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Abstract

In the presence of conditional heteroskedasticity, inference about the coefficients in a linear

regression model these days is typically based on the ordinary least squares estimator in con-

junction with using heteroskedasticity consistent standard errors. Similarly, even when the true

form of heteroskedasticity is unknown, heteroskedasticity consistent standard errors can be used

to base valid inference on a weighted least squares estimator. Using a weighted least squares es-

timator can provide large gains in efficiency over the ordinary least squares estimator. However,

intervals based on plug-in standard errors often have coverage that is below the nominal level,

especially for small sample sizes. In this paper, it is shown that a bootstrap approximation to

the sampling distribution of the weighted least squares estimate is valid, which allows for in-

ference with improved finite-sample properties. Furthermore, when the model used to estimate

the unknown form of the heteroskedasticity is misspecified, the weighted least squares estima-

tor may be less efficient than the ordinary least squares estimator. To address this problem,

a new estimator is proposed that is asymptotically at least as efficient as both the ordinary

and the weighted least squares estimator. Simulation studies demonstrate the attractive finite-

sample properties of this new estimator as well as the improvements in performance realized by

bootstrap confidence intervals.
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1 Introduction

In this paper, we consider the problem of inference in a linear regression model. Under conditional

homoskedasticity, the ordinary least squares (OLS) estimator is the best linear unbiased estima-

tor. Traditional inference based upon the ordinary least squares estimator, such as the F test or

t confidence intervals for individual coefficients relies on estimators of asymptotic variance that

are only consistent when the model is homoskedastic. In many applications, the assumption of

homoskedasticity is unrealistic. When instead the model exhibits conditional heteroskedasticity,

traditional inference based on the ordinary least squares estimator may fail to be (asymptotically)

valid.

If the skedastic function is known (that is, the function that determines the conditional het-

eroskedasticty of the error term given the values of the regressors), the best linear unbiased estimator

(BLUE) is obtained by computing the ordinary least squares estimator after weighting the data

by the inverse of square root of the value of the skedastic function. Unfortunately, in all but

the most ideal examples, the heteroskedasticity is of unknown form, and this estimator cannot be

used. However, if the skedastic function can be estimated, then weighting the model by the inverse

square root of the estimate of the skedastic function produces a feasible weighted least squares

(WLS) estimator. Although this estimator is no longer unbiased, it can often give improvements

in efficiency over the weighted least squares estimator. Even so, estimating the skedastic function

is often challenging, and a poorly estimated skedastic function may produce an estimator that is

less efficient than the ordinary least squares estimator. Furthermore, when the estimated skedastic

function is not consistent, traditional inference based on the weighted least squares estimator may

not be valid. Because of these difficulties the weighted least squares estimator has largely fallen

out of favor with practitioners.

As an alternative, White (1980) developed heteroskedasticity consistent (HC) standard errors

which allow for asymptotically valid inference, based on the ordinary least squares estimator, in

the presence of conditional heteroskedasticity of unknown form. Although this approach abandons

any efficiency gains that could be achieved from weighting, the standard errors are consistent under

minimal model assumptions.

Simulation studies, such as MacKinnon and White (1985) who investigated the performance of

several different heteroskedasticity consistent standard errors, show that inference based on normal

or even t approximations can be misleading in small samples. In such cases, it is useful to consider

bootstrap methods.

Following the proposal of White’s heteroskedasticity consistent covariance estimators, resampling

methods have been developed that give valid inference based on the ordinary least squares estimator.

Freedman (1981) proposed the pairs bootstrap which resamples pairs of predictor and response

variables from the original data. Another popular technique is the wild bootstrap which was

suggested by Wu (1986). This method generates bootstrap samples by simulating error terms whose
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variance are an estimate of the conditional variance for each predictor variable. Recent numerical

work comparing the pairs bootstrap and the wild bootstrap to asymptotic approximations is given

in Flachaire (2005) and Cribari-Neto (2004). Godfrey and Orne (2004) conducted simulations

suggesting that combining heteroskedasticity consistent standard errors with the wild bootstrap

produces tests that are more reliable in small samples than using the normal approximation. Despite

the improvements that the resampling methods produce over asymptotic approximations, inference

based on the ordinary least squares estimator may still not be as efficient as weighted least squares.

Neither the solution of using heteroscedasticity consistent covariance estimates, nor using weighted

least squares with traditional inference seem entirely satisfactory. Even recently there has been de-

bate about the merits of weighting. Angrist and Pischke (2010) are of the belief that any potential

efficiency gains from using a weighted least squares estimator are not substantial enough to risk the

harm that could be done by poorly estimated weights. On the other hand, Leamer (2010) contends

that researchers should be working to model the heteroskedasticity in order to determine whether

sensible reweighting changes estimates or confidence intervals.

Even in examples where the estimated skedastic function is not consistent for the true skedas-

tic function, the weighted least squares estimator can be more efficient than the ordinary least

squares estimator. Arguably, a more satisfying approach to inference than simply abandoning

weighting is to base inference on the weighted least squares estimator in conjunction HC errors.

This proposal goes back to at least Wooldridge (2012) and was made rigorous in Romano and Wolf

(2015). Regardless of whether or not the parametric family used to estimate the skedastic function

is correctly specified or not, the weighted least squares estimator has an asymptotically normal

distribution with mean zero and a variance that can be estimated consistently estimated by the

means of HC standard errors (as long as some technical conditions are satisfied).

There are two difficulties with basing inference on these consistent standard errors. As is the

case with using White’s standard errors, using heteroskedasticity consistent standard errors with

the weighted least squares estimator leads to inference that can be misleading in small samples.

This problem is even more severe with the weighted estimator than with the ordinary least squares

estimator because the plug-in standard errors use the estimated skedastic function, and are the same

estimators that would be used if it had been known a priori that the model would be weighted by

this particular estimated skedastic function. Confidence intervals, for example, do not account for

the randomness in estimating the skedastic function and for this reason tend to have coverage that

is below the nominal level, especially in small samples.

The other trouble is that inference based on the weighted least squares estimator using consistent

standard errors may not be particularly efficient, and investing effort in modeling the conditional

variance may be counterproductive. In fact, when the family of skedastic functions is misspecified

(or the estimated skedastic function is not consistent for the true skedastic function), the weighted

least squares estimator can be less efficient than the ordinary least squares estimator, even when
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conditional heteroskedasticity is present. Although this possibility seems rare, it is theoretically

unsatisfying and has been given as a reason to abandon the approach altogether.

In this paper, we will address these limitations of the weighted least squares estimator. Thus, the

general goal is to improve the methodology in Romano and Wolf (2015) by constructing methods

with improved accuracy and efficiency. In particular, we show that the bootstrap approximation

to the sampling distribution of the weighted least squares estimator is consistent and we provide

numerical evidence that using the bootstrap leads to more reliable inference. We also propose a new

estimator that is a convex combination of the ordinary least squares estimator and the weighted

least squares estimator and is at least as efficient (asymptotically) as both the weighted and the

ordinary least squares estimator.

Model assumptions are given in Section 2. Consistency of both the pairs and wild bootstrap

approximations to the distribution of the weighted least squares estimator is given in Section 3;

notably, the bootstrap accounts for estimation of the skedastic function as it is re-estimated in

each bootstrap sample. Tests for linear constraints of the coefficient vector using both bootstrap

methods, as well as a randomization test, are given in Section 4. Estimators based on a convex

combination of the ordinary and weighted least squares estimators that are asymptotically no worse,

but potentially more efficient than the ordinary least squares estimator, as well as the consistency

of the bootstrap distribution of these estimators, are given in Section 5. Here, the bootstrap is

useful not only to account for the randomness in the skedastic function but also the randomness

in the convex weights. Section 6 provides an example where the convex combination estimator is

strictly more efficient than either the ordinary or weighted least squares estimators. Simulations

to examine finite-sample performance are provided in Section 7. Proofs are given in the appendix.

2 Model and Notation

Throughout the paper, we will be concerned with the heteroskedastic linear regression model spec-

ified by the following assumptions.

(A1) The model can be written

yi = x⊤i β + εi ,

i = 1, ..., n, where xi ∈ Rp is a vector of predictor variables, and εi is an unobservable error

term with properties specified below.

(A2) {(yi, xi)} are independent and identically distributed (i.i.d.) according to a distribution P .

(A3) The error terms have conditional mean zero given the predictor variables:

E(εi|xi) = 0 .

(A4) Σxx
..= E(xix

⊤
i ) is nonsingular and

1
n

∑n
i=1 xix

⊤
i is almost surely invertible.
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(A5) Ω ..= E(ε2ixix
⊤
i ) is nonsingular.

(A6) There exists a function v(·), called the skedastic function, such that

E(ε2i |xi) = v(xi) .

It is also convenient to write the linear model specified by assumption (A1) in vector-matrix

notation.

Y = Xβ + ε

where

Y ..=




y1
...

yn


 , ε ..=




ε1
...

εn


 , and X ..=




x⊤1
...

x⊤n


 =




x11 . . . x1p
... . . .

...

xn1 . . . xnp


 .

Finally, following the notation of Romano and Wolf (2015), define

Ωa/b
..= E

(
x⊤i xi

a(xi)

b(xi)

)

for any functions a, b : Rp → R. Using this convention, Σxx = Ω1/1 and Ω = Ωv/1.

3 Estimators

Under the model assumptions given in Section 2, it is common to use the ordinary least squares

(OLS) estimator

β̂OLS
..=
(
X⊤X

)−1
X⊤Y

to estimate β. Although this estimator is unbiased, it is not efficient when the model is not

conditionally homoskedastic. Ideally, one would use the best linear unbiased estimator (BLUE)

which is obtained by regressing yi/
√
v(xi) on xi/

√
v(xi) by OLS. But this estimator requires

knowledge of the true skedastic function and thus is not feasible in most applications.

Instead, one can estimate the skedastic function and weight the observations by the estimate

of the skedastic function. Typically, the skedastic function is estimated by vθ̂(·), a member of a

parametric family
{
vθ(·) : θ ∈ Rd

}
of skedastic functions. For instance, a popular choice for the

family of skedastic functions is

vθ(xi) ..= exp
(
θ0 + γ2 log |xi,1|+ . . .+ θp log |xi,p|

)
, with θ ..= (θ0, θ1, . . . , θp) ∈ Rp+1 . (3.1)

The weighted least squares (WLS) estimator based on the estimated skedastic function is ob-

tained by regressing yi/
√
vθ̂(xi) on xi/

√
vθ̂(xi) by OLS and thus given by

β̂WLS
..= (X⊤V −1

θ̂
X)−1X⊤V −1

θ̂
Y
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where Vθ
..= diag {vθ(x1), ..., vθ(xn)}.

Provided the estimated skedastic function vθ̂(·) is suitably close to some limiting estimated

skedastic function, say vθ0(·) for n large, then the weighted least squares estimator has an asymp-

totically normal distribution. Note that vθ0(·) need not correspond to the true skedastic function,

which of course happens if the family of skedastic functions is not well specified. Romano and Wolf

(2015) assume that θ̂ is a consistent estimator of some θ0 in the sense that

n1/4(θ̂ − θ0)
P−→ 0 , (3.2)

where
P−→ denote convergence in probability. They also assume that at this θ0, 1/vθ(·) is differen-

tiable in the sense that there exists a d-dimensional vector-valued function

rθ0(x) =
(
rθ0,1(x), . . . , rθ0,d(x)

)

and a real-valued function sθ0(·) (satisfying some moment assumptions) such that
∣∣∣∣

1

vθ(x)
− 1

vθ0(x)
− rθ0(x)(θ − θ0)

∣∣∣∣ ≤
1

2
|θ − θ0|2sθ0(x) , (3.3)

for all θ in some small open ball around θ0 and all x.

If (3.2) and (3.3) are satisfied, then under some further regularity conditions,

√
n
(
β̂WLS − β

)
d−→ N(0,Ω−1

1/wΩv/w2Ω−1
1/w)

where w(·) ..= vθ0(·) and
d−→ denotes convergence in distribution.

The matrices Ω1/w and Ωv/w2 appearing in the asymptotic variance can be consistently estimated

by

Ω̂1/w
..=

X ′V −1

θ̂
X

n
,

and

Ω̂v/w2
..=

1

n

n∑

i=1

(
ε̃2i

v2
θ̂
(xi)

· xix⊤i

)

respectively, for suitable residuals ε̃ that are consistent for the true error terms ε. Then the asymp-

totic variance of the weighted least squares estimator, denoted by Avar(β̂WLS), can be consistently

estimated by

Âvar (βWLS) = Ω̂−1
1/wΩ̂v/w2Ω̂−1

1/w . (3.4)

Remark 3.1. When the ‘raw’ OLS residuals, ε̂i ..= yi − xiβ̂OLS, are used, the estimator (3.4) is

commonly referred to as the HC0 estimator. To improve finite-sample performance other variants

of HC used scaled residuals instead. The HC1 estimator scales the OLS residuals by
√

n/(n− p),

which reduces bias. When the errors are homoskedastic, the variance of the OLS residual ε̂i is

proportional to 1/(1−hi), where hi is the i
th diagonal entry of the ‘hat’ matrix H = X(X⊤X)−1X⊤.

The HC2 estimator uses the OLS residuals scaled by 1/
√
(1− hi). The HC3 estimator uses the

OLS residuals scaled by 1/(1− hi).

6



Using this plug-in estimator of asymptotic variance gives t confidence intervals for the coefficients

having the form

β̂WLS,k ± tn−p,1−α/2 · SE(β̂WLS,k)

where

SE(β̂WLS,k)
..=

√
Âvar(β̂WLS,k)/n ,

and tn−p,1−α/2 is the 1−α/2 quantile of the t-distribution with n− p degrees of freedom. These in-

tervals are asymptotically valid; however, simulations suggest that the true coverage rates are often

smaller than the nominal level, especially in small samples. The standard errors for these confidence

intervals are the same standard errors that would be used if we had known before observing any

data that the model would be weighted by 1/
√
vθ̂(·) and the intervals do not account for variability

in the estimation of the skedastic function. The coverage can be improved by reporting intervals

based on the “pairs” bootstrap confidence intervals where the skedastic function is estimated on

each bootstrap sample separately.

The empirical distribution of a sample (x1, y1), ..., (xn, yn) is

P̂n(s, t) ..=
1

n

n∑

i=1

I {xi ≤ s, yi ≤ t} .

The pairs bootstrap, which is commonly used for heteroskedastic regression models, generates boot-

strap samples, (x∗1, y
∗
1), ..., (x

∗
n, y

∗
n) from P̂n. Alternatively, one could generate bootstrap samples

(x1, y
∗
1), ..., (xn, y

∗
n) using the wild bootstrap which simulates new response variables

y∗i
..= xiβ̂WLS + ε∗i

where ε∗i are sampled from any distribution with mean zero and variance ε̂2i . It is common to use

ε∗i
..= ui · ε̂i where ui is a random variable taking values ±1, each with probability 1/2.

When computing the weighted least squares estimator β̂WLS, the parameter for the estimated

skedastic function is re-estimated on the bootstrap sample by θ̂∗. The following theorem establishes

that the distribution of
√
n
(
β̂∗
WLS − β̂WLS

)
, using the pairs or the wild bootstrap, is a consistent

approximation of the sampling distribution of
√
n
(
β̂WLS − β

)
.

Theorem 3.1. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. satisfying assumptions (A1)−(A6) above,
and that

{
vθ(·) : θ ∈ Rd

}
is a family of continuous skedastic functions satisfying (3.3) at some θ0

with r(·) and s(·) such that

E |x1y1r(x1)|2 < ∞ and E |x1y1s(x1)|2 < ∞ .

Let θ̂ be an estimator satisfying (3.2). Further suppose that n1/4
(
θ̂∗ − θ̂0

)
converges to zero

in conditional probability. Let β̂WLS
..= (X⊤V −1

θ̂
X)−1X⊤V −1

θ̂
Y and vθ0 =.. w so that W =

diag(vθ0(x1), ..., vθ0(xn)). If

E



∥∥∥∥∥

(
xi1√
w(xi)

, ...,
xip√
w(xi)

,
yi√
w(xi)

)∥∥∥∥∥

4

2


 < ∞ ,
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where ‖·‖2 is the Euclidean norm, then the conditional law of
√
n
(
β̂∗
WLS − β̂WLS

)
, based on a pairs

bootstrap sample or a wild bootstrap sample, converges weakly to the multivariate normal distribution

with mean zero and covariance matrix Ω−1
1/wΩv/w2Ω−1

1/w in probability.

Remark 3.2. Of course, the bootstrap distribution is random and hence its weak convergence

properties hold in a probabilistic sense. As is customary, when we say that a sequence of random

distributions, say Ĝn converges weakly to G in probability, we mean that ρ(Ĝn, G)
P−→ 0 where ρ

is any metric metrizing weak convergence. We also say that a sequence Tn(X,Y ) converges in

conditional probability to zero almost surely if for almost every sequence {xi, yi}, Tn(X
∗, Y ∗) → 0

in P̂n probability.

In Theorem 3.1, it was assumed that we have a family of skedastic functions {vθ(·)}, and an

estimator of θ, say θ̂, such that n1/4
(
θ̂∗ − θ0

)
converges in conditional probability to zero. We will

now verify this assumption for a flexible family of skedastic functions which includes the family

specified in (3.1).

Lemma 3.1. For any functions gi : R
d → Rd, i = 1, ..., d, define the family

{
vθ : θ ∈ Rd

}
by

vθ(x) ..= exp

[
d∑

i=1

θjgj(x)

]
,

and let θ̂ be the estimator obtained by regressing hδ(ε̂i) ..= log
(
max

{
δ2, ε̂2i

})
on g(xi) =

(
g1(xi), ..., gd(xi)

by OLS, where δ > 0 is a small constant. Then, n1/4
(
θ̂∗ − θ0

)
converges in conditional probability

to zero for

θ0 ..= E(g(xi)g(xi)
′)E(g(xi)hδ(εi))

provided E(gj(xi)gk(xi))
4/3 and E(gj(xi)hδ(εi))

4/3 are both finite for each j and k.

4 Hypothesis Testing

Just as using a t approximation often produces confidence intervals with coverage below the nominal

confidence level, especially for small samples using an F approximation to conduct F tests of linear

constraints often gives rejection probabilities that are above the nominal significance level, especially

for small samples. And as with confidence intervals, using the bootstrap can produce tests that

have rejection probabilities that are closer to the nominal level. Consider the hypothesis

H0 : R(β) = q

where R is a J × p matrix of full rank (with J ≤ p) and q is a vector of length J . Two appropriate

test statistics for this hypothesis are the Wald statistic

Wn(X,Y ) ..= n ·
(
Rβ̂WLS − q

)⊤ [
RΩ̂−1

1/wΩ̂v/w2Ω̂−1
1/wR

⊤
]−1 (

Rβ̂WLS − q
)

, (4.1)
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and the maximum statistic,

Mn(X,Y ) ..= max
1≤k≤p





(
[Rβ̂WLS]k − qk

)

[
RΩ̂−1

1/wΩ̂v/w2Ω̂−1
1/wR

⊤
]
k,k





. (4.2)

It follows immediately from the results of Romano and Wolf (2015) that, under the null, the

sampling distribution of Wn(X,Y ) is asymptotically chi-squared with J degrees of freedom and the

sampling distribution of Mn(X,Y ) is asymptotically distributed as the maximum of k correlated

standard normal variables. Let Gn(x, P ) denote the sampling distribution of Wn when (X1, Y1) are

distributed according to P .

Define cn(1− α, P̂ ) to be the 1− α quantile of the distribution of

(
R
(
β̂∗
WLS − β̂WLS

))⊤ [
RΩ̂∗−1

1/wΩ̂
∗
v/w2Ω̂

∗−1
1/wR

⊤
]−1 (

R
(
β̂∗
WLS − β̂WLS

))

and dn(1− α, P̂ ) to be the 1− α quantile of the distribution of

max
1≤k≤p





(
[Rβ̂∗

WLS]k − [Rβ̂WLS]k

)

[
RΩ̂∗−1

1/wΩ̂
∗
v/w2Ω̂

∗−1
1/wR

⊤
]
k,k





using the pairs or wild bootstrap.

Theorem 4.1. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. according to a distribution P such that

Rβ = q. Then, under the assumptions of Theorem 3.1,

P
(
Wn(X,Y ) > cn(1− α, P̂n)

)
→ α

as n → ∞. That is, the bootstrap quantiles of the Wald statistic converge to the corresponding

quantiles of a chi-squared distribution with J degrees of freedom when Rβ = q. Similarly,

P
(
Mn(X,Y ) > dn(1− α, P̂n)

)
→ α

as n → ∞.

We point out that hypothesis testing using the wild bootstrap is closely related to a commonly

used randomization test under symmetry assumptions.

Suppose that the εi follow a symmetric distribution conditional on Xi in the sense that the distri-

bution of εi givenXi is the same as the distribution of −εi givenXi. Then underH : β = 0, the joint

distribution of the (Xi, Yi) is invariant under the group of transformationsGn
..= {gδ : δ ∈ {1,−1}n}

such that gδ((x1, y1), ..., (xn, yn)) = ((x1, δ1y1), ..., (xn, δnyn)) for any x, y ∈ Rn. Given a test

statistic Tn used to test the hypothesis H : β = 0, the permutation test rejects if Tn(X,Y ) exceeds

the appropriate quantiles of the permutation distribution of Tn, which is given by

R̂Tn
n (t) ..=

1

2n

∑

gδ∈Gn

I {Un(X, gδ(Y )) ≤ t}

9



For any choice of test statistic, the invariance of the distribution of the data under the group of

transformations is sufficient to ensure that the randomization test is exact; see Lehmann and Romano

(2005, Chapter 15) for details.

Typically for regression problems, the test statistic is chosen to be the usual F-statistic in

homoskedastic models, or the Wald statistic in heteroskedastic models. While under the symmetry

assumption this test is exact in either setting, Janssen (1999) shows that this test is robust against

violations of the symmetry assumptions (in the sense that the test is still asymptotically valid when

the distribution of the Yi is not symmetric).

When the symmetry assumption is satisfied, the randomization test using Wn or Mn — as

defined in equations (4.1) and (4.2), respectively — as the test statistic is also exact. Even when

this assumption is not satisfied, the test is still asymptotically valid, as the following theorem

demonstrates.

Theorem 4.2. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. according to a distribution P such that

β = 0. Suppose that
√
n(θ̂(gδ(X,Y ))− θ0) converges in probability to zero conditionally on the X’s

and Y ’s for any uniformly randomly chosen gδ ∈ Gn. Then, under the assumptions of Theorem 3.1,

the permutation distribution R̂Wn
n of Wn satisfies

sup
t∈R

∣∣∣R̂Wn
n (t)− JWn

n (t, P )
∣∣∣→ 0

in probability as n → ∞ where JWn
n (·, P ) is the sampling distribution of Wn under P . Similarly,

the permutation distribution R̂Mn
n of Mn satisfies

sup
t∈R

∣∣∣R̂Mn
n (t)− JMn

n (t, P )
∣∣∣→ 0

in probability as n → ∞ where JMn
n (·, P ) is the sampling distribution of Mn under P .

Once again, this theorem makes assumptions about the consistency of the estimate of the pa-

rameter in the skedastic function. We verify this assumption for a particular family of skedastic

functions.

Lemma 4.1. For any functions gi : R
d → Rd, i = 1, ..., d, define the family

{
vθ : θ ∈ Rd

}
by

vθ(x) ..= exp

[
d∑

i=1

θjgj(x)

]
,

and let θ̂ be the estimator obtained by regressing hδ(ε̂i) ..= log
(
max

{
δ2, ε̂2i

})
on g(xi) =

(
g1(xi), ..., gd(xi)

by OLS, where δ > 0 is a small constant. Then, for any randomly and uniformly chosen gδ ∈ Gn,

n1/4
(
θ̂(gδ(X,Y ))− θ0

)
converges in conditional probability to zero for

θ0 ..= E(g(xi)g(xi)
′)E(g(xi)hδ(εi))

provided E(gj(xi)gk(xi))
4/3 and E(gj(xi)hδ(εi))

4/3 are both finite for each j and k.
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5 A convex linear combination of the ordinary and weighted least

squares estimators

When the family of skedastic functions is misspecified, the weighted least squares estimator can be

less efficient than the ordinary least squares estimator, even asymptotically.

When interested in inference for a particular coefficient, say βk, practitioners might be tempted

to decide between the ordinary and weighted least squares estimators based on which estimator

has the smaller standard error In particular, it might be tempting to report the estimator

β̂MIN,k
..=

{
β̂WLS,k if Âvar(β̂OLS,k) > Âvar(β̂WLS,k)

β̂OLS,k if Âvar(β̂OLS,k) ≤ Âvar(β̂WLS,k)
,

along with the corresponding confidence interval

β̂MIN,k ± tn−p,1−α/2 ·
√

1

n
min

{
Âvar(β̂WLS,k), Âvar(β̂OLS,k)

}
. (5.1)

Asymptotically, this estimator has the same efficiency as the better of the ordinary least squares

and weighted estimators. However, the confidence interval (5.1) tends to undercover in finite

samples due to the minimizing over the standard error. The next theorem established consistency

of the bootstrap distribution, which can be used to produce confidence intervals with better finite-

sample coverage than those given by (5.1).

Theorem 5.1. Under the conditions of Theorem 3.1, the sampling distribution of
√
n
(
β̂MIN,k−βk

)

converges weakly to the normal distribution with mean zero and variance

σ2
MIN

..= min
{
Avar(β̂WLS,k),Avar(β̂OLS,k)

}

The distribution of
√
n
(
β̂∗
MIN,k − βk

)
, where the samples (x∗i , y

∗
i ) are generated according to the

pairs bootstrap or the wild bootstrap, converges weakly to the normal distribution having mean zero

and variance σ2
MIN

in probability.

When the estimated skedastic function is consistent for the true skedastic function, the estimator

β̂MIN,k is asymptotically as efficient as the best linear unbiased estimator. On the other hand,

when the skedastic function is misspecified, one can find an estimator which is at least as efficient

as β̂MIN, regardless of whether the skedastic function is well modeled, but can potentially have

smaller asymptotic variance. With the aim of creating such an estimator, consider estimators of

the form

β̂λ ..= λβ̂OLS + (1− λ)β̂WLS (5.2)

for λ ∈ [0, 1], which are convex combinations of the ordinary and weighted least squares estimators.

To study the asymptotic behavior of these estimators, it is helpful to first find the asymptotic joint

distribution of the ordinary and weighted least squares estimators.

11



Theorem 5.2. Under the assumptions of Theorem 3.1,

√
n

((
β̂WLS

β̂OLS

)
−
(

β

β

))
d−→ N

((
0

0

)
,

(
Ω−1
1/wΩv/w2Ω−1

1/w Ω−1
1/wΩv/wΩ

−1
1/1

Ω−1
1/1Ωv/wΩ

−1
1/w Ω−1

1/1Ωv/1Ω
−1
1/1

))

as n → ∞ .

It follows that for any λ ∈ [0, 1],
√
n
(
β̂λ − β

)
asymptotically has a normal distribution with

mean zero and covariance matrix

Avar(β̂λ) ..= λ2Ω−1
1/wΩv/w2Ω−1

1/w + 2λ(1− λ)Ω−1
1/wΩv/wΩ

−1
1/1 + (1− λ)2Ω−1

1/1Ωv/1Ω
−1
1/1 ,

which can be consistently estimated by

Âvar(β̂λ) ..=
[
λ2Ω̂−1

1/wΩ̂v/w2Ω̂−1
1/w + 2λ(1− λ)Ω̂−1

1/wΩ̂v/wΩ̂
−1
1/1 + (1− λ)2Ω̂−1

1/1Ω̂v/1Ω̂
−1
1/1

]
.

For any particular coefficient βk, it then holds that
√
n
(
β̂λ,k−βk

)
is asymptotically normal with

mean zero and variance Avar(β̂λ,k), which denotes the kth diagonal entry of Avar(β̂λ). This variance

can be consistently estimated by Âvar(β̂λ,k), the kth diagonal entry of Âvar(β̂λ). In conjunction

with this standard error, the estimator β̂λ,k can be used for inference about βk. For instance,

asymptotically valid t confidence intervals are given by

β̂λ,k ± tn−p,1−α/2 ·
√
Âvar(β̂λ,k)/n .

These intervals suffer from the same shortcomings as the asymptotic confidence intervals based on

the weighted least squares estimator. But using the bootstrap can once again lead to improved

finite-sample performance, and the following theorem establishes consistency of the bootstrap (and

also bootstrap-t) distribution.

Theorem 5.3. Under the conditions of Theorem 3.1,
√
n
(
β̂∗
λ − β̂λ

)
, using the pairs or the wild

bootstrap, converges weakly to the normal distribution with mean zero and variance Avar(β̂λ), in

probability for any fixed λ. Furthermore, for any k, the distribution of
√
n
(
β̂∗
λ,k− β̂λ,k

)
/Âvar(β̂λ,k)

∗

is asymptotically standard normal in probability.

Although inference for βk can be based on β̂λ for any λ ∈ [0, 1], we would like to choose a

value of λ that results in an efficient estimator. The asymptotic variance Avar(β̂λ,k) is a quadratic

function of λ, and therefore has a unique minimum, say λ0, over the interval [0, 1] unless Avar(β̂λ,k)

is constant in λ (which may occur if there is homoskedasticity). In this case, define λ0 = 1.

Asymptotically, β̂λ0,k is the most efficient estimate of βk amongst the collection
{
β̂λ,k : λ ∈ [0, 1]

}
.

Because this collection includes both the weighted and ordinary least squares estimators, β̂λ0,k is

at least as efficient as the ordinary least squares estimator, and may have considerably smaller

asymptotic variance when the skedastic function is well modeled. In fact, this estimate can have
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smaller asymptotic variance than both the ordinary and weighted least squares estimators. Unfor-

tunately, without knowing the asymptotic variance, we cannot find λ0 and we cannot compute the

estimate β̂λ0,k. Instead, we can estimate λ0 by λ̂0, the minimum of Âvar(β̂λ,k) over the interval

[0, 1], provided there is a unique minimum (otherwise set λ̂0 = 1). In particular, the minimizer is

given by

λ̂0 =

[
Ω̂−1
1/1Ω̂v/1Ω̂

−1
1/1 − Ω̂−1

1/wΩ̂v/wΩ̂
−1
1/1

]
k,k[

Ω̂−1
1/wΩ̂v/w2Ω̂−1

1/w − 2 · Ω̂−1
1/wΩ̂v/wΩ̂

−1
1/1 + Ω̂−1

1/1Ω̂v/1Ω̂
−1
1/1

]
k,k

,

if this quantity lies in the interval [0,1], or otherwise λ̂0 is zero or one depending on which gives a

smaller variance. If we choose to use the estimator, β̂λ̂0,k
, then the confidence interval

β̂λ̂0,k
± tn−p,1−α/2 ·

√
1

n
Âvar(β̂λ̂0,k

)

will tend to have a coverage rate that is (much) smaller than the nominal level in finite samples, since

the smallest estimated variance is likely downward biased for the true variance. Instead, reporting

bootstrapped confidence intervals where the λ̂0 is recomputed for each bootstrap sample may give

more reliable confidence intervals. The next theorem demonstrates that the bootstrap distribution

of
√
n
(
β̂∗
λ̂∗

0
,k
− β̂λ̂0,k

)
consistently approximates the sampling distribution of

√
n
(
β̂λ̂0,k

− βk
)
.

Theorem 5.4. Under the conditions of Theorem 3.1, the sampling distribution of
√
n
(
β̂λ̂0,k

− βk
)

converges weakly to the normal distribution with mean zero and variance Avar(β̂λ0,k) and the

bootstrap distribution of
√
n
(
β̂∗
λ̂∗

0
,k
− β̂λ̂0,k

)
also converges weakly to the normal distribution with

mean zero and variance Avar(β̂λ0,k) in probability. Also, for any k, the distribution of
√
n
(
β̂∗
λ̂0,k

−
β̂λ0,k

)
/Âvar(β̂λ̂,k)

∗ converges to the standard normal distribution in probability.

6 Toy examples of linear combinations with lower variance

We will now give and example of a regression model where the optimal λ is in [0, 1] followed by an

example where the optimal λ is outside of [0, 1].

For both examples, we will consider the simplest case, namely univariate regression through the

origin:

yi = βxi + εi .

For the first example, let xi be uniform on the interval [−1, 1] and εi have conditional mean zero and

conditional variance var(εi|xi) =
√
|xi|. In this example, we will estimate the skedastic function

from the family {vθ(x) = θ · |x| : θ ∈ R}. Consequently,

θ0 = E
(
|xi|2

)−1
E
(
|xi|ε2i

)
= E

(
|xi|2)−1E

(
|xi|3/2

)
=

6

5
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λ: 0 .25 .50 .75 1 14/23

n = 20

eMSE 0.1449 0.1380 0.1345 0.1344 0.1378 0.1340

Coverage 0.9613 0.9596 0.9575 0.9553 0.9527 0.9573

Width 1.6645 1.6267 1.6066 1.6057 1.6247 1.6038

n = 50

eMSE 0.0564 0.0539 0.0527 0.0528 0.0540 0.0525

Coverage 0.9524 0.9487 0.9465 0.9449 0.9448 0.9465

Width 0.9589 0.9371 0.9258 0.9253 0.9360 0.9242

n = 100

eMSE 0.0270 0.0259 0.0254 0.0254 0.0261 0.0255

Coverage 0.9520 0.9514 0.9506 0.9486 0.9481 0.9483

Width 0.6592 0.6448 0.6375 0.6376 0.6450 0.6366

Table 6.1: Empirical mean squared error of estimators of β as well as coverage and width of

confidence intervals based on the normal approximation

The estimator (1− λ)β̂WLS + λβ̂OLS has variance

(1− λ)2
E
√
|xi|

(E |xi|)2
+ 2λ(1− λ)

E |xi|3/2
E |xi|Ex2i

+ λ2E |xi|5/2(
Ex2i

)2 ,

which is minimized by

λ0 = 1−
− E|xi|3/2

E|xi|Ex2
i
+ E|xi|5/2

(Ex2
i )

2

E
√

|xi|
(E|xi|)2

− 2 E|xi|3/2
E|xi|Ex2

i
+ E|xi|5/2

(Ex2
i )

2

= 1− −12
5 + 18

7
8
3 − 212

5 + 18
7

=
14

23
.

Table 6.1 presents the empirical mean squared error of this estimator for various λ, as well as

the coverage and average width of confidence intervals based on the normal approximation. For

these simulations, the error terms are normally distributed.

For the second example, let the xi be standard normal, and εi have conditional mean zero and

conditional variance var(εi|xi) = x2i . For the weighted least squares estimator, we will again use

the incorrectly specified family of skedastic functions {vθ(x) = θ · |x| : θ ∈ R}.
In this example, the value of λ minimizing the asymptotic variance of (1− λ)β̂WLS + λβ̂OLS is

14



λ0 = 1− E
(
x2i
)−1

E
(
x4i
)
E
(
x2i
)−1 − E (|xi|)−1

E
(
|xi|3

)
E
(
x2i
)−1

E
(
x2i
)−1

E
(
x4i
)
E
(
x2i
)−1 − 2 + E (|xi|)−1

Ex2iE (|xi|)−1

= 1− 3− 2

π/2− 4 + 3

≈ −0.75 .

Although choosing values of lambda outside the interval [0, 1] may give estimators with lower

variance, we recommend restricting lambda to the interval [0, 1]. In situations where Avar(β̂λ)

is nearly constant in lambda (such as homoskedastic models), the estimates of λ can be highly

unstable when not restricted, and the resulting intervals can have poor coverage. We recommend

choosing λ̂ = 0 if the minimizing λ is negative, or λ̂ = 1 if the minimizing λ is positive. Even if

the optimal lambda is outside the interval [0.1], choosing estimators in this way gives an estimator

that asymptotically has the same variance as the better of the ordinary and weighted least squares

estimators.

7 Simulations for confidence intervals

In this section, we present simulations studying the width and coverage of bootstrap and asymptotic

approximation confidence intervals for regression coefficients. Simulations are given using the model

yi = α+ xiβ +
√
v(xi)εi

where xi ∼ U(1, 4) and εi are i.i.d. according to a distribution specified in several scenarios below.

Several forms of the true skedastic function v(·) are used, and are specified in the tables. In each

of the simulations, (α, β) = (0, 0) and a confidence interval is constructed for β. The parametric

family used to estimate the skedastic function is

vθ(x) ..= exp (θ1 + θ2 log |x|) .

The tables presented in this section compare the ordinary least squares estimator, the weighted

least squares estimator, the estimator chosen between the ordinary and weighted estimators based

on which has smaller sample variance, and the convex combination estimator giving smallest sample

variance (referred to as OLS, WLS, Min, and Optimal, respectively). Simulations are presented

using both the HC0 covariance estimator which is “the most commonly used heteroskedasticity-

consistent covariance matrix estimator” (Cribari-Neto (2004)) as well as the HC3 estimator. In-

tervals based on a t-approximation use 10,000 simulations, while bootstrap intervals use 10,000

simulations with 1,000 bootstrap samples. For the wild bootstrap simulations, we scale the residu-

als by 1/(1− ht) when generating bootstrap samples, where the ht are defined in Remark 3.1.
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Table 7.1 gives the empirical mean squared error when the errors, εi, are N(0, 1). Table 7.2 gives

the coverage of and length of t-intervals using the HC0 covariance estimator. Table 7.4 repeats

the simulations in table 7.2, but instead uses the HC3 estimator. These simulations are repeated

using exponential (with parameter one, centered to have mean zero) errors in Table 7.2 (with HC0

estimators) and 7.4 (with HC3 estimators).

Tables 7.3 and 7.5 give the coverage and length of wild bootstrap-t intervals using the HC0 and

HC3 estimators, respectively, when the errors are N(0, 1). Simulations with exponential errors are

given in Table 7.7 (with HC0 estimators) and Table 7.7 (with HC3 estimators). In each of these

tables, the residuals used for the wild bootstrap samples are calculated using the ordinary least

squares estimator.

The empirical mean squared error of the weighted least squares estimator can be considerably

smaller than that of the ordinary least squares estimator when the skedasticity is well modeled.

When the family of skedastic functions is misspecified or there is conditional homoskedasticity, the

weighted least squares may have worse mean squared error. While in several of the simulations, the

empirical mean squared error of the weighted least squares estimator can be reduced by the ordinary

least squares estimator, using the optimal combination, or the estimator with smallest variance gives

similar performance to the better of the ordinary and weighted least squares estimators. Similarly,

in each of the simulations, the width of intervals based on the convex combination estimator, or

the estimator with smallest variance is close to the narrower of the intervals based on the ordinary

and weighted least squares estimators. By using either the convex combination estimator or the

estimator with minimum variance, there is little loss in efficiency when the model is homoskedastic.

But, these estimators provide improvements in efficiency that are comparable to those realized by

the weighted least squares estimator when the weighted estimator outperforms the ordinary least

squares estimator.

When the errors are normally distributed, the t-intervals using HC0 standard errors can have

coverage that is much lower than the nominal level, especially in small sample sizes. Furthermore,

coverage of the t-intervals based on either the minimum variance or optimal convex combination

estimator is considerably lower than the coverage of intervals based on either the ordinary or

weighted least squares estimators. The wild-bootstrap-t intervals (with the HCO estimator) have

coverage that is very close to the nominal level, regardless of sample size, for each of the estimators

used. For the asymptotic approximation intervals, using the HC3 estimator substantially improved

coverage over the HC0 estimator. With the HC3 estimators, t-intervals have coverage that is very

close to the nominal level when using the ordinary least squares estimator. But for intervals based

on each of the other estimators, the asymptotic intervals still have coverage that is slightly under

the nominal level (especially in small samples) when using the HC3 estimators. The coverage of

these intervals is not as close to the nominal level as the wild bootstrap-t intervals using the HC0

estimator. The wild bootstrap-t intervals using the HC3 estimators are more conservative than
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1 eMSE 0.0754 0.0838 0.0795 0.0794

n = 50, v(x) = 1 eMSE 0.0284 0.0297 0.0294 0.0292

n = 100, v(x) = 1 eMSE 0.0136 0.0140 0.0140 0.0138

n = 20, v(x) = x2 eMSE 0.5611 0.4550 0.4824 0.4775

n = 50, v(x) = x2 eMSE 0.2107 0.1555 0.1637 0.1627

n = 100, v(x) = x2 eMSE 0.0511 0.0352 0.0363 0.0360

n = 20, v(x) = log(x)2 eMSE 0.0654 0.0457 0.0483 0.0487

n = 50, v(x) = log(x)2 eMSE 0.0249 0.0137 0.0138 0.0146

n = 100, v(x) = log(x)2 eMSE 0.0123 0.0063 0.0062 0.0065

n = 20, v(x) = 4 exp(.02x+ .02x2) eMSE 0.3613 0.4088 0.3943 0.3816

n = 50, v(x) = 4 exp(.02x+ .02x2) eMSE 0.1368 0.1450 0.1390 0.1405

n = 100, v(x) = 4 exp(.02x+ .02x2) eMSE 0.0667 0.0686 0.0682 0.0677

Table 7.1: Empirical mean squared error of estimators of β as well as average coverage and width

of confidence intervals based on an asymptotic approximation

those using the HC0 estimator, but are also wider.

As with normal errors, the wild bootstrap-t using the HC0 estimator have coverage that is

better than the asymptotic intervals using either the HC0 or HC3 estimators when the errors have

an exponential distribution. In this setting, the wild bootstrap-t method, using the HC3 estimator,

gave intervals that have similar coverage to those using the HC0 estimator, but are somewhat wider.

Basing intervals on the minimum variance or optimal convex combination estimators performs

similarly to using the weighted least squares estimator in situations when this estimator is more

efficient, but never performs noticeably worse than intervals based on the ordinary least squares es-

timator. However, when using these estimators, intervals based on asymptotic approximations tend

to under-cover. Using the wild-bootstrap-t method (especially with the HC0 estimator) produces

intervals based on these estimators which have coverage that is closer to the nominal level. In each

of the simulations, using the minimum variance or convex combination estimator produces confi-

dence intervals whose width is similar to those given by weighting when there are improvements in

efficiency to be had, but that are never substantially wider than those given by the ordinary least

squares estimator.
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1
Coverage 0.9190 0.8976 0.8966 0.8962

Width 1.0240 1.0004 0.9766 0.9728

n = 50, v(x) = 1
Coverage 0.9394 0.9323 0.9324 0.9319

Width 0.6424 0.6381 0.6304 0.6294

n = 100, v(x) = 1
Coverage 0.9446 0.9385 0.9391 0.9387

Width 0.4535 0.4520 0.4491 0.4488

n = 20, v(x) = x2
Coverage 0.9076 0.9039 0.8908 0.8902

Width 2.7364 2.4102 2.3589 2.3292

n = 50, v(x) = x2
Coverage 0.9275 0.9341 0.9263 0.9263

Width 1.7481 1.4848 1.4779 1.4640

n = 100, v(x) = x2
Coverage 0.9387 0.9410 0.9396 0.9367

Width 1.2414 1.0385 1.0375 1.0315

n = 20, v(x) = log(x)2
Coverage 0.9067 0.9197 0.9042 0.9022

Width 0.9440 0.7703 0.7613 0.7513

n = 50, v(x) = log(x)2
Coverage 0.9308 0.9409 0.9384 0.9330

Width 0.6001 0.4501 0.4498 0.4462

n = 100, v(x) = log(x)2
Coverage 0.9443 0.9460 0.9459 0.9430

Width 0.4260 0.3071 0.3071 0.3060

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9201 0.8980 0.8983 0.8977

Width 2.2601 2.2107 2.1448 2.1333

n = 50, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9413 0.9317 0.9317 0.9318

Width 1.4274 1.4154 1.3938 1.3910

n = 100, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9470 0.9429 0.9424 0.9432

Width 1.0054 1.0003 0.9921 0.9910

Table 7.2: Average coverage and width of confidence intervals for β based on an asymptotic ap-

proximation using HC0 standard errors
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1

Coverage 0.9459 0.9466 0.9437 0.9433

Width 1.1975 1.2613 1.2469 1.2333

n = 50, v(x) = 1

Coverage 0.9465 0.9473 0.9478 0.9459

Width 0.6779 0.6962 0.6886 0.6871

n = 100, v(x) = 1

Coverage 0.9488 0.9499 0.9487 0.9483

Width 0.4649 0.4713 0.4683 0.4682

n = 20, v(x) = x2
Coverage 0.9447 0.9472 0.9471 0.9456

Width 3.3458 3.0195 3.0330 3.0321

n = 50, v(x) = x2
Coverage 0.9416 0.9458 0.9487 0.9467

Width 1.8864 1.6009 1.6192 1.6152

n = 100, v(x) = x2
Coverage 0.9476 0.9515 0.9488 0.9510

Width 1.2863 1.0724 1.0796 1.0774

n = 20, v(x) = log(x)2
Coverage 0.9461 0.9520 0.9487 0.9486

Width 1.1553 0.9336 0.9596 0.9594

n = 50, v(x) = log(x)2
Coverage 0.9504 0.9523 0.9514 0.9511

Width 0.6476 0.4706 0.4838 0.4800

n = 100, v(x) = log(x)2
Coverage 0.9513 0.9527 0.9523 0.9541

Width 0.4421 0.3117 0.3175 0.3144

n = 20, v(x) = 4 exp(.02x+ .02x2)

Coverage 0.9487 0.9462 0.9469 0.9467

Width 2.6898 2.8535 2.7960 2.7791

n = 50, v(x) = 4 exp(.02x+ .02x2)

Coverage 0.9431 0.9444 0.9493 0.9443

Width 1.5050 1.5495 1.5220 1.5212

n = 100, v(x) = 4 exp(.02x+ .02x2)

Coverage 0.9475 0.9471 0.9493 0.9487

Width 1.0341 1.0476 1.0392 1.0390

Table 7.3: Average coverage and width of confidence intervals for β based on the bootstrap-tmethod

using the wild bootstrap with HC0 covariance estimators
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1
Coverage 0.9507 0.9353 0.9340 0.9338

Width 1.1950 1.1608 1.1341 1.1301

n = 50, v(x) = 1
Coverage 0.9491 0.9423 0.9412 0.9411

Width 0.6805 0.6755 0.6669 0.6659

n = 100, v(x) = 1
Coverage 0.9500 0.9449 0.9457 0.9463

Width 0.4661 0.4646 0.4616 0.4612

n = 20, v(x) = x2
Coverage 0.9495 0.9445 0.9364 0.9362

Width 3.2361 2.8017 2.7418 2.7117

n = 50, v(x) = x2
Coverage 0.9490 0.9481 0.9451 0.9434

Width 1.8600 1.5711 1.5637 1.5500

n = 100, v(x) = x2
Coverage 0.9465 0.9482 0.9469 0.9458

Width 1.2761 1.0641 1.0634 1.0574

n = 20, v(x) = log(x)2
Coverage 0.9494 0.9496 0.9401 0.9408

Width 1.1017 0.8774 0.8687 0.8595

n = 50, v(x) = log(x)2
Coverage 0.9461 0.9516 0.9498 0.9466

Width 0.6375 0.4706 0.4704 0.4675

n = 100, v(x) = log(x)2
Coverage 0.9465 0.9498 0.9496 0.9477

Width 0.4379 0.3134 0.3134 0.3125

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9548 0.9388 0.9358 0.9368

Width 2.6677 2.6016 2.5252 2.5134

n = 50, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9512 0.9431 0.9435 0.9437

Width 1.5151 1.5042 1.4807 1.4778

n = 100, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9516 0.9497 0.9484 0.9492

Width 1.0375 1.0338 1.0245 1.0234

Table 7.4: Average coverage and width of confidence intervals for β based on an asymptotic ap-

proximation using HC3 standard errors
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1
Coverage 0.9560 0.9527 0.9435 0.9433

Width 1.3105 1.3789 1.2533 1.2519

n = 50, v(x) = 1
Coverage 0.9546 0.9537 0.9487 0.9486

Width 0.6971 0.7156 0.6863 0.6855

n = 100, v(x) = 1
Coverage 0.9511 0.9521 0.9487 0.9489

Width 0.4722 0.4788 0.4685 0.4684

n = 20, v(x) = x2
Coverage 0.9566 0.9566 0.9421 0.9418

Width 3.6474 3.2782 3.0676 3.0574

n = 50, v(x) = x2
Coverage 0.9535 0.9559 0.9528 0.9497

Width 1.9403 1.6507 1.6262 1.6197

n = 100, v(x) = x2
Coverage 0.9521 0.9498 0.9512 0.9474

Width 1.3060 1.0882 1.0817 1.0786

n = 20, v(x) = log(x)2
Coverage 0.9527 0.9620 0.9472 0.9466

Width 1.2643 1.0030 0.9704 0.9599

n = 50, v(x) = log(x)2
Coverage 0.9536 0.9536 0.9525 0.9502

Width 0.6702 0.4828 0.4817 0.4801

n = 100, v(x) = log(x)2
Coverage 0.9537 0.9529 0.9523 0.9511

Width 0.4485 0.3147 0.3156 0.3136

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9604 0.9580 0.9476 0.9471

Width 2.9172 3.0692 2.7876 2.7802

n = 50, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9556 0.9571 0.9415 0.9501

Width 1.5494 1.5941 1.5285 1.5221

n = 100, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9479 0.9477 0.9463 0.9436

Width 1.0476 1.0612 ‘1.0406 1.0370

Table 7.5: Average coverage and width of confidence intervals for β based on the wild bootstrap-t

method with HC3 covariance estimates
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λ: OLS WLS min Optimal

n = 20, v(x) = 1
Coverage 0.9302 0.8841 0.8862 0.8857

Width 0.9788 0.9250 0.8980 0.8927

n = 20, v(x) = x2
Coverage 0.8870 0.8810 0.8720 0.8694

Width 2.6241 2.2717 2.2002 2.1681

n = 20, v(x) = log(x)2
Coverage 0.8705 0.8784 0.8621 0.8621

Width 0.8967 0.7344 0.7178 0.7075

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9306 0.8860 0.8869 0.8840

Width 2.1813 2.0628 1.9916 1.9754

Table 7.6: Average coverage and width of confidence intervals for β based on the asymptotic

approximation using the HC0 covariance estimator with exponential errors

λ: OLS WLS Min Optimal

n = 20, v(x) = 1

Coverage 0.9570 0.9276 0.9342 0.9340

Width 1.1415 1.1468 1.0981 1.1200

n = 20, v(x) = x2
Coverage 0.9285 0.9247 0.9268 0.9262

Width 3.1013 2.8088 2.7857 2.7766

n = 20, v(x) = log(x)2
Coverage 0.9024 0.9132 0.9120 0.9074

Width 1.0724 0.8889 0.8920 0.8969

n = 20, v(x) = 4 exp(.02x+ .02x2)

Coverage 0.9565 0.9292 0.9345 0.9377

Width 2.4942 2.5328 2.4396 2.4653

Table 7.7: Average coverage and width of wild bootstrap-t confidence intervals for β using the HC0

covariance estimator with exponential errors

λ: OLS WLS Min Optimal

n = 20, v(x) = 1
Coverage 0.9648 0.9310 0.9312 0.9319

Width 1.1487 1.0768 1.0483 1.0428

n = 20, v(x) = x2
Coverage 0.9243 0.9178 0.9125 0.9100

Width 3.0674 2.6113 2.5353 2.5031

n = 20, v(x) = log(x)2
Coverage 0.9104 0.9089 0.9009 0.8996

Width 1.0411 0.8350 0.8191 0.8092

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9673 0.9284 0.9287 0.9265

Width 2.5522 2.3858 2.3098 2.2948

Table 7.8: Average coverage and width of confidence intervals for β based on the asymptotic

approximation using the HC3 covariance estimator with exponential errors
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λ: OLS WLS Min Optimal

n = 20, v(x) = 1
Coverage 0.9661 0.9393 0.9352 0.9333

Width 1.2303 1.2262 1.1314 1.1172

n = 20, v(x) = x2
Coverage 0.9316 0.9355 0.9221 0.9201

Width 3.3637 3.0195 2.8386 2.7818

n = 20, v(x) = log(x)2
Coverage 0.9171 0.9238 0.9040 0.9070

Width 1.1605 0.9568 0.9093 0.9009

n = 20, v(x) = 4 exp(.02x+ .02x2)
Coverage 0.9680 0.9429 0.9357 0.9363

Width 2.7516 2.7648 2.5510 2.5103

Table 7.9: Average coverage and width of wild bootstrap-t confidence intervals for β using the HC0

covariance estimator with exponential errors
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8 Appendix

Proof of Theorem 3.1. For a fixed function w(·), define W ..= diag {w(x1), ..., w(xn)} and

β̂W ..= (X⊤W−1X)−1X⊤W−1Y .

If the skedastic function is estimated from a family {vθ} by vθ̂, the weighted least squares estimator

is given by by

β̂WLS
..= (X⊤V −1

θ̂
X)−1X⊤V −1

θ̂
Y

where Vθ
..= diag {vθ(x1), ..., vθ(xn)}. We would like to show that the bootstrap distribution

√
n
(
β̂∗
WLS − β̂WLS

)
(conditional on the data) consistently approximates the sampling distribution

of
√
n
(
β̂WLS−β

)
. To do this, we will first show that the distribution of

√
n
(
β̂∗
W − β̂W

)
consistently

approximates the distribution of
√
n
(
β̂W −β

)
for a fixed W (satisfying some regularity conditions).

We will then show that
√
n
(
β̂∗
WLS − β̂WLS

)
− √

n
(
β̂∗
W − β̂W

)
converges in conditional probability

to zero for W = Vθ0 , assuming that the estimate θ̂∗ of the variance parameter is conditionally

consistent for some fixed θ0. That is, the proof of Theorem 3.1 will rely on Lemmas 8.1 and 8.2

which are stated below.

Lemma 8.1. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. satisfying assumptions (A1)−(A6). Suppose
that w : Rd → R+ is a fixed and known function (although not necessarily the true skedastic function)

and satisfies

E



∥∥∥∥∥

(
xi1√
w(xi)

, ...,
xip√
w(xi)

,
yi√
w(xi)

)∥∥∥∥∥

4

2


 < ∞ .

Define W ..= diag(w(x1), ..., w(xn)), and let β̂W ..= (X⊤W−1X)−1X⊤W−1Y . Then, for almost all

sample sequences, the conditional law of
√
n
(
β̂∗
W − β̂W

)
converges weakly to the normal distribution

with mean 0 and variance Ω−1
1/wΩv/w2Ω−1

1/w.

Proof of Lemma 8.1 using the pairs bootstrap. Let CP be the set of sequences {Pn} such that

(B1) Pn converges weakly to P (the distribution of (xi, yi)).

(B2) βW (Pn) ..=
(∫

1
w(x)xx

⊤dPn

)−1
·
∫

1
w(x)xydPn → β .

(B3)
∫

1
w(x)xx

⊤dPn → Ω1/w .

(B4)
∫ (

1/w(x)x⊤(y − xβW (Pn)
)⊤ (

1/w(x)x⊤(y − xβW (Pn)
)
dPn → Ωv/w2 .

To prove the lemma, we will first show that the distribution of
√
n
(
β̂W − βW (Pn)

)
under Pn

converges weakly to the normal distribution with mean 0 and variance Ω−1
1/wΩv/w2Ω−1

1/w whenever

{Pn} ∈ Cp, and then show that the empirical distribution is in Cp almost surely.

Let (xn,i, yn,i), i = 1, ..., n be independent and identically distributed according to Pn such that

{Pn} ∈ CP .
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Define residuals εn,i ..= Yn,i −Xn,iβW (Pn) so that

√
n
(
β̂W − βW (Pn)

)
=

√
n
(
X⊤

n W−1Xn

)−1
X⊤

n W−1 (εn +XnβW (Pn))− βW (Pn)

=

(
1

n
X⊤

n W−1Xn

)−1√
nX⊤

n W−1εn .

It follows immediately from the assumptions that

(
1

n
X⊤

n W−1Xn

)−1
P−→ Ω−1

1/w ,

and we have the desired asymptotic normal distribution if we can show

√
nX⊤

n W−1εn
d−→ N(0,Ωv/w2) .

We will first consider the case of xi ∈ R. Because
∫

x⊤n,i
1

w(xn,i)
(yn,i − xn,iβW (Pn))dPn = 0 ,

and ∫
x⊤n,ixn,i

1

w2(xn,i)
ε2n,idPn → Ωv/w2 ,

the asymptotic normality follows from the Lindeberg-Feller Central Limit Theorem if we can verify

that

E

(
x2n,1

1

w2(xn,1)
ε2n,11

{
x2n,1

1

w2(xn,1)
ε2n,1 > nδ

})
→ 0

for all δ > 0, where 1{·} denotes the indicator function of a set. Since βW (Pn) → β and (xn,i, yn,i)
d−→

(X,Y ) ∼ P ,

xn,1
1

w(xn,1)
εn,1

d−→ X

w(X)
(Y −Xβ) =

X

w(X)
ε .

Therefore, for any fixed γ that is a continuity point of the distribution of Xε/w(X) and n > γ/δ,

we have that

E

(
x2n,1

1

w2(xn,1)
ε2n,11

{
x2n,1

1

w2(xn,1)
ε2n,1 > nδ

})
≤ E

(
x2n,1

1

w2(xn,1)
ε2n,11

{
x2n,1

1

w2(xn,1)
ε2n,1 > γ

})

→ E

(
X2 1

w2(X)
ε21

{
X2 1

w2(X)
ε2 > γ

})
.

The Lindeberg-Feller condition is satisfied, since the right-hand side of this equation can be

made arbitrarily small by choosing γ sufficiently large. The multivariate case follows analogously

using the Cramér-Wold device. For any vector of constants, C ∈ Rp, we must show

n∑

i=1

εn,i
w(xn,i)

xn,iC
d−→ N(0, C⊤Ωv/w2C) .
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This convergence follows from the Lindeberg-Feller CLT if

E

((
εn,i

w(xn,i)
xn,iC

)2

1

{(
εn,i

w(xn,i)
xn,iC

)2

> nδ

})
→ 0

for all δ > 0. This convergence holds by the same argument as in one dimensional case given above.

It is easily seen that the empirical distribution functions P̂n are almost surely in CP , and the result

of the theorem follows.

Proof of Lemma 8.1 using the wild bootstrap. Let S be the set of sequences {xi, yi} satisfying the

following conditions:

(S1) β̂W → β ,

(S2) Ω̂1/w → Ω1/w ,

(S3) Ω̂v/w2 → Ωv/w2 , and

(S4)
√
n
(
β̂WLS − β̂W

)
→ 0 .

Write

√
n
(
β̂∗
W − β̂W

)
=

√
n
(
X⊤

n W−1Xn

)−1
X⊤

n W−1ε̂∗ +
√
n
(
β̂WLS − β̂W

)
.

On S,
(
1
nX

⊤
n W−1Xn

)−1 → Ω1/w, and
√
n
(
β̂WLS − β̂W

)
→ 0. Thus, to show the desired

asymptotic normality, it suffices to show that, on S, W−1ε̂∗
d−→ N(0,Ωv/w2) conditionally on the

x′s and y′s. This convergence holds using the Cramér-Wold device, since for each vector c ∈ Rp,

c⊤X⊤
n W−1ε̂∗ =

∑
xic

1

w(xi)
ε̂∗

which is asymptotically normal with mean zero and variance c⊤Ωv/w2c by the Lindeberg-Feller

Central Limit Theorem which is applicable because condition (S3) holds.

The conditions specified by the set S do not hold almost surely, but they do hold in probability.

By the Almost Sure Representation Theorem, there exist versions of the X’s and Y ’s such that

S holds almost surely. It follows that the asymptotic normality of the wild bootstrap distribution

holds in probability.

Lemma 8.2. Suppose that θ̂∗ is consistent for θ0, in the sense that n1/4
(
θ̂∗ − θ0

)
converges in

conditional probability to zero. Suppose that β̂WLS
..= (X⊤V −1

θ̂
X)−1X⊤V −1

θ̂
Y and vθ0 =.. w so that

W ..= diag(vθ0(X1), ..., vθ0(Xn)). Under the assumptions of Theorem 3.1,

√
n
(
β̂∗
WLS − β̂WLS

)
−
√
n
(
β̂∗
W − β̂W

) P−→ 0

in probability.
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Proof of Lemma 8.2 using the pairs bootstrap. Let CP be the set of sequences {Pn} that satisfy the

following conditions:

(C1) Pn converges weakly to P

(C2)
∫

1
w(x)xx

⊤dPn → Ω1/w

(C3)
∫ (

1/w(x)x⊤(y − xβW (Pn)
)⊤ (

1/w(x)x⊤(y − xβW (Pn)
)
dPn → Ωv/w2

(C4) n1/4 (βW (Pn)− β(Pn)) → 0

(C5) n1/4EPn

(
xi(y − xβ(Pn))rθ0,l(x)

)
→ 0 for each i = 1, ..., p, l = 1, ..., d

(C6) EPn

∣∣xiεrθ0,l(x)
∣∣2 → EP (|xiεrθ0,l(x)|2) for each i = 1, ..., p, l = 1, ..., d

(C7) EPn |xiεsθ0(x)|2 → EP (|xiεsθ0(x)|2) for each i = 1, ..., p, l = 1, ..., d

(C8) n1/4
(
θ̂ − θ0

)
converges in Pn-probability to zero

Suppose that (xn,i, yn,i), i = 1, ..., n are i.i.d. according to Pn where
{
Pn

}
is any sequence

in CP .

Define the residuals

εŴ ,n,i
..= yn,i − xn,iβŴ (Pn) ,

εn,i ..= yn,i − xn,iβ(Pn) ,

and

εW,n,i
..= yn,i − xn,iβW (Pn)

where

βŴ (Pn) ..=

(∫
1

vθ̂(x)
xx⊤dPn

)−1 ∫ 1

vθ̂(x)
xydPn ,

β(Pn) ..=

(∫
xx⊤dPn

)−1 ∫
xydPn ,

and

βW (Pn) ..=

(∫
1

w(x)
xx⊤dPn

)−1 ∫ 1

w(x)
xydPn .

Then,

√
n
(
β̂WLS − βWLS(Pn)

)
−
√
n
(
β̂W − βW (Pn)

)
= (X⊤

n Ŵ−1Xn)
−1X⊤

n Ŵ−1εŴ ,n

− (X⊤
n W−1Xn)

−1X⊤
n W−1εW,n .

To show this quantity converges in probability to zero, it suffices to show that

1√
n

(
X⊤

n Ŵ−1εŴ ,n −X⊤
n W−1εW,n

)
P−→ 0
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and
1

n

(
X⊤

n Ŵ−1Xn −X⊤
n W−1Xn

)
P−→ 0 .

We can write the first expression as

1√
n

[
X⊤

n

(
Ŵ−1 −W−1

)
εW,n +X⊤

n Ŵ−1Xn

(
βŴ (Pn)− βW (Pn)

)]
.

By the assumptions on sequences in CP ,
√
n
(
βŴ − βW

) P−→ 0. It will be seen later that
1
nX

⊤
n Ŵ−1Xn

P−→ E(x⊤x/w(x)), so the second tern in the above expression converges to zero in

probability. The first term is

1√
n
X⊤

n

(
Ŵ−1 −W−1

)
εW,n =

1√
n

∑
x⊤n,i

(
1

vθ̂(xn,i)
− 1

vθ0(xn,i)

)
εW,n,i

which, as in Romano and Wolf (2015), can be written as A+B where the jth entry of A is

Aj =
1√
n

n∑

i=1

xn,i,jεW,n,i

K∑

l=1

rθ0,l(xn,i)(θ̂l − θ0,l) ,

and with probability tending to one,

|Bj | ≤
1

2
√
n

∣∣∣θ̂ − θ0

∣∣∣
2∑

|xn,i,jεW,n,isθ0(xn,i)| .

Because n1/4(θ̂l − θ0,l)
P−→ 0, to show Aj

P−→ 0, we only need to show that

n−3/4
n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i)
P−→ 0

for each l = 1, ...,K. We will do this by showing that the mean and variance converge to zero.

The variance converges to zero since

varPn

(
n−3/4

n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i)

)
= n−1/2varFn (xn,i,jεW,n,irθ0,l(xn,i))

and, by the assumptions on CP , the sequence of variances varPn (xn,i,jεW,n,irθ0,l(xn,i)) is bounded.

To show that the mean converges to zero, write

n−3/4
n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i) = n−3/4
n∑

i=1

xn,i,jεn,irθ0,l(xn,i)+n−3/4
n∑

i=1

(εW,n,i−εn,i)xn,i,jrθ0,l(xn,i) .

The expectation of the first term converges to zero by assumption and the expectation of the second

term converges to zero, since

EPn

(
n−3/4

n∑

i=1

xn,i,jεn,irθ0,l(xn,i)

)
= EPn

(
1

n
Xn,ixn,i,jrθ0,l(xn,i)

)
n1/4

(
β̂(Pn)− β̂W (Pn)

)
→ 0 .
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Similarly, since
√
n
∣∣θ̂ − θ0

∣∣2 P−→ 0, we have that |Bj | P−→ 0 provided 1
n

∑∣∣xn,i,jεW,n,isθ0(xn,i)
∣∣ =

Op(1). As in the argument for Aj , this last sum has expectation tending to a constant, and variance

tending to zero, and so it converges in probability to a constant.

Finally we must show that

1

n

(
X⊤

n Ŵ−1Xn −X⊤
n W−1Xn

)
=

1

n

∑
x⊤i xn,i

(
1

vθ̂(xn,i)
− 1

vθ0(xn,i)

)

converges in probability to zero. The argument proceeds as above.

Since
√
n
(
β̂Ŵ − β̂W

)
converges to zero in probability, but not necessarily almost surely, the

empirical distribution functions P̂n do not lie in CP almost surely. However, it is easily seen that

the empirical distribution functions satisfy the moment conditions on CP in probability, so the

asymptotic normality of the bootstrap distribution holds in probability.

Proof of Lemma 8.2 using the wild bootstrap. Let S′ be the set on which (S1)–(S4) hold as well as

(S5) 1
n

∑n
i=1

∣∣xiŷirθ0,l(x)
∣∣2 → EP (|xiyirθ0,l(x)|2) for each i = 1, ..., p, l = 1, ..., d ,

(S6) 1
n

∑n
i=1 |xiŷisθ0(x)|

2 → EP (|xiyisθ0(x)|2) for each i = 1, ..., p, l = 1, ..., d , and

(S7) n1/4
(
θ̂∗ − θ0

)
converges in probability to zero.

We will show that

√
n
(
β̂∗
WLS − β̂WLS

)
−

√
n
(
β̂∗
W − β̂W

)
=
√
n

[(
X⊤W ∗−1X

)−1
X⊤W ∗−1ε∗

−
(
X⊤W−1X

)−1
X⊤W−1ε∗

]
+
√
n
(
β̂WLS − β̂W

)

converges to probability to zero, conditional on any sequence of x′s and y′s in S′.

By assumption, the second term converges to zero on S′. To show the first term converges in

probability to zero, we will show that

1√
n

(
X⊤

n Ŵ ∗−1ε∗ −X⊤
n W−1ε∗

)
P−→ 0

and
1

n

(
X⊤

n Ŵ ∗−1Xn −X⊤
n W−1Xn

)
P−→ 0 .

The first quantity can be written as

1√
n
X⊤

n

(
Ŵ−1 −W−1

)
ε∗ =

1√
n

∑
x⊤n,i

(
1

vθ̂∗(xn,i)
− 1

vθ0(xn,i)

)
ε∗i
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which again can be written as A+B where the jth entry of A is

Aj =
1√
n

n∑

i=1

xn,i,jε
∗
i

K∑

l=1

rθ0,l(xn,i)(θ̂
∗
l − θ0,l) ,

and with probability tending to one,

|Bj | ≤
1

2
√
n

∣∣∣θ̂∗ − θ0

∣∣∣
2∑

|xn,i,jε∗i sθ0(xn,i)| .

By assumption (S7), n1/4(θ̂∗l − θ0,l)
p−→ 0. Further, for each l, n−3/4

∑n
i=1 xn,i,jε

∗
i

∑K
l=1 rθ0,l(xn,i)

converges in probability to zero since it has mean zero and variance

var

(
n−3/4

n∑

i=1

xn,i,jε
∗
i rθ0,l(xn,i)

)
= n−3/2

n∑

i=1

(xn,i,j ε̂irθ0,l(xn,i))
2

which converges to zero on S′ by assumption (S5). Consequently, Aj converges in probability to

zero for each j. Similarly, Bj converges in probability to zero since
√
n(θ̂∗l − θ0,l)

2 converges in

probability to zero, and 1
n

∑ |xn,i,jε∗i sθ0(xn,i)| converges in probability to a constant.

The other convergence,

1

n

(
X⊤

n Ŵ ∗−1Xn −X⊤
n W−1Xn

)
P−→ 0 ,

follows from a similar argument.

Proof of Lemma 3.1. We will first consider the estimate θ̃ obtained by regressing hδ(εi) on g(xi). By

a similar argument to Lemma 8.1,
√
n
(
θ̃∗−θ̃

)
is almost surely asymptotically normal. Consequently,

n1/4
(
θ̃∗ − θ̃

)
converges in conditional probability to zero, almost surely. We can express

n1/4
(
θ̃ − θ0

)
= n1/4

(
(G⊤G)−1G⊤h− θ0

)

= n1/4(G⊤G)−1G⊤e .

where G and h are the matrix and vector containing the g(xi) and hδ(εi), respectively, and e is the

vector with entries ei = hδ(yi)−g(x)θ0. Since (
1
nG

⊤G)−1 converges almost surely to E(g(xi)
⊤g(xi))

and n−3/4G⊤e converges in almost surely to zero, n1/4
(
θ̃ − θ0

)
converges almost surely to zero.

Writing

n1/4
(
θ̃∗ − θ0

)
= n1/4

(
θ̃∗ − θ̃

)
+ n1/4

(
θ̃ − θ0

)
,

we see this quantity converges in conditional probability to zero, almost surely.

Now,

θ̂∗ − θ̃∗ =

(
1

n

∑
g(x∗i )g

⊤(x∗i )

)−1 1

n

∑
g(x∗i ) (hδ(ε̂

∗
i )− hδ(ε

∗
i )) .

It is easily seen that
(
1
n

∑
g(x∗i )g

⊤(x∗i )
)
converges in conditional probability to E(g(x)g(x)′) and

n−3/4
∑

g(x∗i ) (hδ(ε̂
∗
i )− hδ(ε

∗
i )) converges in conditional probability to zero, almost surely.
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Proof of Theorem 4.1. The bootstrap estimator Ω̂∗−1
1/wΩ̂

∗
v/w2Ω̂

∗−1
1/w converges in conditional probabil-

ity to Ω−1
1/wΩv/w2Ω−1

1/w. As a consequence of Theorem 2, the bootstrap distribution of
√
nR(β∗

WLS−
β̂WLS) approximates the distribution of

√
n(Rβ̂ − q). It follows that the bootstrap distribution of

W ∗
n consistently approximates the distribution of Wn. Moreover, both the bootstrap distribution

of M∗
n and the sampling distribution of Mn are asymptotically distributed as maxi Zi where Z is

a multivariate normal random variable with mean zero and covariance matrix V Ω−1
1/wΩv/w2Ω−1

1/wV ,

with V a diagonal matrix whose diagonal entries are equal to the square root of the diagonal entries

of Ω−1
1/wΩv/w2Ω−1

1/w. The claims of the theorem now follow from Slutsky’s Theorem.

Proof of Theorem 4.2 and Lemma 4.1. These claims follow from the same arguments as the wild

bootstrap counterparts, but with ε̂i replaced by εi.

Proof of Theorem 5.1. For almost all sequences {(xi, yi)}, Âvar(β̂OLS,k)
∗ converges to Avar(β̂OLS,k)

and Âvar(β̂WLS,k) converges to Avar(β̂WLS,k) in conditional probability. The claim follows from

applying Slutsky’s theorem conditionally.

Proof of Theorem 5.2. Following the argument of Theorem 3.1 of Romano and Wolf (2015), we

must only find the asymptotic joint distribution of
√
n(β̂W −β) and

√
n(β̂OLS−β) since

√
n(β̂WLS−

β̂W )
P−→ 0. We can write

√
n(β̂W − β) =

(
1
nX

⊤W−1X
)−1 1√

n
X⊤W−1ε and

√
n(β̂OLS − β) =

(
1
nX

⊤X
)−1 1√

n
X⊤ε. Because

(
1

n
X⊤W−1X

)−1
P−→ E

(
1

w(xi)
x⊤i xi

)−1

= Ω−1
1/w ,

and (
1

n
X⊤X

)−1
P−→ E

(
x⊤i xi

)−1
= Ω−1

1/1 ,

it is enough to find the joint limiting distribution of 1√
n
X⊤W−1ε and 1√

n
X⊤ε. These are sums of

i.i.d. mean zero random variables, so the Multivariate Central Limit Theorem gives

√
n




1√
n
X⊤W−1ε

1√
n
X⊤ε


 d−→ N



(

0

0

)
,


 E

(
x⊤i xi

v(xi)
w2(xi)

)
E

(
x⊤i xi

v(xi)
w(xi)

)

E

(
x⊤i xi

v(xi)
w(xi)

)
E
(
x⊤i xiv(xi)

)




 .

The claim follows from Slutsky’s Theorem.

Proof of Theorem 5.3. An argument analogous to the proof of Theorem 3.1 to the one presented

above shows that for any fixed λ, the bootstrap distribution of

√
n(λβ̂∗

WLS + (1− λ)β̂∗
OLS − λβ̂WLS − (1− λ)β̂OLS) =

√
n(β̂∗

λ − β̂λ) ,

is asymptotically normal with mean zero and covariance matrix Avar(β̂λ) in probability.

It follows from the weak law of large numbers for triangular arrays that Âvar(β̂λ)
∗ converges in

conditional probability to Avar(β̂λ), almost surely. The second convergence follows from Slutsky’s

Theorem.
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Proof of Theorem 5.4. We begin with the case where Avar(β̂λ,k) is non-constant. In order to show

that
√
n
(
β̂λ̂−β

) d−→ N
(
0,Avar(β̂λ0

)
)
, we will show that

√
n
(
β̂λ̂0

− β
)
−√

n
(
β̂λ0

− β
) P−→ 0. Indeed,

√
n
(
β̂λ̂0

− β
)
−
√
n
(
β̂λ0

− β
)
=

√
n
(
λ̂0 − λ0

) [
β̂OLS − β̂WLS

]

which converges in probability to zero.

Theorem 5.3 gives that for any fixed λ, the bootstrap distribution of

√
n(λβ̂∗

WLS + (1− λ)β̂∗
OLS − λβ̂WLS − (1− λ)β̂OLS) =

√
n(β̂∗

λ − β̂λ) ,

is asymptotically normal with mean zero and covariance matrix Avar(β̂λ) in conditional probability.

To prove the convergence of the bootstrap distribution stated in the theorem, we will first

show that the bootstrap distribution of
√
n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
is asymptotically normal with mean 0 and

covariance matrix Avar(β̂λ) in probability and then show that
√
n
(
β̂∗
λ̂∗

− β̂λ̂

)
−√

n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
p−→ 0

in probability.

To show the desired asymptotic normality of
√
n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
, we will show

√
n
(
β̂∗
λ0

− β̂λ0

)
−
√
n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
P−→ 0 .

We can write

√
n
(
β̂∗
λ0

− β̂λ0

)
−
√
n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
=
√
n(λ̂∗ − λ0)

[
β̂∗
WLS − β̂WLS

]

+
√
n
(
(1− λ̂∗)− (1− λ0)

) [
β̂∗
OLS − β̂OLS

]
.

Because
√
n
(
β̂∗
WLS − β̂WLS

)
and

√
n
(
β̂∗
OLS − β̂OLS

)
are asymptotically normal (in probability),

the desired convergence follows from Slutsky’s Theorem if we can show λ̂∗ P−→ λ0. Note that λ̂
∗ is a

continuous function of
[
Ω̂∗−1
1/wΩ̂

∗
v/w2Ω̂

∗−1
1/w

]
k,k

,
[
Ω̂∗−1
1/wΩ̂

∗
v/wΩ̂

∗−1
1/1

]
k,k

, and
[
Ω̂∗−1
1/1 Ω̂

∗
v/1Ω̂

∗−1
1/1

]
k,k

. Because

these quantities converge in probability to the population versions almost surely, it follows from

the continuous mapping theorem that λ̂∗ converges in conditional probability to λ0.

Similarly,

√
n
(
β̂∗
λ̂∗

− β̂λ̂∗

)
−
√
n
(
β̂∗
λ̂∗

− β̂λ̂

)
=
√
n
(
β̂λ̂∗

− β̂λ̂0

)

=
√
n(λ̂∗ − λ̂0)

[
β̂∗
WLS − β̂WLS

]

P−→ 0

in conditional probability.

The case where Avar(β̂λ,k) is similar, but follows from a simpler argument.
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