ordered

factor scores (from smallest to largest):

mt,(1) ≤ mt,(2) ≤ . . . ≤ mt,(N) . (3.2)

4Doing so is motivated by the fact that Γ itself is a proper correlation matrix, as pointed out previously.
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Then the long-short portfolio based on sorting is given by the weight vector wSo
t with

wSo

t,(1) = . . . = wSo

t,(d)
..= −1/d , (3.3)

wSo

t,(d+1) = . . . = wSo

t,(N−d)
..= 0 , and (3.4)

wSo

t,(N−d+1) = . . . = wSo

t,(N)
..= 1/d . (3.5)

The resulting portfolio return is denoted by rSo
t

..= x′

tw
So
t , where xt is the N × 1 vector of

returns at date t.

3.2 Markowitz Portfolios

The Markowitz investment problem is formulated as

min
w

w′Htw (3.6)

subject to m′

tw = m′

tw
So
t , and (3.7)

∑

wi<0

|wi| =
∑

wi>0

|wi| = 1 , (3.8)

where Ht is the DCC-NL estimate of the covariance matrix of xt. Denote a solution of this

investment problem by wMa
t . The resulting portfolio return is denoted by rMa

t
..= x′

tw
Ma
t .

The motivation here is that we want to construct a portfolio that has the same expected

return as the portfolio based on sorting (according to the vector of factors mt) because of (3.7)

but has a smaller variance because of (3.6). If this goal is accomplished, then the resulting

portfolio returns will generally result in a larger (in magnitude) ‘Student’ t-statistic (3.10)

below, since the smaller variance of the returns will result in a smaller standard error in the

denominator of the t-statistic whereas the sample average in numerator will be roughly the

same. It is key to have an accurate estimate of the covariance matrix of xt in order to achieve

this goal: this where the DCC-NL model comes in.

3.3 Tests for Predictive Ability

The ability of a factor to forecast the cross-section of stock returns is judged by whether a

long-short portfolio exploiting the factor can deliver returns with a positive expected value. In

particular, we consider the hypothesis testing problem

H0 : E(r
St
t ) = 0 vs. H1 : E(r

St
t ) 6= 0 , (3.9)

where St ∈ {So,Ma} stands for one of the two strategies, sorting or Markowitz. The testing

problem (3.9) is two-sided, since it generally cannot be ruled out a priori that the factor works

in the opposite way as intended, that is, that the long-short portfolio delivers returns with a

negative expected value.

The test is based on observed strategy returns rSt
t , t = 1, . . . , T . The ‘Student’ t-statistic

of the test is given by

tSt ..=
r̄St

SE(r̄St)
with r̄St ..=

1

T

T∑

t=1

rSt
t , (3.10)
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where SE(r̄St) denotes a standard error of r̄St. The common choice in the literature for such

a standard error is the ‘näıve’ standard error based on an assumption of independent and

identically distributed (i.i.d.) returns. Specifically, it is given by sSt/
√
T , where sSt denotes

the sample standard deviation of the observed returns rSt
t , t = 1, . . . , T .

Instead, we consider it important to use a HAC standard error that is robust against

heteroskedasticity and serial correlation in the returns. In particular, we use the standard

error based on the quadratic spectral (QS) kernel with automatic choice of bandwidth as

detailed in Andrews (1991).

The common critical value in the literature is two: If the t-statistic is larger than two, the

factor is deemed successful. On the other hand, Harvey et al. (2015) call for a more demanding

critical value of three due to multiple-testing issues.

4 Empirical Analysis

4.1 Data and General Portfolio-Formation Rules

We download daily stock return data from the Center for Research in Security Prices (CRSP)

starting in 01/01/1980 and ending in 12/31/2015. We restrict attention to stocks from the

NYSE and NASDAQ stock exchanges. For simplicity, we adopt the common convention that

21 consecutive trading days constitute one ‘month’. The out-of-sample period ranges from

01/08/1986 through 12/31/2015, resulting in a total of 360 ‘months’ (or 7560 days). All

portfolios are updated ‘monthly’.5 We denote the investment dates by h = 1, . . . , 360. At any

investment date h, the Markowitz portfolio (3.6)–(3.8) uses the DCC-NL estimate Ht of the

covariance matrix based on the most recent 1250 daily returns, which roughly corresponds to

using to five years of past data. The portfolio based on sorting uses quintiles, which seems

to be the most common choice in the literature.

We consider the following portfolio sizes: N ∈ {100, 500, 1000}. For a given combination

(h,N), the investment universe is obtained as follows. We find the set of stocks that have

a complete return history over the most recent T = 1250 days as well as a complete return

‘future’ over the next 21 days.6 We then look for possible pairs of highly correlated stocks,

that is, pairs of stocks that have returns with a sample correlation exceeding 0.95 over the past

1250 days. With such pairs, if they should exist, we remove the stock with the lower volume of

the two on investment date h.7 Of the remaining set of stocks, we then pick the largest N stocks

(as measured by their market volume on investment date h) as our investment universe. In

5‘Monthly’ updating is common practice to avoid an unreasonable amount of turnover and thus transaction

costs. During a ‘month’, from one day to the next, we hold number of shares fixed rather than portfolio weights;

in this way, there are no transactions at all during a ‘month’.
6The latter, ‘forward-looking’ restriction is not a feasible one in real life but is commonly applied in the

related finance literature on the out-of-sample evaluation of portfolios.
7The reason is that we do not include highly similar stocks, or even the same stock, listed under two different

permanent issue identification numbers (PERMNOs) in the CRSP database. In the early years, there are no

such pairs; in the most recent years, there are never more than three such pairs.
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this way, the investment universe changes slowly from one investment date to the next.

We consider a total of 61 factors taken from Green et al. (2013) and Hou et al. (2015);

the corresponding data are downloaded from the merged CRSP/Compustat database. Table 1

lists the factors and Appendix C contains a detailed description of how the factor scores are

computed. Note that for N = 1000, there are not sufficient data available for factors 23, 32, 37,

and 51–56. We apply ‘Winsorizaton’ to any cross-sectional vector of factor scores mt in order

to migitate potential problems with ‘outlying’ scores that are unusually large in magnitude;

see Appendix B for the corresponding details.

4.2 Results

The individual t-statistics are detailed in Table 2. Not surprisingly, in some cases the t-

statistic based on sorting is negative (though generally not significantly so). It can be assumed

that the corresponding factors will be discarded immediately by a researcher, since they can

never be established as successful based on a negative t-statistic. For each universe size

N ∈ {100, 500, 1000}, we therefore restrict attention to factors for which sorting yields a

positive t-statistic. For such factors, we also present the value of the ratio of the two t-statistics:

the one based on Markowitz divided by the one based on sorting.

Table 3 presents the average ratio for each universe size N ∈ {100, 500, 1000}. The average
ratio is always larger than two, meaning that, on average, the t-statistic more than doubles

when a researcher upgrades from Sorting to Markowitz.

It is natural to ask whether these averages might be influenced by a few ‘outlying’ ratios

which can occur when the t-statistic based on sorting (which appears in denominator) is close

to zero. For example, take the case of factor 33 with a universe size N = 100. In this case,

the t-statistic based on sorting equals 0.020 whereas the t-statistic based on Markowitz equals

1.048, resulting in a ratio of 52.4. Consequently, we also compute averages only for cases where

the t-statistic based on sorting is bounded away from zero. First, we only consider cases where

the t-statistic based on sorting is larger than 0.5; second, we only consider cases where the

t-statistic based on sorting is larger than 1.0. The corresponding averages are also found in

Table 3. It can be seen that the averages decrease as the lower bound increases (from 0 to 0.5

to 1.0), especially forN = 100. But when the lower bound is 0.5, the averages forN = 500, 1000

still exceed two; and when the lower bound is 1.0, the averages for N = 500, 1000 are still close

to two (if less than two now). Therefore, the impressive power gains of Markowitz over sorting

are not driven by a few t-statistics based on sorting that are close to zero.

Arguably, it is of main interest how much the number (and proportion) of significant factors

increase when a researcher upgrades from sorting to Markowitz. The common critical value

in the literature for the value of a t-statistic is two. On the other hand, Harvey et al. (2015)

argue that a critical value of three should be used instead due to multiple-testing issues. We

consider both critical values, two and three, in Table 4. One can see that for both strategies,

So(rting) and Ma(rkowitz), the number (and proportion) of significant factors increase in N ;

therefore, it is in the best interest of researchers to use as large an investment universe as
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possible. One can further see that the number (and proportion) of significant factors are much

bigger for Markowitz compared to sorting. In particular, when a critical value of three is used,

the number (and proportion) of significant factors more than double for all universe sizes.

5 Conclusion

This paper demonstrates that, in accordance with the theory of Markowitz (1952), the portfolio

selection rule in predictive tests of cross-sectional anomalies should incorporate a suitable

estimator of the covariance matrix of stock returns. When a researcher upgrades from simplistic

sorting to Markowitz portfolio optimization based on the DCC-NL covariance matrix estimator

of Engle et al. (2016), ‘Student’ t-statistics, on average, more than double — across a large

panel of return-predictive signals (or “factors”) — when the investment universe is large.

This power boost is especially needed because multiple-testing issues may justify raising the

t-statistic significance threshold from its usual level of two to a more demanding level of three,

as proposed by Harvey et al. (2015). The power boost also cures the inherent handicap of

short-history datasets by multiplying the effective number of years by approximately four in

large dimensions. Cross-sectional testing methodologies that do not use a suitable estimator of

the covariance matrix, such as DCC-NL, are underpowered and their use should be abandoned.

Directions for further research include (i) using more flexible univariate models than the

straightforward GARCH(1,1) to devolatilize individual return series in the first step of the

procedure (such as models that incorporate asymmetric responses) and (ii) pre-conditioning

the cross-section of stock returns by a low-dimensional model with exogenous risk factors.
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A Tables

Table 1: List of factors

Number Name

1 11-month momentum, 11-MM

2 1-month momentum (reversal), 1-MM

3 6-month momentum, 6-MM

4 Maximum daily return in prior month (reversal), Mxret

5 Change in 6-month momentum (reversal), ∆6-MM

6 Cumulative abnormal stock returns around earnings announcement, Abr

7 Dollar trading volume from month t− 2 (reversal), Dvol

8 Firm size (reversal), ME

9 Book-to-market, B/M

10 Asset growth, Agr

11 Earnings-to-price, E/P

12 Change in long-term debt (reversal), ∆lgr

13 Change in common shareholder equity, ∆ceq

14 Cash flow from operation, Cflow

15 Cash-to-price (reversal), Cash

16 Dividend yield, D/P

17 Payout yield, O/P

18 Net payout yield, NO/P

19 Sales growth, SG

20 Market leverage, A/ME

21 Abnormal volume in earnings announcement month, Aevol

22 Earnings surprise, Sue

23 Change in order backlog, OB

24 Working capital accrual (reversal), Acc

25 Capital expenditures and inventory (reversal), ∆capx

26 Changes in inventory (reversal), Cii

27 Abnormal corporate investment (reversal), Aci

28 Net stock issues (reversal), Nsi

29 Net operating assets (reversal), Noa

30 Investment growth (reversal), IG

31 Net external financing (reversal), Nxf

32 Composite issuance (reversal), Cei

33 Total accruals (reversal), TA/A

34 Inventory growth (reversal), Ivg

35 Percent operating accruals (reversal), Poa
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Table 1 continued

Number Name

36 Percent total accruals (reversal), Pta

37 Change in deferred revenues, ∆drev

38 F-score

39 Change in profit margin, ∆PM

40 Asset turnover, Ato

41 Change in tax expense, ∆tax

42 Return on assets, Roa

43 Gross profits-to-assets, Gma

44 Return on invested capital, Roic

45 Return on equity, Roe

46 Return on net operating assets, Rna

47 Taxable income-to-book income, TI/BI

48 Capital turnover, Cto

49 O-score

50 Employee growth rate (reversal), Egr

51 Change in advertising expense, ∆ade

52 R&D increase, Rdi

53 Advertisement expense-to-market, Ad/M

54 R&D-to-sales, RD/S

55 R&D-to- market, RD/M

56 R&D capital-to-assets, Rc/A

57 Operating leverage, OL

58 Turn (reversal)

59 Total Volatility (reversal), Tvol

60 Accrual Volatility (reversal), Avol

61 Cash flow volatility (reversal), Cvol
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Table 2: Results. The columns labeled So contain the t-statistics (3.10) based on sorting; the

columns labeled Ma contain the test statistics (3.10) based on Markowitz; the columns labeled

Ma/So contain the corresponding ratios Ma/So for the cases when So is positive. NaN denotes

missing values due to lack of sufficient data. NoI stands for “Not of Interest” and corresponds

to cases when So is negative.

Number N = 100 N = 500 N = 1000

So Ma Ma/So So Ma Ma/So So Ma Ma/So

1 1.441 2.611 1.81 1.398 1.758 1.26 1.402 1.671 1.19

2 0.115 2.664 23.18 0.816 4.862 5.96 1.074 5.064 4.71

3 −0.296 0.051 NoI 0.312 -0.397 1.27 0.560 −0.595 1.06

4 0.483 0.710 1.47 −0.156 −0.820 NoI −0.498 −2.812 NoI

5 0.217 0.623 2.88 1.198 2.422 2.02 1.342 2.433 1.81

6 1.259 1.698 1.35 2.658 3.066 1.15 3.219 4.460 1.39

7 −0.529 0.222 NoI 1.612 4.202 2.61 2.998 4.100 1.37

8 0.219 0.766 3.50 1.147 3.801 3.31 2.323 3.038 1.31

9 −0.123 −0.550 NoI 0.640 1.116 1.74 1.047 1.736 1.66

10 −0.056 0.249 NoI 0.016 0.235 14.62 0.573 1.050 1.83

11 2.411 4.672 1.94 4.544 11.085 2.44 5.345 15.716 2.94

12 0.517 1.854 3.58 0.849 2.875 3.39 2.056 4.257 2.07

13 1.006 0.717 0.71 2.671 4.075 1.53 3.308 7.862 2.38

14 5.306 6.088 1.15 6.713 9.825 1.46 7.108 16.031 2.26

15 1.820 3.361 1.85 2.807 5.667 2.02 3.864 6.434 1.67

16 −0.417 1.201 NoI −0.291 0.995 NoI −1.160 0.399 NoI

17 0.857 1.519 1.77 0.892 2.888 3.24 0.726 3.418 4.71

18 0.729 1.467 2.01 0.503 3.373 6.70 0.536 4.981 9.29

19 0.282 1.066 3.78 1.533 4.779 3.12 2.752 7.416 2.69

20 −0.661 −0.922 NoI 0.133 0.388 2.91 0.451 0.884 1.96

21 0.889 1.028 1.16 2.212 1.976 0.89 2.259 4.263 1.89

22 2.417 3.260 1.35 4.854 10.062 2.07 8.116 16.914 2.08

23 −0.064 −0.180 NoI −0.300 1.683 NoI NaN NaN NaN

24 3.046 4.703 1.54 5.102 7.006 1.37 7.363 10.803 1.47

25 0.631 1.883 2.98 1.579 3.964 2.51 3.287 5.050 1.54

26 1.340 2.221 1.66 1.886 3.748 1.99 2.715 4.589 1.69

27 1.406 2.581 1.84 3.346 3.975 1.19 3.760 5.354 1.42

28 −0.382 1.507 NoI 1.531 2.718 1.78 1.411 3.437 2.44

29 2.741 1.823 0.67 3.697 4.012 1.086 3.486 5.296 1.52

30 0.929 1.499 1.61 2.461 4.305 1.75 2.759 4.033 1.46

31 2.309 1.548 0.67 2.595 2.766 1.07 2.726 5.671 2.08

32 1.136 1.089 0.96 1.647 3.756 2.28 NaN NaN NaN
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Table 2 continued

Number N = 100 N = 500 N = 1000

So Ma Ma/So So Ma Ma/So So Ma Ma/So

33 0.020 1.048 52.40 1.857 3.354 1.81 3.068 3.422 1.12

34 1.516 2.138 1.41 1.874 4.336 2.31 2.945 4.801 1.63

35 1.736 2.975 1.71 2.174 3.461 1.59 4.229 6.919 1.64

36 1.397 1.711 1.22 1.555 3.418 2.20 2.450 3.249 1.33

37 2.257 1.069 0.47 3.491 4.098 1.17 NaN NaN NaN

38 0.541 1.304 2.41 1.505 3.097 2.06 1.368 4.478 3.27

39 2.012 2.500 1.24 3.482 7.704 2.21 5.778 11.764 2.04

40 1.427 2.452 1.72 2.339 3.259 1.39 2.802 4.576 1.63

41 1.761 2.924 1.66 4.557 8.957 1.97 6.968 15.678 2.25

42 2.302 3.641 1.58 3.538 6.453 1.82 4.459 10.142 2.27

43 1.963 3.798 1.93 2.424 4.320 1.78 2.964 6.265 2.11

44 2.435 4.010 1.65 3.105 5.941 1.91 4.165 9.310 2.24

45 2.537 3.207 1.26 4.297 7.340 1.71 4.975 11.897 2.39

46 3.243 4.532 1.40 3.869 5.956 1.54 4.506 9.812 2.18

47 1.414 2.424 1.71 1.031 2.626 2.55 0.752 3.208 4.26

48 1.822 1.964 1.08 1.605 2.543 1.58 2.435 3.876 1.59

49 −2.158 −0.915 NoI −1.474 −0.620 NoI 0.532 −1.696 −3.19

50 0.573 0.350 0.61 0.802 2.028 2.53 1.261 2.701 2.14

51 0.919 0.320 0.35 −0.011 0.657 NoI NaN NaN NaN

52 −0.638 0.174 NoI −0.614 −0.320 NoI NaN NaN NaN

53 0.213 1.200 5.63 2.018 1.110 0.55 NaN NaN NaN

54 0.719 1.204 1.67 1.550 3.333 2.15 NaN NaN NaN

55 1.553 1.312 0.84 3.348 4.737 1.42 NaN NaN NaN

56 1.132 1.762 1.56 1.960 5.521 2.82 NaN NaN NaN

57 1.463 1.899 1.30 1.718 2.370 1.38 2.675 3.376 1.26

58 −0.211 −0.882 NoI −0.347 0.213 NoI −0.175 0.691 NoI

59 0.114 1.244 10.95 −0.251 0.408 NoI −0.548 −1.158 NoI

60 1.653 1.172 0.71 1.138 1.087 0.95 0.602 1.955 3.25

61 2.486 1.738 0.70 2.758 2.257 0.82 2.862 2.999 1.05
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N So > 0 So > 0.5 So > 1.0

100 3.29 1.45 1.33

500 2.24 2.04 1.79

1000 2.05 2.05 1.93

Table 3: Averages based on the columns labeled Ma/So in Table 2. The second column reports

averages when the t-statistic based on sorting is positive; the third column reports averages

when the t-statistic based on sorting is greater than 0.5; and the fourth column reports averages

when the t-statistic based on sorting is greater than 1.0.

Critical value = 2

N So Ma So Ma

100 13 20 0.21 0.33

500 25 45 0.41 0.74

1000 33 41 0.63 0.79

Critical value = 3

N So Ma So Ma

100 3 10 0.05 0.16

500 14 35 0.23 0.57

1000 18 38 0.35 0.73

Table 4: Number (columns two and three) and proportion (columns four and five) of the

t-statistics in Table 2 whose value exceed two (left panel) and three (right panel), respectively.
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B Winsorization of Factor Scores

‘Outlying’ factor scores that are unusually large in magnitude can have undesirable impacts

when used as input in Markowitz optimization. We migitate this potential problem by properly

truncating very small and very large values in any cross-sectional vector of factor scores mt.

Such truncation is commonly referred to as ‘Winsorization’, a method that is widely used by

quantitative portfolio managers; for example, see (Chincarini and Kim, 2006, Appendix 5B).

Consider a generic vector a ..= (a1, . . . , aN )′. We first compute a robust measure of location

that is not (heavily) affected by potential outliers. To this end, we use the trimmed mean of

the data with trimming fraction η ∈ (0, 0.5) on the left and on the right. This number is simply

the mean of the middle (1− 2η) · 100% of the data. More specifically, denote by

a(1) ≤ a(2) ≤ . . . ≤ a(N) (B.1)

the ordered data (from smallest to largest) and denote by

M ..= ⌊η ·N⌋ (B.2)

the smallest integer less than or equal to η · N . Then the trimmed mean with trimming

fraction η is defined as

aη
..=

1

N − 2M

N−M∑

i=M+1

a(i) . (B.3)

We employ the value of η = 0.1 in practice.

We next compute a robust measure of spread. To this end, we use the mean absolute

deviation (MAD) given by

MAD(a) ..=
1

N

N∑

i=1

|ai −med(a)| , (B.4)

where med(a) denotes the sample median of a1, . . . , aN .

We next compute upper and lower bounds defined by

alo
..= a0.1 − 5 ·MAD(a) and aup

..= a0.1 + 5 ·MAD(a) . (B.5)

The motivation here is that for a normally distributed sample, it will hold that a ≈ a0.1 and

s(a) ≈ 1.5 · MAD(a), where a and s(a) denote the sample mean and the sample median of

a1, . . . , aN , respectively. As a result, for a ‘well-behaved’ sample, there will usually be no points

below alo or above aup. Our final truncation rule is that any data point ai below alo will be

changed to alo and any data point ai above aup will be changed to aup.

We then apply this truncation rule to the cross-sectional vector of factor scores mt in place

of the generic vector a.
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C Description of Factors

Daily data used are from the Center for Research in Security Prices (CRSP), including holding

period returns (item ret), return without dividends (item retx), prices (item prc), number of

shares traded (item vol), number of shares outstanding (item csho), factor to adjust shares

(item ajex), and value-weighted return (item vwretd). The other data are from the Compustat

Annual and Quarterly Fundamental Files. For each factor, we describe how the factor scores

are computed at a generic investment date h = 1, . . . , 360.

C.1 Momentum

C.1.1 11-MM

Following Fama and French (1996), we calculate 11-month momentum (11-MM) as the average

return over the previous 12 months but excluding the most recent month. That is, we compute

the average return from day h− 252 through day h− 22.

C.1.2 1-MM

Following Jegadeesh and Titman (1993), we calculate 1-month momentum (1-MM) as the

average return from day h− 21 through day h− 1. Reversal of 1-MM (that is, the negative of

1-MM) is used as the actual factor.

C.1.3 6-MM

Following Jegadeesh and Titman (1993), we calculate 6-month momentum (6-MM) as the

average return over the previous seven months but excluding the most recent month. That is,

for any investment date date h, we compute the average return from day h − 147 through

day h− 22.

C.1.4 Mxret

Following Bali et al. (2011), Mxret is the maximum daily return from day h − 21 through

day h− 1. Reversal of Mxret is used as the actual factor.

C.1.5 ∆6-MM

Following Gettleman and Marks (2006), change in 6 month momentum(∆6-MM) is calculated

as current 6-MM minus previous 6-MM (that is, 6-MM at investment date h− 1). Reversal of

∆6-MM is used as the actual factor.
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C.1.6 Abr

Following Chan et al. (1996), we measure cumulative abnormal stock return (Abr) around the

latest quarterly earnings announcement date as

Abri ..=

1∑

d=−2

(rid − rmd) , (C.1)

where rid and rmd are, respectively, the return of stock i and the value-weighted return of the

market index (item vwretd) on day d, where d = 0 represents the earnings announcement day

(quarterly item rdq). For stock i, at every investment date h, we use the most recent earnings

announcement day as long as the day is at least two days earlier than the investment day

(to make sure that ri(d=1) is available).

C.2 Value-versus-growth

C.2.1 Dvol

Dvol is the dollar trading volume in the latest-but-one month (that is, from day h−42 through

day h− 22). As in Chordia et al. (2001), we measure it as the natural log of the sum of daily

dollar trading volume during that period. Daily dollar trading volume is share price (item prc)

times the number of shares traded (item vol). Reversal of Dvol is used as the actual factor.

C.2.2 ME

Banz (1981) proposes firm size as a factor. We use the market capitalization (ME) of one

day before the investment day (that is, on day h − 1) as firm size. ME is calculated as price

(item prc) times shares outstanding (item csho). Reversal of ME is used as the actual factor

C.2.3 B/M

Rosenberg et al. (1985) propose book-to-market as a factor. We measure it as the ratio of book

equity to market capitalization on the day before the investment day (that is, on day h − 1);

here, book equity is computed from the most recently announced quarterly data. Our measure

of the book equity is the quarterly version of the annual book equity measure in Davis et al.

(2000). In particular, it is the book value of common equity (item ceqq) plus the par value

of preferred stock (item pstkq), plus balance-sheet deferred taxes and investment tax credit

(item txditcq), and then minus the book value of preferred stock. We use redemption value

(item pstkrq, zero if missing) for the book value of preferred stock.

C.2.4 Agr

To construct the Cooper et al. (2008) asset growth (Agr) factor, we divide the total assets

(item atq) by 1-quarter-lagged total assets; item atq uses the most recently announced quarterly

data. Reversal of Agr is used as the actual factor.
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C.2.5 E/P

Following Basu (1983), earnings-to-price (E/P) is calculated as income before extraordinary

items (item ibq) divided by the market capitalization (ME) on day h − 1; item ibq uses the

most recently announced quarterly data.

C.2.6 ∆lgr

Following Scott et al. (2005), we measure change in long-term debt (∆lgr) as long-term debt

(item lt) divided by 1-year-lagged long-term debt minus one; item lt uses the most recently

announced quarterly data. Reversal of ∆lgr is used as the actual factor.

C.2.7 ∆ceq

Following Scott et al. (2005), we measure change in common shareholder equity (∆ceq) as

common shareholder equity (item ceqq) divided by 1-quarter-lagged common shareholder

equity minus one; item ceqq uses the most recently announced quarterly data.

C.2.8 Cflow

Following Houge and Loughran (2000), we define cash flow from operation (Cflow) as net cash

flow from operations in the most recently announced quarter scaled by the average of total

assets (item atq) for the two previous quarters. Instead of using the item oancf (net cash flow

from operations) directly, we use net income (item niq) minus operating accruals (OA) because

these items have a broader coverage than oancf, and they have quarterly data. To measure OA,

we use the balance-sheet approach of Sloan (1996), that is,

OA ..= (∆actq−∆cheq)− (∆lctq−∆dlcq−∆txpq)− dpq , (C.2)

where ∆ represents the change in the corresponding item, and items actq, cheq, lctq, dlcq,

txpq, dpq are corresponding to the quarterly data of current assets, cash and cash equivalents,

current liabilities, debt included in current liabilities (zero if missing), income taxes payable

(zero if missing), depreciation and amortization(zero if missing), respectively. Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.2.9 Cash

Following Chandrashekar and Rao (2009), cash to price (Cash) is computed as

Cash ..= (ME+ dlttq− atq)/cheq , (C.3)

where ME is the market capitalization on day h − 1, and items dlttq, atq, and cheq are all

quarterly data corresponding to long-term debt, total asset, and cash or cash equivalents,

respectively; all these items use the most recently announced quarterly data. Reversal of Cash

is used as the actual factor.
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C.2.10 D/P

As in Litzenberger and Ramaswamy (1979), dividend yield (D/P) is measured as the total

dividends paid out from the previous year (that is, from day h−252 through day h−1) divided

by ME on day h − 1. The total dividends are calculated by accumulating daily dividends,

and the daily dividends is measured as the difference between cum- and ex-dividend returns,

which are respectively corresponding to holding period returns (item ret) and return without

dividends (item retx), times the 1-day-lagged ME.

C.2.11 O/P

Following Boudoukh et al. (2007), total payouts (O/P) are dividends on common stock (dvc)

plus repurchases of the previous year (that is, from day h − 252 through day h − 1) divided

by ME on day h− 1. Repurchases are the total expenditure on the purchase of common and

preferred stocks (item prstkc) minus the change over the previous year in the value of the net

number of preferred stocks outstanding (item pstkrv).

C.2.12 NO/P

Following Boudoukh et al. (2007), net payouts (NO/P) are the same as total payouts except

that the equity issuances have to be subtracted from the total payouts. Equity issuances are

the sale of common and preferred stock (item sstk) minus the change over the previous year

in the value of the net number of preferred stocks outstanding (item pstkrv).

C.2.13 SG

Lakonishok et al. (1994) propose sales growth (SG) as a factor. We measure it as the growth

rate in sales (item saleq) from quarter t− 2 through quarter t− 1, where t denotes the current

quarter.

C.2.14 A/ME

Following Bhandari (1988), A/ME is measured as the ratio of total assets in quarter t − 1

to ME on day h− 1, where t denotes the current quarter.

C.2.15 Aevol

As in Lerman et al. (2008), the abnormal earnings announcement period volume (Aevol) is

defined as average daily share trading volume over the three days from d = −1 through

d = 1 divided by the average daily share volume over days d = −8 through d = −63, and

then subtracting one, where d = 0 denotes day of the most recent earnings announcement

(item rdq):

Aevoli ..=
Avgd∈[−1,1](volid)

Avgd∈[−63,−8](volid)
− 1 . (C.4)
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Note that the day of the most recent earnings announcement most be at least two days before

the investment day h (to make sure that voli(d=1) is available).

C.2.16 Sue

Following Foster et al. (1984), we measure earnings surprise (Sue) as the change in the most

recently announced quarterly earnings per share (item epspxq) from its value four quarters

ago, divided by the standard deviation of this change in quarterly earnings over the previous

eight quarters.

C.2.17 OB

Following Gu et al. (2009), we measure OB as annual order backlog (item ob) in year t − 1

scaled by the average of total assets (item at) for calendar years t−2 and t−1, where t denotes

the current calendar year. Note that the number of stocks for which this factor is available

during the first 65 investment periods is less than 500, and the number is less than 1000 for the

entire investment period. As a result, for dimension N = 500, we start the portfolio formation

on investment date h = 66 whereas for dimension N = 1000, we do not consider this factor.

C.3 Investment

Considering the general negative relation between investment and expected return, all factors

in this section are used in reversal.

C.3.1 Acc

Following Sloan (1996), we measure working capital accruals (Acc) as operating accruals (OA)

in quarter t − 1 scaled by the average of total assets (item atq) for quarters t − 2 and t − 1,

where t denotes the current quarter and OA is the same as in equation (C.2). Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.3.2 ∆capx

Following Lyandres et al. (2008), we measure capital expenditures and inventory (∆capx) as

changes in gross property, plant, and equipment (item ppegt) plus changes in inventory (item

invt) scaled by 1-year-lagged total assets (item at). Note that the number of stocks for which

this factor is available during the first two investment periods is less than 1000. As a result,

for dimension N = 1000, we start the portfolio formation on investment date h = 3.

C.3.3 Cii

Following Thomas and Zhang (2002), we measure change in inventory (Cii) as the change in

the most recently announced annual inventory from its value one year previous to that, scaled
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by the average of total assets (item at).

C.3.4 Aci

Following Titman et al. (2004), we measure abnormal corporate investment (Aci) as

Acit ..= 3∗CEt−1

CEt−2+CEt−3+CEt−4
− 1 , (C.5)

where t denotes the current calendar year and CEt−j is capital expenditure (item capx) scaled

by sales (item sale) in calendar year t − j. Note that the number of stocks for which this

factor is available during the first three investment periods is less than 1000. As a result, for

dimension N = 1000, we start the portfolio formation on investment date h = 4.

C.3.5 Nsi

Pontiff and Woodgate (2008) propose net stock issues (Nsi) as a factor. We measure it as the

natural log of the ratio of the average split-adjusted shares outstanding over the previous year

(that is, from day h− 252 through day h− 1) to the average split-adjusted shares outstanding

over the year previous to that (that is, from day h−504 through day h−253 ). We measure the

daily split-adjusted shares outstanding as shares outstanding (item csho) times the adjustment

factor (item ajex).

C.3.6 Noa

As in Hirshleifer et al. (2004), we measure net operating assets (Noa) as operating assets minus

operating liabilities. Operating assets are total assets (item atq) minus cash and short-term

investment (item cheq). Operating liabilities are total assets minus debt included in current

liabilities (item dlcq, zero if missing), minus long-term debt (item dlttq, zero if missing), minus

minority interests (item mibq, zero if missing), minus preferred stocks (item pstkq, zero if

missing), and minus common equity (item ceqq). We use quarterly data instead of annual

data.

C.3.7 IG

Following Xing (2008), we measure investment growth (IG) as the growth rate in capital

expenditure (item capx) from calendar year t − 2 to calendar year t − 1, where t denotes the

current calendar year.

C.3.8 Nxf

Following Bradshaw et al. (2006), we measure net external financing (Nxf) as the sum of net

equity financing and net debt financing in year calendar t − 1 scaled by the average of total

assets, where t denotes the current calendar year. Net equity financing is the proceeds from

the sale of common and preferred stocks (item sstk) less cash payments for the repurchases

of common and preferred stocks (item prstkc) less cash payments for dividends (item dv).
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Net debt financing is the cash proceeds from the issuance of long-term debt (item dltis) less

cash payments for long-term debt reductions (item dltr) plus the net changes in current debt

(item dlcch, zero if missing). Note that the number of stocks for which this factor is available

during the first 13 investment periods is less than 1000. As a result, for dimension N = 1000,

we start the portfolio formation on investment date h = 14.

C.3.9 Cei

Following Daniel and Titman (2006), we define composite issuance (Cei) as the growth rate in

market capitalization (ME) during the previous five years (that is, from day h− 1260 through

day h− 1) not attributable to the stock return. It is calculated as

Ceit ..= log(MEt −MEt−5)− logr(t− 5, t) , (C.6)

where r(t − 5, t) is the cumulative return on the stock from day h − 1260 through day h − 1,

MEt is the ME on day h− 1, and MEt−5 is the ME on day h− 1260. Note that the number of

stocks for which this factor is available during some middle investment periods (for example,

from 08/29/2011 through 12/31/2012) is less than 1000. As a result, for dimension N = 1000,

we do not consider this factor.

C.3.10 TA/A

Following Richardson et al. (2005), we measure TA/A as total accruals scaled by 1-year-lagged

total assets (item at). Total accruals (TA) are calculated as

TA ..= ∆WC+∆NCO+∆FIN , (C.7)

where∆ represents the change in the corresponding item, and items WC, NCP, FIN are net non-

cash working capital, net non-current operating assets, and net financial assets, respectively:

WC ..= act− che− (lct− dlc) (C.8)

NCO ..= at− act− ivao− (lt− lct− dltt) (C.9)

FIN ..= ivst + ivao− (dltt + dlc + pstk) . (C.10)

Here, act, che, lct, dlc, at, ivao, lt, lct, dltt, ivst, pstk are all annual items corresponding to

current assets, cash and short-term investment, current liabilities, debt in current liabilities,

total assets, long-term investments (zero if missing), total liabilities, current liabilities, long-

term debt (zero if missing), short-term investment (zero if missing), and preferred stock (zero if

missing), respectively. Note that the number of stocks for which this factor is available during

the first 5 investment periods is less than 1000. As a result, for dimension N = 1000, we start

the portfolio formation on investment date h = 6.
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C.3.11 Ivg

Following Belo and Lin (2012), we define inventory growth (Ivg) as the growth rate of inventory

(item invt) from calendar year t − 2 to year calendar year t − 1, where t denotes the current

calendar year.

C.3.12 Poa

Following Hafzalla et al. (2011), percent operating accruals (Poa) is measured as operating

accruals (OA) in quarter t − 1, scaled by net income (item niq) in the same quarter, where

t denotes the current quarter; see equation (C.2) for the definition of OA. Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.3.13 Pta

Following Hafzalla et al. (2011), percent total accruals (Pta) is measured as total accruals (TA)

scaled by net income (item ni); see equation (C.7) for the definition of TA. Considering the

broader coverage, we use annual data instead of quarterly data to calculate this factor. Note

that the number of stocks for which this factor is available during the first 6 investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 7.

C.4 Profitability

C.4.1 ∆drev

Following Prakash and Sinha (2013), we measure change in deferred revenues (∆drev) as the

growth rate of deferred revenues (item drcq) from quarter t−2 to quarter t−1, where t denotes

the current quarter. Note that the number of stocks for which this factor is available is less

than 1000 during the entire investment period; therefore, we do not consider this factor for

dimension N = 1000. According to the available number of stocks, for dimension N = 100,

we start the portfolio formation on investment date h = 221 whereas for dimension N = 500,

we start the portfolio formation on investment date h = 229.

C.4.2 F-score

Following Piotroski (2000), we define F-score as the sum of nine individual binary signals:

F ..= FRoa + F∆Roa + FCfo + FAcc + F∆Margin + F∆Turn + F∆Lever + F∆Liquid + FEQ (C.11)

where Roa is income before extraordinary (item ib) scaled by 1-year-lagged total assets

(item at); ∆Roa is the increase in Roa compared to the previous year; Cfo is cash flow

from operation (we use funds from operation (item fopt) minus the annual change in working
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capital (item wcap) scaled by 1-year-lagged total assets; Acc is defined as Cfo minus Roa;

∆Margin is gross margin (item sale minus cogs, and then divided by sale) in calendar year

t−1 less gross margin in calendar year t−2; ∆Turn is the change in the current calendar year’s

asset turnover ratio, which is measured as total sales (item sale) scaled by 1-year-lagged total

assets (item at), compared to the previous calendar year; ∆Lever is the decrease in the current

calendar year’s lever, which is measured as total long-term debt (item dltt) scaled by average

total assets over the previous two calendar years; ∆Liquid is the change in the current calendar

year’s current ratio compared to the previous calendar year, which is measured as the ratio

of current assets (item act) to current liabilities (item lct); EQ, which measures whether the

firm issue common equity in the current calendar year, equals the increase in preferred stock

(item pstk) minus the sales of common and preferred stocks (item sstk). For our definition, the

indicator variable always is equal to 1 if the corresponding variable is positive and is equal to

zero otherwise.

C.4.3 ∆PM

Following Soliman (2008), we measure change in profit margin (∆PM) as profit margin in

quarter t − 1 less profit margin in quarter t − 2, where t denotes the current quarter. Profit

margin is operating income after depreciation (item oiadp), scaled by sales (item saleq).

C.4.4 Ato

Following Soliman (2008), we measure asset turnover (Ato) as sales (quarterly item saleq),

divided by 1-quarter-lagged Noa (net operating assets); see Section C.3.6 for a description

of Noa.

C.4.5 ∆tax

Following Thomas and Zhang (2011), we measure changes in tax expense (∆tax) as tax expense

(item txtq) in quarter t minus tax expense in quarter t − 4, scaled by total assets (item atq)

in quarter t− 4, where t denotes the current quarter.

C.4.6 Roa

Following Balakrishnan et al. (2010), we measure return on assets (Roa) as income before

extraordinary items (item ibq) divided by 1-quarter-lagged total assets (item atq).

C.4.7 Gma

Following Novy-Marx (2010), we measure Gross profitability (Gma) as sales (item saleq) minus

cost of goods sold (item cogsq), then divided by 1-quarter-lagged total assets (item atq).
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C.4.8 Roic

Following Brown and Rowe (2007), we measure return on invested capital (Roic) as operating

income after depreciation (quarterly item oiadpq) divided by 1-quarter-lagged operating assets,

which are total assets (item atq) minus cash and short-term investment (item cheq).

C.4.9 Roe

Following Haugen and Baker (1996), we measure return on equity (Roe) as income before

extraordinary items (quarterly item ibq) divided by 1-quarter-lagged book equity; book equity

is computed as in Section C.2.3.

C.4.10 Rna

Following Soliman (2008), we measure return on operating assets (Rna) as operating income

after depreciation (quarterly item oiadpq) divided by 1-quarter-lagged net operating assets

(Noa); see Section C.3.6 for a description of Noa.

C.4.11 TI/BI

Following Green et al. (2014), we measure taxable income-to-book income (TI/BI) as pretax

income (quarterly item piq) divided by net income (item niq).

C.4.12 Cto

Following Haugen and Baker (1996), we measure capital turnover (Cto) as sales (quarterly

item saleq) divided by 1-quarter lagged total assets (item atq).

C.4.13 O-score

Following Ohlson (1980), we define the O-score as

O ..= −1.32− 0.407log(at) + 6.03tlta− 1.43wcta + 0.076clca

−1.72oeneg − 2.37nita− 1.83futl + 0.285intwo− 0.521chin
(C.12)

where tlta ..= (dlc+dltt)/at, wcta ..= (act-lct)/at, clca..=lct/act, nita..=ni/at, and futl..=pi/lt.

that oeneg is equal to 1 if lt exceeds at and is equal to zero otherwise. intwo is equal

to 1 if ni for the last two calendar years is negative and is equal to zero otherwise.

chine = (nit − nit−1)/(|nit|+ |nit−1|). at, dlc, dltt, act, lct, ni, pi, lt are all annual items

corresponding to total assets, debt in current liabilities, long-term debt, current assets, current

liabilities, net income, pretax income, and total liabilities, respectively. Note that the number

of stocks for which this factor is available during the first 5 investment periods is less than 1000.

As a result, for dimension N = 1000, we start the portfolio formation on investment date h = 6.
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C.5 Intangible

C.5.1 Egr

Following Bazdrech et al. (2008), we measure employee growth rate (Egr) as the growth rate

in the number of employees (item emp) from calendar year t− 2 to calendar year t− 1, where

t denotes the current calendar year. Reversal of Egr is used as the actual factor.

C.5.2 ∆ade

Following Chemmanur and Yan (2009), we measure change in advertising expense (∆ade) as

the the natural log of the ratio of advertising expenses in calendar year t − 1 to advertising

expenses in calendar year t − 2, where t denotes the current calendar year. Note that the

number of stocks for which this factor is available during some of the first 181 investment

periods is less than 500, and the number available from the 182th investment date to the end

is always less than 1000. As a result, for dimension N = 500, we start the portfolio formation

on investment date h = 182 whereas for dimension N = 1000, we do not consider this factor.

C.5.3 Rdi

Following Eberhart et al. (2004), we measure R&D increase (Rdi) as the growth rate in R&D

expenses (item xrd) from calendar year t−2 to calendar year t−1, where t denotes the current

calendar year. Note that the number of stocks for which this factor is available during some

of the first 26 investment periods is less than 500, and the number available from the 27th

investment date to the end is always less than 1000. As a result, for dimension N = 500, we

start the portfolio formation on investment date h = 27 whereas for dimension N = 1000, we

do not consider this factor.

C.5.4 Ad/M

As in Chan et al. (2001), we measure advertisement expense-to-market (Ad/M) as advertising

expenses (item xad) for calendar year t − 1 divided by the market capitalization (ME) on

day h− 1, where t denotes the current calendar year. Note that the number of stocks for

which this factor is available during some of the first 169 investment periods is less than 500,

and the number available from the 170th investment date to the end is always less than 1000.

As a result, for dimension N = 500, we start the portfolio formation on investment date

h = 170 whereas for dimension N = 1000, we do not consider this factor.

C.5.5 RD/S

Following Chan et al. (2001), we measure R&D-to-sales (RD/S) as R&D expenses (annual

item xrd) divided by sales (item sale). Note that the number of stocks for which this factor

is available during some of the first 22 investment periods is less than 500, and the number

available from the 23th investment date to the end is always less than 1000. As a result, for
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dimension N = 500, we start the portfolio formation on investment date h = 23 whereas for

dimension N = 1000, we do not consider this factor.

C.5.6 RD/M

As in Chan et al. (2001), we measure R&D-to-market (RD/M) as R&D expenses (annual item

xrd) for calendar year t− 1 divided by the market capitalization (ME) on day h− 1, where t

denotes the current calendar year. Note that the number of stocks for which this factor is

available during some of the first 22 investment periods is less than 500, and the number

available from the 23th investment date to the end is always less than 1000. As a result, for

dimension N = 500, we start the portfolio formation on investment date h = 23 whereas for

dimension N = 1000, we do not consider this factor.

C.5.7 Rc/A

Following Li (2011), we measure R&D capital-to-assets (Rc/A) as the ratio of R&D capital (Rc)

to total assets (item at). Rc is a weighted average of R&D expenses (annual item xrd) over

the last five calendar years with a depreciation rate of 20%:

Rc ..= xrdt−1 + 0.8xrdt−2 + 0.6xrdt−2 + 0.4xrdt−4 + 0.2xrdt−5 , (C.13)

where t denotes the current calendar year. Note that the number of stocks for which this factor

is available during some of the first 30 investment periods is less than 500, and the number

available from the 31st investment date to the end is always less than 1000. As a result, for

dimension N = 500, we start the portfolio formation on investment date h = 31 whereas for

dimension N = 1000, we do not consider this factor.

C.5.8 OL

Following Novy-Marx (2011), we measure operating leverage (OL) as cost of goods sold

(quarterly item cogsq) plus selling, general, and administrative expenses (item xsgaq), then

divided by total assets (item atq). Note that the number of stocks for which this factor is

available during the first 32 investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 33.

C.6 Trading frictions

C.6.1 Turn

Following Datar et al. (1998), we measure the share turnover (Turn) as its average daily share

turnover over the previous six months from t − 6 to t − 1 (that is, from day h − 126 through

day h− 1). Daily turnover is the number of shares traded (item vol) divided by the number of

shares outstanding (item csho). To account for the institutional features of the way NASDAQ

and NYSE volume are reported, we adjust the trading volume for NASDAQ stocks as in

Gao and Ritter (2010): Previous to 02/01/2001, we divide NASDAQ volume by 2.0; from
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02/01/2001 through 12/31/2001, we divide NASDAQ volume by 1.8; for 2002 and 2003, we

divide NASDAQ volume by 1.6; and from 2004 on, we use the original NASDAQ volume.

Reversal of Turn is used as the actual factor.

C.6.2 Tvol

Following Ang et al. (2006), we measure total volatility (Tvol) as the standard deviation of a

stock’s daily returns over the previous month t−1 (that is, from day h−21 through day h−1).

Reversal of Tvol is used as the actual factor.

C.6.3 Avol

Following Bandyopadhyay et al. (2010), we measure accrual volatility (Avol) as the standard

deviation of the ratio of total accruals (TA) to total sales (item saleq) over the previous

16 quarters from quarter t − 16 to quarter t − 1, where t denotes the current quarter. TA is

defined in their equation (7); the only difference is that we use quarterly data here. Reversal

of Avol is used as the actual factor. Note that the number of stocks for which this factor is

available during the first 27 investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 28.

C.6.4 Cvol

Following Huang (2009), we measure cash flow volatility (Cvol) as the standard deviation of

cash flow (CF) over the previous 16 quarters from quarter t − 16 to quarter t − 1, where t

denotes the current quarter. CF is defined as the sum of income before extraordinary items

(item ibq), depreciation and amortization expense (item dpq, zero if missing), and the increase

in net non-cash working capital (∆WC in Section C.3.10 with quarterly data). Reversal of

Cvol is used as the actual factor. Note that the number of stocks for which this factor is

available during the first six investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 7.

34



Additional References

Ang, A., Hodrick, R. J., Xing, Y., and Zhang, X. (2006). The cross-section of volatility and

expected returns. The Journal of Finance, 61(1):259–299.

Balakrishnan, K., Bartov, E., and Faurel, L. (2010). Post loss/profit announcement drift.

Journal of Accounting and Economics, 50(1):20–41.

Bali, T. G., Cakici, N., and Whitelaw, R. F. (2011). Maxing out: Stocks as lotteries and the

cross-section of expected returns. Journal of Financial Economics, 99(2):427–446.

Bandyopadhyay, S. P., Huang, A. G., and Wirjanto, T. S. (2010). The accrual volatility

anomaly. Working paper, School of Accounting and Finance, University of Waterloo.

Banz, R. W. (1981). The relationship between return and market value of common stocks.

Journal of Financial Economics, 9(1):3–18.

Basu, S. (1983). The relationship between earnings’ yield, market value and return for NYSE

common stocks: Further evidence. Journal of Financial Economics, 12(1):129–156.

Bazdrech, S., Belo, F., and Lin, X. (2008). Labor hiring, investment and stock return

predictability in the cross section. Working paper, Department of Finance, London School

of Economics and Political Science.

Belo, F. and Lin, X. (2012). The inventory growth spread. Review of Financial Studies,

25(1):278–313.

Bhandari, L. C. (1988). Debt/equity ratio and expected common stock returns: Empirical

evidence. The Journal of Finance, 43(2):507–528.

Boudoukh, J., Michaely, R., Richardson, M., and Roberts, M. R. (2007). On the importance

of measuring payout yield: Implications for empirical asset pricing. Journal of Finance,

62(2):877–915.

Bradshaw, M. T., Richardson, S. A., and Sloan, R. G. (2006). The relation between corporate

financing activities, analysts’ forecasts and stock returns. Journal of Accounting and

Economics, 42(1):53–85.

Brown, D. P. and Rowe, B. (2007). The productivity premium in equity returns. Available at

SSRN 993467.

Chan, L. K., Jegadeesh, N., and Lakonishok, J. (1996). Momentum strategies. Journal of

Finance, 51(5):1681–1713.

Chan, L. K., Lakonishok, J., and Sougiannis, T. (2001). The stock market valuation of research

and development expenditures. Journal of Finance, 56(6):2431–2456.

35



Chandrashekar, S. and Rao, R. K. (2009). The productivity of corporate cash holdings and the

cross-section of expected stock returns. McCombs Research Paper Series No. FIN-03-09.

Chemmanur, T. J. and Yan, A. (2009). Advertising, attention, and stock returns. Technical

report. Available at http://ssrn.com/abstract=1340605.

Chincarini, L. B. and Kim, D. (2006). Quantitative Equity Portfolio Management: An Active

Approach to Portfolio Construction and Management. McGraw-Hill, New York.

Chordia, T., Subrahmanyam, A., and Anshuman, V. R. (2001). Trading activity and expected

stock returns. Journal of Financial Economics, 59(1):3–32.

Cooper, M. J., Gulen, H., and Schill, M. J. (2008). Asset growth and the cross-section of stock

returns. Journal of Finance, 63(4):1609–1651.

Daniel, K. and Titman, S. (2006). Market reactions to tangible and intangible information.

Journal of Finance, 61(4):1605–1643.

Datar, V. T., Naik, N. Y., and Radcliffe, R. (1998). Liquidity and stock returns: An alternative

test. Journal of Financial Markets, 1(2):203–219.

Davis, J. L., Fama, E. F., and French, K. R. (2000). Characteristics, covariances, and average

returns: 1929 to 1997. Journal of Finance, 55(1):389–406.

Eberhart, A. C., Maxwell, W. F., and Siddique, A. R. (2004). An examination of long-term

abnormal stock returns and operating performance following R&D increases. Journal of

Finance, 59(2):623–650.

Fama, E. F. and French, K. R. (1996). Multifactor explanations of asset pricing anomalies.

Journal of Finance, 51(1):55–84.

Foster, G., Olsen, C., and Shevlin, T. (1984). Earnings releases, anomalies, and the behavior

of security returns. Accounting Review, 59(4):574–603.

Gao, X. and Ritter, J. R. (2010). The marketing of seasoned equity offerings. Journal of

Financial Economics, 97(1):33–52.

Gettleman, E. and Marks, J. M. (2006). Acceleration strategies. SSRN Working Paper Series.

Green, J., Hand, J. R., and Zhang, F. (2014). The remarkable multidimensionality in the

cross-section of expected us stock returns. Available at SSRN 2262374.

Gu, L., Wang, Z., and Ye, J. (2009). Information in order backlog: change versus level. Working

paper, Citeseer.

Hafzalla, N., Lundholm, R., and Matthew Van Winkle, E. (2011). Percent accruals. Accounting

Review, 86(1):209–236.

36



Haugen, R. A. and Baker, N. L. (1996). Commonality in the determinants of expected stock

returns. Journal of Financial Economics, 41(3):401–439.

Hirshleifer, D., Hou, K., Teoh, S. H., and Zhang, Y. (2004). Do investors overvalue firms with

bloated balance sheets? Journal of Accounting and Economics, 38:297–331.

Houge, T. and Loughran, T. (2000). Cash flow is king? Cognitive errors by investors. Journal

of Psychology and Financial Markets, 1(3-4):161–175.

Huang, A. G. (2009). The cross section of cashflow volatility and expected stock returns.

Journal of Empirical Finance, 16(3):409–429.

Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Implications

for stock market efficiency. Journal of Finance, 48(1):65–91.

Lakonishok, J., Shleifer, A., and Vishny, R. W. (1994). Contrarian investment, extrapolation,

and risk. Journal of Finance, 49(5):1541–1578.

Lerman, A., Livnat, J., and Mendenhall, R. R. (2008). The high-volume return premium and

post-earnings announcement drift. Available at SSRN 1122463.

Li, D. (2011). Financial constraints, R&D investment, and stock returns. Review of Financial

Studies, 24(9):2974–3007.

Litzenberger, R. H. and Ramaswamy, K. (1979). The effect of personal taxes and dividends

on capital asset prices: Theory and empirical evidence. Journal of Financial Economics,

7(2):163–195.

Lyandres, E., Sun, L., and Zhang, L. (2008). The new issues puzzle: Testing the investment-

based explanation. Review of Financial Studies, 21(6):2825–2855.

Novy-Marx, R. (2010). The other side of value: Good growth and the gross profitability

premium. Technical report, National Bureau of Economic Research.

Novy-Marx, R. (2011). Operating leverage. Review of Finance, 15(1):103–134.

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal

of Accounting Research, pages 109–131.

Piotroski, J. D. (2000). Value investing: The use of historical financial statement information

to separate winners from losers. Journal of Accounting Research, pages 1–41.

Pontiff, J. and Woodgate, A. (2008). Share issuance and cross-sectional returns. The Journal

of Finance, 63(2):921–945.

Prakash, R. and Sinha, N. (2013). Deferred revenues and the matching of revenues and expenses.

Contemporary Accounting Research, 30(2):517–548.

37



Richardson, S. A., Sloan, R. G., Soliman, M. T., and Tuna, I. (2005). Accrual reliability,

earnings persistence and stock prices. Journal of Accounting and Economics, 39(3):437–485.

Rosenberg, B., Reid, K., and Lanstein, R. (1985). Persuasive evidence of market inefficiency.

Journal of Portfolio Management, 11(3):9–16.

Scott, A., Sloan, R., Soliman, M., and Tuna, I. (2005). Accrual reliability, earnings persistence

and stock returns. Journal of Accounting Research, 39:437–485.

Sloan, R. (1996). Do stock prices fully reflect information in accruals and cash flows about

future earnings? (Digest summary). Accounting Review, 71(3):289–315.

Soliman, M. T. (2008). The use of dupont analysis by market participants. Accounting Review,

83(3):823–853.

Thomas, J. and Zhang, F. X. (2011). Tax expense momentum. Journal of Accounting Research,

49(3):791–821.

Thomas, J. K. and Zhang, H. (2002). Inventory changes and future returns. Review of

Accounting Studies, 7(2-3):163–187.

Titman, S., Wei, K. J., and Xie, F. (2004). Capital investments and stock returns. Journal of

Financial and Quantitative Analysis, 39(04):677–700.

Xing, Y. (2008). Interpreting the value effect through the q-theory: An empirical investigation.

Review of Financial Studies, 21(4):1767–1795.

38


	Introduction
	The DCC-NL Estimator of the Covariance Matrix
	Time Variation in the Second Moments
	Dynamic Conditional Correlation (DCC)
	Volatility Targeting
	Composite Likelihood
	DCC Estimation Procedure

	Estimation of Large-Dimensional Unconditional Covariance Matrices
	Spectral Decomposition
	Portfolio Selection
	NonLinear (NL) Shrinkage Estimator of the Covariance Matrix

	DCC-NL Model

	Empirical Methodology
	Portfolios Based on Sorting
	Markowitz Portfolios
	Tests for Predictive Ability

	Empirical Analysis
	Data and General Portfolio-Formation Rules
	Results

	Conclusion
	Tables
	Winsorization of Factor Scores
	Description of Factors
	Momentum
	11-MM
	1-MM
	6-MM
	Mxret
	6-MM
	Abr

	Value-versus-growth
	Dvol
	ME
	B/M
	Agr
	E/P
	lgr
	ceq
	Cflow
	Cash
	D/P
	O/P
	NO/P
	SG
	A/ME
	Aevol
	Sue
	OB

	Investment
	Acc
	capx
	Cii
	Aci
	Nsi
	Noa
	IG
	Nxf
	Cei
	TA/A
	Ivg
	Poa
	Pta

	Profitability
	drev
	F-score
	PM
	Ato
	tax
	Roa
	 Gma
	 Roic
	 Roe
	 Rna
	 TI/BI
	 Cto
	O-score

	Intangible
	Egr
	ade
	Rdi
	Ad/M
	RD/S
	 RD/M
	 Rc/A
	 OL

	Trading frictions
	Turn
	Tvol
	Avol
	Cvol



