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Diffusion of Behavior in Dynamic Networks✩

Michael D. Königa

aDepartment of Economics, University of Zurich, Schönberggasse 1, CH-8001 Zurich, Switzerland.

Abstract

We analyze binary choice models in communication networks, in which both, the formation of
links in the network as well as the action choices are endogenous. We provide a complete charac-
terization of the equilibrium action choices and networks, where agents choose their strategies
– actions and links – according to a perturbed best response update rule. We show that a
threshold exists in the linking cost and the conformity parameter, giving rise to either a sparse
or a densely connected communication network. Moreover, we show how the theoretical model
can be efficiently estimated using cross sectional data on agents choices and their network of
interactions.

Key words: diffusion, technology adoption, networks, riots, protests, Arab spring
JEL: D74, D72, D71, D83, C72

1. Introduction

In this paper we study the tradeoff agents are facing between their idiosyncratic preferences
for adopting a certain action and the social influence from their peers [cf. Young, 1998]. The
set of relevant peers can be represented as the neighbors in a network of interactions between
the agents. The network can change over time as agents are choosing dynamically with whom
to interact. We thus study a binary choice model with network externalities, where both, the
adoption decision as well as the network are endogenous, and depend on each other.

Such binary choice models can be applied to various contexts ranging from the adoption
of a new technology, the diffusion of innovations, the consumption of goods with externalities,
smoking behavior, voting, opinion formation, to the participation decision in rots or protests [cf.
e.g. Acemoglu and Ozdaglar, 2011; Conley and Udry, 2010]. In the example of a protest, agents
have to choose between participating or not in a protest. Such protests can be successful if
sufficiently many people participate [Barberà and Jackson, 2016; Granovetter, 1978]. But they
can be disastrous for participants if they fail. This creates a setting where communication can
be useful to coordinate expectations and actions. Communication and information exchange is
often bilateral and hence can be modelled as a network, in particular, when the observability of
other agents’ behavior is restricted to a subset of the agents in the population. We model these
networks as a game of incomplete information in which each person, given his local knowledge
from the contacts in the network, decides whether to participate in a protest [cf. Myers, 2000].
Moreover, the decision of the agents with whom to interact is itself endogenous and depends,
in turn, on the action of the agents.

As the payoff of an agent in our model increases with the number of links he maintains with
other agents who choose the same action, we incorporate homophily, i.e. the tendency of agents
to associate disproportionately with those having similar characteristics and behavior [Currarini

Email address: michael.koenig@econ.uzh.ch (Michael D. König)

This version: May 11, 2017, First version: February 27, 2015



et al., 2009; Golub and Jackson, 2012; McPherson et al., 2001]. However, we not only account
for the fact that similar agents tend to form links with each other, but also that agents become
more similar with those they are connected to.

Our model allows us to investigate the existence of a critical mass in binary choices models
with externalities, and how such a threshold depends on the network structure. We show that a
threshold exists in the linking cost and the conformity parameter (measuring the peer influence),
giving rise to either a sparse or a densely connected communication network.

Moreover, our framework allows us to identify influential spreaders in a network (“key
players”) [cf. e.g. Ballester et al., 2006; Banerjee et al., 2014; González-Bailón et al., 2011],
and whether the success of a protest depends on the existence of such influential individuals,
or whether a successful protest is an emerging phenomenon, in which the network structure,
respectively, the dynamic interaction pattern where link formation is costly, of ex ante identical
individuals determines the outcome.

Finally, we use the complete equilibrium characterization of our model to derive a simple
and efficient estimation procedure that can be applied to cross sectional data of agents’ choices
and their network of interactions.

Related Literature There exists a growing literature of binary choice models with (exoge-
nous) externalities pioneered by Brock and Durlauf [2001] with various generalizations and
applications discussed in Blume et al. [2011]. In particular, Krauth [2006] analyzes the model
by Brock and Durlauf [2001] on a specific network structure where agents are arranged in a
cycle, and shows that this can give rise to equilibrium multiplicity. Incomplete information in
the model by Brock and Durlauf [2001] is introduced in de Paula and Tang [2012] and Lee et al.
[2014] generalize this incomplete information framework to arbitrary, fixed network structures.
While these papers assume an exogenous network structure, we analyze a binary choice model
with an endogenous network structure.

There also exist numerous theoretical models for the spreading of epidemics in networks
[cf. Jackson and Rogers, 2007; Newman, 2010; Van Mieghem, 2011; Van Mieghem et al., 2009].
In these models a threshold for the probability with which information is passed on between
neighbors exists. Above the threshold information spreads through the entire network, and
thus becomes epidemic. Similarly to these works we investigate the existence of such thresholds
depending on the parameters of the model, however, here the focus is on game-theoretic models
that are based on the notion of utility maximization rather than exposure. The basic hypothesis
is that, when adopting a behavior, each individual makes a rational choice to maximize his or
her payoff in a coordination game.

Further, there exists a large literature that analyzes how social influence can affect the
behavior of agents when the choice variable of an agent lies in a continuum [Lorenz, 2007]. There
also exist various papers studying communication networks where agents can learn through
information that is passed along the links in a network about a noisy signal of some state variable
Acemoglu et al. [2014]; Golub and Jackson [2012]; Jackson and Golub [2010].1 Differently
to this literature, we consider binary choice variables and make the communication network
endogenous.

Only few papers investigate the actual coevolution of networks and behavior [cf. Ehrhardt
et al., 2006a,b; Fosco et al., 2010; Gleeson, 2013; Gross et al., 2006; König et al., 2014; Staudigl,
2011]. Often these models assume that links are created or removed according to some fixed,
exogenous rates, while we base the linking decisions on a myopic, payoff maximizing rationale.

1Acemoglu et al. [2014] also consider the endogenous formation of the communication network.
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A similar approach is taken in Hsie et al. [2012], but there the choices of agents are continuous,
which also requires a different approach to characterize the equilibrium, and consequently their
paper applies to a different context. Moreover, a similar model with binary variables has been
investigated in Biely et al. [2009], but without game theoretic micro-foundations, and without
allowing for heterogeneity among agents. Finally, Badev [2013] studies a similar binary choice
model as we do here, and applies it to smoking behavior in friendship networks. However, this
paper does not provide an explicit equilibrium characterization as we do here (nor comparative
statics results), and consequently cannot use this characterization for the estimation of the
model. In particular, while the estimation method in Badev [2013] requires the summation

across all possible networks of size n, of which there are 2(
n
2), no such computational burden is

required for our estimation method.

2. The Model

Let the strategy of each agent i ∈ N = {1, . . . , n} be given by si ∈ {−1,+1} indicating whether
i wants to participate in the riot or not.2 Further let s = (s1, . . . , sn)

⊤ ∈ {−1,+1}n where
#({−1,+1}n) = 2n. Then the payoff of agent i is given by [cf. Brock and Durlauf, 2001]3 ,4

πi(s, G) = (1− θ)γisi + θ

n∑

j=1

aijsisj − ζdi, (1)

where γi ∈ {−1,+1} is some idiosyncratic preference for participating in the riot,
∑n

j=1 aijsisj
is the total group strategy choices identical to i, aij ∈ {0, 1} indicates whether i and j are
connected, di is the number of links of i in the network G ∈ Gn, ζ > 0 a fixed linking cost, and
θ ∈ (0, 1) is a parameter weighting the idiosyncratic preference versus the group preference, i.e.
a conformity parameter.

Regarding the payoff function introduced in Equation (1), Rosser [1999] states that:

“In this sort of an economy [...considered by Brock and Durlauf, 2001] with interact-
ing agents, gradual changes in the degree of interaction (or coordination) or gradual
changes in the willingness of agents to change their attitudes (intensity of choice)
can lead to discontinuous changes, in which suddenly agents will be moving together
in some very different direction, as in the takeoff or crash of a speculative bubble or
the emergence or disappearance of ”animal spirits” or coordination in a Keynesian
macro model. One can imagine applications to the cases of fads and information
contagion and cascades, or revolutions arising from a brave individual speaking out,
although such models have not yet been applied in these cases.”

Next, observe that there exists a potential function associated with the payoff function
introduced above [Monderer and Shapley, 1996].5

2The strategy space is similar to the Ising model and the spin-glass model with two possible spin states [cf.
Grimmett, 2010; Reichl, 2004; Sherrington and Kirkpatrick, 1975].

3See also Blume et al. [2011]; Brock and Durlauf [2007] for additional discussion of this type of binary choice
model with (exogenous) social interactions. Further, Krauth [2006] analyzes the model by Brock and Durlauf
[2001] on a cycle. de Paula and Tang [2012] introduce incomplete information and Lee et al. [2014] generalize it
to arbitrary, fixed network structures.

4Similar to Phan and Semeshenko [2008] we assume that the agents’ idiosyncratic preferences are heterogeneous
and deterministic. In contrast, Brock and Durlauf [2001] assume that they are heterogeneous and random.

5The proposition is a special case of Proposition 1 in Hsie et al. [2012].
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Proposition 1. The payoff function in Equation (1) admits a potential function

Φ(s, G) = (1− θ)

n∑

i=1

γisi +
θ

2

n∑

i=1

n∑

j=1

aijsisj −mζ,

for both action and link adjustments, where m counts the number of links in the network G.

The potential function in Proposition 1 will be useful to characterize the stationary states
of the stochastic process of network formation and action adjustments that we will introduce in
the following section.

3. Network Formation and Action Adjustment

We endogenize the action choices and the network using a stochastic process akin to Hsie et al.
[2012]. In this process the opportunities for change arrive as a Poisson process [cf. Sandholm,
2010]. To capture the fact that agents are uncertain about the behavior of their neighbors or
the consequences (costs) of their actions, we introduce noise in this decision process [cf. e.g.
Blume, 1993; Kandori et al., 1993].

Definition 1. The evolution of the population of agents and the links between them is char-
acterized by a sequence of states (ωt)t∈R+ , ωt ∈ Ω, where each state ωt = (st, Gt) consists of
a vector of agents’ actions st ∈ {−1,+1}n and a network Gt ∈ Gn. In a short time interval
[t, t+∆t), t ∈ R+, one of the following events happens:

Action adjustment At rate χ ≥ 0 an agent i ∈ N is selected at random and given a revision
opportunity of its current action sit ∈ {−1,+1}. When agent i receives such a revision
opportunity, he evaluates the marginal payoff from changing its current action sit to s′i.
The computation of marginal payoffs is perturbed by an additive i.i.d. shock εit, so that
the probability that we observe a switch from action sit to s′i is given by

P
(
ωt+∆t = (s′i, s−it, Gt)|ωt = (sit, s−it, Gt)

)

= χP
(
πi(s

′
i, s−it, Gt)− πi(sit, s−it, Gt) + εit > 0

)
∆t+ o(∆t)

= χP
(
Φ(s′i, s−it, Gt)− Φ(sit, s−it, Gt) + εit > 0

)
∆t+ o(∆t).

where we have used the fact that πi(s
′
i, s−it, Gt) − πi(qit, s−it, Gt) = Φ(s′i, s−it, Gt) −

Φ(sit, s−it, Gt). In the following we will make a specific assumption on the distribution
of the random shocks. In particular, we assume that these shocks are independent and
identically exponentially distributed with parameter η ≥ 0. We then can write6

P
(
ωt+∆t = (s′i, s−it, Gt)|ωt = (si, s−it, Gt)

)
= χ P

(
−εit < Φ(s′i, s−it, Gt)− Φ(sit, s−it, Gt)

)
∆t+ o(∆t)

= χ
eηΦ(s′i,s−i,Gt)

eηΦ(s′i,s−it,Gt) + eηΦ(si,s−it,Gt)
∆t+ o(∆t),

Link formation With rate λ ≥ 0 a pair of agetns ij which is not already connected receives
an opportunity to form a link. The formation of a link depends on the marginal payoff the

6Let z be i.i. logistically distributed with mean 0 and scale parameter η, i.e. Fz(x) =
eηx

1+eηx . Consider the
random variable ε = g(z) = −z. Since g is monotonic decreasing, and z is a continuous random variable, the
distribution of ε is given by Fε(y) = 1− Fz(g

−1(y)) = eηy

1+eηy .
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agents receive from the link plus an additive pairwise i.i.d. error term εij,t. The probability
that link ij is created is then given by

P (ωt+∆t = (st, Gt + ij)|ωt−1 = (s, Gt)) = λ P ({πi(st, Gt + ij)− πi(st, Gt) + εij,t > 0}

∩{πj(st, Gt + ij) − πj(st, Gt) + εij,t > 0})∆t+ o(∆t)

= λ P (Φ(st, Gt + ij) −Φ(st, Gt) + εij,t > 0)∆t+ o(∆t),

where we have used the fact that πi(st, Gt+ ij)−πi(st, Gt) = πj(st, Gt+ ij)−πj(st, Gt) =
Φ(st, Gt + ij) − Φ(st, Gt). Assuming that the error term εij,t is independently logistically
distributed, we obtain for the creation of the link ij

P (ωt+∆t = (st, Gt + ij)|ωt = (st, Gt)) = λ P (−εij,t < Φ(st, Gt + ij)− Φ(st, Gt))∆t+ o(∆t)

= λ
eηΦ(st,Gt+ij)

eηΦ(st,Gt+ij) + eηΦ(st,Gt)
∆t+ o(∆t). (2)

Link removal With rate ξ ≥ 0 a pair of linked agents i, j receives an opportunity to terminate
their connection. The link is removed if at least one agent finds this profitable. The
marginal payoffs from removing the link ij are perturbed by an additive pairwise i.i.d.
error term εij,t. The probability that the link ij is removed is then given by

P (ωt+∆t = (st, Gt − ij)|ωt = (s, Gt)) = ξ P ({πi(st, Gt − ij)− πi(st, Gt) + εij,t > 0}

∪{πj(st, Gt − ij) − πj(st, Gt) + εij,t > 0}) ∆t+ o(∆t)

= ξ P (Φ(st, Gt − ij)− Φ(st, Gt) + εij,t > 0)∆t+ o(∆t),

where we have used the fact that πi(st, Gt− ij)−πi(st, Gt) = πj(st, Gt− ij)−πj(st, Gt) =
Φ(st, Gt− ij)−Φ(st, Gt). When the error term is independently logistically distributed we
obtain

P (ωt+∆t = (st, Gt − ij)|ωt = (st, Gt)) = ξ P (−εij,t < Φ(st, Gt − ij)− Φ(st, Gt))∆t+ o(∆t)

= ξ
eηΦ(st,Gt−ij)

eηΦ(st,Gt−ij) + eηΦ(st,Gt)
∆t+ o(∆t).

We can numerically implement the stochastic process introduced in Definition 1 using the
“next reaction method” for simulating a continuous time Markov chain [cf. Anderson, 2012;
Gibson and Bruck, 2000]. We will use this method throughout the paper to illustrate our
theoretical predictions for various network statistics (see e.g. Figure 1).

Let F denote the smallest σ-algebra generated by σ (ωt : t ∈ R+). The filtration is the non-
decreasing family of sub-σ-algebras {Ft}t∈R+ on the measure space (Ω,F), with the property
that F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . The probability space is given by the triple (Ω,F ,P),
where P : F → [0, 1] is the probability measure satisfying

∫

Ω P(ω)dµ(ω) = 1. As we will see
below the sequence of states (ωt)t∈R+ , ωt ∈ Ω induces an irreducible and positive recurrent (i.e.
ergodic) time homogeneous Markov chain.

The one step transition probability matrix P(t) : Ω2 → [0, 1] from a state ω ∈ Ω to a state
ω′ ∈ Ω is given by P(ωt+∆t = ω′|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t = ω′|ωt = ω) =
q(ω,ω′)∆t+o(∆t) if ω′ 6= ω, where q(ω,ω′) is the transition rate from state ω to state ω′. The
transition rate matrix (or infinitesimal generator) Q = (q(ω,ω′))

ω,ω′∈Ω of the Markov chain is
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given by

q(ω,ω′) =







χ eηΦ(s,s
−i,G)

eηΦ(s,s
−i,G)+eηΦ(s′,s

−i,G) if ω′ = (s′i, s−i, G) and ω = (s, G),

λ eηΦ(s,G+ij)

eηΦ(s,G+ij)+eηΦ(s,G) if ω′ = (s, G + ij) and ω = (s, G),

ξ eηΦ(s,G−ij)

eηΦ(s,G−ij)+eηΦ(s,G) if ω′ = (s, G − ij) and ω = (s, G),

−
∑

ω
′ 6=ω

q(ω,ω′) if ω′ = ω,

0 otherwise,

(3)

satisfying the Chapman-Kolmogorov forward equation d
dt
P(t) = P(t)s so that P(t) = I+Q∆t+

o(∆t). As the Markov chain is time homogeneous, the transition rates are independent of time.
The stationary distribution µη : Ω → [0, 1] is then the solution to µηP = µη , or equivalently
µηQ = 0 [cf. e.g. Norris, 1998].

In the following proposition we completely characterize the equilibrium action choices and
networks of the above stochastic process:

Proposition 2. Consider a dynamic process (ωt)t∈R+ in which agents’ payoffs are randomly
perturbed with additive i.i.d. logistically distributed shocks with parameter η > 0, and assume
that agents choose their strategies according to a perturbed best response update rule as in Defini-
tion 1. Then this process induces an ergodic Markov chain with a unique stationary distribution
µη defined on the measurable space (Ω,F) such that limt→∞ P(ωt = (s, G)|ω0 = (s0, G0)) =
µη(s, G). The probability measure µη is given by

µη(s, G) =
eηΦ(s,G)

∑

G′∈Gn

∑

s
′∈{−1,+1}n e

ηΦ(s′,G′)
. (4)

Proposition 2 allows us to characterize the equilibria in a fully dynamic framework, where
not only the strategies si but also the links aij are endogenous.

We next compute the partition function [cf. e.g. Grimmett, 2010; Wainwright and Jordan,
2008], which appears as the denominator in Equation (4), explicitly. We have that7

Z
η ≡

∑

G∈Gn

∑

s∈{−1,+1}n

eηΦ(s,G)

=
∑

s∈{−1,+1}n

∑

G∈Gn

eη((1−θ)
∑n

i=1 γisi+
∑n

i=1

∑n
j=i+1 aij(θsisj−ζ))

=
∑

s∈{−1,+1}n

eη(1−θ)
∑n

i=1 γisi
∑

G∈Gn

eη
∑n

i=1

∑n
j=i+1 aij(θsisj−ζ)

=
∑

s∈{−1,+1}n

eη(1−θ)
∑n

i=1 γisi

n∏

i=1

n∏

j=i+1

(

1 + eη(θsisj−ζ)
)

, (5)

7Note that when the network is exogenous (i.e. when ξ = λ = 0) then in the limit of η → ∞ the sum over
all configurations s ∈ {−1,+1}n is equivalent to summing over all max cuts of the underlying graph, whose
enumeration is an NP hard problem (cf. A. Montanari, “Inference in Graphical Models”, Stanford University,
lecture notes, 2012).
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where we have used the fact that

∑

G∈Gn

eη
∑n

i<j aijσij =
n∏

i=1

n∏

j=i+1

(1 + eησij ) , (6)

for some σij = σji. Introducing the Hamiltonian [cf. e.g. Grimmett, 2010]

H
η(s) ≡

n∑

i=1



(1− θ)γisi +

n∑

j=i+1

(
1

η
ln
(

1 + eη(θsisj−ζ)
))


 , (7)

we can write the partition function as follows

Z
η =

∑

s∈{−1,+1}n

eηH η(s). (8)

We can use Equation (6) also to compute the marginal distribution

µη(s) =
1

Z η

∑

G∈Gn

eηΦ(s,G)

=
1

Z
η
n
eη(1−θ)

∑n
i=1 γisi

n∏

i=1

n∏

j=i+1

(

1 + eη(θsisj−ζ)
)

=
1

Z η
eηH η(s), (9)

where H η(s) has been defined in Equation (7). With the marginal distribution from Equation
(9) we can write the conditional distribution as

µη(G|s) =
µη(s, G)

µη(s)
=

eη((1−θ)
∑n

i=1 γisi+
θ
2

∑n
i=1

∑n
j=1 aijsisj−mζ)

eη(1−θ)
∑n

i=1 γisi
∏n

i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)

=
eη

∑n
i<j aij(θsisj−ζ)

∏n
i=1

∏n
j=i+1

(
1 + eη(θsisj−ζ)

)

=
∏

i<j

eηaij (θsisj−ζ)

1 + eη(θsisj−ζ)

=
∏

i<j

(

eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)aij
(

1−
eη(θsisj−ζ)

1 + eη(θsisj−ζ)

)1−aij

=
∏

i<j

pij(si, sj)
aij (1− pij(si, sj))

1−aij . (10)

Hence, we obtain the likelihood of an inhomogeneous random graph with link probability

pij(si, sj) =
eη(θsisj−ζ)

1 + eη(θsisj−ζ)
. (11)

In the following we provide an explicit computation of the partition function introduced in
Equation (5).
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Proposition 3. The partition function of Equation (5) is given by

Z
η =

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

eη(1−θ)(2k−n)
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η
,

(12)
where

l(k, j) =
n2 + (2(2j − k)− 1)n + 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+

2
, (13)

and n+ = #({γi = 1 : i = 1, . . . , n}).

Note that, while the evaluation of the partition function in Equation (5) requires the com-
putation of a sum with 2n terms, the partition function in Equation (12) requires the evaluation
of only 1

2(n+ + 1)(2(n+ 1)− n+) = O(n) terms. With Equation (12) the marginal distribution
µη(s) in Equation (9) can then be efficiently computed.

The following proposition characterizes the expected number of links as a function of the
parameters of the model.

Proposition 4. The expected number of links in the stationary state is given by

E
η(m) =

1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)
1

η
eη(1−θ)(2k−n)

×
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η

(

l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)

, (14)

where l(k, j) is defined in Equation (13), n+ = #({γi = 1 : i = 1, . . . , n}), and we have that
limη→∞ E

η(m) = 0.

An example of the average degree d̄ = 2m/n across different values of the linking cost
ζ ∈ {0, 1, . . . , 10} and the conformity parameter θ ∈ [0, 1] can be seen in Figure 1. As expected,
the average degree is decreasing with increasing linking costs ζ and increasing with increasing
conformity θ.

Next we consider the average action level. We can state the following proposition.

Proposition 5. The expected average action level, s̄ = 1
n

∑n
i=1 si, in the stationary state is

given by

E
η(s̄) =

1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)
n+ 4j − 2(n+ + k)

n

× eη(1−θ)(2k−n)
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
) (

n
2)−l(k,j)

η
, (15)

where l(k, j) is defined in Equation (13) and n+ = #({γi = 1 : i = 1, . . . , n}).

We conclude this section with a characterization of the the stationary state in the vanishing
noise limit. When η → ∞, the stochastically stable states in the support of µη are given by
[Kandori et al., 1993]

lim
η→∞

µη(s, G)

{

> 0, if Φ(s, G) ≥ Φ(s′, G′), ∀s′ ∈ {−1,+1}n, G′ ∈ Gn,

= 0, otherwise.
(16)
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Figure 1: (Left panel) The average degree d̄ = 2m/n across different values of the linking cost ζ ∈ {0, 1, . . . , 10}.
The parameters used are n = 10, n+ = 5, η = 1, λ = χ = ξ = 1 and θ = 0.5. (Right panel) The average degree
d̄ across different values of the conformity parameter θ ∈ [0, 1]. The parameters used are n = 10, n+ = 5, η = 1,
λ = χ = ξ = 1 and ζ = 1. Dashed lines indicate the theoretical prediction of Equation (14) while circles indicate
averages across 1000 numerical Monte Carlo simulations of the model.

The stochastically stable states are derived in the following proposition.

Proposition 6. In the limit of η → ∞ the stochastically stable state is given by the action profile
si = γi for all i = 1, . . . , n and when ζ < θ a network composed of two cliques, Kn+ ∪Kn−n+ ,
of sizes n+ and n − n+, where in the first clique all agents choose the strategies si = γi = +1
and in the second clique they choose si = γi = −1 if

θ < θ∗ =
n+ n+(n− n+)ζ −max{2n+ − n, n− 2n+}

n(n+ + 1)− n2
+ −max{2n+ − n, n− 2n+}

, (17)

where n+ = #({γi = 1 : i = 1, . . . , n}), while if the inequality (17) is reversed then the stochas-
tically stable network is a complete graph Kn in which all agents i = 1, . . . , n choose si = +1
if n+ > n

2 or si = −1 if n+ < n
2 , and the network is empty when ζ > θ and all agents choose

their idiosyncratic preference.

Proposition 6 shows that when the idiosyncratic preference is large enough (i.e. θ is small
enough) in the payoff function of Equation (1) then the society is segregated in disconnected
communities in which each agent is choosing the action in accordance with her idiosyncratic
preference (γi = si for all i = 1, . . . , n), while if the peer effect is strong enough (the conformity
parameter θ is large enough) then the society becomes completely connected and all agents
choose the same action. The action chosen in the latter case is determined by the idiosyncratic
preference of the majority. That is, if more agents have an idiosyncratic preference γi = +1
then all agents will chose si = +1, and vice versa. Finally, if linking is too costly, then all agents
are isolated and choose their idiosyncratic preference.

4. Extensions

Our framework is flexible enough to allow for a number of extensions.

9



4.1. Local and Global Interactions

By allowing for both, local and global interactions, we can extend Equation (1) as follows

πi(s, G) = (1− θ)γisi + θ

n∑

j=1

aijsisj + ρ

n∑

j=1

sisj − ζdi. (18)

The potential function is then given by

Φ(s, G) = (1− θ)

n∑

i=1

γisi +
θ

2

n∑

i=1

n∑

j=1

aijsisj +
ρ

2

n∑

i=1

n∑

j=1

sisj −mc,

and the same results as in Proposition 2 hold.

4.2. Heterogeneous Linking Costs

Note that we can allow for a pair specific cost ζij for a link between i and j so that the payoff
function of agent i reads as

πi(s, G) = (1− θ)γisi + θ
n∑

j=1

aijsisj −
n∑

j=1

aijζij. (19)

The potential function is then given by

Φ(s, G) = (1− θ)

n∑

i=1

γisi +
θ

2

n∑

i=1

n∑

j=1

aijsisj −
1

2

n∑

i=1

n∑

j=1

aijζij,

and the same results as in Proposition 2 hold.

4.3. Adoption Costs

By introducing an adoption cost c ≥ 0 for choosing action si (e.g. rioting), we can extend
Equation (1) as follows

πi(s, G) = (1− θ)γisi − csi + θ
n∑

j=1

aijsisj − ζdi. (20)

The potential function is then given by

Φ(s, G) = (1− θ)

n∑

i=1

γisi − c

n∑

i=1

si +
θ

2

n∑

i=1

n∑

j=1

aijsisj +
ρ

2

n∑

i=1

n∑

j=1

sisj −mζ, (21)

and the same results as in Proposition 2 hold. Note that with the potential function in Equation
(21), the average action s̄ = 1

n

∑n
i=1 si can be computed as Eη(s̄) = − 1

nη
1

Z η
∂Z η

∂c
.

10



5. Empirical Implications

5.1. Exogenous Networks

The probability of agent i choosing action si = 1 given the strategies s−i of all other agents and
the network G follows the spatial logistic regression model with corresponding log-odds ratio

log

(
P(si = 1|s−i, G)

1− P(si = 1|s−i, G)

)

= (1− θ)γi + θ

n∑

j=1

aijsj. (22)

The log-odds for choosing strategy si = 1 is increasing in γi if it is one, and the number of
neighbors who are choosing strategy one. The above equation can be estimated to obtain the
conformity parameter θ̂ and the idiosyncratic preference parameter γ̂i for all i = 1, . . . , n [cf.
Smirnov, 2010]. See also Benhabib et al. [2010]; Brock and Durlauf [2007]; Durlauf and Ioannides
[2010].

5.2. Endogenous Networks

The probability of observing a network G ∈ Gn, given an action profile s ∈ {−1,+1}n, is then
determined by the conditional distribution (cf. Equation (10))

µη(G|s) =
µη(s, G)

µη(s)
=

n∏

i<j

eηaij (θsisj−ζ)

1 + eη(θsisj−ζ)
. (23)

The marginal distribution of the agents’ actions is given by (cf. Equations (9) and (12))

µη(s) =
1

Z η
eηH η(s), (24)

It then follows that the likelihood of the network G and the action profile s can be written as

µη(s, G) = µη(G|s) · µη(s) = eηH η(s)−lnZ η
n∏

i<j

eηaij (θsisj−ζ)

1 + eη(θsisj−ζ)
, (25)

where we have inserted Equation (23) for µη(G|s), Equation (24) for µη(s), H η(s) is given by
Equation (7) and Z η is given by Equation (12). The parameters θ of the model can then be
obtained via maximum likelihood, by maximizing Equation (25), and the variances from the
Fisher information matrix [cf. e.g. Casella and Berger, 2001]:

I(θ) = −E

[
∂2

∂θ2
log µη(s, G)

∣
∣
∣
∣
θ

]

,

6. Conclusion

We have developed a model of endogenous participation decisions of agents with an idiosyncratic
preference for choosing to participate and a peer effect. The set of peers influencing an agent
is endogenous and depends, in turn, on the choices of the agents that he is connected to. Our
model allows for a complete equilibrium characterization when both, the network of peers as
well as the participation decisions are endogenous and interdependent. Our framework could be
extended along several dimensions. First, one could introduce uncertainty about the behavior
of linked agents. Related models for exogenous networks and a similar payoff function but with

11



incomplete information have been studied in De Mart́ı and Zenou [2014] de Paula and Tang
[2012] and Lee et al. [2014]. Introducing uncertainty in our coordination game would then allow
us to study global games in dynamic networks [cf. e.g. Angeletos et al., 2007; Angeletos and
Pavan, 2007]. Second, a possible extension of the model could combine Acemoglu and Robinson’s
model [see Acemoglu and Robinson, 2005, pp. 99–107] of political regime determination with
our network model of political mass protests [cf. Ellis and Fender, 2011].
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Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s who in networks. wanted: The
key player. Econometrica, 74(5):1403–1417.

Banerjee, A., Chandrasekhar, A. G., Duflo, E., and Jackson, M. O. (2014). Gossip: Identifying
central individuals in a social network. National Bureau of Economic Research, No. w20422.
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Appendix

A. Proofs

Proof of Proposition 1. The potential has the property that Φ(s′i, s−i, G)−Φ(s, G) = πi(s
′
i, s−i, G), G)−

πi(s, G) = (1 − θ)(s′i − si) + θ
∑n

j=1 aijsj(s
′
i − si) and that Φ(s, G ± ij) − Φ(s, G) = πi(s, G ±

ij) − πi(s, G) = ±(θsisj − ζ).

Proof of Proposition 2. First, note that the embedded discrete time Markov chain is irreducible
and aperiodic, and thus is ergodic and has a unique stationary distribution. Hence, also the
continuous time Markov chain is ergodic and has a unique stationary distribution. The sta-
tionary distribution solves µηQ = 0 with the transition rates matrix Q = (q(ω,ω′))ω,ω′∈Ω of
Equation (3). This equation is satisfied when the probability distribution µη(ω) satisfies the
detailed balance condition [cf. e.g. Norris, 1998]

µη(ω)q(ω,ω′) = µη(ω′)q(ω′,ω), (26)

for all ω,ω′ ∈ Ω. Observe that the detailed balance condition is trivially satisfied if ω′ and ω

differ in more than one link or more than one quantity level. Hence, we consider only the case
of link creation G′ = G+ ij (and removal G′ = G− ij) or an adjustment in quantity s′i 6= si for
some i ∈ N . For the case of link creation with a transition from ω = (s, G) to ω′ = (s, G+ ij)
we can write the detailed balance condition as follows

1

Z η
eη(Φ(s,G)−m ln( ξ

λ))
eηΦ(s,G+ij)

eηΦ(s,G+ij) + eηΦ(s,G)
λ =

1

Z η
eη(Φ(s,G+ij)−(m+1) ln( ξ

λ))
eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G+ij)
ξ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a
transition from ω = (s, G) to ω′ = (s, G − ij) where the detailed balance condition reads

1

Z η
eη(Φ(s,G)−m ln( ξ

λ))
eηΦ(s,G−ij)

eηΦ(s,G−ij) + eηΦ(s,G)
ξ =

1

Z η
eη(Φ(s,G−ij)−(m−1) ln( ξ

λ))
eηΦ(s,G)

eηΦ(s,G) + eηΦ(s,G−ij)
λ.

For a change in the agents’ actions with a transition from ω = (si, s−i, G) to ω′ = (s′i, s−i, G)
we get the following detailed balance condition

1

Z η
eη(Φ(si,s−i,G)−m ln( ξ

λ))
eηΦ(s′i,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ

=
1

Z η
eη(Φ(s′i,s−i,G)−m ln( ξ

λ))
eηΦ(si,s−i,G)

eηΦ(si,s−i,G) + eηΦ(s′i,s−i,G)
χ.

Hence, the probability measure µη(ω) satisfies a detailed balance condition of Equation (26) and
therefore is the stationary distribution of the Markov chain with transition rates q(ω,ω′).

Proof of Proposition 3. Assume w.l.o.g. that the agents are ordered such that γ1 = . . . γn+ = +1
and γn++1 = . . . γn = −1, with 0 ≤ n+ ≤ n. Let us consider all configurations s ∈ {−1,+1}n

for which there k = 0, . . . , n agents with si = γi. For a given k, there are
(
n+

j

)
ways to select j

agents from n+ choosing si = γi = +1, and there are
(
n−n+

k−j

)
ways to select k − j agents from

n− choosing si = γi = −1, for each j = 0, . . . ,min{k, n+}. Hence, there are

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)
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ways to obtain alignments of γ and s such that
∑n

i=1 siγi = k − (n− k) = 2k − n.
Next, we consider the products sisj . Since all the j agents in n+ with si = +1 choose the

same action +1, and all the k − j agents in n− with si = −1 choose the same action −1 we
obtain

l(k, j) =

(
j

2

)

+

(
k − j

2

)

+

(
n+ − j

2

)

+

(
n− n+ − (k − j)

2

)

+(n+−j)(k−j)+j(n−n+−(k−j))

pairs whose product of actions gives sisj = +1. The first term in the equation above counts all
pairs of agents with action +1 in the first set (with all γi = +1), the second all pairs of agents
with action −1 in the second set (with all γi = −1), the third term the pairs of agents with
action −1 in the first set (with all γi = +1), the fourth term the pairs of agents with action +1
in the second set (with all γi = −1), the fifth term counts the pairs with agents in the first set
who choose action −1 and the agents in the second set who chose action −1, while the last term
counts the pairs with agents in the first set who choose action +1 and agents in the second set
who also choose action +1.

We can further simplify l(k, j) to

l(k, j) =
n2 + (2(2j − k)− 1)n + 2(2j − k)2 − 2(n+ 2(2j − k)− n+)n+

2
.

Then we can write

Z
η =

∑

s∈{−1,+1}n

eηH η(s)

=

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

exp

{

η(1 − θ)(2k − n)

+
l(k, j)

η
ln
(

1 + eη(θ−ζ)
)

+

(
n
2

)
− l(k, j)

η
ln
(

1 + e−η(θ+ζ)
)
}

=
n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

eη(1−θ)(2k−n)
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η
,

where n+ = #({γi = 1 : i = 1, . . . , n}).

Proof of Proposition 4. Knowing the partition function allows us to compute the expected num-
ber of links, m, as

E
η(m) =

∑

G∈Gn

∑

s∈{−1,+1}n

mµη(s, G) =
1

Z η

∑

G∈Gn

∑

s∈{−1,+1}n

meηΦ(s,G)
︸ ︷︷ ︸

− 1
η

∂
∂ζ

eηΦ(s,G)

= −
1

η

1

Z η

∂Z η

∂ζ
. (27)

With Equations (5) and (27) we then can compute the expected number of links as

E
η(m) =

1

η

1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

eη(1−θ)(2k−n)

×
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η

(

l(k, j)

1 + e−η(θ−ζ)
+

(
n
2

)
− l(k, j)

1 + eη(θ+ζ)

)

.
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For θ = 0 this simplifies to

E
η(m) =

1

η

1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

eη(2k−n)

×
(

1 + e−ηζ
) l(k,j)

η
(

1 + e−ηζ
)(

n
2)−l(k,j)

η

(

l(k, j)

1 + eηζ
+

(
n
2

)
− l(k, j)

1 + eηζ

)

=
1

η

1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)(
n

2

)

eη(2k−n)
(

1 + e−ηζ
)(

n
2)
η 1

1 + eηζ

=
1

η

1

Z η

(
n

2

)(

1 + e−ηζ
)(

n
2)
η 1

1 + eηζ

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)

eη(2k−n)

=
1

Z η

e−ηn

ηπ(1 + eηζ)

(
n

2

)(

1 + e−ηζ
)(

n
2)
η

×
(

π
(
1 + e2η

)n
− e2(n+1)η sin(nπ)Γ(n + 1) 2F1

(
1, 1;n + 2;−e2η

))

,

and one can show that for ζ > 0 we have that limη→∞ E
η(m) = 0.

Proof of Proposition 15. For the average action level s̄ = 1
n

∑n
i=1 si =

1
n
u⊤s we have that

E
η(s̄) =

∑

s∈{−1,+1}n

s̄µη(s)

=
1

Z η

∑

s∈{−1,+1}n

1

n
u⊤seηH η(s)

=
1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)
j + (n− n+ − (k − j))− (n+ − j + (k − j))

n

× eη(1−θ)(2k−n)
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η

=
1

Z η

n∑

k=0

min{k,n+}
∑

j=0

(
n+

j

)(
n− n+

k − j

)
n+ 4j − 2(n+ + k)

n

× eη(1−θ)(2k−n)
(

1 + eη(θ−ζ)
) l(k,j)

η
(

1 + e−η(θ+ζ)
)(

n
2)−l(k,j)

η
.

Proof of Proposition 6. Recall that the potential function in Proposition 1 is given by

Φ(s, G) = (1− θ)

n∑

i=1

γisi +
1

2

n∑

i=1

n∑

j=1

aij(θsisj − ζ).

Observe that the term
∑n

i=1 γisi is maximized over si ∈ {−1,+1} for si = sign(γi) for i =
1, . . . , n. The term

∑n
i=1

∑n
j=1 aijsisj is maximized over si, sj ∈ {−1,+1} for aij = 1 iff

si = sj. Similarly, the term
∑n

i=1

∑n
j=1 aij(θsisj − ζ) is maximized over si, sj ∈ {−1,+1} for
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aij = 1 iff si = sj and ζ < θ, while aij = 1 otherwise. The latter implies that the network must
be either complete, empty, or composed of two disconnected cliques.

First, consider two cliques, Kn+ and Kn−n+ of sizes n+ and n − n+, respectively, where
the agents in Kn+ choose si = γi = +1, and the agents in Kn−n+ choose si = γi = −1. The
potential function is then given by

Φ(s,Kn+ ∪Kn−n+) = (1− θ)n+
1

2
(n(n− 1)− 2n+(n− n+))(θ − ζ).

Next, consider the complete graph Kn in which all agents choose si = +1. Then

Φ(s,Kn) = (1− θ)(2n+ − n) +
n(n− 1)

2
(θ − ζ).

Similarly, in the complete graph Kn in which all agents choose si = −1, the potential is given
by

Φ(s,Kn) = (1− θ)(n− 2n+) +
n(n− 1)

2
(θ − ζ).

The potential in the complete graphKn is then larger than in the union of cliques, Kn+∪Kn−n+,
if

(1− θ)n− n+(n − n+)(θ − ζ) < (1− θ)max{2n+ − n, n− 2n+}.

Solving for θ yields

θ >
n+ n+(n− n+)ζ −max{2n+ − n, n− 2n+}

n(n+ + 1)− n2
+ −max{2n+ − n, n− 2n+}

. (28)

Finally, note that the potential in any union of cliques Kn1 ∪Kn2 with n1 + n2 = n is smaller
than the potential in the union of cliques Kn+ ∪ Kn−n+ or the complete graph Kn. To see
this consider disconnecting a node j from the clique Kn+ and connecting it to all nodes in the
clique Kn−n+ , while choosing the action sj = −1 with γj = +1. This is illustrated in Figure 2.
W.l.o.g. assume that n+ < n

2 . The resulting change in the potential is given by

Φ(s′,Kn+−1 ∪Kn−n++1)− Φ(s,Kn+ ∪Kn−n+) = ((n− n+)− (n+ − 1))(θ − ζ)− 2(1− θ).

The second term in the above equation comes from the loss of agent j choosing an action sj = −1
that is not aligned with her preference γj = +1. The first term comes from the gain of having
more pairs of connected agents with identical actions. Now, when repeating this procedure and
attaching another node to Kn−n+, then the loss term will remain the same while the gain term
will increase because there are more agents with the same action in the larger clique to connect
to. Hence, when all nodes have been reattached, in this way, we obtain a complete graph Kn

with a potential that is larger than the potential obtained for the network Kn+−1 ∪Kn−n++1.
This shows that the potential must be largest either in the network composed of two cliques,
Kn+−1∪Kn−n++1, in which all agents choose actions according to their idiosyncratic preferences,
γi = si, or in the complete graph Kn where all agents choose the same action.
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si = γi = +1

si = γi = −1

sj = −1 6= γj = +1

Kn+−1
Kn−n+

5 10 15
j

20

40

60

80

Φ
(s
,G

)

Figure 2: (Left panel) Illustration of two cliques, Kn+ and Kn−n+
and the relocation of one node j from Kn+ to

Kn−n+
. (Right panel) The resulting potential for relocating node j from the clique Kn+

to the clique Kn−n+
for

θ ∈ {0.050.0750.10.125}, n+ = 17, n = 50 and ζ = 0.1. For small values of θ the union of cliques Kn+
∪Kn−n+

(j = 0) has the highest potential, while for increasing values of θ the potential is highest for the complete graph
Kn (j = n+ = 17). We also see that the potential in a union of cliques Kn+−k ∪Kn−n++k for k = 1, . . . , n+ − 1
is always smaller than the potential in the complete graph Kn or in the union of cliques Kn+

∪Kn−n+
.
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