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Abstract

There has been a recent interest in reporting p-values adjusted for resampling-based stepdown

multiple testing procedures proposed in Romano and Wolf (2005a,b). The original papers only

describe how to carry out multiple testing at a fixed significance level. Computing adjusted

p-values instead in an efficient manner is not entirely trivial. Therefore, this paper fills an

apparent gap by detailing such an algorithm.
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1 Introduction

Romano and Wolf (2005a,b) propose resampling-based stepdown multiple testing procedures to

control the familywise error rate (FWE); also see Romano et al. (2008, Section 3). The procedures

as described are designed to be carried out at a fixed significance level α. Therefore, the result

of applying such a procedure to a set of data will be a ‘list’ of binary decisions concerning the

individual null hypotheses under study: reject or do not reject a given null hypothesis at the

chosen significance level α.

In a series of recent papers, however, there has been an interest in computing adjusted p-values

instead.1 That is, for each null hypothesis under study, compute a corresponding p-value adjusted

for stepdown multiple testing proposed in Romano and Wolf (2005a,b). Examples of such papers

include Heckman et al. (2010), Hein et al. (2010), Campbell et al. (2014), Gertler et al. (2014), and

Dobbie and Fryer (2015). Unfortunately, the descriptions in these papers of how to compute the

adjusted p-values are often unclear or even missing altogether.

In principle, for a given individual hypothesis, an adjusted p-value can be obtained by ‘trial and

error’ as the smallest significance level α at which the hypothesis can be rejected by the stepdown

multiple testing procedure. But clearly this way of computing adjusted p-values would be rather

cumbersome. Instead, it is desirable to have an efficient (or streamlined) algorithm for computing

adjusted p-values. This paper details such an algorithm.

Of course, algorithms for computing p-values adjusted for multiple testing have been described

before; for example, see Westfall and Young (1993) and the various references to earlier work

listed in Section 1.3 of that book. But the contribution of this paper is to describe an algorithm

that is custom-tailored to the stepdown multiple testing procedures proposed in Romano and Wolf

(2005a,b), which will make it easier for practitioners to understand and implement this algorithm.

2 Notation and Unadjusted p-Values

We now give a stylized, high-level description of the multiple testing problem under study. The

details — such as the construction of test statistics and sufficient conditions for (asymptotic) validity

of the proposed stepdown procedures — depend on the context; see Romano and Wolf (2005a,b)

and Romano et al. (2008, Section 3).

There are S individual hypothesis testing problems:

Hs vs. H ′
s for s = 1, . . . , S ,

where Hs denotes a null hypothesis and H ′
s denotes an alternative hypothesis. The corresponding

test statistics are denoted by t1, . . . , tS . They are designed in a way such that large values are

1Such adjusted p-values are sometimes also called multiplicity-adjusted p-values.
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indicative of the alternative. (In particular, for two-sided testing problems, the test statistics

would usually be based on absolute values.)

Stepdown multiple testing procedures are generally based on a set of null resampling test

statistics t∗,m ..= (t∗,m
1

, . . . t
∗,m
S ), for m = 1, . . . ,M , where M denotes the number of resampling

repetitions. Depending on context, the resampling can be carried out by a bootstrap method,

a permutation method, or a randomization method. Details for the bootstrap method can be

found in Romano and Wolf (2005a, Section 4.2), Romano and Wolf (2005b), and Romano et al.

(2008, Section 4.3). Details for the permutation and randomization methods can be found in

Romano and Wolf (2005a, Section 3.2).

Following Davison and Hinkley (1997, Chapter 4), an unadjusted (or marginal) p-value for Hs,

denoted by p̂s, can be defined as

p̂s
..=

#{t∗,ms > ts}+ 1

M + 1
. (2.1)

Note that this definition of unadjusted p-values is not unique. For example, some people instead

use the definition

p̂s
..=

#{t∗,ms > ts}

M
. (2.2)

Clearly, when M is reasonably large (such as M = 1, 000), the difference between (2.1) and (2.2)

is not practically relevant.

3 Stepdown Multiple Testing at Fixed Significance Level

It will be convenient to first describe the generic stepdown multiple testing procedure that controls

the FWE at fixed significance level α in the stylized notation of this paper. In this way, the

algorithm to compute the adjusted p-values in the next section will be easier to understand.

The hypotheses are relabeled in descending order of the observed test statistics. More specifically,

let {r1, r2, . . . , rS} denote a permutation of {1, 2, . . . , S} that satisfies tr1 > tr2 > · · · > trS . In this

way, Hr1 is the ‘most significant’ hypothesis and HrS is the ‘least significant’ hypothesis.

Let max∗,mt,j denote the largest value of the vector (t∗,mrj , . . . , t
∗,m
rS ), that is,

max∗,mt,j
..= max{t∗,mrj

, . . . , t∗,mrS
} for j = 1, . . . , S and m = 1, . . . ,M .

Furthermore, let ĉ(1 − α, j) denote an empirical 1 − α quantile of the collection {max∗,mt,j }Mm=1
.

(There is no unique definition of an empirical quantile.2 But as long as M is reasonably large, the

differences are not practically relevant.)

The algorithm for the stepdown multiple testing procedure at significance level α is as follows.

2 For example, the statistical software R offers nine different versions of empirical quantiles in its function quantile.

Our recommendation would be to simply use the default version.
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Algorithm 3.1 (Stepdown Multiple Testing at Significance Level α).

1. For s = 1, . . . , S, reject Hrs iff trs > ĉ(1− α, 1).

2. Denote by R1 the number of hypotheses rejected. If R1 = 0, stop; otherwise let j = 2.

3. For s = Rj−1 + 1, . . . , S, reject Hrs iff trs > ĉ(1− α,Rj−1 + 1).

4. (a) If no further hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the number of all hypotheses rejected so far and, afterwards,

let j ..= j + 1. Then return to step 3.

Remark 3.1 (Alternative Description).

It is easy to see that Hrs will be rejected at level α by Algorithm 3.1 if and only if

trj > ĉ(1− α, j) for all j = 1, . . . , s .

Therefore, the set of hypotheses rejected at level α is given by the collection {Hr1 , . . . , Hrn}, where n

is the largest integer in the set {1, . . . , S} such that trj > ĉ(1−α, j) for all j = 1, . . . , n. If no such n

exists, then no hypothesis is rejected.

4 Adjusting p-Values for Stepdown Multiple Testing

We denote the adjusted p-value for hypothesis Hs by p̂adj
s . The following algorithm describes how

these adjusted p-values can be computed in an efficient manner.

Algorithm 4.1 (Computation of p-Values Adjusted for Stepdown Multiple Testing).

1. Define

p̂adj

r1
..=

#{max∗,mt,1 > tr1}+ 1

M + 1
.

2. For s = 2, . . . , S,

(a) first let

p̂initial

rs
..=

#{max∗,mt,s > trs}+ 1

M + 1
,

(b) then enforce monotonicity by defining

p̂adj

rs
..= max{p̂initial

rs
, p̂adj

rs−1
} .
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Remark 4.1 (Enforcing Monotonicity).

Step 2.(b) in Algorithm 4.1 is essential. Without it, the adjusted p-values for the hypotheses

Hr2 , . . . , HrS would generally be too optimistic (in the sense of providing evidence against the null).

This fact is easiest to see by considering HrS . Without step 2.(b), it would hold that p̂adj
rS

= p̂rS ,

so that the adjusted p-value would be equal to the unadjusted p-value.

It is straightforward to see that the adjusted p-values are correct in the sense that, as long

as M is reasonably large, Hs will be rejected at fixed level α by Algorithm 3.1 for all practical

purposes if and only if the adjusted p-value for Hs computed by Algorithm 4.1 satisfies p̂adj
s 6 α.

The addition of “for all practical purposes” to this statement is due to the fact that, as previously

mentioned, there exists a unique definition neither for the empirical quantiles ĉ(1 − α, j) used in

Algorithm 3.1 nor for the resampling-based p-values used in Algorithm 4.1. But as long as M is

reasonably large (such as M = 1, 000), violations of the if-and-only-if statement could not occur

before the third decimal place of α, which is not practically relevant.
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