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Abstract. This paper constructs a novel equilibrium in the chopstick auction of

Szentes and Rosenthal (Games and Economic Behavior, 2003a, 2003b). In contrast to

the existing solution, the identi�ed equilibrium strategy allows a simple and intuitive

characterization. Moreover, its best-response set has the same Hausdor¤ dimension

as its support, which may be seen as a robustness property. The analysis also reveals

some new links to the literature on Blotto games.
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1. Introduction

Despite being one of the main mechanism for allocating multiple objects, simultane-

ous auctions are notorious for exposing bidders to the risk of ending up overpaying for

the combination of objects ultimately won.1 Much of the basic intuition is captured

by the example of the so-called �rst-price chopstick auction (Szentes and Rosenthal

2003a; see also Postlewaite and Wilson 2003). In that auction, two bidders simulta-

neously place bids on three identical objects. Moreover, the value of winning at most

one object is zero, whereas the value of winning at least two objects is positive. For

the �rst-price chopstick auction, Szentes and Rosenthal constructed a doubly sym-

metric mixed-strategy equilibrium, henceforth referred to as the Szentes-Rosenthal

equilibrium (SRE), in which bidders randomize according to a uniform distribution

over the surface of a tetrahedron.

The structure of the SRE is intriguing, in particular because it features a two-

dimensional equilibrium support enclosing a three-dimensional best-response set. As

Szentes and Rosenthal (2003b) noted, however, their solution has two drawbacks.

First, the equilibrium strategy is surprisingly complicated. Second, given that the

best-response set has a higher dimension than the equilibrium support, it seems un-

likely that the SRE would be the result of a process that is aligned with some kind

of better- or best-response dynamics.

The present paper documents the existence of a new type of equilibrium for the

chopstick auction. In the sequel, this equilibrium will be referred to as the self-

similar equilibrium (SSE). To construct the SSE, we consider a variant of the chopstick

auction, using an approach due to Sion and Wolfe (1957).2 In that variant, the

decision-making process of each bidder is stretched out over in�nitely many stages.

Moreover, at each stage, a choice is made between merely two alternatives for each

1See Milgrom (2000). For illustrations of such exposure risk see, e.g., van Damme (2000), Ew-
erhart and Moldovanu (2005), and Ewerhart et al. (2012). Also the �ndings of the experimental
literature are consistent with the view that inexperienced subjects fall prey to exposure risk (En-
glmaier et al. 2009; Mago and Sheremata 2016).

2Although Sion and Wolfe (1957) is more commonly known for providing an example of a two-
person zero-sum game without a value, later sections of their paper describe a way to transcribe any
static game on the square into a dynamic game with unobservable actions.
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object (hold vs. raise). Below, we will interpret, in an admittedly generous way, the

resulting multi-stage game as a dynamic auction.3 The equilibrium bid distribution

of the SSE will then be characterized as the measure-theoretic image of a simple

stationary strategy in the dynamic auction, where the stationarity property in the

dynamic auction translates into a self-similarity property in the simultaneous game.

Related literature. �Fractal� solutions to non-cooperative games of the Blotto

type have been identi�ed by Gross and Wagner (1950) and Kvasov (2007). However,

neither of these papers considered the case of the chopstick auction.4 Gross (1954)

has constructed an example of a zero-sum game on the square with rational payo¤

functions and the Cantor distribution as the unique equilibrium.5 Related is also

the recent paper by Topolyan (2014). She uses the binary expansion of a uniformly

distributed random bid to construct a continuum of equilibria in an all-pay team

contest with additive contributions. Ok (2004) proved a �xed-point theorem for

correspondences and applied it to rationalizability as well as to self-similar sets.

The remainder of the present paper is organized as follows. Section 2 describes

the set-up. In Section 3, the dynamic variant of the chopstick auction is introduced,

and the SSE constructed. A proof of the equilibrium property is provided in Section

4. Section 5 deals with the dimension of the best-response set. In Section 6, the SSE

is characterized as a self-similar probability measure. Section 7 concludes.

2. Set-up

In the chopstick auction considered by Szentes and Rosenthal (2003a), a seller o¤ers

three identical objects, A, B, and C, via simultaneous sealed-bid auctions to a given

population of two bidders. Each of the two bidders i = 1; 2 submits a vector of bids,

X i = (X i
A; X

i
B; X

i
C) 2 R3+: (1)

3The interpretation is generous because, just as in Sion and Wolfe (1957), actions remain private
information, so that there is no updating in the extensive-form game. Thus, also in the dynamic
auction, the interaction between the bidders ultimately remains of a one-shot nature.

4The relationship to the literature on �fractal�solutions will be discussed more thoroughly in a
separate section at the end of the present paper, where some new conjectures are formulated as well.

5Cf. Karlin (1959), who also cites Gross (1952).
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For each object � 2 fA;B;Cg, the bidder i � i� 2 f1; 2g submitting the highest bid

on object � wins that object, and pays her bid X i
� to the seller, where ties are broken

randomly, fairly, and independently across objects.6 Bidder i�s valuation of winning

a total of qi 2 f0; 1; 2; 3g objects is

V (qi) =

(
0 if qi � 1
2 if qi � 2,

(2)

i.e., a bidder has a valuation of zero if she wins at most one object, and a valuation

of two if she wins at least two objects. This speci�cation of bidders�valuations corre-

sponds to the so-called pure chopstick case discussed in Szentes and Rosenthal (2003a,

Ch. 2). In the �rst-price chopstick auction, bidder i�s expected payo¤ equals her val-

uation V (qi) less the sum of her winning bids. In the second-price chopstick auction,

the bidder winning any object � (with � = A;B;C) pays only the second-highest

bid on that object. Finally, in the all-pay chopstick auction, bidders pay their bids

unconditionally rather than conditionally on winning. However, the term chopstick

auction, i.e., without quali�cation, will be reserved for the �rst-price format.7

3. A variant of the chopstick auction

As outlined in the Introduction, we will now modify the set-up introduced above and

assume that each player�s decision regarding her respective bid strategy is decomposed

into in�nitely many choices that are taken in a sequential manner, yet still before the

release of any information about the opponent�s strategy.

The formal framework is as follows. At any stage t 2 N = f1; 2; :::g, each bidder

i 2 f1; 2g chooses, for each object � 2 fA;B;Cg separately, whether to hold (xi�(t) =

0) or to raise her bid (xi�(t) = 1). Thus, at any t 2 N, each bidder i 2 f1; 2g is

assumed to select the binary vector

xi(t) = (xiA(t); x
i
B(t); x

i
C(t)) (3)

6The results of the present paper hold, however, for any tie-breaking rule.
7In any of these auctions, a mixed strategy � for bidder i is understood to be a Borel probability

measure on [0; 2]3. Moreover, a mixed strategy � is a symmetric equilibrium strategy (in the simul-
taneous auction) if � maximizes a player�s expected payo¤, within the set of all mixed strategies,
given that her opponent adheres to �.
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from the set Dt = f0; 1g�f0; 1g�f0; 1g. Bidder i 2 f1; 2g will be said to win object

� 2 f1; 2; 3g against bidder j 6= i if there is a stage T� 2 N such that xi�(t) = xj�(t)

for all t < T� , and xi�(T�) = 1 > 0 = xj�(T�). If such T� < 1 does not exist,

then we will say that there is a tie on object �. Thus, the allocation of the three

objects is determined either after �nitely many stages at T � maxfTA; TB; TCg <1,

or the bidding develops entirely in parallel on at least one object. As discussed,

however, there is no updating, i.e., the binary vector xi(t) 2 Dt chosen by bidder

i 2 f1; 2g at any stage t 2 N is assumed to remain unobservable for bidder j 6= i

during the entire auction. By a (reduced-form) pure strategy for bidder i 2 f1; 2g,

we mean a sequence xi = fxi(t)g1t=1 consisting of choices xi(t) 2 Dt for all t 2 N.

Alternatively, a pure strategy may be written as a vector xi = (xiA; x
i
B; x

i
C), where

xi� = fxi�(t)g1t=1 is a binary sequence for each object � 2 fA;B;Cg. The set of pure

strategies will be denoted by D =
Q1
t=1Dt. Payo¤s in the dynamic game are derived

from the simultaneous �rst-price chopstick auction, where bidder i�s bid X i
� on object

� 2 fA;B;Cg is replaced by

�(xi�) =
1X
t=1

xi�(t)

2t
2 [0; 1]. (4)

Thus, the binary choices made by a bidder for an object in the course of the dynamic

bidding process are interpreted as digits in the binary expansion of the corresponding

bid in the simultaneous auction.8 The thereby de�ned in�nite-horizon game will

be referred to as the dynamic (�rst-price) chopstick auction. Thus, intuitively, the

dynamic auction is equivalent to the original chopstick auction, except that any bid

vector in R3+ may possess up to 23 = 8 binary representations, and that bids in the

dynamic auction cannot exceed one.

Next, we de�ne two mixed extensions of the dynamic chopstick auction, following

essentially Kuhn (1953).9 A mixed strategy in the dynamic auction is a probability

measure on D, where the Borel sets on D are derived from the product of the discrete
8It should be noted that the mapping � is continuous, so that the payo¤ functions in the dynamic

game are Borel measurable.
9While Kuhn�s (1953) analysis focuses on �nite games, an extension to games with in�nite play

length has been accomplished in unpublished work by P. Wolfe (cf. Aumann 1964).
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topologies on each factor Dt.10 Bidder i�s expected payo¤ resulting from a pair of

mixed strategies is de�ned as usual in terms of the bilinear extension of i�s payo¤

function. This extension is well-de�ned because payo¤s are bounded. Moreover, by

the substitution rule (Kallenberg 1997, Lemma 1.22), expected payo¤s in the dynamic

auction may be determined alternatively by considering the image measures of the

players�mixed strategies in the simultaneous auction and calculating expected payo¤s

there. A (path-independent) behavior strategy � = f�(t)g1t=1 in the dynamic auction

speci�es an independent random variable with values in the �nite choice setDt at each

stage t 2 N. By taking the product measure over the component distributions of a

given behavior strategy �, we obtain a unique mixed strategy in the dynamic auction,

which will be denoted as e�. In particular, expected payo¤s resulting, say, from a pair of
behavior strategies are well-de�ned. A behavior strategy � is a symmetric equilibrium

strategy (in the dynamic auction) if the associated mixed strategy e� maximizes any
bidder i�s expected payo¤s, within the set of all mixed strategies, under the condition

that bidder i�s opponent j 6= i adheres to e�.
A speci�c behavior strategy �SSE in the dynamic chopstick auction is de�ned by the

requirement that, at each stage t 2 N, the bidder samples her choices independently

and according to the following probability distribution:

State !(t) !0 !1 !2 !3

Probability pr(!(t)) 1=4 1=4 1=4 1=4

Binary vector x(t) (0; 0; 0) (0; 1; 1) (1; 0; 1) (1; 1; 0)

(5)

Thus, adhering to �SSE means that, at each stage, the bidder either holds her bids

on all three objects, or raises her bids on precisely two randomly selected objects.

Moreover, each of these altogether four possibilities is selected with equal probability,

and independently across stages.

The following observation is key to most of the results of the present paper.
10Since each Dt is a separable metric space, the Borel �-�eld on D corresponds precisely to the

measure-theoretic product of the Borel �-�elds on each Dt. See Kallenberg (1997, Lemma 1.2).
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Lemma 1. �SSE is a symmetric equilibrium strategy in the dynamic chopstick auction.

A proof will be provided in the next section. Lemma 1 is useful because it allows

constructing a new type of equilibrium in the simultaneous chopstick auction. To see

this, start from the mixed strategy e�SSE induced by the behavior strategy �SSE. Note
next that any pure strategy x = (xA; xB; xC) 2 D in the dynamic chopstick auction

may be transformed, by component-wise application of the mapping �, into a bid

vector

X = (XA; XB; XC) = (�(xA); �(xB); �(xC)) 2 [0; 1]3 (6)

in the simultaneous auction. Since this transformation is continuous, the measure-

theoretic image of the mixed strategy e�SSE under the transformation is a well-de�ned
mixed strategy �SSE in the simultaneous auction. Moreover, as stated in the follow-

ing proposition, the image distribution inherits from �SSE the property of being a

symmetric equilibrium strategy.

Proposition 1. �SSE is a symmetric equilibrium strategy in the simultaneous �rst-

prize chopstick auction.

Proof. The claim follows directly from Lemma 1. Indeed, any bid exceeding one

against �SSE is suboptimal, because X� = 1 wins object � with probability one. It

therefore su¢ ces to note that the component-wise application of the mapping � is

surjective on [0; 1]3. �

Szentes and Rosenthal (2003b, p. 293) conjectured that the SRE is unique within the

class of symmetric equilibria of the chopstick auction. Proposition 1 above shows that

this is not the case. Instead, the chopstick auction admits at least one alternative

symmetric solution, viz. the SSE. With the help of additional arguments that will be

detailed elsewhere, one can even show that any convex combination of the SSE and

the SRE is again a symmetric equilibrium. However, as will be explained in Section 6,

there is no easy way to construct additional equilibria in the chopstick auction using

the replacement techniques known from the literature on the Blotto game.
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Similarities between SSE and SRE. In the remainder of this section, it will be

shown that the SSE shares some of the remarkable properties of the SRE.

First, most obviously, the SSE is a doubly symmetric equilibrium, i.e., symmetric

both with respect to the bidders and with respect to the objects. This is true also

for the SRE.

Second, as in the case of the SRE, any bivariate marginal distribution of the

SSE, i.e., any distribution of bids on any given pair of objects, is uniform. To see

this, denote by F (XA; XB; XC) the probability that �SSE is component-wise weakly

smaller than (XA; XB; XC) 2 R3+. Thus, F is the distribution function of �SSE. Then,

integrating out the last component, we obtain F (XA; XB; 1) = XAXB, as follows

directly from considering the projection of the probability distribution (5) on the �rst

two coordinates. Thus, the bivariate marginal distributions of the SSE are indeed

uniform on [0; 1]2.11

Next, the expected payo¤ in the SSE is zero. Indeed, by symmetry, each bidder

wins two or more objects with probability 1
2
, and therefore has an expected valuation

of 1
2
� 2 = 1. Moreover, each bidder wins any given object with probability 1

2
, and the

winning bid corresponds in distribution to the maximum of two independent draws

from the uniform distribution on the unit interval, so that the mean winning bid

equals 2
3
, and the expected payment per bidder is 3 � 1

2
� 2
3
= 1. Thus, bidders�rents

are entirely extracted not only in the SRE, but also in the SSE.

Finally, as in the case of the SRE, the pricing rule may be modi�ed. For example,

when any bid realization in �SSE is multiplied with the factor two, one obtains an

equilibrium in the second-prize auction. Indeed, when bids are distributed uniformly,

the expected losing bid corresponds to one half of the winning bid (Szentes and

Rosenthal 2003a). Similarly, an equilibrium in the all-pay auction may be found by

replacing any bid realization in �SSE by its second power (Szentes 2005; Kovenock

and Roberson 2012).

11However, in contrast to the SRE, there is no simple algebraic expression for F (XA; XB ; XC) in
the case of the SSE.
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4. Proof of Lemma 1

The idea of the proof is it to exploit the stationarity of the behavior strategy �SSE as

much as possible.

We start by deriving an explicit expression for the bidder�s expected payo¤ from

playing an arbitrary pure strategy x 2 D against the behavior strategy �SSE in the

dynamic chopstick auction. Given two pure strategies x = fx(t)g1t=1 2 D and bx =
fbx(t)g1t=1 2 D in the dynamic chopstick auction, we shall say that x weakly wins all

the objects against bx, in short x � bx, if for all three objects v = A;B;C, the bid

x� = fx�(t)g1t=1 either wins or ties against bx� = fbx�(t)g1t=1. We may then de�ne,
for the behavior strategy �SSE in the dynamic chopstick auction, its �distribution

function�

�(x) = pr(�SSE � x). (7)

Then, noting that ties occur with probability zero, a bidder�s expected payo¤ from

playing the pure strategy x = (xA; xB; xC) 2 D against the behavior strategy �SSE

may be expressed as

�(x) = 2f�(xA; xB; 1) + �(xA; 1; xC) + �(1; xB; xC)� 2�(x)g (8)

� �(xA)�(xA; 1; 1)� �(xB)�(1; xB; 1)� �(xC)�(1; 1; xC).

Exploiting further the fact that all bivariate marginals of � are products of indepen-

dent uniform distributions, as discussed in the previous section, equation (8) may be

written alternatively as

�(x) = 2�(xA)�(xB) + 2�(xA)�(xC) + 2�(xB)�(xC) (9)

� �(xA)2 � �(xB)2 � �(xC)2 � 4�(x).

This is the desired explicit expression for a bidder�s expected payo¤ resulting from a

pure-strategy deviation x 2 D in the dynamic chopstick auction.

Next, to exploit the stationarity of the behavior strategy �SSE, we note that any

given pure strategy x = fx(t)g1t=1 2 D in the dynamic chopstick auction may be

8



decomposed into a �rst-stage choice

x(1) 2 D1 = f0; 1g � f0; 1g � f0; 1g, (10)

and a shifted pure strategy

x+ = fx+(t)g1t=1 = fx(t+ 1)g1t=1 2 D: (11)

This decomposition, which can be accomplished in an analogous fashion for any bid

on an individual object, proves very useful for all that follows. For instance, one may

readily check that � satis�es the recursive relationship

�(x�) =
x�(1) + �(x

+
� )

2
, (12)

for any object � 2 fA;B;Cg and for any pure strategy x 2 D.

Simple recursive relationships can be derived now for the function � = �(x),

which will enable us to evaluate the sign of �(x). The following lemma states those

relationships, where the symmetry of the behavior strategy �SSE across objects allows

to restrict attention to a subset of values for the �rst-stage choice x(1).

Lemma 2. For any pure strategy x 2 D in the dynamic chopstick auction,

�(x) =
1

4
�

8>>>>>>>><>>>>>>>>:

�(x+) if x(1) = (0; 0; 0)

�(x+A)�(x
+
B) if x(1) = (0; 0; 1)

�(x+A) + �(x
+) if x(1) = (0; 1; 1)

1 + �(x+A)�(x
+
B) + �(x

+
A)�(x

+
C) + �(x

+
B)�(x

+
C) if x(1) = (1; 1; 1).

(13)

Proof. Let x 2 D be an arbitrary pure strategy in the dynamic chopstick auction.

As explained above, we may decompose x into a �rst-stage choice x(1) 2 D1 and a

shifted pure strategy x+ 2 D. The four cases in equation (13) are now dealt with one

at a time:

Case 1. Suppose �rst that the �rst-period choice prescribed by the pure strategy x

is x(1) = (0; 0; 0). Intuitively, strategy x speculates on !(1) realizing to !0, because

9



in all other cases, it becomes impossible to weakly win all three objects. Put more

formally, x weakly wins all the objects against a speci�c realization bx 2 D of the

behavior strategy �SSE if and only if the following two conditions hold: (i) the �rst-

period choice prescribed by the realized pure strategy bx is bx(1) = (0; 0; 0), and (ii)

the shifted strategy x+ weakly wins all objects against the shifted realization

bx+ = fbx+(t)g1t=1 = fbx(t+ 1)g1t=1 2 D: (14)

But, by de�nition, the behavior strategy �SSE is stationary, i.e., its realizations bx =
fbx(t)g1t=1 2 D are distributed independently across stages. Therefore, the shifted

realization bx+ follows the same stochastic distribution as bx, viz. �SSE. Moreover,
the shifted realizations bx+ are distributed independently from the �rst-period choicebx(1) prescribed by the realized pure strategy bx. Hence, noting that bx(1) follows the
distribution (5), we arrive at �(x) = 1

4
� �(x+), as claimed.

Case 2. Next, suppose that the �rst-period choice prescribed by the pure strategy x

is x(1) = (0; 0; 1). This case is similar to the previous one insofar that strategy x loses

the possibility of winning all three objects unless !(1) realizes to !0. But, in contrast

to the previous case, if indeed !(1) = !0, then strategy x has already won object C

in stage t = 1, so that the allocation remains undetermined only for objects A and B.

Hence, in this case, x weakly wins all three objects against a speci�c pure-strategy

realization bx 2 D from the distribution �SSE if and only if the following two conditions
hold: (i) the �rst-stage choice prescribed by bx satis�es bx(1) = (0; 0; 0), and (ii) the
shifted realization bx+ satis�es bx+ � (x+A; x+B; 1). Exploiting again the stationarity of
�SSE, it follows that

�(x) =
1

4
� �(x+A; x+B; 1) =

�(x+A)�(x
+
B)

4
. (15)

Case 3. Suppose now that x(1) = (0; 1; 1). Then, following the same reasoning as

above, it can be checked that strategy x weakly wins all the objects against a speci�c

realization bx 2 D of the behavior strategy �SSE if either (i) !(1) = !0 and bx+ �
10



(x+A; 1; 1), or (ii) !(1) = !1 and bx+ � x+. Hence,
�(x) =

1

4
� �(x+A) +

1

4
� �(x+), (16)

as claimed.

Case 4. Finally, suppose that x(1) = (1; 1; 1). In this case, it is obvious that strategy

x weakly wins all the objects against a speci�c realization bx 2 D of the behavior

strategy �SSE if !(1) = !0. But strategy x likewise weakly wins all the objects if

either (i) !(1) = !1 and bx+ � (1; x+B; x+C), or (ii) !(1) = !2 and bx+ � (x+A; 1; x+C), or
(iii) !(1) = !3 and bx+ � (x+A; x+B; 1). The assertion follows now as before.
Since all cases have been covered, this proves relationship (13). �

Next, returning to the proof of Lemma 1, it will be checked that there are no pro�table

deviations. As noted in the previous section, the expected payo¤ of �SSE against

itself is zero. Hence, a pro�table deviation must yield a strictly positive expected

payo¤. One can check that the dynamic chopstick auction is not continuous at in�nity

(Fudenberg and Tirole 1991, p. 110), so that the one-stage deviation principle cannot

be invoked. Fortunately, however, the arguments remain manageable because of the

stationarity of �SSE. The following cases need to be considered.

Case A. Suppose �rst that a pure strategy x 2 D exists such that

x(1) 2 S�1 � f(0; 0; 0); (0; 1; 1); (1; 0; 1); (0; 1; 1)g, (17)

and such that �(x) > 0. Thus, intuitively, there is a pro�table deviation that

does not start right away, but only at a later stage. Then, in any of these cases,

a straightforward calculation using Lemma 2 as well as equations (9) and (12) deliv-

ers �(x) = 1
4
� �(x+). For example, if x(1) = (0; 1; 1), then

�(x) =
�(x+A)(1 + �(x

+
B))

2
+
�(x+A)(1 + �(x

+
C))

2
+
(1 + �(x+B))(1 + �(x

+
C))

2
(18)

� �(x
+
A)
2

4
� (1 + �(x

+
B))

2

4
� (1 + �(x

+
C))

2

4
� �(x+A)� �(x+).

11



Collecting terms, we �nd that, indeed,

�(x) =
�(x+A)�(x

+
B)

2
+
�(x+A)�(x

+
C)

2
+
�(x+B)�(x

+
C)

2
(19)

� �(x
+
A)
2

4
� �(x

+
B)
2

4
� �(x

+
C)
2

4
� �(x+)

=
1

4
� �(x+). (20)

The other cases are similar. Thus, even though there is no discounting, delaying a

pro�table deviation would only lower expected payo¤s. Conversely, this shows that

the deviation x+ 2 D, if used from stage t = 1 onwards, would magnify the strictly

positive expected payo¤ from strategy x by the factor 4. Iterating this argument,

if necessary, and using the fact that expected payo¤s in the chopstick auction are

bounded, we �nd after �nitely many applications of the shift operator that there

necessarily exists also a pro�table pure-strategy deviation bx 2 D that does not satisfy
(17). Thus, it su¢ ces to consider the remaining cases.

Case B. Suppose next that

x(1) 2 f(1; 0; 0); (0; 1; 0); (0; 0; 1)g: (21)

By renaming the objects, if necessary, one may assume without loss of generality that

x(1) = (0; 0; 1). But then, using equations (9) and (12), as well as Lemma 2, one

obtains

�(x) =
�(x+A)�(x

+
B)

2
+
�(x+A)(1 + �(x

+
C))

2
+
�(x+B)(1 + �(x

+
C))

2
(22)

� �(x
+
A)
2

4
� �(x

+
B)
2

4
�
�
1 + �(x+C)

�2
4

� �(x+A)�(x+B)

= (�1
4
) � (�(x+A) + �(x+B)� �(x+C)� 1)2 (23)

� 0. (24)

Thus, there is no pro�table deviation x satisfying (21).12

12However, here and below, there are obvious indi¤erence relationships, which will matter in the
determination of the best-response set. See Section 5.
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Case C. Finally, consider the case where

x(1) = (1; 1; 1). (25)

In this case, one again makes use of equations (9) and (12) as well as of Lemma 2,

and �nds

�(x) =
(1 + �(x+A))(1 + �(x

+
B))

2
(26)

+
(1 + �(x+A))(1 + �(x

+
C))

2

+
(1 + �(x+B))(1 + �(x

+
C))

2

� (1 + �(x
+
A))

2

4
� (1 + �(x

+
B))

2

4
� (1 + �(x

+
C))

2

4

� 1� �(x+A)�(x+B)� �(x+A)�(x+C)� �(x+B)�(x+C).

Rearranging yields

�(x) = (�1
4
) � (�(x+A) + �(x+B) + �(x+C)� 1)2 � 0. (27)

Hence, it is weakly suboptimal to use a pure strategy x 2 D satisfying (25) against

�SSE.

Since there is no pro�table pure-strategy deviation, the behavior strategy �SSE de�nes

a symmetric equilibrium in the dynamic chopstick auction. This completes the proof

of Lemma 1.

5. Analysis of the best-response set

This section discusses issues related to the dimensionality of the SSE. More precisely,

we will follow Szentes and Rosenthal (2003a) in comparing the respective dimensions

of the equilibrium support and the best-response set. For the SRE, the equilib-

rium support has dimension 2, which is strictly smaller than the dimension of the

corresponding best-response set, which is 3. To deal with the SSE, obviously, the

traditional de�nition of dimensionality in terms of degrees of freedom, which is very

13



suitable for smooth objects such as simplices and manifolds, needs to be extended.

Below, we shall therefore make use of a more general notion of dimensionality.

We �rst recall the notion of the Hausdor¤ dimension.13 Given a bounded subset

S � RL, with L � 1, and some nonnegative real number d � 0, the d-dimensional

Hausdor¤ content of S is de�ned as the in�mum of the set of numbers � � 0 such

that there exist sequences fzng1n=1 in RL and frng1n=1 in R++ such that (i) for any

z 2 S, there is some index n such that jz � znj � rn, and (ii)
P1

n=1 r
d
n < �. The

Hausdor¤ dimension of S, denoted by dimH(S), is the in�mum of all d for which the

d-dimensional Hausdor¤ content of S is zero.

Let S� denote the support of the equilibrium bid distribution �SSE. One can con-

vince oneself that the set S� consists precisely of those bid vectorsX = (XA; XB; XC) 2

R3+ that are contained in the component-wise image of the support of e�SSE under the
mapping �.14 Thus, the set S� is the popular self-similar structure known as the

Sierpinski tetrahedron. Rather than o¤ering a formal description, we will provide a

geometric description of S�. The Sierpinski tetrahedron may be constructed from its

solid counterpart by �rst carving out a regular octahedron (see Figure 1), then re-

peating that task on each of the resulting four smaller tetrahedra, and �nally iterating

this step at in�nitum.

The set S� is compact and of the same cardinality as the unit cube [0; 1]3, but its

Lebesgue measure is zero, and it is not dense in any non-degenerate interval. The

Hausdor¤ dimension of the Sierpinski tetrahedron S� is

dimH(S
�) =

ln 4

ln 2
= 2, (28)

as follows from standard results on the dimensionality of self-similar sets (see, e.g.,

Falconer 2014, Theorem 9.3; cf. also Kvasov 2007). Since the Sierpinski tetrahedron
13According to Falconer (2014), the Hausdor¤ dimension is the oldest and probably most impor-

tant notion of fractal dimension. This notion is also consistent with the dimensionality notion used
by Kvasov (2007, caption of Figure 2).
14Indeed, the support of e�SSE is compact by Tychono¤�s theorem and, hence, its continuous image

S�� � [0; 1]3 under the component-wise application of the mapping � is likewise compact. It follows
that S�� is closed and of measure one, so that S� � S��. Conversely, the pre-image of any non-empty
set relative open in S�� is non-empty and relative open in the support of e�SSE , and consequently has
positive measure under e�SSE . Hence, S� � S��, which implies S� = S��.
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contains its four outer vertices, the convex hull of S� is just the solid tetrahedron-

shaped best-response set considered by Szentes and Rosenthal (2003a).

Figure 1

We can show now the following:

Proposition 2. In the simultaneous chopstick auction, the set of pure best responses

to �SSE has Hausdor¤ dimension two.

Proof. As seen in Section 4, a pure best response x 2 D to �SSE in the dynamic

chopstick auction is either a pure strategy in the support of �SSE, or a �nite sequence

in the set

S�1 = f(0; 0; 0); (0; 1; 1); (1; 0; 1); (0; 1; 1)g, (29)

followed by a pure strategy bx 2 D such that either, up to a renaming of objects,bx(1) = (0; 0; 1) and
�(bx+A) + �(bx+B)� �(bx+C)� 1 = 0, (30)

or bx(1) = (1; 1; 1) and
�(bx+A) + �(bx+B) + �(bx+C)� 1 = 0: (31)
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In the former case, relationship (12) implies

�(bxA) = �(bx+A)
2

, �(bxB) = �(bx+B)
2

, and �(bxC) = 1 + �(bx+C)
2

, (32)

so that equation (30) becomes equivalent to

�(bxA) + �(bxB) = �(bxC), (33)

where

�(bxA) � 1

2
, �(bxB) � 1

2
, and �(bxC) � 1

2
:

In the latter case,

�(bxA) = 1 + �(bx+A)
2

, �(bxB) = 1 + �(bx+B)
2

, and �(bxC) = 1 + �(bx+C)
2

, (34)

so that equation (31) is equivalent to

�(bxA) + �(bxB) + �(bxC) = 2, (35)

where

�(bxA) � 1

2
, �(bxB) � 1

2
, and �(bxC) � 1

2
: (36)

Moreover, the best-response set in the simultaneous chopstick auction is the image

under the component-wise application of the mapping � of the best-response set in

the dynamic auction. Thus, invoking some geometric intuition, the best-response set

of the SSE may be thought of as adding to the equilibrium support the four faces of

each of the tetrahedra considered during the iterative construction of the Sierpinski

tetrahedron. The set of best responses to �SSE is, therefore, the denumerable union

of two-dimensional sets, and as such, two-dimensional. �

Thus, in contrast to the SRE, the best-response set of the SSE is indeed of the same

dimension as its equilibrium support. Still, it is hard to tell in the abstract if this

property makes it more likely that a process favoring better or best responses would

lead to the SSE rather than to the SRE.15

15However, the robustness of the SSE is supported by ongoing research on the numerical compu-
tation of the equilibrium.
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6. Relationship to the literature on �fractal�solutions

In this section, it will be shown that the SSE may be characterized as a measure

invariant under a simple replacement operation. This way, we can also explain how

the SSE relates to �fractal�solutions considered in prior work on the Blotto game.

Consider the following four contraction mappings on the unit cube [0; 1]3:

C0(X) =
1

2
X (37)

C1(X) =
1

2
fX + (0; 1; 1)g (38)

C2(X) =
1

2
fX + (1; 0; 1)g (39)

C3(X) =
1

2
fX + (1; 1; 0)g (40)

Then, by construction, �SSE is an invariant measure (Hutchinson, 1981) with respect

to the above family of contractions fCkg4k=1. In other words, the probability dis-

tribution �SSE is identical to the equally-weighted convex combination of the four

image measures of �SSE with respect to the contractions (37)-(40). This property can

actually be used to characterize the SSE.

Proposition 3. The probability distribution �SSE is characterized by the property

that it is invariant with respect to the family of contractions fCkg4k=1.

Proof. The claim follows immediately from the fact that the invariant measure is

unique (Hutchinson, 1981, Sec. 4). �

The relationship to existing work on �fractal�solutions will be discussed now. Gross

and Wagner (1950) constructed new classes of equilibria of Colonel Blotto games by

replacing a given hexagon in the hexagonal solution by a convex combination of six

smaller replicas. Iterating this replacement operation a �nite number of times, ab-

solutely continuous bid distributions of arbitrary geometric complexity (the so-called

snow�ake solutions) have be constructed. The main purpose of such constructions,

however, was it to show that solutions exist with a support of Lebesgue measure
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smaller than any given " > 0. It was also noted that the respective smallest build-

ing blocks in this construction, obtained after a �nite number of operations, can be

replaced by suitably demagni�ed disk solutions.16

More recently, the same approach of iteratively deriving new equilibria from exist-

ing ones has been used by Kvasov (2007) to construct �fractal�solutions to Colonel

Blotto games with costly resources. Thereby, it has been shown that, also in this case,

there are solutions with the property that the support of the symmetric equilibrium

strategy has an arbitrarily small but positive Lebesgue measure. The family of con-

tractions (37)-(40) considered above for the chopstick auction is obviously a variant

of the Gross-Wagner-Kvasov replacement operation for Blotto games.

However, it remains an open question whether a �nite iteration of applying the

replacement operation (37)-(40) to the SRE would similarly lead to new classes of

equilibria in the chopstick auction. Indeed, while the equilibrium property in a Blotto

game may be veri�ed quite easily by checking that univariate marginals are uniform

(Roberson 2006), no such simple test is available in the case of the chopstick auction.

Instead, geometric considerations of substantial complexity would be needed.17 In

particular, the results of the present paper do not easily follow from existing work.18

7. Conclusion

A new type of equilibrium has been identi�ed for an important prototype model of the

simultaneous auction, the so-called chopstick auction. A somewhat unusual aspect

of the equilibrium bid distribution is that it may be characterized as a self-similar

probability measure. Even though similar �fractal�solutions have been constructed

16In fact, it is not hard to convince oneself that any equilibrium of the Blotto game, including
those recently identi�ed by Weinstein (2012), may be used as smallest-scale replacements in this
sort of construction.
17Even using the methods developed in the present paper, the question will not be easy to answer.

The reason is that, if the SRE is translated back into a behavior strategy in the dynamic auction
using Kuhn�s construction, it turns out to be not only non-stationary, but also path-dependent. This
makes it quite di¢ cult to decide the Nash property for candidate equilibria that are derived from
the SRE through �nite iterations of the replacement operation.
18Conversely, however, it is possible to construct entirely new equilibria in Blotto games using the

methods developed in the present paper. See the Conclusion.
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before in the class of Blotto games and in games with rational payo¤ functions, this

possibility was (to the author�s knowledge) not a well-known feature of the class of

simultaneous auctions. The observation must, therefore, be added, to the collection

of perplexing properties of this interesting class of auctions.

It is tempting to consider any �fractal�solution as irrelevant on the grounds that

it is too complicated. The analysis above has shown that this conclusion might be

unwarranted. After all, using the dynamic transcription of the simultaneous auction,

the self-similar equilibrium constructed in the body of the present paper may be

described in simple and intuitive terms. Moreover, there is some evidence (work in

progress) that the theoretical robustness property established in the present paper

actually matters for numerical computations of the equilibrium strategy, which is

also consistent with the prediction of Szentes and Rosenthal (2003b). Thus, the self-

similar equilibrium may, paradoxically perhaps, be thought of as being both simpler

and more robust than the known solution.

There are large classes of games in political economy, including in particular the

interesting class of majority auctions, that may be seen as direct generalizations of the

two-bidder three-object auction and for which, in some important special cases, essen-

tially nothing is known about the equilibrium set (cf. Szentes and Rosenthal 2003b).

Unfortunately, a direct extension of the methods developed in the present paper is

not fruitful. For example, in a majority auction with �ve objects, raising the bids

dynamically on a randomly selected subset of, say, three objects does not constitute

an equilibrium. Therefore, more re�ned methods are necessary to construct equilibria

in those games. A more or less obvious case in which the methods developed in the

present paper can actually be used to construct new and interesting equilibria is the

class of continuous Colonel Blotto and Colonel Lotto games.19 However, elaborating

further on this extension would go beyond the scope of the present paper. We hope

to be able to document these �ndings more explicitly in future research.

19See, e.g., the discussion in Thomas (2017).
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