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1 Introduction

A substantial part of the world’s economic activity deals with the elicitation of information by

experts and its communication to non-experts. Examples include stock analysts, researchers,

consultants or managers reporting to shareholders. Too often, experts face a conflict of interests

(henceforth COI) such as sale commissions or affiliations which make their reports prone to be

biased. Inefficiencies then arise because of two main reasons: First, receivers of such information

may ignore the expert’s COI and make poor choices by following biased information. Second,

receivers lack information about the COI, e.g. its relative magnitude and the direction of the

bias it induces. Without such information, they cannot accurately correct the expert’s advice.

They may then rationally decide to ignore the expert’s message, at least partially, such that

valuable information is lost. Disclosure of COIs promises to be a simple remedy to this problem.

The idea is that information about the expert’s COI helps at least those receivers who can use it

to correct for a potential bias. It is also tempting to policy makers as it carries the, as I will show

incorrect, intuition that flattening information asymmetries is always desirable and should at

least not hurt anyone. From a regulatory view, disclosure is also an appealing option as it is less

paternalistic and less costly to regulators than direct supervision and regulation.1 A prominent

example for such a policy is contained in the Sarbanes-Oxlay-Act which was enacted in 2002 as

a response to prior corporate frauds, in particular among financial analysts. Among its adopted

regulations is the requirement to "[...]disclose in each research report, as applicable, conflicts of

interest that are known or should have been known by the securities analysts[...]" United States

Congress (2002, Sec. 501b).

The objective of this paper is to describe an economic mechanism which shows how and

why such disclosure often can lead to consequences opposite to those intended. It does so by

considering a communication game in which both, the superior information an expert owns and

the COI he faces are his private type. The model allows some receivers to be naive with regard

to the sender’s COI while others are fully rational, in a Bayesian sense. Alternatively, naivety

in this setup is equivalent to delegation of decision to an expert, e.g. to a managed fund. The

combination of these factors then unveils a simple channel under which disclosure can lead to

more biased information transmission which hurts the naive receivers of expert information who

do not anticipate the strategic effects of disclosure.

In a work which examines the communication by financial analysts, Malmendier and Shan-

thikumar (2014) show that they strategically inflate their stock recommendations and are not
1Fung et al. (2007) lists further reasons for why disclosure regulations seem appealing, numerous specific

examples, and also examples for their failure.
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just overly optimistic, a feature which is maintained in the analysis of this paper. To do so,

they use data on analyst recommendations which covers a period before and after the Sarbanes-

Oxlay-Act. Their analysis shows that the strategic bias did not disappear after the act was put

into action.2 Similarly, Mullainathan et al. (2012) conducted an audit study and show that in

period after the act came into effect, financial advice has remained of poor quality. Clean, causal

evidence for negative effects of disclosure comes from Cain et al. (2005): In their experiment,

subjects in the role of an experts had ample opportunities to study a jar filled with coins. These

subjects then advised others who had to estimate the amount of money inside the jar but could

not examine it before-hand. Their paper first confirms the straightforward intuition that when

the experts’ pay is based on the final estimate’s accuracy, the advice and estimates are better

than when the experts are paid based on how high estimates are. They however also show that

when receivers are made aware of the experts’ incentive to induce a high estimate, the experts’

bias increases. On average, receivers do not account for this effect and end up making worse

decisions than without disclosure. This finding on the adverse effects of disclosure have also

been replicated in similiar setups by Koch and Schmidt (2010), Inderst et al. (2010), and Cain

et al. (2011).3 The effect identified here is in line with these observations.

To understand the source of this adverse effect, consider an analyst ("he") who knows a

share’s fundamental value. When sending a message about it, he faces a COI to overstate it, such

as through a sales commission. Suppose also he faces lying costs of doing so, e.g. reputational

and/or expected legal costs. The magnitude of the bias in his message is then determined by

equalizing the marginal costs of lying to the marginal return of doing so. The latter is given by

the commission weighted with the average marginal reaction receivers to the sender’s message.

Now regard a client ("she") who receives a message from the sender and is aware of the bias. She

can try to de-bias it by correcting for the expected bias. However, since she faces uncertainty

regarding the commission’s actual size or even its direction, she can even worsen the outcome by

such de-biasing when the actual bias differs from the expected one. Facing such a risk, rational

receivers of biased messages will then act based on a combination between the imperfectly de-

biased message and her prior about the state of the world. The weight which a rational receivers

then puts on the sender’s imperfectly de-biased message is inversely related to the strategic

uncertainty regarding the sender’s COI. Disclosing the COI decreases this strategic uncertainty

and thus leads the receiver to put more weight on the sender’s message after de-biasing it.
2See Malmendier and Shanthikumar (2014), p.1298: They state that their measure of strategic bias remains

sizable and positive for affiliated analysts when they split the sample by August 2001, the date when the scandals
became public and which contributed to the enactment of the Sarbanes-Oxlay-Act less than a year later.

3For a further review on the failure of disclosure and psychological approaches to these findings, see Loewen-
stein et al. (2014).
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However, this translates into a larger marginal reaction to the sender’s message. As explained

above, this marginal reaction of receivers scales the sender’s bias; it is therefore increased by

disclosure. Delegating or naive receivers who do not account for the strategic effects of biasing

and de-biasing communication are then hurt by this increase.

The above reasoning combines two main insights: First, the reaction to the sender’s message

by rational, risk-averse receivers depends on the quality of information they can extract from

it. Second, an expert who faces a COI and has lying costs biases his message in proportion to

the reaction it induces. Both of these effects are simple in their economic intuition. Combined

however, they deliver the surprising result that increasing transparency can be a bad idea when

the disclosed information is not used by everyone. In particular, it proves the idea that disclosing

COIs cannot be bad for any receiver to be wrong when not all receivers are fully rational.

Disclosure can then also lead to less efficiency, depending on the relative share of receiver types.

In this paper, I model this effect in a framework which allows for arbitrary degrees of risk-

aversion as well as arbitrary quality of the disclosure process. I identifies general conditions

under which this effect manifests and thereby allows to evaluate the welfare consequences of

disclosure. The key variable to identify the consequences of disclosure is the correlation between

the expert’s COI and the information on which he has superior knowledge. I find that among

the settings in which disclosure backfires are all environments in which this correlation is at least

weakly positive. It is also shown that in all these settings, full disclosure is never optimal from

an social efficiency point of view. When this correlation is negative, there can be cases in which

disclosure is a Pareto-improvement among all receivers and only in these cases, full disclosure is

efficient.

Related literature: By analyzing the consequences of disclosing an expert’s COI, this paper

contributes to the literature on strategic communication. In their seminal work on the topic,

Crawford and Sobel (1982) characterize communication equilibria to be partitional: In equilib-

rium, the sender endogenously partitions the state space and announces a message which maps

to the partition which contains the actual state of the world. The lower the number of parti-

tions in equilibrium, the greater is the loss in informativeness of his message. This result applies

independent of the specific the meaning of language, i.e. how exactly states map to messages

by the sender and back from messages into actions by receivers.4 It is however assumed that,

whatever it exactly is, such a meaning of language is common knowledge. In the example of a

financial analysts who announces "I expect share X will pay Y this year" many people would
4See Sobel (2013) for an overview of the rich literature which has utilized and extended the partitioning result.

Also see the section on pragmatics therein for further discussion an what language and its meaning actually are
in the context of strategic communication.
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understand its meaning to be literal, thus that X is the share’s actual performance or at least the

analyst’s best estimate. This is also the implicit assumption of studies which investigate the bias

of financial analysts and which allows them to conclude that their messages are upward biased

(Hayes, 1998; Michaely and Womack, 1999; Malmendier and Shanthikumar, 2014). However, the

partitioning result in combination with such a literal meaning (and understanding) of language

implies that, on average, the message and the realized state of the world should not differ.

To reconcile a literal meaning of messages and biased messages, one or both of the two crucial

assumptions which underlie the partitioning result need to be changed. Addressing them, Kartik

et al. (2007) and Kartik (2009) show respectively that these assumptions are the boundedness

of the state space and cheap talk, i.e. no costs of lying.5 Capturing their insights, this paper

allows for an unbounded support, for example when the variable on which the sender has private

information is normally distributed. It also allows for lying costs. Similar to those used by Kartik

(2009) these costs penalize messages which differ from the state of the world, they thus capture

a literal interpretation of language as in the above example. This allows to meaningfully define a

sender’s bias as the deviation from his message to the true state of the world. Also, it reflects the

norm that communication should be as honest and a straightforward as possible, in particular

that language should not be inflated. This in turn justifies the behavior of naive receivers who

trust the sender by choosing their action based on his message’s face value.

Different from the above theoretical works which all assume that the sender’s COI is common

knowledge, this work’s focus is on cases when it is his private information. It therefore also adds

to the literature on strategic communication with strategic uncertainty. Morgan and Stocken

(2003) consider cheap talk with a compact state space when the sender’s privately known COI

is represented by a binary variable which is independent of the state of the world. In this

setup, they find that the sender’s messaging strategy remains partitional.6 Close to the focus of

this work is Li and Madarasz (2008) as they explicitly consider the consequences of decreasing

strategic uncertainty. The sender’s COI is again assumed to be binary and independent of a

uniformly distributed state of the world. Since talk is also assumed to be cheap, i.e. there are no

lying costs, equilibria remain partitional. They show that disclosure can decrease informational

efficiency, thus the number of partitions. The reason for this is that the sender’s COI is assumed
5Kartik et al. (2007) show that under general conditions, unbounded support is sufficient for the sender’s

messaging strategy to be continuous and (upward) biased. Kartik (2009) considers the case when the state space
is compact but the sender has lying costs. He shows that equilibria are partially separating of the "LSHP (low
types separate and high types pool)"-form: When the sender is upward-biased, he exaggerates his statement by
a fixed bias if the state is below a certain threshold. If it is above that threshold, the sender only announces the
partition of the upper subset of the state space in which the true state lies.

6In the theoretical part of his work, Blanes i Vidal (2003) also considers a binary COI which is independent
of a normally distributed state of the world. He finds that receivers can never react to the sender’s message in
every state of the world. However, under a variety of parameter conditions issues of equilibrium non-existence
arise.
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to have an expected value of zero; without disclosure it is thus only strategic uncertainty which

complicates communication. They then show that common knowledge of the COI’s non-zero

value through disclosure turns out to be a greater impediment to efficient communication than

expecting it to be zero. Inderst and Ottaviani (2012) is the second paper to study explicitly the

consequences of lowering strategic uncertainty in a setting of advice-giving for product choices.

They model the origin of the sender’s COI as commissions paid by product providers to experts

who in turn advise customers on which of two competing products suits them best – the state

of the world and the expert’s message are therefore binary. Their results show that disclosing

COIs reduces the provision of commissions but less so in relative terms for the inferior product.

Consequently, the relative bias rises upon disclosure and consumers make worse decisions.

The framework used here allows to model strategic communication when both, the state

of the world and the sender’s COI are represented by continuous, possibly correlated variables

and most importantly, when there are costs of lying. The mechanism underlying the adverse

effect of disclosure is also different from the ones described above. It derives form linking the

larger reaction to a biased message after disclosure to the sender’s endogenous choice of the

bias. For this, lying costs are an essential feature. The model’s specific form extends a linear-

quadratic-normal framework as used by Fischer and Verrecchia (2000). They consider a manager

who announces the earnings of the company he works for when there is uncertainty regarding

the motives for biasing his report. It extends it to elliptical distributions as recently used by

Deimen and Szalay (2014) who study strategic communication when players cannot agree on

the relative importance of different information they hold.7 Within this wider class of models it

is the first to focus on disclosure of COIs. To do so, it extends the analysis of communication

games in this class along three main dimensions: First, it examines not only the informational

content of the sender’s message but also his bias – the deviation from a honest, literally meant

message. This is important for studying the consequences on receivers, especially those who

are strategically unsophisticated. Modeling such naive receivers and their strategic effect on the

sender’s messaging strategy allows to clearly identify the negative consequences of disclosure.

Second, and in contrast to the preceding literature, this work also studies explicitly the role

of negative correlation between the variable of interest, here the sender’s COI and the state of

the world. Apart from analyzing the resulting equilibria more generally, it is shown that only

with such a negative correlation, disclosure of COIs can improve welfare for both, rational and

naive receivers. Third, it explicitly handles disclosure of COIs through a signal of arbitrary
7Kartik and Frankel (2015) recently adapted this approach to study more broadly the consequences of stake

sizes on the informativeness of one-dimensional signaling for two-dimensional types. Technically also related,
Bénabou and Tirole (2006) study signaling of pro-social motivation within the linear-quadratic framework and
jointly normally distributed variables.
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precision. Just performing comparative statics with respect to a single parameter, e.g. the

variance which describes uncertainty for the sender’s COI, overlooks the, potentially opposing,

effect of disclosure on correlated variables. In contrast, the approach presented here allows to

analyze the effects of disclosure on the whole distribution of priors, including correlated variables.

The next section outlines the model’s structure and evaluates the assumptions made with respect

to several settings of expert advice. In Section 3, I derive the equilibrium behavior of senders and

receivers when the sender’s COI is undisclosed. Section 4 covers the case of disclosure. Section

5 synthesizes the preceding analysis and assesses the consequences of disclosure on receivers and

overall efficiency. Section 6 concludes by summarizing the main insights and discussing their

policy implications.

2 The model

Consider a mass of non-experts, henceforth called receivers. Every receiver would like to know

the state of the world denoted by the random variable s ∈ S ⊆ R, because she has to take a

decision d ∈ S whose return is dependent on the realization of s. For example, s might represent

an asset’s return and d the receiver’s optimal position into this asset. Consequently, the receiver

suffers a loss which is the greater, the more her decision and the actual state of the world are

misaligned. To capture this, assume that a receiver’s ex-post utility, given her decision d and

the state of the world s, can be represented by the loss function L. More precisely, assume that

uR(d; s) = L(d− s) (1)

where L : R→ R− is assumed to be C2, strictly concave, and symmetric around zero. Without

loss of generality, it is also assumed that L(0) = 0. As the leading example, consider L(d− s) =

−1
2(d− s)2, the quadratic loss function.8

Receivers do not know s and therefore refer to a risk-neutral sender who knows its value.

The sender communicates via a public message m ∈M = S about s. In doing so, he faces costs

of lying which are captured by a C2, strictly concave loss function K : M ×S → R− with image

K(m; s) ∈ R. This image is uniquely maximized at m = s, reflecting that the meaning of the

message is assumed to be literal. This cost of lying may stem from different sources, including

the expected legal costs of being captured lying, reputational concerns, or moral considerations.9

8This is the canonical example put forward by Crawford and Sobel (1982) and used in much of the literature
on strategic communication. Ottaviani (2000) shows that this specific function covers the case of a receiver with
exponential utility who makes an investment d into a risky asset of which he knows its variance but not its
expected value s.

9For a rationale of reputational costs, see Sobel (1985) and Morris (2001). Evidence that many people have
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If the above were the sender’s only strategic incentive he would be honest and always send

m = s. Receivers would then just follow the message and implement their optimal choice.

However, such strong influence of the sender on the receivers’ decisions can be exploited. The

sender can be paid to induce either a high or low decision among receivers, e.g. via sales

commissions. To see how such a COI creates a bias consider the aggregate decision of receivers,

e.g. expected aggregate demand, which the sender can possibly influence with his message and

denote it by D(m).10 The COI of the sender is then denoted by a variable c ∈ C ⊆ R. It

scales in proportion to the potential aggregate decision he can influence and relative to the costs

of lying K. The sender then has to choose a message m ∈ M which maximizes the following

expected utility function:

E[uS(m; s, c)] = cD(m) +K(m; s) (2)

Note that for a (temporarily) fixed supply, shifting demand also implies a shift in its price.

By appropriate scaling of c, this allows to capture situations where the sender’s COI lies in

eventually influencing prices, as in Fischer and Verrecchia (2000). Also note that the commission

is additive and proportional to the demand. This differs from other approaches which assume

that the receiver and sender have the same utility functions which differ only in their bliss points.

In particular, such approaches assume that the sender’s utility decreases the more the receiver’s

action differs in either direction from the sender’s bliss point.11 For the example used previously,

this would mean that a financial analyst facing sales commissions would try to induce a specific

demand up to that bliss point but not more. In contrast, the assumption here is that a COI

induces the sender to shift demand as much as possible, subject to the costs of lying and the loss

of credulity due to his resulting bias. More exactly, when D(m) is differentiable, the sender’s

optimal message m∗ has to solve the following first-order condition:

cD′(m) = −∂K(m; s)

∂m
(3)

As a direct consequence, there is no truth-telling when there is a COI and receivers react to the

sender, thus when cD′(m) 6= 0 holds. Furthermore, by concavity of K(m, s) in m around s, the

larger the magnitude of this marginal reaction, the larger is the bias, defined as the distance

between the message sent m and the actual state s. In consequence, every shift in marginal

a preference for being honest per se is provided, among others, in Erat and Gneezy (2012), López-Pérez and
Spiegelman (2012), and Abeler et al. (2014).

10For example, when there is a continuum of receivers with mass one, each receiver indexed by i and having
demand di(m), then D(m) = E[di(m)].

11In the framework of this paper, this would be uS(d, s, b) = L (d− (s+ b)) +K(m; s) with b 6= 0. In such a
setting, naive receivers who choose their action equal to the sender’s message in itself constitute a limit on the
sender’s exaggeration (see Ottaviani and Squintani, 2006; Kartik et al., 2007).
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demand, e.g. when some receivers react to strategically valueable information such as disclosed

COIs, increases the sender’s bias.

To examine this general effect in more detail, I will henceforth assume the specific loss func-

tion K(m, s) = −1
2(m−s)2. This function is chosen because it captures the above considerations

and proxies well for lying costs which originate from social preferences, moral concerns against

lying, or reputational concerns in a stage version of a repeated game.12 Second, the above condi-

tions show that its size, relative to the sender’s lying costs, can be adjusted simply by choosing c

and its distribution accordingly. It then allows a tractable analysis in closed form and increased

clarity. The main reason for this is that the above first-order condition then simplifies to the

following, intuitive form:

m∗ = s+ cD′(m∗) (4)

Note that the sender’s bias cD′(m) and the state of the world s enter the sender’s strategy

additively and separately. However, they can be correlated in terms of the data-generating

process. The following describes the underlying informational setting, including scenarios in

which a non-zero correlation between s and c matters in more detail.

Information: Both, the state of the world s and the sender’s COI c are his private information.

They are assumed to be a drawn from an elliptical distribution with support over K × S =

R2. The standard example is the (multivariate) normal distribution, but others such as the

heavier-tailed logistic or student-t also fall into this class of distributions and are often used in

financial and risk modeling.13 A specific elliptical distribution F such as the normal one can

be parametrized by denoting it F (η,Σ) where η represents the vector of expected values and

Σ the variance-covariance matrix. Elliptical distributions have three properties which will be

important in the present context:

E1) Elliptically distributed random variables are closed under linear transformations, i.e. a

linear transformation of jointly F -distributed variables is itself F -distributed.

E2) A random variable, conditional on the realization of another random variable, both being

jointly elliptically distributed according to F (η,Σ), is also distributed according to F . The
12 When L is also quadratic, this cost function captures concerns for the utility of a receiver who follow the

sender’s message at face value. Kartik (2009) uses this specific form of costs as a prominent example for capturing
costs of lying per se. Reputational concerns can also be proxied by it: If the actual value of s became knowledge
ex-post, the squared distance of s and m is part of the nominator of the sender’s coefficient of determination
(R2) which one would obtain by regressing the state of the world on his prior messages; the sender credulity is
thus decreasing in this squared distance.

13See Embrechts et al. (2002), also for the potential caveats of doing so.
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vector of expected values and the variance-covariance matrix of the resulting conditional

distribution are linear transformations of η and Σ.

E3) Elliptical distributions are symmetric around their vector of expected values.

A more formal statement of these properties, together with a precise definition of elliptical

distributions and references can be found in the appendix. I assume that the moments of

F (η,Σ) from which the sender type (s, c) is drawn are finite and real. They are denoted as

follows:

η =

 s̄

c̄

 and Σ =

 σ2
s σsc

σsc σ2
c


When appropriate, I will refer to correlation of s and c instead of its covariance σsc. To make

things interesting, I assume it not to be perfect, i.e. |Corr[s, c]| = |σsc|
σsσc

< 1. For the same

reason, I assume that the diagonal elements of Σ are strictly positive. Otherwise, the receiver’s

inference problem would effectively become one-dimensional or vanish entirely.

The above information structure is suited to naturally model how players, in particular

rational receivers, arrive at their prior. First, assuming unbounded support for (s, c) means that

no commonly known bounds on the state space are required. In contrast, assuming compact

support implies mutual understanding on such sharp bounds. Sometimes, this is straightforward

and reasonable, e.g. when the sender communicates on how much of one’s wealth should be

invested into a certain asset. However, once leverages become available or when s reflects asset

returns, appropriate bounds are not so clear-cut. A solution to this is then to assume that all

real values are theoretically possible while "unrealistic" or "unreasonable" extreme realizations

receive appropriately low probabilities by choosing the above moment parameters accordingly.

Another situation which is captured by this framework is when past information is used, e.g. by

using (4) as a structural model to arrive at a prior. Resulting estimates of (s, c) are then, by

the central limit theorem, approximately normally distributed. One could also assume compact

support, for example the uniform distribution is also elliptical. For the sake of simplicity and

without much loss of generality, I however maintain the assumption of unbounded support.14

As an import feature, this framework allows to handle the case of σsc 6= 0, e.g. when the

COI is dependent on the state of the world. As an example, consider the example of a financial

analyst or a manager who reports on an asset for which he holds call-options. By inducing a

high demand he can potentially raise the asset’s price such that it exceeds the option’s strike
14Note that by choosing the distribution’s parameters appropriately, the probability that its realizations are

within some compact set can be made arbitrarily high. For the uniform distributions as an elliptical one see the
second example in Gómez et al. (2003), pp. 359/360 and Kartik and Frankel (2015). All crucial results reported
here also apply to a bounded support.
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price. This would then allow him to earn on the option. However, this only works if the

fundamental value of the asset represented by s is high enough such that he can "bridge" the

distance necessary to meet the option’s strike price via the effect his message has on demand. If

this is not feasible, thus when s is sufficient low, then there is essentially no COI. In consequence,

s and c are positively correlated. If the sender owns the asset himself, a negative correlation can

follow. The reason is that when the asset has low value, he wants to get rid of it. Before selling

the asset, he then faces a COI to bias his report upwards as to increase demand and thereby the

sale price he earns.15

Rational and naive receivers: I will now turn to the demand side and analyse reactions to

the sender’s message in detail. The above shows that COIs induce the sender to not report

truthfully. How should receivers then take such a distortion into account and how in turn,

should the sender adjust his signal to the receivers’ reaction? A receiver who rational, in a

Bayesian sense, should do so by basing decision on the information he can extract from the

sender’s message:

dr(m) ≡ argmaxd∈SE[L(s, d)|m] (5)

In the case of a quadratic loss function, this is is clearly the conditional expectation of s given

m. The following result, due to Deimen and Szalay (2014), shows that this generalizes to the

strictly concave, symmetric loss function L when the message m is elliptically distributed:

Lemma 1. Suppose m is elliptically distributed. It then holds that dr(m) = E[s|m].

Proof. the proof adapts the proof of part i) of lemma 2 in Deimen and Szalay (2014) to this

paper’s setup and can be found in the appendix.

The optimal decision dr(m) is that of fully rational, Bayesian receiver who is capable of adjusting

the effect of the sender’s bias on his message and connecting it to the common prior. While

some receivers, e.g. institutional ones, can act in such a manner, empirical evidence shows

that most individuals often do not anticipate and correct for others’ strategic behavior (see, for
15Another scenario which is noteworthy to be mentioned and which can be easily captured in the framework

is scientific fraud: First, the reactions to empirical research are strongly based on test statistics with elliptical
distributions, for example normally or student-t-distributed regression coefficients. Second, outright cheating
such as making up data or more subtle techniques such as selective sampling and data mining are methods
with which these test statistics are manipulated (Fanelli, 2009; Steen, 2011; Simonsohn, 2014). However, ethical
concerns as well as reputation and legal sanctions create costs of doing so. Third, COIs to influence decisions
based on these statistics are common as they map one-to-one into statistical significance. Pressure to publish
and publication bias towards statistically significant results then create an incentive to use the above methods
in order to inflate test statistics (Simmons et al., 2011). Incentives to decrease such statistics do also exist, e.g.
in an antitrust case where the decisive measure is a company’s market share and the researcher is affiliated with
that company. Finally, disclosure policies are in practice for many journals and other receivers of scientific work.
Taken together, the effect of disclosure policies on fraud in science constitute another example for which the
above framework can be applied.
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example Brown et al., 2012; Brocas et al., 2014). In addition, behaving in a Bayesian manner

does not only require skills but also information to form a prior. Just listening to an expert and

following his advice does not require any such information. If the money at stake and/or the

expected bias are small, relative to the cost of conducting Bayesian inference, receivers may even

rationally prefer to just follow an expert or delegate their decisions (Sims, 2003). In line with

such reasoning, Malmendier and Shanthikumar (2007) show that small investors such as private

households follow analysts’ optimistic recommendation more closely than bigger, institutional

ones. To capture these observations, I allow for the possibility that there are naive receivers who

take the sender’s signal at face value. Their action is given by dn(m) = m as in Ottaviani and

Squintani (2006) and Kartik et al. (2007). I denote the share of naive or delegating receivers by

µ ∈ [0, 1).16 The mass of rational receivers is therefore given by 1−µ which yields the following

expected demand function for the receiver:

D(m) = µm+ (1− µ)dr(m) (6)

Note that this approach also captures a scenario in which a risk-neutral sender faces a single

receiver but does not know whether this receiver is naive or rational. Denoting the probability

for the former case with µ and for the latter with 1 − µ, the expected demand for the sender

would then be the same. Also note that acting based on the face value of an expert’s message is

strategically equivalent to delegating one’s decision, e.g. putting one’s money into an investment

company’s actively managed fund. Rational receivers would instead listen to the company’s

experts but eventually make investment decisions on their own.

3 Undisclosed conflicts of interest

The communication game with undisclosed commissions has the following timing:

1) the sender’s type (s, c) is draw from F and privately observed by the sender,

2) the sender sends a signal m about s,

3) receivers observe m, if rational update their belief about s, then choose d,

4) payoffs are realized.
16By appropriate scaling of µ, one can always account for situations where naive or delegating receivers do

not react one-to-one, e.g. when dn(m) is a positive affine transformation with d′n(m) = r > 0. As an example,
suppose that there is a mass 0.5 of naive receivers who follow the signal, on average, in proportion r = 0.6. From
the sender’s point of view, this is the same as if there were a mass 0.2 of receivers who ignore him, mass 0.3 of
naives who follow one-to-one, and a mass 0.5 of rational receivers. Using µ = 0.3

0.8
would then be strategically

equivalent.
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I look for a Perfect Bayesian Equilibrium of this game. It consists of a pair of equilibrium

strategies m∗ : S×C →M for the sender and d∗r : M → S for a rational receiver such that each

player’s expected utility is maximized, given the other players’ strategy when their beliefs are

formed by Bayes’ rule. Naive receivers are assumed to have a dominant strategy of following

the sender, their beliefs therefore do not matter. The key equilibrium belief in this context is

a rational receiver’s belief about s, denoted E[s|m∗] ≡ E[s|m]|m=m∗(s,c). This is the conditional

expectation of s given an imagem which is formed by the sender’s equilibrium messaging strategy

m∗(s, c).17

I will use this equilibrium concept under different settings of common knowledge, hence-

forth called information structures I. The information structure of the game with undisclosed

incentives is given by IU = {F (η,Σ), µ}, the game’s fundamental parameters and their joint

distribution. If commissions are disclosed, I will denote this information structure ID and will

later specify it more exactly. Whenever I use the expectations operator or terms based on it

such as variance or covariance, it is with respect to the respective information structure. For

example, E[c] = c̄ when I = IU but this will not hold with disclosed COIs (see next section).

Rational receivers maximize their expected utility by choosing dr(m). By assumption, naive

receivers choose dn(m) = m. From (6) one then gets the following expected utility for the

sender:

US(s, c,m) = c (µm+ (1− µ)dr(m))− 1

2
(m− s)2 (7)

The sender’s message directly affects the naive receivers’ demand and his lying cost. In addition,

it indirectly influences the rational receiver’s demand via its effect on dr(m). The optimal mes-

saging strategym∗(s, c) needs to weight these factors. Analogous to the definition of E[s|m∗] and

(5), I define a rational receiver’s optimal decision, given a m, formed by the sender’s equilibrium

messaging strategy m∗(s, c), as follows:

d∗r(m) ≡ argmaxd∈SE[L(d− s)|m]m=m∗(s,c)

In an equilibrium in which receivers’ reaction are differentiable with respected to the sender’s

message, his underlying equilibrium strategy then has to solve the following first-order condition

for every equilibrium message m∗ formed by it:

m = s+ c
(
µ+ (1− µ)d∗r

′(m)
)

(8)

17Note that a complete belief profile over the sender’s type also requires to specify an analogously-defined
E[c|m]|m=m∗(s,c). Since this is however payoff-irrelevant for either player, I omit it for the sake of easier notation
and space.
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The expression d∗r ′(m) in the above denotes the marginal change in the action which maximizes

a rational receivers’ expected utility due to a change in the message when this is an image of the

equilibrium messaging strategy. The sender therefore has to take into account that the rational

receiver’s marginal reaction to the message does not rely only on the message sent but also on

the underlying messaging strategy. If for example, the equilibrium messaging strategy is very

uninformative, d∗r ′(m) should be relatively low. The sender thus trades off his incentive to bias

the signal in order to affect receiver’s decision with the loss in informativeness and therefore

their reaction to that message. In addition he also faces costs of lying. To derive how the sender

behaves optimally given these opposing incentives, I define the equilibrium inference coefficient

ρ∗ as a measure of the equilibrium strategy’s informativeness:

ρ∗ ≡ Cov[s,m∗]

Var[m∗]
≡

Cov[s,m]|m=m∗(s,c)

Var[m]|m=m∗(s,c)
(9)

This equilibrium parameter measures how much of the change in the equilibrium message refers

to an actual change in the state of world s. Throughout this paper, I will focus on the case that

ρ∗ is a real, strictly positive number. I therefore rule out completely uninformative messaging

strategies in which the message m and s do not covary, e.g. when the sender always sends the

same or a completely random message, regardless of his type. It also means that messaging

strategies which generate a negative correlation of the message with the state of the world are

not considered. In such situation, it would be common knowledge that the sender tells the

opposite of what is really going on – a feature which is unlikely to happen in an information

market with experts.

Using this concept, one can show that in equilibrium, the inference coefficient has to be

equal to the marginal reaction of rational receivers’ to the message, thus that d∗r ′(m) = ρ∗ holds.

Proving this relationship constitutes the main building block for the following proposition which

characterizes the players’ equilibrium actions and the relevant equilibrium beliefs:

Proposition 1. Every pure-strategy Perfect Bayesian Equilibrium of the communication game

with strategies m∗(s, c) for the sender and d∗r(m) ∈ C2 for rational receivers takes the form of

m∗(s, c) = s+ c (µ+ (1− µ)ρ∗) (10)

d∗r(m) = (1− ρ∗)E[s] + ρ∗ (m− E[c](µ+ (1− µ)ρ∗)) (11)

The rational receivers equilibrium belief w.r.t. to s is given by E[s|m∗] = d∗r(m).

Proof. see appendix

The above result characterizes equilibria in which a rational receiver’s reaction to the sender’s
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message is smooth in the sense that it is twice continuously differentiable. Note from (6) that

assuming a smooth strategy for rational receivers is a necessary condition for the overall demand

D(m) to be smooth. I focus on such smooth, pure strategy equilibria because it is sufficient

but yet relatively general to demonstrate the main point of this paper, the adverse effects of

disclosure. It also captures the idea that arbitrarily small changes in the sender’s message should

yield no effect on demand.

In such an equilibrium, the sender’s action takes an intuitive form. The sender announces the

state of the world and adds a bias, given bym∗(s, c)−s = c (µ+ (1− µ)ρ∗). This bias equals the

marginal change in expected demand due to a change in the message, weighted with the sender’s

COI. Part of this expected demand is the rational receivers’ belief about s. It consists of two

parts: The first, weighted with 1− ρ∗, is their prior about the true state of the world, given by

E[s]. The other part of her inference is given by the received message corrected for the expected

bias E[c] (µ+ (1− µ)ρ∗). This is weighted with ρ∗, the informativeness of the message given the

sender’s equilibrium strategy. In consequence, the marginal reaction of rational receiver due to a

change in the message is given by ρ∗. This equilibrium parameter will be particularly important

for the following analysis.

Note that the correction for the expected bias is based on the expected commission. It can

thus be wrong in both, direction and magnitude. This possible failure in rational receiver’s

de-biasing of the message and her risk-aversion provides the reason why she often does not

react one-to-one to the corrected message. Whenever ρ∗ ∈ (0, 1) applies, a rational receiver

strategically ignores the senders message and puts weight on her prior such that information

is left unused. For illustration, consider a situation where σ2
s is almost zero, thus almost no

fundamental uncertainty exists: In this case, Cov[s,m∗] will also be close to zero and so is ρ∗.

This would imply that a rational receiver acts almost entirely according to her prior E[s]. The

reason is that the actual state of the world s is very close to the prior in such a situation.

Any variation in the signal can then only be due to the sender’s bias. Just following E[s] is

then optimal for the rational receiver since it brings her action very close to the true state of

the world. In equilibrium, the sender takes such low values of ρ∗ and the receiver’s expected

reaction into account by scaling down his bias. The ratioanle for this is that if receivers do not

react to the message anyhow, there is no reason to bias one’s message, given that lying is costly.

Generally, lower values of ρ∗, thus a lower informativeness of the message, will lead to decrease

in the sender’s bias while higher informativeness increases it. Such reasoning is consistent with

interpreting the equilibrium inference coefficient as the coefficient from a linear regression of the

state of the world on the message: Both, a regression coefficient and ρ∗ describe the marginal

change in the conditional expectation of a dependent variable due to a marginal change in the
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independent variable. The crucial difference is that in a regression, this refers to an exogenous

change while here, it is the change in the endogenously determined equilibrium message.

Using the functional form as stated in proposition 1 for the messaging strategy can then be

used to solve for the equilibrium inference coefficient:

Proposition 2. In the above game with undisclosed commissions, the equilibrium inference

coefficient ρ∗U = Cov[s,m∗]
Var[m∗] is a fixed point to

gU (ρ) =
σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

(12)

Any fixed point ρ∗U ∈ (0, 1] is unique while a fixed point ρ∗U > 1 is either unique or one of three

such points.

Proof. see appendix

The above result, together with proposition 1 completely describes the game’s equilibrium strate-

gies and beliefs. With the parameters contained in IU , precise expressions for the players’ actions

and relevant beliefs can be computed from these results. However, one can bound the inference

coefficient which shapes such equilibria from more general features of the information structure:

Lemma 2. A fixed point ρ∗U > 0 to (12) exists if and only if σsc > τ∗ for some τ∗ < 0.

Proof. see appendix

As argued before, assuming that the inference coefficients is positively valued, thus that

σsc > τ∗ is natural for many applications of the model. I will therefore assume from now on that

the above condition holds. From (11) in the preceding proposition one gets that a positive value

of the inference coefficient means that a rational receivers’ action dr covaries with the sender’s

message m which in turn covaries with the state of the world s. The above lemma links this

covariance in s and the messages and reactions about it to the game’s information structure. It

shows that any non-negative correlation between the state of the world and the COI is sufficient

for ρ∗U to be positive, thus for the message to be positively correlated with s. However, even

with a negative correlation σsc ∈ (τ∗, 0) this can be the case since the sender’s cost of lying

counteracts equilibria with a negative correlation of the sender’s message and s.

Proposition 2 also shows that multiple equilibria can only arise when the equilibrium inference

coefficient is larger than one. The following result examines these cases in more detail and

provides general conditions under which ρ∗U is above and below the value of one, a threshold

which will be important in the following analysis:
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Lemma 3. Suppose ρ∗U > 0. Then σ2
c = σ2

s is a sufficient and σsc = −σ2
c is a necessary and

sufficient condition for ρ∗U 5 1 to hold.

Proof. see appendix

As with the preceding lemma, the result maps the game’s parameters into behavior and back.

It implies that more uncertainty about the COI than about the state of the world or any

positive covariance between these variable are sufficient for a rational receiver’s demand to be a

unique, strictly convex combination between her prior and the sender’s message, corrected for

the expected bias.

Non-convex combinations are however still possible. If σsc is contained in (τ∗,−σ2
c ), the

above lemma implies that rational receivers "over-react" – a change in the sender’s message

induces a change in rational receiver’s demand greater than that original change in the message.

To understand how such over-reaction occurs in equilibrium, note that such sufficiently negative

values of σsc imply that one expects the sender to have a relatively strong incentive to push

demand into a direction which is inversely related to the actual state of world s. However, since

σsc > τ∗ is also assumed to hold, it is not strong enough to induce a non-positive correlation

between the message and s. In equilibrium, rational receivers anticipate this positive correlation

between the message and s. They counteract the bias, which they expect to be strong and

opposing in direction to s, by over-reacting to the corrected message. Since such correction

involves correcting for the expected bias and receivers have concave utility, the expected disutility

caused by such possible miscorrection is the greater, the more likely extreme values of c are.

Thus, when the COI is too unpredictable relative to fundamental uncertainty, i.e. when σ2
c ≥ σ2

s ,

over-reaction cannot occur. The limit to such expectation-based corrections are also reached

when σsc ≤ τ∗. In this case, the expected bias is so strong and opposed in direction to s that

the risk of mis-correction outweighs the benefits of over-reacting.

Figure 1 illustrates these findings. It depicts the equilibrium inference coefficient for possible

correlation of s and c. The three lines represent different values of σ2
s , higher ones representing

larger variance. This ordering reflects that ceteris paribus, higher variation in s means that

it explains more variation for a given messaging strategy and therefore increases the inference

drawn from a message, as measured by ρ∗U . Reflecting the previous lemma, it also shows that

for any positive correlations and when σ2
c > σ2

s , the equilibrium inference coefficient is always

contained in the unit interval. The left region of the upper two lines then portrays parameter

constellations where the inference coefficient is larger than one. The figure also portrays the

normalized cut-off value τ∗/(σsσc) for positive equilibrium inference coefficients as a vertical

line. For values of Corr[s, c] below it, an equilibrium in which s and m∗ are positively correlated
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Figure 1: Positive equilibrium equilibrium inference coefficients ρ∗U over Corr[s, c]
Parameters: µ = 0.5, σ2

c = 1, and σ2
s = 1/2/3 (bottom/middle/top line).

and in which rational receivers follow the corrected message does not exist.

4 Disclosed conflicts of interests

The above results show that when the sender’s COI is his private knowledge, his equilibrium

message is biased. Naive receivers who do not account for this bias are deceived by the sender

and make wrong decisions. Rational receivers try to correct for the expected bias, but whenever

the sender’s COI differs from its expected value, thus almost surely, their following action is also

sub-optimal. A tentative remedy to this is that the sender has to disclose his COI. Disclosure of

COIs will be modeled through a signal c̃ about c which receivers observe before they make their

choice. The signal is given by c̃ = c + ε where ε is an uncorrelated error term with the same

elliptical distribution as (s, c), an expected value of zero and finite variance σ2
ε ≥ 0. This variance

therefore measures the quality of this signal. When it is zero the signal is perfectly accurate

about the sender’s COI, a setting I will henceforth call full disclosure. Conversely, imperfect

disclosure describes situations where the signal error’s variance is positive. The timing in the

game with a disclosed COI is then as follows:

1a) the sender’s type and the signal error (s, c, ε) are drawn,

1b) c̃ = c+ ε becomes common knowledge, (s, c) is privately observed by the sender,

2) the sender sends a signal m about s,

3) receivers observe m, if rational update their belief about s, then choose d,

4) payoffs are realized.

The only difference to the case of undisclosed COIs is therefore the signal c̃ which allows rational

receivers to update their beliefs regarding the value of c. The procedure for this is similar to the

17



signal extraction from the sender’s message. The updated belief regarding c is a combination

between the receiver’s prior, given by c̄ and the signal c̃ with weight for the latter chosen

according to its precision. In analogy to the equilibrium inference coefficient one can define the

following measure for the signal’s informativeness:

ρc ≡
Cov[c, c̃]

Var[c̃]
=

σ2
c

σ2
c + σ2

ε

(13)

It reflects how much variation in c can be explained by the signal c̃ about it. Accordingly, ρc is

key for the distribution of the sender’s type, conditional on the received signal about his COI:

Lemma 4. The posterior distribution of (s, c | c̃ ) is given by F (η̂, Σ̂) with

η̂ =

 s̄+ (σsc/σ
2
c )(c̃− c̄)ρc

c̄(1− ρc) + c̃ρc

 and Σ̂ =

 σ2
s

(
1− ρc(Corr[s, c])2) σsc(1− ρc)

σsc(1− ρc) σ2
c (1− ρc)


Proof. see appendix

Note that if c is correlated with the state of the world, the signal about also affects the posterior

moments of s since it then also contains information about this variable. In the special case

of full disclosure, ρc = 1 applies and the updated expectation for the COI equals the observed

signal, as it is equal to the actual value of c. Since this eliminates any uncertainty about c, all

second moments which contain this variable will then also shrink to zero. The effect of reducing

uncertainty however applies to any signal about c and second moments are generally decreasing

in its precision 1/σ2
ε via the parameter ρc.

To see how these informational consequences of disclosure translate into strategic ones, note

that this new posterior distribution becomes common knowledge. In the previously analyzed

communication game with undisclosed COIs, all results depended only on the information struc-

ture IU = {F (η,Σ), µ}. After c̃ has been observed and processed, the new information structure

is given by ID = {F (η̂, Σ̂, c̃), µ}. Recall that expectations are with respect to the information

structure, e.g. with disclosed COIs it holds that E[c] = c̄(1 − ρc) + c̃ρc. Given this, one can

proceed analogously as for undisclosed COI to determine equilibrium behavior by using ID in-

stead of IU . In particular, proposition 1 applies and the equilibrium messaging strategy is of

the linear form of the state of the world plus an endogenously determined bias. The equilibrium

inference coefficient can then be determined analogously to the case of undisclosed COIs:
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Proposition 3. Suppose ρ∗U > 0 exists. Then there exists at least one value ρ∗D = Cov[s,m∗|c̃ ]
Var[m∗|c̃] > 0.

With full disclosure it is uniquely given by ρ∗D = 1, with imperfect disclosure as a fixed point to

gD(ρ) =
φσ2

s + (µ+ (1− µ)ρ)σsc
φσ2

s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2
c

(14)

where φ ≡ 1−ρc(Corr[s,c])2)
1−ρc > 1.

Proof. see appendix

Together with proposition 1, this result completely characterizes equilibrium behavior in games

with disclosed COIs. It shows that existence of an equilibrium with a positive inference coefficient

under undisclosed COIs is sufficient to establish existence of a similiar equilibrium when COIs

are disclosed.

In the special case of full disclosure, the inference coefficient, and thereby the marginal

reaction of rational receivers to the sender’s message, is equal to one. The sender’s equilibrium

strategy is then given by m∗(s, c) = s+ c while rational receivers infer E[s|m, c̃] = m− c̃. Since

with full disclosure c̃ = c applies, rational receivers therefore infer and implement the true state

of the world and thus achieve maximum utility, the sender’s message is however still biased.

With imperfect disclosure, the equilibrium inference coefficient ρ∗D solves (14). The only

difference to the characterization of inference coefficients with undisclosed COIs as stated in (12)

is the additional term φ > 1. Comparing Σ̂ to Σ, one can see that the ratio which φ represent

measures how much strategic uncertainty regarding the COI c remains after disclosure, relative

to fundamental uncertainty regarding the state of the world s. To illustrate this, consider a

signal c̃ which is very uninformative, resulting in ρc close to zero. Rational receivers infer

equally few about either kind of uncertainty with regard to s or c from such a signal, and the

posterior is almost equal the prior. Also, φ is close to one and a solution ρ∗D is then very close

to ρ∗U as (12) and (14) are almost the same term. As the signal quality increases, so do ρC

and φ and the posterior’s second moments decrease. However, φ > 1 implies that the direct

effect on reducing strategic uncertainty is always stronger than the signal’s effect on decreasing

fundamental uncertainty.

As in the case of full disclosure, multiple fixed points ρ∗D to (14) can exists. The following

lemma describes them and how they relate to the possible values of ρ∗U :

Lemma 5. Suppose ρ∗U > 0 exists. For any information structure IU and any signal quality of

c̃, the following cases can occur:

a) When there is a (unique) ρ∗U ∈ (0, 1), there is a unique solution ρ∗D ∈ (ρ∗U , 1).

b) When there is a (unique) ρ∗U = 1, there is a unique solution ρ∗D = ρ∗U = 1.
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c) When there is a unique ρ∗U > 1, there is a unique solution ρ∗D ∈ (1, ρ∗U ).

d) When there are three values ρ∗U > 1, there are either a unique or three solutions ρ∗D:

If ρ∗D is unique, then 1 < ρ∗D < ρ∗U,1 < ρ∗U,2 < ρ∗U,3.

If there are three fixed points ρ∗D, then 1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗D,2 < ρ∗D,3 < ρ∗U,3.

Proof. see appendix.

To understand the pattern which the above results reflect, first reconsider the case of full disclo-

sure: Rational receivers can extract the true state from the sender’s message and react fully to

it, as captured by ρ∗D = 1. When ρ∗U > 1 applied before disclosure the inference shrinks towards

one. When ρ∗U < 1 applied before it increases towards this threshold. The cases a) through

c) of the above proposition generalize this to the case of imperfect disclosure. Upon disclosure,

the inference coefficient moves closer towards one or, for the special case that it equaled one

with undisclosed COIs, remains at this value. Result d) then covers the case when there are

multiple equilibrium inference coefficients, and therefore multiple equilibria, before disclosure.

For the first subcase of d), the above pattern goes through and upon disclosure the new, unique

equilibrium inference coefficient is closer to one than all those which existed before disclosure.

To treat the effect of disclosure in the other subcase, some definitions will be useful. First, one

can organize the possible equilibrium coefficients as follows:

Definition 1. Let ρ∗D,k and ρ∗U,k with k ∈ {1, 2, 3} denote the positive-valued fixed points to (12)

and (14), respectively, ordered by increasing value. In case that such a fixed point is unique, any

such ρ∗k denotes its value.

Then, one can order the equilibria according to the stability of the solutions they represent:

Definition 2. Let g(ρ) be a continuously differentiable, real-valued function. A fixed point ρ∗k
to g(ρ) is called asymptotically stable if and only if |g′(ρ)| < 1 at ρ = ρ∗k.

From the above definition it follows that asymptotically stable equilibrium inference coefficients

are locally unique and converge back to their original value after any sufficiently small perpet-

uation. For example, they are robust to iterative search procedures and adaptive dynamics.

Although intrinsically a dynamic concept, this criterion has a long history of being used in the

analysis of one-shot situations, e.g. via (general) equilibrium tâtonnment processes and recently

also in strategic communication.18 The following then relates this notion of asymptotically stable

equilibrium inference coefficients, to the equilibria which they characterize:
18See Blume and Board (2014) who treat endogenously chosen vagueness in a one-shot communication game

and use this concept. On p.869, they provide references on how asymptotic stability relates more generally to
one-shot situations, in particular to Samuelson’s correspondence principle.
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Definition 3. Let the tupel E(ρ∗k) collect strategies and beliefs as specified in proposition 1

with ρ∗k = ρ∗U(D) > 0 as described in proposition 2 (proposition 3) when I = IU (I = ID).

E(ρ∗k) is then called an asymptotically stable equilibrium if and only if the corresponding ρ∗k is

asymptotically stable.

This notion allows to rank multiple equilibria as characterized by their equilibrium inference

coefficients according to their asymptotic stability:

Lemma 6. An equilibrium E(ρ∗k) is asymptotically stable if and only if k ∈ {1, 3}.

Proof. see appendix

The above, together with lemma 5 implies that the only unstable equilibria is the medium one

when ρ∗U > 1 and there are multiple equilibria (case d) of proposition 5). All other equilibria

are asymptotically stable. In consequence, the following can be stated:

Corollary 1. In any asymptotically stable equilibrium E(ρ∗k), the equilibrium coefficient strictly

increases (decreases) upon disclosure if and only if ρ∗U < 1 (ρ∗U > 1).

As a direct consequence of the preceding analysis, there is a non-monotone effect of disclosure

on the sender’s bias, via the equilibrium inference coefficient. The following section explores this

key effect of disclosure in more detail, in particular how it affects the welfare of different receiver

types and overall efficiency.

5 Consequences of disclosure

In the following, I will take an ex-ante view on receivers’ utility, thus before a draw of the

sender’s type takes place. I start with naive receivers. They are agnostic about the sender’s

bias and do not account for the strategic change since for them, d∗n(m) = m holds. Recall that

receivers’ utility decreases in the distance of their decision and the state of the world. Since the

sender’s equilibrium strategy is to announce the state of the world plus a bias, the argument

of naive receivers’ utility then equals this bias, given by m∗(s, c) − s. Their expected utility in

equilibrium E(ρ∗k) is therefore equal to

E[uRn (E(ρ∗k))] = E[L(c(µ+ (1− µ)ρ∗)] = E[L(|c|(µ+ (1− µ)ρ∗)] < 0 (15)

where the second equality follows from the fact that only c can be non-positive, while L is

negatively valued and symmetric around its maximum of zero. The expected utility of naive

receivers therefore strictly decreases in ρ∗ and the following immediately emerges:
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Corollary 2. Upon disclosure of COIs, the expected utility of naive receivers decreases (increases)

in every asymptotically stable equilibrium E(ρ∗k) if and only if ρU < 1 (ρU > 1).

The result shows that in any stable solution to the communication game, naive receivers can

only benefit from disclosure when the equilibrium inference coefficient is larger than one, e.g.

only if none of the conditions stated in lemma 3 is fulfilled. Otherwise, naive receiver suffer from

disclosure.

To evaluate the overall effect of disclosure, one needs to also look on its effects for rational

receivers. These receivers correct for the expected bias and therefore implement what they infer

to be the expected state of the world. However, the risk of this implementation being wrong

yields (expected) disutility whose magnitude depends on the concavity of L and the volatility

of the sender’s bias. To obtain a tractable measure for rational receivers’ expected utility, one

can exploit the property E2 of elliptically distributed variables, namely that they inherit their

distribution to linear combinations formed from them. In particular, it follows from (10) that the

rational receiver’s decision error d∗r − s is elliptically distributed. Using an approach similar to

Meyer (1987), one can then show that this is sufficient to represent rational receivers’ expected

utility as mean-variance preferences. This then admits the following representation of rational

receivers’ expected utility:

Lemma 7. The expected utility of rational receivers in equilibirum E(ρ∗k) is given by

E[uRr (E(ρ∗k))] = L
(
σ2
s

[
1−

(
Corr[s,m]m=m∗(s,c)

)2]) ≤ 0

where L ∈ C obeys L′ (x) 5 0 for any x = 0. Furthermore, E[uRr (E(ρ∗k))] = 0 if and only if there

is full disclosure of the sender’s COI.

Proof. see appendix

The lemma allows to represent the expected utility of rational receivers by a loss function with a

single argument. This argument only depends on the information structures and the equilibrium

inference coefficient derived from it. It is given by the fundamental uncertainty regarding σ2
s ,

scaled down by the squared correlation of the state of the world with the sender’s equilibrium

message. Note that the empirical analog to this measure, the squared sample correlation of s

and m∗, equals the coefficient of determination one would obtain if one regressed past values of

s on the sender’s message. In consequence, the more the sender’s message is correlated with the

variable it is supposed to report on, the better off are rational receivers.

This formulation of the sender’s expected utility helps in analyzing the opposing effects of

disclosure. When ρ∗ increases upon disclosure, this reflects a greater informativeness of the
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sender’s message. However, the sender strategically anticipates this and in turn, also increases

his bias’ magnitude which makes the rational receivers’ inference more complicated again. Con-

versely, when ρ∗ decreases, so does the bias. But does such a decrease in the inference coefficient

then not imply that also the message’s informativeness, and therefore the rational receivers’ util-

ity, decreases? Using the above lemma, the following result then shows that in both scenarios,

the net effect of disclosure on rational receivers’ expected utility is positive:

Proposition 4. Upon disclosure of COIs, the expected utility of rational receivers increases in

every asymptotically stable equilibrium E(ρ∗k).

Proof. see appendix

While this is good news from the perspective of rational receivers, the following results immedi-

ately follows from the preceding ones. It shows that disclosure often requires to trade of naive

receivers’ expected utility against the expected utility of rational ones:

Corollary 3. In any asymptotically stable equilibrium E(ρ∗k), disclosure of COIs is a Pareto-

improvement among receivers if and only if ρ∗U ≥ 1.

Thus, only when the inference coefficient is at least one, then all receivers benefit from disclosure.

If this is not the case, e.g. when any of the conditions in lemma 3 apply, naive receivers will suffer

from disclosure and a Pareto-criterion forbids it. A policy maker who can influence disclosure

and the quality of disclosed information may want to resort to other criteria such as efficiency

in this case. I capture such an efficienty criterion by assuming that a policy maker wants to

maximize a welfare function of the following form where the weights wn and wr are assumed to

be positive, wK to be non-negative:

W (E(ρ∗k)) = wn · E[uRn (E(ρ∗k))] + wr · E[uRr (E(ρ∗k))]− wK · E[(c(µ+ ρ∗k(1− µ)))2] (16)

In the above, the first two terms capture the expected utility of naive and rational receivers,

respectively. The third term allows to capture the sender’s expected cost of lying E[K(m; s)].

A straightforward choice is the respective population share, i.e. wn = µ, wr = 1 − µ, and

wk = 0. Other weights can capture further considerations: If Bayesian inference and the steps

involved therein are costly for rational receivers, a fully informative but biased message is not

optimal. In face of such de-biasing costs, only a truthful, unbiased message would be optimal.

A choice wn > µ would then reflect the relative importance of these costs, relative to the pure

informational content of the sender’s message and in addition to its effect on naive receivers.

Setting wK > 0 allows to capture when the sender’s expected costs of lying are relevant for a
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policy maker.19

Generally, the exact decision of whether disclosure should occur and how precise it should be

can only be answered when specific weights and utility functions are assumed. However, some

policy-relevant statements with respect to the effect of disclosure on W can be made even when

the exact values of these parameters are unknown:

Proposition 5. Full disclosure never (always) maximizes social welfare W in an asymptotically

stable equilibrium E(ρ∗k) when ρ∗U < 1 (ρ∗U ≥ 1).

Proof. see appendix

The second statement follow directly from the previous corollary. The first result, when ρ∗U < 1,

follows from the fact that receivers have strictly concave utility. They can achieve maximum

utility only with full disclosure (see lemma 7). When, near this optimum, some noise is added

to the signal c̃ the resulting loss is then always smaller than the gain in expected utility this

induces for naive receivers, via the associated decrease in ρ∗. Note that while full disclosure

is often not optimal, the reverse reasoning does not work and no or imperfect disclosure can

be optimal, in a second-best sense. Determining precise criteria for this however requires more

specific assumptions on the informational environment and preferences. An example when no

disclosure is best is contained in the appendix.

The preceding results which examine the consequences of disclosing COIs depend crucially

on whether ρ∗U is above or below the threshold of one. Besides computing this value via (12),

lemma 3 allows to determine this directly from the second moments of the sender’s type dis-

tribution. However, even knowledge of these parameters is not necessary either for an outside

observer to yield testable predictions and to make informed decisions. One only needs to ob-

serve aggregate players’ behavior. The reason for this is that ρ∗D > 1 is easily verified to be

a necessary and sufficient condition for the overall demand to react over-proportionally to a

message, i.e. D′(m) > 1. If in contrast the market is observed to react under-proportionally to

new messages, thus when D′(m) < 1, if follows from (6) that ρ∗U < 1 has to hold. For example,

observing stronger than one-to-one reactions to messages by experts is a sufficient condition to

mandate full disclosure. Observing less than one-to-one reactions however indicates that full

disclosure will increase average reaction upon disclosure, thereby hurt naive receivers, and is

thus not optimal from the point of maximizing welfare.
19Apart from a welfare function which take into account the lying costs per se, such costs may also matter from

a policy point of view when they represent a reduced form of the sender’s reputation. This becomes economically
relevant when the loss in the sender’s credulity impedes his economic function of information elicitation and
dissemination. Alternatively, if the sender’s cost of lying come from a situation where he has to invest own funds,
e.g. own equity, according to his advice, these costs then reflect the cost of such mis-allocated capital.
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6 Conclusion

"Discounting advice appropriately for a disclosed conflict of interest requieres a mental model

of advisor behavior [...]" is what Loewenstein et al. (2011), p.424 conclude in their work on the

failure of disclosing COIs. This paper does so in a setting where an expert who faces a private

COI communicates the value of a random variable of interest. He does so by reporting to

uninformed receivers, some of which are naive towards the resulting bias and facing lying costs

when he biases his message. The model provides a parsimonious framework for studying the

effect of disclosing the sender’s COI either fully or imperfectly within a wide class of distributions

and for arbitrary degrees of the receivers’ risk aversion.

I find that disclosure fulfills the aim of informing rational receivers: Information about the

sender’s COI helps them to learn more from the sender’s biased message and to choose actions

which match better the actual state of the world. On the downside however, this paper’s core

result shows that exactly this desired effect of disclosure backfires on receivers who are not

strategically sophisticated. It does so because in equilibrium, the average reaction to the biased

signal and the sender’s bias are mutually dependent. Upon disclosure, the reaction by rational

receivers to the sender’s message often increases and so does the bias contained in this message.

Naive receivers who do not account for this are then hurt by disclosure. Disclosure thus amplifies

a negative externality which rational receivers exert on their naive peer and therefore hurts those

which are most vulnerable to strategic biases.

I also determine more precisely when and how these adverse effects of disclosure manifest.

In terms of economic fundamentals, this is always the case when the state of the world and

the sender’s COI are weakly positively correlated. Another sufficient condition for disclosure

to backfire is when strategic uncertainty regarding the sender’s COI exceeds fundamental un-

certainty regarding the variable which describes the state of the world. In terms of observed

behavior, this happens when an expert’s message does not induce an equivalent, e.g. one-to-one,

reaction among receivers. Only when receivers "over-react", that is when they react, on average,

stronger than one-to-one to changes in the sender’s message, then disclosure is an improvement

among all, rational and naive, receivers. This is also the only case when full disclosure is optimal

from an efficiency point of view. In all other cases, a less than perfect signal about the sender’s

COI, potentially even an uninformative one, is optimal for maximizing efficiency. Taken to-

gether, the results derived in this work support the conclusion that in many settings of strategic

communication, the inefficiencies which arise from experts’ conflicts of interest are best solved

by eliminating rather than by just announcing them.
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Appendix

Features of elliptcally distributed random variables

The following definition is obtained from definition 1 in the survey on elliptical distributions by

Gómez et al. (2003) and Theorem 4 ii) therein:

Definition: A random vector x ∈ Rn is elliptically distributed with expected value η ∈

Rn, positive definite variance-covariance matrix Σ ∈ Rn×n, and the Lebesque-measurable

function g : [0,∞) → [0,∞) s.t.
∫∞

0 t
n
2
−1g(t)dt < ∞ as parameters, if it has the density

function

f(x;η, Σ̃, g) = cn|Σ̃|−
1
2 g
(

(x− η)T Σ̃−1(x− η)
)

where cn = Γ(n2 )/
(
φ

n
2

∫∞
0 t

n
2
−1g(t)dt

)
, and Σ̃ ∝ Σ.

The exact form of the distribution therefore depends on the density generator g. In the context

of this paper it is assumed to be implicitly defined by the by the specific elliptical distribution F

which is assumed. The generic example is when F denotes the (multivariate) normal distribution

which would imply that g(t) = exp
(
−1

2 t
)
. Other examples include the mutivariate logistic,

student-t or power exponential families of distributions.

The results in this paper do not depend on the specific distribution F as long as it is elliptical,

but just on its first two moments, η and Σ. To illustrate them, consider a random vector x ∈ Rn

with n ≥ 2 which is elliptically distributed according to F (η,Σ). Also consider two non-empty

partitions [x1,x2] of this vector. Partition analogously the corresponding vector of expected

values as η = (η1,η2) and the variance-covariance matrix Σ into blocks (Σ11,Σ12,Σ21,Σ22).

Then, the following properties hold for x:

E1: linear combinations of elements of x are distributed according to F

E2: (x2|x1) is distributed according to

F (η2 + Σ21Σ
−1
11 (x1 − η1),Σ22 −Σ21Σ

−1
11 Σ12)

E3: x is symmetrically distributed around η

E3 follows from the above density function. Properties E1 and E2 are consequences of Theorem 5

and Theorem 8, respectively in Gómez et al. (2003) which also contains further references on the

original research establishing these properties for elliptical distributions. The three statements

about elliptical distributions in section 3 then reflect the above properties. It will be useful to
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note that for the special case that (x2|x1) ∈ R2, E2 implies that (x2|x1) is distributed according

to

F

(
E[x2] + (x1 − E[x1])

Cov[x1, x2]

Var[x1]
,Var[x2]

(
1− (Corr[x1, x2])2

))

Proof of Lemma 1

When m is distributed according to F , it is jointly elliptically distributed with s. By E2, the

resulting distribution of s conditional on m, denoted by its pdf f(s|m), is then also elliptical.

Furthermore, E3 implies that f(s|m) is symmetric around E[s|m]. By definition, it then has to

hold that dr = argmaxd∈S
∫
R L(d − s)f(s|m)ds. The necessary FOC for a candidate solution

dr = E[s|m] is given by

0 =

∫
R
L′(dr − s)f(s|m])ds =

∫ +∞

−∞
L′(E[s|m]− s)f(s|m])ds

and is also sufficient as L is strictly concave. To verify that this FOC applies for this candidate

solution note that by being strictly concave, L is single peaked and symmetric around its bliss

point s. Let ∆ ≤ 0 be the absolute deviation of the candidate solution from the optimal choice,

i.e. ∆ = |dr − s|. By symmetry of L around zero it holds that L′(∆) = −L′(−∆). Since f(s|m)

is symmetric around E[s|m] = dr it then follows that

L′(∆)f(dr −∆|m]) = −L′(−∆)f(dr + ∆|m]) 5 0

for any ∆ = 0. Integrating over all ∆ ∈ R+ then validates that the above FOC actually holds.

Since L is single-peaked, it is also the only solution.

Proof of Proposition 1

The following proof constructs a pure strategy equilibrium when the implied demand D(m)

is twice continuously differentiable. To do so, it proceeds in three steps. Step 1 solves the

rational receiver’s problem to choose his optimal action given that the sender’s message contains

information about s. Step 2 determines how such signal extraction by rational receivers manifests

in equilibrium when the sender anticipates this process. Step 3 combines these results to obtain

equilibrium actions and beliefs.

Step 1: Consider a candidate equilibrium messaging strategy m̃(s, c) such that D(m) = µm+

(1 − µ)d̃r(m) with d̃r(m) ≡ argmaxd∈SE[L(d − s)|m]m=m̃(s,c) exists and is twice differentiable

w.r.t. m. By (8), m̃ has to solve m̃ = s + c(µ + (1 − µ)d̃∗r
′(m̃)). Note that given the message

m̃ and the candidate equilibrium messaging function d̃r, d̃′r(m̃) is a non-random image of the
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function d̃′r(m). The associated messaging function which yielded m̃ is thus given by

m̃(s, c) = s+ c(µ+ (1− µ)d̃′r(m̃))

By E1, it is elliptically distributed according to F .

Lemma 1 then implies that d̃r(m) = E[s|m]m=m̃(s,c). Using E2 then yields that for a given

equilibrium message m̃, it has to hold that

d̃r(m) = E[s] +
(
m− E[s] + E[c](µ+ (1− µ)d̃′r(m)

) Cov[s,m]m=m̃(s,c)

Var[m]m=m̃(s,c)
(17)

with expected value E[m]m=m̃(s,c) = E[s] + E[c](µ+ (1−µ)d̃′r(m) and the associated equilibrium

parameters Cov[s,m]m=m̃(s,c) and Var[m]m=m̃(s,c).

Step 2: In equilibrium, d̃∗r ′(m) has to solve the first-order linear differential equation

d̃′r(m) =
(

1− E[c](1− µ)d̃′′r(m)
)
ρ̃

with ρ̃ ≡ Cov[s,m]m=m̃(s,c)

Var[m]m=m̃(s,c)
which is obtained by differentiating (17) w.r.t. m.

When d̃′r(m) = 0, it follows that d̃′r(m) = ρ̃ = 0. Similarly, if E[c] = 0, then d̃′r(m) = ρ̃. Now

suppose that ρ̃E[c] 6= 0. One then gets d̃′r(m) as the solution to the above differential equation

given by

d̃′r(m) = ρ+ ξ · exp
(
− m

(1− µ)E[c]ρ̃

)
where ξ is an integration factor. To determine its value, integrate the obtained d̃′r(m) over M

to get

E[s|m]m=m̃(s,c) =

∫ +∞

−∞
d̃′r(m)dm = mρ̃− ξ(1− µ)E[c]ρ̃ · exp

(
− m

(1− µ)E[c]ρ̃

)
+ K̃ (18)

where K̃ is a constant of integration. This can be plugged into the sender’s expected utility (7)

to obtain the following expression for US(s, c,m)|m=m̃(s,c):

cµm+ c(1− µ)

[
mρ̃− ξ(1− µ)E[c]ρ̃ · exp

(
− m

(1− µ)E[c]ρ̃

)
+ K̃

]
− 1

2
(m− s)2 (19)

To determine ξ, I start with the case that c > 0. In this case, US(s, c,m) is increasing in

E[s|m∗], the term above in square brackets. If ρ̃E[c] > 0 the sender’s expected utility decreases

exponentially in m while all other terms involving m are either linear or quadratic. If ξ < 0,

the sender would then maximize his expected utility by choosing m → −∞ and there is no

31



equilibrium. Therefore, ξ ≥ 0 has to hold in this case for any equilibrium. For ξ > 0 however,

US(s, c,m) would be lower than with ξ = 0. Since ξ is part of the endogenous inference of the

sender’s signal, he will not send a signal which allows such an inference. It follows that with

c > 0 and ρE[c] > 0, only ξ = 0 can be the equilibrium integration factor.

Continue to suppose that c > 0 but now ρE[c] < 0 holds. Reverse to the the preceding

reasoning, E∗[s|m] now increases exponentially in m which implies a global maximum of the

sender’s expected utility at m → +∞ whenever ξ > 0. Thus, for an equilibrium ξ ≤ 0 has

to hold. Again, any strictly negative value of ξ would decrease the sender’s expected utility.

Messaging strategies allowing such inference are therefore not chosen by the sender and ξ = 0

holds in any equilibrium with c > 0 and ρE[c] < 0.

For the case that c < 0, US(s, c,m) is decreasing in E[s|m∗]. The same reasoning as for

the case of c > 0 but with reversed signs can then be repeated which rules out any ξ 6= 0 in

equilibrium when c < 0 and ρ̃E[c] 6= 0.

Eventually, when c = 0 the inference E[s|m] does not enter US(s, c,m) and therefore does

neither affect the sender’s action nor the receiver’s reaction to it and one can assume w.l.o.g.

ξ = 0. It therefore has to hold in any equilibrium that ξ = 0 and therefore d̃r(m) = ρ̃.

Step 3: Given the above, one can determine the integration constant

K̃ = E[s]− (E[s] + E[c] (µ+ (1− µ)ρ̃))ρ̃

by combining (17) and (18). Using ξ = 0 then allows to write (19) as

US(s, c,m) = mc (µ+ (1− µ))− 1

2
(m− s)2 + c(1− µ)K

It is then easily verified that the unique message which maximizes the above expression is given

by m = s + c (µ+ (1− µ)) ρ̃. In equilibrium, it thus holds that m∗(s, c) = s + c (µ+ (1− µ)ρ̃

with ρ∗ = ρ̃ = d∗r
′(m) =

Cov[s,m]m=m∗(s,c)
Var[m]m=m∗(s,c)

as stated in (10). Using ρ̃ = ρ∗, ξ = 0, and the

above expression for K̃ on (18) then yields the rational receivers belief and strategy as stated in

(11).

32



Proof of Proposition 2, part 1

By using m∗(s, c) = s+ c(µ+ (1− µ)ρ) from proposition 1 and the definition of ρ∗ = Cov[s,m∗]
Var[m∗] ,

the latter must be a solution to

ρ =
Cov[s,m∗]

Var[m∗]
=

Cov[s,m]m=m∗(s,c)

Var[m]m=m∗(s,c)
=

E[(s− E[s])[(s− E[s]) + (µ+ (1− µ)ρ)(c− E[c])]]

E[((s− E[s]) + (µ+ (1− µ)ρ)(c− E[c]))2]

=
σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

which yields (12). It will be useful to define this fixed point expression via gU (ρ) = N(ρ)/D(ρ)

with N(ρ) = σ2
s + (µ + (1 − µ)ρ)σsc and D(ρ) = σ2

s + 2(µ + (1 − µ)ρ)σsc + (µ + (1 − µ)ρ)2σ2
c

reflecting the above nominator and denominator. The following properties then hold for the

rational function gU (ρ) = N(ρ)/D(ρ):

Property a): N(ρ)/D(ρ) is continuous with D(ρ) > 0 for all ρ ∈ R.

Proof: Since both, D(ρ) and N(ρ) are continuous in ρ, it is sufficient to show that D(ρ) > 0

always holds. Suppose to the contrary it would not. Rearranging D(ρ), this would requiere that

ρ2 + aρ+ b = 0 with

a =
2(σsc + µσ2

c )

(1− µ)σ2
c

b =
σ2
s + 2µσsc + µ2σ2

c

(1− µ)2σ2
c

has at least one real solution, thus that (a/2)2 − b ≥ 0 holds. Plugging in and rearranging, this

yields (σsc/(σcσs)
2 ≥ 1 – a contraction to |Corr[s, c]| < 1.

Property b): limρ→+∞

(
N(ρ)
D(ρ)

)
= 0− if σsc < 0 and limρ→+∞

(
N(ρ)
D(ρ)

)
= 0+ if σsc ≥ 0

Proof: N(ρ) strictly decreases (weakly increases) linearly in ρ when σsc < 0 (σsc ≥ 0) and

therefore attains negative (positive) values for ρ large enough. From a), D(ρ) is strictly positive

and it grows quadratically in ρ. Therefore, for large values of ρ, the ratio N(ρ)/D(ρ) is negative

(positive) and arbitrarily close to zero.

Property c): N(ρ)
D(ρ) has at most two extreme points.

Proof: Any extreme point has to set the first derivative

(
N(ρ)

D(ρ)

)′
=

(1− µ)σscD(ρ)− 2(1− µ)N(ρ)(σsc + (µ+ (1− µ)ρ)σ2
c )

(D(ρ))2

=
(1− µ)

D(ρ)
·
(
σsc −

N(ρ)

D(ρ)
· 2(σsc + (µ+ (1− µ)ρ)σ2

c )

) (20)
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equal to zero. By a), the first factor is non-zero. Extreme points therefore have to solve

σscD(ρ) = N(ρ) · 2(σsc + (µ+ (1− µ)ρ)σ2
c )

Plugging in the functions for N(ρ) and D(ρ) yields an equation which is quadratic in ρ and thus

has at most two real solutions.

Before I continue with remaining part of the proof of proposition 2, I first proof lemma 2 and 3.

While they are stated in the main text after proposition 2 for reasons of better exposure, they

only rely on properties proved so far.

Proof of Lemma 2

Necessitiy: By property a) as derived above it follows that for a fixed point ρ∗U which solves

gU (ρ∗U ) = N(ρ∗U )/D(ρ∗U ) > 0, N(ρ∗U ) > 0 has to hold. This is equivalent to σsc > τ(ρ∗U ) where

τ(ρ) = −σ2
s/(µ + (1 − µ)ρ) < 0 is defined for any ρ > −µ/(1 − µ). Note that τ ′(ρ) > 0 for all

ρ ≥ 0. For ρ∗U > 0 it therefore has to hold that σsc > τ∗ ≡ τ(ρ∗U ) with τ∗ < 0.

Sufficiency: To see that σsc > τ∗ is also sufficient for (12) to have a solution ρ∗U > 0, note

that by the above reasoning σsc > τ(ρ∗) > τ(0) holds and therefore, Cov[s,m∗]|ρ=0 = N(0) > 0

applies. Since Var[m∗]ρ=0 = D(0) > 0, it then follows that gU (0) = N(0)/D(0) > 0. Together

with continuity and a limit of zero of gU (ρ) as derived in properties a) and b) above, this means

that there has to be at least one fixed point, i.e. at least one intersection of gU (ρ) with the

45-degree line over R++.

Proof of Lemma 3

I start with the necessary and sufficient condition: By proposition 2, ρ∗U ≤ 1 conditional on

ρ∗U > 0, holds if and only if

σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

∣∣∣∣
ρ=ρ∗U

≤ 1

This condition simplifies, such that ρ∗U > 0 is equivalent to

σsc ≥ −(µ+ (1− µ)ρ∗U ))σ2
c (21)

The above inequality becomes more slack for higher, positive values of ρ∗U . Replacing it by

ρ∗U = 1, the upper bound on the desired value range, yields the stated condition σsc ≥ −σ2
c .
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To see the second sufficient condition, note that this is equivalent to Corr[s, c] ≥ −σc/σs and

therefore that it always holds when σ2
c ≥ σ2

s .

Proof of Proposition 2, part 2

A solution ρ∗U to (12) requires an intersection of the 45-degree line and N(ρ)/D(ρ). Note

that every such fixed point has to be a root of the cubic equation k(ρ) = ρD(ρ) − N(ρ) =

Aρ3 +Bρ2 + Cρ+D = 0 with coefficients

A = (1− µ)2σ2
c , B = 2(1− µ)(σsc + µσ2

c ), C = σ2
s + µ2σ2

c + (3µ− 1)σsc, D = −σ2
s − µσsc.

To examine multiplicity of such roots, I use the following result:

Theorem. (Descarte’s rule of signs) Consider a n-degree polynominal p(x) =
∑n

k=0 ck · xk with

real coefficients. Order the non-zero coefficients ck in an descending order of the exponent of k.

The number of positive, real roots of the polynomial is less by an even number or equal to the

number of sign changes between successive coefficients in this ordering.

It always holds that A > 0. Furthermore, by lemma 2, a solution ρU > 0 implies D < 0 because

−D = Cov[s,m∗]|ρ=0 = N(0) > 0. By the sign rule, the only configuration for more than one

sign change, given that A > 0 > D, is C > 0 > B. Thus, there are either one or three positive

roots corresponding to fixed points of gU (ρ).

Multiple fixed points therefore require B < 0, thus σsc < 0. Suppose they exist. By

property a) and b) derived in the first part of this proof, this means that gU (ρ) = N(ρ)/D(ρ)

continuously approaches zero from below when ρ becomes large enough. Also, it has been

shown that N(0)/D(0) > 0 (see proof of lemma 2). Together, this implies that gU has to have

a negatively valued local minimum on R++ denoted by ρ−, i.e. gU (ρ−) = N(ρ−)/D(ρ−) < 0. If

ρ− is the only extreme value over R++ this implies only one intersection with the 45-degree line,

thus a unique fixed point. If it is not the unique extreme value, by property c) derived in the

first part of the proof, there is exactly one other extreme value of gU over R++. It it has to be

a local maximum since ρ− is a local minimum; I denote its location ρ+. By property b) it then

has to hold that 0 < ρ+ < ρ−. Furthermore, since ρ+ is a local maximum and N(0)/D(0) > 0

it follows that gU (ρ+) = N(ρ+)/D(ρ+) > 0.

Accordingly, gU (ρ) = N(ρ)/D(ρ) has to be non-increasing between its local maximum value

gU (ρ+) > 0 and its minimum value gU (ρ−) < 0. Because σsc < 0 was assumed, it approaches its

limit of zero from below on [ρ−,+∞) (see property b) in the first part of the proof) and therefore

cuts the 45-degree line exactly once and this has to be over (ρ+, ρ−). Multiple, positively valued
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fixed points of gU (ρ) number to three such such that their coordinates can be denoted w.l.o.g.

by 0 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3. It therefore has to hold that

0 < ρ∗U,1 < ρ∗U,2 < ρ+ < ρ∗U,3 < ρ−

By property c), there is no further extreme point over [ρ∗U,1, ρ
∗
U,2] ⊂ (0, ρ+) while 0 < gU (0) <

gU (ρ+). It follows that gU (ρ) is non-decreasing on [ρ∗U,1, ρ
∗
U,2]. Three fixed points of gU (ρ) at

ρ∗U,1 < ρ∗U,2 and ρU,3 ∈ (ρ+, ρ−) then imply that gU (ρ) cuts the 45-degree line (which has slope

1) thrice: First, twice from below and then from above, thus

(N(ρ)/D(ρ))′|ρ=ρ∗U,3
< 0 < (N(ρ)/D(ρ))′|ρ=ρ∗U,1

< 1 < (N(ρ)/D(ρ))′|ρ=ρ∗U,2
(22)

Using the fact that if this indeed an equilibrium, ρ∗U,1 = N(ρ∗U,1)/D(ρ∗U,1) has to hold, the

requirement of a positive slope greater at ρ∗U,1 > 0 translates via (20) into

(
N(ρ)

D(ρ)

)′ ∣∣∣∣
ρ=ρ∗U,1

=
(1− µ)

D(ρ∗U,1)
·
(
σsc − 2ρ∗U,1(σsc + (µ+ (1− µ)ρ∗U,1)σ2

c )
)
> 0

For this to hold, σsc + (µ + (1 − µ)ρ∗U,1)σ2
c < 0 is a necessary condition as ρ∗U,1 > 0 > σsc.

Multiplying by (µ+ (1− µ)ρ∗U,1) > 0 yields the equivalent necessary condition

(µ+ (1− µ)ρ∗U,1)σsc + (µ+ (1− µ)ρ∗U,1)2σ2
c = D(ρ∗U,1)−N(ρ∗U,1) < 0

Rearranging this inequality then yields that 1 < N(ρ∗U,1)/D(ρ∗U,1) = ρ∗U,1 < ρ∗U,2 < ρ∗U,3 is a

necessary condition for multiple fixed points ρ∗U .

Proof of Lemma 4

Following the assumptions regarding ε, it holds that


s

c

ε

 ∼ F


s̄

c̄

0

 ,

σ2
s σsc 0

σsc σ2
c 0

0 0 σ2
ε




Using E1 establishes that c̃ = c + ε is distributed according to F and so is the random vector

(c̃, s, c). Note that because ε is independent and unbiased, Cov[s, c̃] = E[(s − E[s])(c + ε −

E[c])] = E[(s − s̄)(c − c̄)] = σsc, Var[c̃] = E[(c + ε − E[c])2] = E[(c + ε − c̄)2] = σ2
c + σ2

ε , and
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Cov[c, c̃] = E[(c− E[c])(c+ ε− c̄)] = E[(c− c̄)(c− c̄)] = σ2
c . The following can then be stated:


c̃

s

c

 ∼ F


c̄

s̄

c̄

 ,

σ2
c + σ2

ε σsc σ2
c

σsc σ2
s σsc

σ2
c σsc σ2

c




Using E2, as stated in the beginning of this appendix, with the parameters from the above

distribution then yields after some rearranging the stated conditional moments for (s, c | c̃).

Proof of Proposition 3

Using again the equilibrium mappingm∗(s, c) from proposition 1, now with information structure

ID and the associated conditional distribution of (s, c | c̃), means that with disclosed COIs an

inference coefficient ρ∗D has to solve

ρ =
Cov[s,m∗|c̃]
Var[m∗|c̃]

=

(
1− ρc(Corr[s, c])2

)
σ2
s + (µ+ (1− µ)ρ)(1− ρc)σsc

(1− ρc(Corr[s, c])2)σ2
s + 2(µ+ (1− µ)ρ)(1− ρc)σsc + (µ+ (1− µ)ρ)2(1− ρc)σ2

c

=

(
1−ρc(Corr[s,c])2

1−ρc

)
σ2
s + (µ+ (1− µ)ρ)σsc(

1−ρc(Corr[s,c])2)
1−ρc

)
σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

Under full disclosure, σ2
ε = 0 holds and ρc = 1 applies such that a unique solution ρ = ρ∗D = 1

follows from the second line. The last transformation assumes ρc 6= 1, i.e. σ2
ε > 0. Substituting

φ for (1 − ρc(Corr[s, c])2/(1 − ρc) then yields (14). For the remainder of the proof imperfect

disclosure with ρc ∈ (0, 1), thus φ > 1, is assumed.

In analogy to first part of the proof of proposition 2, one can then define gD(ρ) = Ñ(ρ)/D̃(ρ)

with Ñ(ρ) = φσ2
s + (µ+ (1− µ)ρ)σsc > N(ρ) and D̃(ρ) = φσ2

s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1−

µ)ρ)2σ2
c > D(ρ). It is easily verified that Ñ(ρ)/D̃(ρ) inherits the properties a) through c) of

N(ρ)/D(ρ) stated in that proof. Continuing, one can prove, analogously to the proof of lemma

2, that a sufficient condition for ρ∗D > 0 to exists is given by the condition σsc > τ̃(ρ∗D) with

τ̃(ρ) = −φσ2
s/(µ + (1 − µ)ρ). Existence of ρ∗U > 0 is equivalent to σsc > τ(ρ∗U ) (see proof of

lemma 2). It then follows that ρ∗U > 0 is sufficient for ρ∗D > 0 to exists, since this implies that

σsc > τ(ρ∗U ) and τ(ρ) = −σ2
s/(µ+ (1− µ)ρ) > τ̃(ρ) = −φσ2

s/(µ+ (1− µ)ρ) holds for any ρ > 0.

Similar to the second part of the the proof of proposition 2, where fixed points to gU (ρ)

were expressed as roots to k(ρ), one can define the cubic function k̃(ρ) = ρD̃(ρ) − Ñ(ρ) =
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Ãρ3 + B̃ρ2 + C̃ρ+ D̃ = 0 with coefficients

Ã = A > 0, B̃ = B, C̃ = φσ2
s + µ2σ2

c + (3µ− 1)σsc > C, D̃ = −φσ2
s − µσsc < D < 0

where A through D are defined as in the second part of the proof of proposition 2. Roots to

k̃(ρ) then correspond to fixed point of gD(ρ). Applying the sign rule again implies that there

are either one or three such roots.

Proof of Lemma 5

The proof uses the cubic function k̃ with coefficients Ã through D̃ as defined in the proof of

proposition 3 above. Its roots denote fixed points to gD(ρ) as stated in (14). Similiarly, it

uses the cubic function k as defined with coefficients A through D in the second part of the

proof of proposition 2 whose roots denote fixed points to gU (ρ) as stated in (12). Furthermore,

from proposition 2 that gU has either one or three fixed points, with solutions ρ∗U ∈ (0, 1] being

unique.

Given these prerequisites, note that k̃(0) = D̃ < k(0) = D < 0 and k̃′(ρ) = 3Ãρ2 + B̃ρ+ C̃ >

k′(ρ) = 3Aρ2 + Bρ + C for all ρ ∈ R+. Furthermore, k̃(ρ) = k(ρ) if and only if ρ = 1. It

therefore holds that k(ρ) > k̃(ρ) for all ρ ∈ (0, 1) and k(ρ) < k̃(ρ) for all ρ > 1.

Taken together, the above means that if there is a (unique) root ρ∗U ∈ (0, 1) of k , there must

be a unique root k̃ on (ρ∗U , 1) and and if ρ∗U = 1, ρ∗D = 1 applies. To see that a root ρ∗D < 1 is

unique, one can repeat the same reasoning as in the second part of the proof of proposition 2 to

show that multiple solutions requiere all of them to have a value larger than one. This proves

cases a) and b).

For case c), thus when there is a unique ρ∗U > 1, by proposition 2 and the above reasoning,

k̃(1) = k(1) < 0 has to hold. A unique root of k at ρ∗U > 1 implies that gU never cuts the real

line again on (ρ∗U ,+∞). Neither does k̃ since k̃(ρ) > k(ρ) for ρ > 1. This, in addition with

k̃(1) = k(1) < 0, however means also that k̃ cuts the real line once over (1, ρ∗U ) which proves

case c).

Now consider case d), i.e that there are three positively-valued fixed points to gU (ρ). By

proposition 2, their coordinates have to obey 1 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3. The continuous, cubic

function k obeys k(0) = D < 0 (see the second part of the proof of proposition 2). This

implies that k cuts the real line from below at ρ∗U,1, from above at ρ∗U,2, and again from below

at ρ∗U,3. Since it is a continuous polynomial, it has to have a local maximum and minimum

in between these points. They are denoted by ρk− and ρk+, respectively. It thus holds that

1 < ρ∗U,1 < ρk+ < ρ∗U,2 < ρk− < ρ∗U,3. If k̃ also has three roots, denoted by ρ∗D,1 < ρ∗D,2 < ρ∗D,3, it is
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a similarly-shaped polynomial by analogous reasoning. Therefore, k̃ cuts the real line from below

at ρ∗D,1, from above at ρ∗D,2, and from below at ρ∗D,3. From k̃(1) = k(1) < 0 and k̃(ρ) > k(ρ)

for ρ > 1, it follows that when k̃ cuts the real line from below (above), it has to do so at lower

(higher) values than k. For three roots of k̃, this implies that

1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗D,2 < ρ∗D,3 < ρ∗U,3

which proves the second part of case d). If k̃ has only one root (two have been ruled out by the

sign rule), k̃(1) = k(1) < 0 and k̃(ρ) > k(ρ) again imply that it cuts the real line from below,

i.e. at lower coordinates than k. It follows that 1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3 which proves the

first part of case d).

Proof of Lemma 6

Another way of finding fixed points to gU (ρ) is to find roots to the function f(ρ) = gU (ρ) − ρ

which is continuous and for which f(0) = gU (0) = N(0)/D(0) > 0 holds (see the first part of

the proof of proposition 2). It follows that for f to have three roots, this function has to cut

the real line from above at ρ∗U,1, from below at ρ∗U,2, and again from above at ρ∗U,3. This implies

f ′(ρ∗U,1) < 0, f ′(ρ∗U,2) > 0, and f ′(ρ∗U,3) < 0. It therefore holds that f ′(ρ∗U,1) = g′U (ρ∗U,1)− 1 < 0,

f ′(ρ∗U,3) = g′U (ρ∗U,3)− 1 < 0 and f ′(ρ∗U,2) = g′U (ρ∗U,2)− 1 > 0. This proves asymptotic stability of

ρ∗U,1and ρ
∗
U,3, and asymptotic instability of ρ∗U,2.

For the case of undisclosed commissions one can repeat the above procedure analogously

by using gD(ρ) = Ñ(ρ)/D̃(ρ) with Ñ(ρ) and D̃(ρ) as defined in the proof of proposition 3.

In particular, when ρ∗U > 0 exists, Ñ(ρ) > N(ρ) > 0 holds for all ρ > 0. By the same

reasoning, D̃(ρ) > D(ρ) > 0 applies such that gD(0) = Ñ(0)/D̃(0) > 0. Preceding as above,

one then define f̃(ρ) = gD(ρ)−ρ whose roots correspond to fixed points of gD(ρ). In particular,

f̃(0) = Ñ(0)/D̃(0) > 0 applies. Repeating the above reasoning regarding the shape of f and

the implications on its derivatives for the function f̃ , one can then show the stated asymptotic

stability and asymptotic instability of for fixed points to gD(ρ) analogously to the above.

Proof of Lemma 7

The argument of the sender’s (expected) utility is given by

z ≡ d∗r(m)− s = (1− ρ∗)E[s] + ρ∗ [m∗(s, c)− E[c] (µ+ (1− µ)ρ∗)] − s

= −(s− E[s]) + ρ∗ [m∗(s, c)− E[s]− E[c] (µ+ (1− µ)ρ∗))]

= −(s− E[s]) + (m∗(s, c)− E[m∗(s, c)]) ρ∗

(23)
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Note that by (10), m∗(s, c) is a linear transformation of the vector (s, c) and by E1, it is thus

distributed according to F . Similarly, s is also distributed according to F . In consequence, z is

distributed according to F (E[z],Var[z]). One can then normalize z via the linear transformation

ẑ(z) = z/
√

Var[z] − E[z] such that ẑ follows F (0, 1) whose density will be denoted f(ẑ). The

expected utility of rational receivers can then be expressed as

E[L(z)] =

∫ +∞

−∞
L
(

E[z] + ẑ
√

Var[z]
)
f(ẑ)dẑ ≡ V

(
E[z],

√
Var[z]

)
≤ 0

From (23) it follows that E[z] = 0. One can thus define the univariate function L (Var[y]) ≡

V (0,Var[z]) ≤ 0 which denotes a rational receiver’s expected utility and for which it holds that

L′ (Var[z]) =
∂V
(

E[z],
√

Var[z]
)

∂ Var[z]

∣∣∣∣∣
E[z]=0

=
1

2
√

Var[z]
·
∫ +∞

−∞

[
ẑ · L′

(
ẑ
√

Var[z]
)]
f(ẑ)dẑ

Since L is strictly concave and symmetric around zero, sgn[ẑ] = − sgn
[
L′
(
ẑ
√

Var[z]
)]

and

therefore, the above expression is non-positive. In addition, f̂ is symmetric around zero and

L′(Var[z]) = 0 if and only if Var[z] = 0. It has been shown in the main text that under full

disclosure, uRr (ρ∗, ·) = 0 holds since rational receivers can then extract s from the message and

implement their optimal choice. Full disclosure therefore implies L(0) = 0.

To see that full disclosure is also necessary for L(0) = 0 to hold, note from the above that

this requires Var[z] = 0 and therefore d∗r(m) = s. Suppose that this held under imperfect

disclosure. For d∗r(m) = s to apply in this case, (11) requires both ρ∗ = 1 and c = E[c] to hold

simultaneously for any realization (s, c). The latter statement is a contradiction to the fact that

under imperfect disclosure with ρc ∈ (0, 1), Var[c|c̃] > 0 and Var[s|c̃] > 0 applies (see lemma 4).

To see the alternative representation of the argument x ≡ Var[z], note that by using the

definition of ρ∗ one gets the following:

x = Var[z] = Var[d∗r(m)− s]

= E[(−(s− E[s]) + (m∗(s, c)− E
[
m∗(s, c)])ρ∗)2]

= (σ2
s − 2ρ∗Cov[s,m∗] + (ρ∗)2Var[m∗])

= σ2
s − ρ∗Cov[s,m∗]
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From the law of total variance and using again the definition of ρ∗, it also holds that

E [Var[s|m∗]] = Var[s]−Var[E[s|m∗]]

= σ2
s − E[(d∗r(m)− E[s]])2]

= σ2
s − E[((m∗ − E[m∗]) ρ∗)2]

= σ2
s − (ρ∗)2Var[m∗]

= σ2
s − ρ∗Cov[s,m∗] (= x)

= σ2
s −

Cov[s,m∗]2

Var[m∗]

= σ2
s

(
1− Corr[s,m∗]2

)
≥ 0

where Corr[s,m∗] = Corr[s,m]m=m∗(s,c) = Cov[s,m∗]/
(
σs
√

Var[m∗]
)
.

Proof of Proposition 4

Lemma 7 shows that the expected utility of rational receivers strictly increases in Corr[s,m∗]2.

For equilibria with ρ∗ > 0 and therefore Cov[s,m∗] > 0, it is then sufficient to show that

Corr[s,m∗] > 0 increases upon disclosure. For this note that

Corr[s,m∗] =
Cov[s,m∗]

Var[m∗]
·
√

Var[m∗]
σs

= ρ∗ ·
√

Var[m∗]
σs

(24)

I First consider the case that 1 ≥ ρ∗D > ρ∗U > 0. According to (10) one gets

D(ρ∗) = Var[m∗] = Var[s+c(µ+(1−µ)ρ∗)] = Var[σ2
s +2(µ+(1−µ)ρ∗)σsc+(µ+(1−µ)ρ∗)2σ2

c ]

(25)

Since the first factor on the RHS of (24) increases upon disclosure, it is then sufficient to show

that also D(ρ∗D) > D(ρ∗U ) holds. From the fact that σsc + (µ+ (1− µ)ρ∗U )σ2
c > 0 is a necessary

and sufficient condition for ρ∗U ∈ (0, 1) (see proof of lemma 3) this then follows from

D′(ρ∗)|ρ∗=ρ∗U = 2(1− µ) ·
(
σsc + (µ+ (1− µ)ρ∗U )σ2

c

)
> 0 (26)

Now consider the case of asymptotically stable equilibria with ρ∗U > 1. From lemma 5 and 6

it then follows that for such equilbria 1 < ρ∗D < ρ∗U holds, thus disclosure decreases ρ∗. To

show that Corr[s,m∗] does also increase upon disclosure in this case, I will use again that in

equilibrium ρ∗ = N(ρ∗)/D(ρ∗) holds with

N(ρ∗) = Cov[s,m∗(s, c)] = Cov[s, s+ c(µ+ (1− µ)ρ∗] = σ2
s + (µ+ (1− µ)ρ∗)σsc (27)
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and D(ρ∗) = Var[m∗(s, c)] as defined in (25). From (24) one gets that

Corr[s,m∗(s, c)]
∂ρ∗

∣∣∣∣
ρ∗=ρ∗U

=

[(
N(ρ∗)

D(ρ∗)

)′
·

(√
D(ρ∗)

σs

)
+

(
N(ρ∗)

D(ρ∗)

)
·

(
D(ρ∗)′

2σs
√
D(ρ∗)

)] ∣∣∣∣
ρ∗=ρ∗U

(28)

To determine the sign of the above, note that by multiplying it with
√
D(ρ∗) > 0 and using

ρ∗ = N(ρ∗)/D(ρ∗) again, its sign is given by

sgn

[
N(ρ∗)′|ρ∗=ρ∗U − ρ

∗ ·
D(ρ∗)′|ρ∗=ρ∗U

2

] ∣∣∣∣
ρ=ρ∗U

= sgn
[
σsc − ρ∗U (σsc + (µ+ (1− µ)ρ∗U )σ2

c )
]

Substituting the above RHS with ρ∗U = N(ρ∗U )/D(ρ∗U ) and this again with (27) and (25) then

yields after multiplying it by D(ρ∗U ) > 0 (and some transformations) that the sign of the above

equals

sgn[(σ2
sc − σ2

cσ
2
s)] = sgn

[
(Corr[s, c]2 − 1)

]
< 0

In consequence, a decrease in ρ∗ > 1 upon disclosure increases Corr[s,m∗(s, c)].

Finally, consider the case of ρ∗U = 1. By case c) in lemma 5, the inference coefficient then

remains constant upon disclosure. Furthermore, by lemma 3, it has to apply that σ2
c = −σsc.

Proposition 1 then implies that E[s|m∗] = m∗(s, c) − E[c] = s + c − E[c]. From lemma 7 and

its proof, x = σ2
s

(
1− Corr[s,m∗]2

)
= E[Var[s|m∗] is the argument of the loss function L which

desribes that rational receivers expected utility. Applying again the law of total variance yields

E[Var[s|m∗] = Var[s]−Var[E[s|m∗]]

= Var[s]− E
[
(s+ c− E[c]− E[s+ c− E[c]])2

]
= −2Cov[s, c]−Var[c] = σ2

c

with undisclosed COIs. By analaogous reasoning and using the posteriors from lemma 4 one

obtains for disclosed COIs, after the signal c̃ has been obtained, E[Var[s|m∗, c̃] = (1 − ρc)σ2
c

follows . With full or imperfect disclosure ρc ∈ (0, 1] applies and the rational receiver’s expected

utility L strictly increases when its argument strictly decreases.

Proof of Proposition 5

I start with the case of wK = 0 and denote, with slight abuse of notation,W (σ2
ε ) ≡W (E(ρ∗D(σ2

ε , ·)))

via the analogously defined E[uRr (σ2
ε )] ≡ E[uRr (E(ρ∗D(σ2

ε , ·)))] and E[uRn (σ2
ε )] ≡ E[uRn (E(ρ∗D(σ2

ε , ·)))].

This reflects that in the case of disclosed COIs, the coefficient ρ∗D is the only term which con-

tains σ2
ε via the function φ (see proposition 3). Using Ñ(ρ) and D̃(ρ) as defined in the proof of
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proposition 3, together with ρ∗D = Ñ(ρ)/D̃(ρ) then yields

∂ρ∗D
∂φ

=
∂
(
Ñ(ρ∗D)/D̃(ρ∗D)

)
∂φ

=
σ2
sD̃(ρ∗D)− Ñ(ρ∗D)σ2

s

(D̃(ρ∗D))2
=

(1− ρ∗D)σ2
s

D̃(ρ∗D)

Since ∂φ/∂σ2
ε = (∂φ/∂ρc) · (∂ρc/∂σ2

ε ) < 0 it follows from lemma 5 that

sgn

[
∂ρ∗D
∂σ2

ε

]
= − sgn

[
∂ρ∗D
∂φ

]
= sgn [ρ∗D − 1] = sgn [ρ∗U − 1]

Since E[uRn (ρ∗)]
∂ρ∗ is positive (negative) if and only if ρ∗U > 1 (ρ∗U < 1) one then gets from (15) and

the above for any σ2
ε ≥ 0 the following:

sgn

[
E[uRn (σ2

ε )]

∂σ2
ε

]
= sgn

[
E[uRn (σ2

ε )]

∂σ2
ε

]
= sgn

[
E[uRn (ρ∗)]

∂ρ∗

∣∣∣
ρ∗=ρ∗D

·
∂ρ∗D
∂σ2

ε

]
= − sgn [ρ∗U − 1] (29)

When ρ∗U ∈ (0, 1), every decrease in σ2
ε therefore hurts naive receivers. In contrast, it has

been shown in the main text that when there is full disclosure, i.e. σ2
ε = 0, rational receivers

achieve their maximum utility, thus E[uRr (0)]′ = 0 holds. The first part of the statement then

follows from showing that when ρ∗U ∈ (0, 1), there exists a ∆ > 0 such that starting from full

disclosure with σ2
ε = 0, the gradual increase of this variance to σ2

ε = ∆ increases W (σ2
ε ) =

wr · E[uRr (σ2
ε ] + wn · E[uRn (σ2

ε )]. This is equivalent to showing that lim∆→0+ (W (∆)−W (0)) is

positive which, for any such small ∆ > 0, follows from

sgn

[
lim

∆→0+

(
W (∆)−W (0)

∆

)]
= sgn

∑
j=r,n

wj · lim
∆→0+

(
E[uRj (∆)]− E[uRj (0)]

∆

)
= sgn

[
wr · E[uRr (0)]′ + wn · E[uRn (0)]′

]
= sgn

[
wn · E[uRn (0)]′

]
= − sgn [ρ∗U − 1] > 0

For the case that wK > 0, note that the above proof applies for any loss function uRn (σ2
ε ) =

L(σ2
ε ) which is strictly concave and symmetric around zero. It therefore also holds when in ad-

dition to E[uRn (σ2
ε )], positive weight is assigned to E[K(m, s)|m=m∗(s,c)] = −E[c(µ+ρ∗(σ2

ε , ·)(1−

µ))2]. This then yield the first part of the proposition.

The second statement is then an immediate consequence of the fact that according to (29),

given any imperfect disclosure, further increasing the signal precision (decreasing σ2
ε ) helps naive

receivers when ρ∗U > 1 and that full disclosure maximizes the utility of rational receivers (see

lemma 7).
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Example for non-disclosure to be optimal

As a concrete example for a scenario where non-disclosure is optimal, consider the parameters

σ2
s = σ2

c = 1, s̄ = c̄ = σsc = 0, together with µ = wn = wr = 0.5, wk = 0, and the loss function

L(d− s) = −(d− s)2. Plugging this into (12) and solving yields ρ∗U ≈ 0.6. Following lemma 5,

disclosure then increases the inference coefficient. Using proposition 1 and (16) yields

W = −0.5
(
E[(ρ[m∗(s, c)− c̄(µ+ (1− µ)ρ)] + (1− ρ)s̄− s)2] + E[(m∗(s, c)− s)2]

) ∣∣
ρ=ρ∗

= −0.5
(
E[(ρm∗(s, c)− s)2] + E[(m∗(s, c)− s)2]

) ∣∣
ρ=ρ∗

= −0.5
(
E[(s(ρ− 1) + cρ(0.5 + 0.5ρ))2] + E[(c(0.5 + 0.5ρ))2]

) ∣∣
ρ=ρ∗

= −0.5
(

(ρ− 1)2E[s2] + 2(ρ− 1)ρ(0.5 + 0.5ρ)E[sc] + (ρ2 + 1)(0.5 + 0.5ρ)2E[c2]
∣∣
ρ=ρ∗

= −0.5
(
(ρ− 1)2 + (ρ2 + 1)(0.5 + 0.5ρ)2

) ∣∣
ρ=ρ∗

which is easily verified to be strictly decreasing in ρ when ρ > 0.4. Therefore, non-disclosure

maximizes W.
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