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Abstract

This paper deals with certain estimation problems involving the covariance matrix

in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory

when the dimension is not negligible with respect to the sample size, it is necessary

to resort to an alternative framework known as large-dimensional asymptotics.

Recently, Ledoit and Wolf (2015) have proposed an estimator of the eigenvalues of the

population covariance matrix that is consistent according to a mean-square criterion

under large-dimensional asymptotics. It requires numerical inversion of a multivariate

nonrandom function which they call the QuEST function. The present paper explains

how to numerically implement the QuEST function in practice through a series of six

successive steps. It also provides an algorithm to compute the Jacobian analytically,

which is necessary for numerical inversion by a nonlinear optimizer. Monte Carlo

simulations document the effectiveness of the code.

KEY WORDS: Large-dimensional asymptotics, numerical optimization,

random matrix theory, spectrum estimation.
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1 Introduction

Many data sets in econometrics, biostatistics and electrical engineering, among a host of

other fields, contain large numbers of related variables. The estimation of the covariance

matrix poses challenging statistical problems when the dimension is not small relative to

sample size. Approximations that are valid under traditional asymptotics, that is, when

the dimension remains fixed while the sample size goes to infinity, perform poorly. This is

why attention has turned to large-dimensional asymptotics where the dimension and the

sample size go to infinity together, with their ratio converging to a finite, nonzero limit

called the concentration (ratio).

Under large-dimensional asymptotics, the sample eigenvalues are not consistent esti-

mators of the population eigenvalues. A new estimator for the population eigenvalues

under large-dimensional asymptotics was recently introduced by Ledoit and Wolf (2015).

It hinges critically on a multivariate nonrandom function called the QuEST function. This

acronym stands for Quantized Eigenvalues Sampling Transform. Ledoit and Wolf (2015)

provide the mathematical definition of the QuEST function, but do not provide any details

about numerical implementation. The problem of numerical implementation is non-trivial,

due to the complexity of the definition of the QuEST function. A direct application of

this method is the optimal estimation of the covariance matrix in the class of rotation-

equivariant estimators introduced by Stein (1975, 1986) under various loss functions; see

Ledoit and Wolf (2014b).

This paper explains how to numerically implement the QuEST function accurately and

efficiently. In addition, given that the estimation of the population eigenvalues requires

numerically inverting the QuEST function using a nonlinear optimizer, we also give the

Jacobian analytically.

Section 2 reviews the literature on this subject. Section 3 gives the definition of the

problem that will be solved numerically. Sections 4–9 describe in detail the six steps needed

to implement the QuEST function numerically, delineating all the mathematical results

that are needed along the way. Section 10 provides extensive Monte Carlo simulations.

Section 11 concludes.

2 Literature Review

2.1 Estimation of the Population Covariance Matrix Eigenvalues

El Karoui (2008) proposed a way to estimate the empirical c.d.f. of population eigenvalues
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under large-dimensional asymptotics using a different approach than the QuEST function.

However, the code executing his algorithm was not made available to other researchers in

the field, and those who tried to replicate it themselves did not enjoy much success. The

state of affairs is aptly summarized by Li et al. (2013):

Actually, the general approach in El Karoui (2008) has several implementation

issues that seem to be responsible for its relatively low performance as attested

by the very simple nature of provided simulation results.

There are three reasons why the same criticisms cannot be levelled against the QuEST

function: first, a Matlab code implementing the QuEST function has already been used

independently by Welsing (2015), Ito and Kubokawa (2015), Huang and Fryzlewicz (2015),

and Lam (2016), among others; 1; second, the present paper opens up the code of

the QuEST function and its Jacobian to the general public for inspection and potential

improvements; and third, Section 10 provides an extensive Monte Carlo study with nearly

a third of a million simulations across a variety of challenging scenarios.

Apart from El Karoui (2008), other proposals have been put forward, making this field

one of the most active ones in multivariate analysis in recent years.

• Rao et al. (2008) provide a solution when the population spectrum has a staircase

structure, typically with half of the eigenvalues equal to one and the rest equal to

two. The ability of this approach to handle the general case where there can be up

to p distinct population eigenvalues, with p going to infinity, is not established.

• Mestre (2008) provides a solution when the concentration ratio cn ..= p/n is sufficiently

small and/or the distinct population eigenvalues sufficiently far from one another,

that is, when the sample eigenvalues display what is known as “spectral separation”.

This is a favorable situation where the sample eigenvalues are grouped into easily

identifiable clusters, each cluster corresponding to one single population eigenvalue

(which can have multiplicity higher than one). His Monte Carlo simulations assume

no more than four distinct population eigenvalues.

Although his algorithm is computationally elegant, the method is severely limited.

It cannot be applied when (i) the limiting distribution of population eigenvalues

is discrete but spectral separation does not occur or (ii) the limiting distribution of

population eigenvalues has a continuous part. Many applications of interest fall under

the latter category.

1The code can be downloaded at http://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
under the link “Programming Code”.
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• Bai et al. (2010) propose a solution based on the method of moments when the

parametric dimension of the population spectrum is finite. They demonstrate good

behavior up to order four.

• Chen et al. (2011) elaborate on the previous paper by providing more rigorous

justification of the method when the model order is unknown. But Monte Carlo

simulations only go to order three.

• Yao et al. (2012) can be seen as a cross between the papers of Mestre (2008) and

Bai et al. (2010), but also requiring a finite number of distinct population eigenvalues.

In practice, Monte Carlo simulations provided by the authors do not go above three

distinct population eigenvalues.

The common point between all these other methods is that they do not purport to address

the general case. They work with a finite number of degrees of freedom (in practice no

more than four) in the choice of the population spectral distribution, whereas the real

number is p, which goes to infinity. This is why it is important to avoid the criticisms that

have been levelled at the only other ostensibly general approach, that of El Karoui (2008),

by fully explaining how to numerically implement the QuEST function, and by providing

extensive Monte Carlo simulations showing that it works in practice under a wide variety

of circumstances.

Finally, we should note that Dobriban (2015) also provides a numerical method for

solving the so-called ‘Fundamental Equation’ of Random Matrix Theory; see Section 3.

He does not compute the QuEST function explicitly, and does not provide the Jacobian

analytically. As a result, numerical inversion is very difficult; but his paper is not focused

on the problem of recovering the population eigenvalues.

2.2 Potential Applications

The numerical implementation of the QuEST function given in this paper is essential

for the estimation of the population eigenvalues, which in turn is essential for nonlinear

shrinkage estimation of the covariance matrix under large-dimensional asymptotics; see

Ledoit and Wolf (2012, 2015). Many fields are interested in shrinking the covariance matrix

when the number of variables is high:

Acoustics Optimally removing noise from signals captured from an array of hydrophones

(Zhang et al., 2009).
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Cancer Research Mapping out the influence of the Human Papillomavirus (HPV) on

gene expression (Pyeon et al., 2007).

Chemistry Estimating the temporal autocorrelation function (TACF) for fluorescence

correlation spectroscopy (Guo et al., 2012).

Civil Engineering Detecting and identifying vibration–based bridge damage through

Random Coefficient Pooled (RCP) models (Michaelides et al., 2011).

Climatology Detecting trends in average global temperature through the optimal finger-

printing method (Ribes et al., 2013).

Econometrics Specifying the target covariance matrix in the Dynamic Conditional

Correlation (DCC) model to capture time-series effects in the second moments

(Hafner and Reznikova, 2012).

Electromagnetics Studying correlation between reverberation chamber measurements

collected at different stirrer positions (Pirkl et al., 2012)

Entertainment Technology Designing a video game controlled by performing tricks on

a skateboard (Anlauff et al., 2010).

Finance Reducing the risk in large portfolios of stocks (Jagannathan and Ma, 2003).

Genetics Inferring large-scale covariance matrices from functional genomic data (Schäfer and Strimmer,

2005).

Geology Modeling multiphase flow in subsurface petroleum reservoirs with the iterative

stochastic ensemble method (ISEM) on inverse problems (Elsheikh et al., 2013).

Image Recognition Detecting anomalous pixels in hyperspectral imagery (Bachega et al.,

2011).

Neuroscience Calibrating brain-computer interfaces (Lotte and Guan, 2009).

Psychology Modeling co-morbidity patterns among mental disorders (Markon, 2010).

Road Safety Research Developing an emergency braking assistance system (Haufe et al.,

2011).

Signal Processing Combining data recorded by an array of sensors to minimize the noise

(Chen et al., 2010).
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Speech Recognition Automatically transcribing records of phone conversations (Bell and King,

2009).

Up until now, these fields have had to satisfy themselves with linear shrinkage estimation

of the covariance matrix (Ledoit and Wolf, 2003, 2004). However this approach is

asymptotically suboptimal in the class of rotation-equivariant estimators relative to

nonlinear shrinkage, which requires numerical implementation of the QuEST function. The

present paper makes this new and improved method universally available in practice.

3 Definition of the QuEST Function

The mathematical definition of the QuEST function is given by Ledoit and Wolf (2015);

it is reproduced here for convenience. In particular, the large-dimensional asymptotic

framework assumes that the number of population eigenvalues, p, goes to infinity together

with the sample size, n, with their ratio cn ..= p/n converging to a finite, positive constant

c 6= 1, which is called the limiting concentration (ratio). The reader is referred to

Ledoit and Wolf (2015, Section 2.1) for a detailed description of the asymptotic framework.

For any positive integers n and p, the QuEST function, denoted by Qn,p, is the

nonrandom multivariate function given by

Qn,p : [0,∞)p −→ [0,∞)p (3.1)

t ..= (t1, . . . , tp)
′ 7−→ Qn,p(t) ..=

(
q1n,p(t), . . . , q

p
n,p(t)

)′
, (3.2)

where

∀i = 1, . . . , p qin,p(t)
..= p

∫ i/p

(i−1)/p

(
F t

n,p

)−1
(v) dv , (3.3)

∀v ∈ [0, 1]
(
F t

n,p

)−1
(v) ..= sup{x ∈ R : F t

n,p(x) ≤ v} , (3.4)

∀x ∈ R F t

n,p(x)
..=





max

(
1− n

p
,
1

p

p∑

i=1

1{ti=0}

)
if x = 0 ,

lim
η→0+

1

π

∫ x

−∞

Im
[
mt

n,p(ξ + iη)
]
dξ otherwise ,

, (3.5)

and ∀z ∈ C
+ m ..= mt

n,p(z) is the unique solution in the set

{
m ∈ C : −n− p

nz
+
p

n
m ∈ C

+

}
(3.6)
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to the equation

m =
1

p

p∑

i=1

1

ti

(
1− p

n
− p

n
z m
)
− z

. (3.7)

The QuEST function is a natural discretization of equation (1.4) of Silverstein (1995), which

is itself a reformulation of equation (1.14) of Marčenko and Pastur (1967). We refer to this

as the ‘Fundamental Equation’ (FE) of Random Matrix Theory. For detailed description,

see Ledoit and Wolf (2015, Section 2.1).

The basic idea is that p represents the matrix dimension, n the sample size, t ..=

(t1, . . . , tp)
′ the population eigenvalues, Qn,p(t) ..=

(
q1n,p(t), . . . , q

p
n,p(t)

)′
the sample eigen-

values, F t

n,p the limiting empirical c.d.f of sample eigenvalues, and mt

n,p its Stieltjes (1894)

transform. A fundamental result in large-dimensional asymptotics is that the relationship

between the population spectral distribution and the sample spectral distribution is nonran-

dom in the limit. Figure 1, publicized by Jianfeng Yao (2015) in a conference presentation,

gives a heuristic view of the area where Marčenko-Pastur asymptotic theory is more useful

(labelled “MP area”) vs. the area where standard fixed-dimension asymptotic theory applies

(labelled “Low-dim area”).

50 

50 

MP area 

U
ltra

-d
im

 a
re

a
 

Low-dim area 

p/n = 10  

n 

D
im

e
n
s
io

n
 

p 

Sample size 

p/n = 1 

p/n = 0.1 

Figure 1: Heuristic comparison of the area of relevance of Marčenko-Pastur asymptotics vs.
traditional fixed-dimension asymptotics.

This insight is further developed in the recent book by Yao et al. (2015). Readers interested

in the background from probability theory may also consult the authoritative monograph

by Bai and Silverstein (2010).

The importance of the QuEST function is twofold. First, inverting it numerically

yields an estimator of the population eigenvalues that is consistent under large-dimensional
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asymptotics. Second, once this has been achieved, it is possible to use Theorem 2 of

Ledoit and Péché (2011) to construct shrinkage estimators of the covariance matrix that are

asymptotically optimal with respect to a given loss function in the p-dimensional space of

rotation-equivariant estimators introduced by Stein (1975, 1986). Ledoit and Wolf (2014b)

derive the optimal shrinkage formula for five different loss functions, and Ledoit and Wolf

(2014a) for a sixth.

The numerical implementation of the QuEST function consists of a series of six

successive operations: 1) finding the support of F t

n,p; 2) choosing a grid that covers the

support; 3) solving equation (3.7) on the grid; 4) computing the sample spectral density;

5) integrating it to obtain the empirical c.d.f. of sample eigenvalues; and 6) interpolating

the c.d.f to compute sample eigenvalues as per equation (3.3). Each of these steps is detailed

below.

4 Support

In what follows we omit the subscripts and superscript of F t

n,p and cn in order to simplify

the notation. We do not work directly with F but with u, which is defined by

u ..= u(z) ..= − 1

mF (z)

mF (z) ..=
c− 1

z
+ cmF (z)

mF (z) ..=

∫ +∞

−∞

1

λ− z
dF (λ) .

There is a direct mapping between F -space and u-space, as explained in Ledoit and Wolf

(2012, Section 2). Numerically it is more judicious to work in u-space.

To determine the image of the support of F in u-space, we first need to group together

the population eigenvalues τ1, . . . , τp that are equal to one another and, if necessary, discard

those that are equal to zero. Let us say that there are K distinct nonzero population

eigenvalues 0 < t1 < . . . < tK . We can associate them with their respective weights: if j

elements of the vector (τ1, . . . , τp) are equal to tk then the corresponding weight is wk
..= j/p.

4.1 Spectral Separation

Now we look for spectral separation between tk and tk+1 (k = 1, . . . , K − 1). This is done

in two stages. First we run a quick test to see whether we can rule out spectral separation
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a priori. Second, if the test is inconclusive, we do the full analysis to ascertain whether

spectral separation does indeed occur.

4.1.1 Necessary Condition for Spectral Separation

Spectral separation occurs at some u ∈ (tk, tk+1) if and only if

∀v ∈ (0,+∞) Im

[
(u+ iv)− c(u+ iv)

K∑

j=1

wjtj
tj − (u+ iv)

]
6= 0 ,

which is equivalent to
K∑

j=1

wjt
2
j

(tj − u)2
<

1

c
. (4.1)

Equation (4.1) is equivalent to the function xF (m) defined in equation (1.6) of Silverstein and Choi

(1995) being strictly increasing atm = −1/u. Silverstein and Choi (1995, Section 4) explain

how this enables us to determine the support.

Call ϕ(u) the function on the left-hand side of equation (4.1). We can decompose it

into

ϕ(u) = θk(u) + ψL
k (u) + ψR

k (u) ,

where θk(u) ..=
wkt

2
k

(tk − u)2
+

wk+1t
2
k+1

(tk+1 − u)2
,

ψL
k (u)

..=
k−1∑

j=1

wjt
2
j

(tj − u)2
,

and ψR
k (u)

..=
K∑

j=k+2

wjt
2
j

(tj − u)2
.

It is easy to see that the function θk(·) is convex over the interval (tk, tk+1), diverges to +∞
near tk and tk+1, and attains its minimum at

x̂k ..= (tktk+1)
2/3 w

1/3
k t

1/3
k+1 + w

1/3
k+1t

1/3
k

w
1/3
k t

2/3
k + w

1/3
k+1t

2/3
k+1

, (4.2)

therefore a lower bound for θk(·) on (tk, tk+1) is θk(x̂k).

It is also easy to see that the function ψL
k (·) is decreasing over the interval (tk, tk+1);

therefore, it attains its minimum at tk+1 and is bounded from below by ψL
k (tk+1). Conversely,

the function ψR
k (·) is increasing over the interval (tk, tk+1), attains its minimum at tk and
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is bounded from below by ψR
k (tk). Putting these three results together yields the following

lower bound for ϕ(·):

∀u ∈ (tk, tk+1) ϕ(u) ≥ wkt
2
k

(tk − x̂k)2
+

wk+1t
2
k+1

(tk+1 − x̂k)2
+

k−1∑

j=1

wjt
2
j

(tj − tk+1)2
+

K∑

j=k+2

wjt
2
j

(tj − tk)2
,

where x̂k is given by equation (4.2).

Combining this bound with equation (4.1) means that

wkt
2
k

(tk − x̂k)2
+

wk+1t
2
k+1

(tk+1 − x̂k)2
+

k−1∑

j=1

wjt
2
j

(tj − tk+1)2
+

K∑

j=k+2

wjt
2
j

(tj − tk)2
<

1

c
(4.3)

is a necessary (but not sufficient) condition for spectral separation to occur between tk

and tk+1, that is, at some u ∈ (tk, tk+1). Thus, the numerical procedure can be made more

efficient by first computing the quantity on the left-hand side of equation (4.3), comparing

it to 1/c, and asserting the absence of spectral separation in the interval (tk, tk+1) in the case

where it is higher than 1/c. If, on the other hand, it is strictly lower than 1/c, then further

work is needed to ascertain whether spectral separation does indeed occur. In practice,

checking this condition seems to save a lot of time by eliminating many intervals (tk, tk+1),

except perhaps when c is very small and the population eigenvalues are very spread out.

4.1.2 Necessary and Sufficient Condition for Spectral Separation

Consider now some k ∈ {1, 2, . . . , K − 1} for which the condition in equation (4.3) holds.

Given equation (4.1), we need to find the minimum of ϕ(·) over (tk, tk+1) and compare it to

1/c. It is easy to check that ϕ(·) is strictly convex over (tk, tk+1), therefore this minimum

exists, is unique, and is the only zero in (tk, tk+1) of the derivative function

ϕ′(u) = 2
K∑

j=1

wjt
2
j

(tj − u)3
.

Most numerical algorithms that find the zero of a function require as inputs two points

x and x such that the sign of the function is not the same at x as at x. Finding two such

points is the goal of the next step. There are three cases, depending on the sign of ϕ′(x̂k).

• ϕ′(x̂k) = 0: Then the search is immediately over because ϕ(·) attains its minimum

at x∗k
..= x̂k. This would not happen generically unless K = 2.

• ϕ′(x̂k) < 0: In this case, given that ϕ′(·) is strictly increasing, the minimizer of ϕ(·)
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lies in the interval (x̂k, tk+1). We can feed the lower bound x = x̂k into the numerical

procedure that will find the zero of ϕ′(·). It would be also tempting to set x ..= tk+1,

but unfortunately doing so would not be practicable because limuրtk+1
ϕ′(u) = +∞,

and most numerical procedures perform poorly near singularity points. Therefore we

need to find some x ∈ (x̂k, tk+1) such that ϕ′(x) > 0. Let x∗k denote the unique value

in (x̂k, tk+1) such that ϕ′(x∗k) = 0. Then the fact that wjt
2
j/(tj − u)3 is increasing in

u for any j ∈ {1, . . . , K} implies that the following inequalities hold:

∀u ∈ (x̂k, tk+1) ϕ′(u) > 2
wkt

2
k

(tk − x̂k)3
+ 2

wk+1t
2
k+1

(tk+1 − u)3
+ ψL

k

′
(x̂k) + ψR

k

′
(x̂k)

0 > 2
wkt

2
k

(tk − x̂k)3
+ 2

wk+1t
2
k+1

(tk+1 − x∗k)
3
+ ψL

k

′
(x̂k) + ψR

k

′
(x̂k)

−2
wkt

2
k

(tk − x̂k)3
− ψL

k

′
(x̂k)− ψR

k

′
(x̂k) > 2

wk+1t
2
k+1

(tk+1 − x∗k)
3

tk+1 − x∗k >




2wk+1t
2
k+1

−2
wkt

2
k

(tk − x̂k)3
− ψL

k

′
(x̂k)− ψR

k

′
(x̂k)




1/3

x∗k < tk+1 −




2wk+1t
2
k+1

−2
wkt

2
k

(tk − x̂k)3
− ψL

k

′
(x̂k)− ψR

k

′
(x̂k)




1/3

x∗k < tk+1 −




2wk+1t
2
k+1

−2
wkt

2
k

(tk − x̂k)3
− ϕ′(x̂k)




1/3

,

where the last inequality follows from θ′k(x̂k) = 0. Thus if we set

x ..= tk+1 −




2wk+1t
2
k+1

−2
wkt

2
k

(tk − x̂k)3
− ϕ′(x̂k)




1/3

,

we know that ϕ′(x) > 0. Launching a zero-finding algorithm for ϕ′(·) on the interval

[x, x] as defined above yields a unique solution x∗k.
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• ϕ′(x̂k) < 0: A similar line of reasoning points us to

x ..= tk +




2wkt
2
k

2
wk+1t

2
k+1

(tk+1 − x̂k)3
+ ϕ′(x̂k)




1/3

,

x = x̂k, and yields a unique zero x∗k for ϕ′(·) over the interval [x, x].

Across all three cases, the outcome of this procedure is x∗k = argminu∈(tk,tk+1)
ϕ(u). Spectral

separation occurs between tk and tk+1 if and only if ϕ(x∗k) < 1/c.

If there is no spectral separation, then we can dismiss the interval (tk, tk+1); otherwise,

we need some additional work to compute spectrum boundaries.

4.1.3 Interval Boundaries

Consider now some k ∈ {1, 2, . . . , K−1} for which x∗k = argminu∈(tk,tk+1)
ϕ(u) is known and

ϕ(x∗k) < 1/c. Spectral separation means that the support ends at some point in (tk, x
∗
k) and

starts again at some point in (x∗k, tk+1). The equation that characterizes support endpoints

is ϕ(x) = 1/c. Thus we need to find two zeros of the function ϕ(·)−1/c, one in the interval

(tk, x
∗
k) and the other in the interval (x∗k, tk+1).

Let us start with the first zero of the function ϕ(·)−1/c, the one that lies in the interval

(tk, x
∗
k). Once again, we employ an off-the-shelf univariate zero-finding routine that takes

as inputs two points x and x such that ϕ(x) > 1/c and ϕ(x) < 1/c. The obvious candidate

for x is x ..= x∗k. For x, however, we cannot use tk because limxցtk ϕ(x) = +∞. Therefore

we need to find some x ∈ (tk, x
∗
k) that verifies ϕ(x) > 1/c. Such an x can be found by

considering the following series of inequalities, which hold for all x ∈ (tk, x
∗
k):

ϕ(x) >
wkt

2
k

(tk − x)2
+

k−1∑

j=1

wjt
2
j

(tj − x∗k)
2
+

K∑

j=k+1

wjt
2
j

(tj − tk)2

ϕ(x)− ϕ(x∗k) >
wkt

2
k

(tk − x)2
− wkt

2
k

(tk − x∗k)
2
+

K∑

j=k+1

wjt
2
j

(tj − tk)2
−

K∑

j=k+1

wjt
2
j

(tj − x∗k)
2

ϕ(x)− 1

c
>

wkt
2
k

(tk − x)2
− wkt

2
k

(tk − x∗k)
2
+

[
ϕ(x∗k)−

1

c

]
+

K∑

j=k+1

wjt
2
j

(tj − tk)2
−

K∑

j=k+1

wjt
2
j

(tj − x∗k)
2
.

Call the function on the right-hand side of the last inequality gk(x). This function is defined
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on (tk,+∞). It is of the form

gk(x) =
wkt

2
k

(tk − x)2
+ Ck ,

where Ck is a negative constant. gk(·) is strictly decreasing, with limxցtk gk(x) = +∞, and

limxր+∞ gk(x) = Ck < 0. Therefore, it admits a unique zero in (tk,+∞), given by

x ..= tk +

√√√√√√

wkt2k

wkt
2
k

(tk − x∗k)
2
+

[
1

c
− ϕ(x∗k)

]
+

K∑

j=k+1

wjt
2
j

(tj − x∗k)
2
−

K∑

j=k+1

wjt
2
j

(tj − tk)2

.

Notice that

gk(x
∗
k) =

[
ϕ(x∗k)−

1

c

]
+

K∑

j=k+1

wjt
2
j

(tj − tk)2
−

K∑

j=k+1

wjt
2
j

(tj − x∗k)
2
< 0.

Combining this fact with the fact that gk(·) is strictly decreasing implies that x < x∗k.

Since gk(x) = 0 by construction, ϕ(x) > 1/c. Feeding (x, x) thus defined into the zero-

finding numerical routine with the function ϕ(·)− 1/c yields an endpoint of the support.

A similar line of reasoning leads to setting x ..= x∗k,

x ..= tk+1 −
√√√√√√

wk+1t2k+1

wk+1t
2
k+1

(tk+1 − x∗k)
2
+

[
1

c
− ϕ(x∗k)

]
+

k−1∑

j=1

wjt
2
j

(tj − x∗k)
2
−

k−1∑

j=1

wjt
2
j

(tj − tk+1)2

,

and running a numerical routine to find a zero of the function ϕ(·) − 1/c on the interval

(x, x) ⊂ (x∗k, tk+1). This zero will also be a support endpoint.

4.2 Extremities of the Support

The procedure described so far identifies all support endpoints lying in the interval [t1, tK ].

In order to complete the determination of the support, we must find the support endpoint

that lies in the interval (−∞, t1) and the support endpoint that lies in the interval (tK ,+∞).

4.2.1 Minimum of the Support

Let us start with the first support endpoint, the one lying in the interval (−∞, t1). The

equation that characterizes this point is the same as before: ϕ(x) = 1/c. In order to
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employ the zero-finding numerical routine, we must find two bounds x and x, both strictly

less than t1, such that ϕ(x) < 1/c and ϕ(x) > 1/c. The left-hand side bound x can be

obtained by considering the following inequalities:

∀x ∈ (−∞, t1) ∀j = 1, . . . , K
wjt

2
j

(x− tj)2
≤

wjt
2
j

(x− t1)2

∀x ∈ (−∞, t1) ϕ(x) ≤
∑K

j=1wjt
2
j

(x− t1)2
. (4.4)

Note that if we set

x ..= t1 −

√√√√c
K∑

j=1

wjt2j − 1 ,

then ∑K
j=1wjt

2
j

(x− t1)2
<

1

c
,

which in turn implies by equation (4.4) that ϕ(x) < 1/c, as desired.

The right-hand side bound x can be found by considering a different inequality:

∀x ∈ (−∞, t1) ϕ(x) ≥ w1t
2
1

(x− t1)2
. (4.5)

Note that if we set

x ..= t1 −
√
cw1t21
2

,

then
w1t

2
1

(x− t1)2
>

1

c
,

which in turn implies by equation (4.5) that ϕ(x) > 1/c, as desired. Launching the

numerical routine to find a zero of the function ϕ(·) − 1/c over the interval (x, x) thus

defined yields the first endpoint of the support.

4.2.2 Maximum of the Support

For the last endpoint of the support, the one that lies in the interval (tK ,+∞), a similar

line of reasoning leads us to define

x ..= tK +

√
cwKt2K
2

and x ..= tK +

√√√√c

K∑

j=1

wjt2j + 1 .
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Launching the numerical routine to find a zero of the function ϕ(·)− 1/c over the interval

(x, x) thus defined yields the last endpoint of the support.

4.3 Output

The main outputs of this procedure are ν ≥ 1, the number of distinct intervals that

constitute the support, and u1, . . . , u2ν , the support endpoints. The support in u-space

is SU = [u1, u2] ∪ · · · ∪ [u2ν−1, u2ν ].

Another output of this procedure is a set of positive integers ω1, . . . , ων summing up

to p that tell us how many population eigenvalues correspond to each support interval. If

ν = 1 then there is no spectral separation and ω1 = p. If ν ≥ 2 and the first spectral

separation occurs between tk and tk+1 for some k = 1, . . . , K − 1, then ω1 = p
∑k

j=1wj. If

some population eigenvalues are equal to zero, then ω1 needs to be augmented accordingly;

see the discussion below Lemma 4 of Bai and Silverstein (1999) for details.

If ν ≥ 2 and the last spectral separation occurs between tk′ and tk′+1 for some

k′ = 1, . . . , K − 1, then ων = p
∑K

j=k′+1wj. If ν ≥ 3 and the ith support interval (for

i = 2, . . . , ν−1) is delimited on the left-hand side by spectral separation occurring between

tk and tk+1, and on the right-hand side by spectral separation occurring between tk′ and

tk′+1 (where 1 ≤ k < k′ ≤ K), then ωi = p
∑k′

j=k+1wj. This information will turn out to be

useful in subsequent operations.

4.4 Derivative of the Support Endpoints

If the QuEST function defined by equations (3.1)–(3.7) is to be used efficiently in an

optimization algorithm, it is desirable to be able to compute its derivative analytically.

Since this function is constructed as a chain of six successive operations, the first of which

is the determination of support endpoints, its derivative can be computed in the same way,

provided that we start by computing analytically the derivative of support endpoints with

respect to τk for all k = 1, . . . , K.

Every ui for i = 1, . . . , 2ν is a zero of the function

ϕ̃(u; τ1, . . . , τp) ..=
1

p

p∑

j=1

τ 2j
(τj − u)2

− 1

c
.

By differentiating the equation ϕ̃(u; τ1, . . . , τp) = 0 we get:

∂ϕ̃

∂u
· du+ ∂ϕ̃

∂τk
· dτk = 0 ,
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∂u

∂τk
= −

∂ϕ̃

∂τk
∂ϕ̃

∂u

.

The partial derivatives of the function ϕ̃ are as follows:

∂ϕ̃

∂u
(u; τ1, . . . , τp) =

2

p

p∑

j=1

τ 2j
(τj − u)3

∂ϕ̃

∂τk
(u; τ1, . . . , τp) = −2

p

τku

(τk − u)3
;

therefore,

∀i = 1, . . . , 2ν ∀k = 1, . . . , p
∂ui
∂τk

=

τkui
(τk − ui)3
p∑

j=1

τ 2j
(τj − ui)3

. (4.6)

5 Grid

The first operation generated the support in u-space SU = [u1, u2] ∪ · · · ∪ [u2ν−1, u2ν ] and

the number of population eigenvalues corresponding to each interval: ω1, . . . , ων . The goal

of the second operation is to produce a grid that covers this support. This problem can be

broken down by considering each interval i = 1, . . . , ν separately.

5.1 Formula for the Grid Points

Take some i ∈ {1, . . . , ν}. How shall we determine a grid that covers the interval [u2i−1, u2i]?

The number of points on the grid will be a function of ωi. Specifically, we shall take

ωi points in the open interval (u2i−1, u2i), plus the two endpoints u2i−1 and u2i. Thus, the

total number of points covering the closed interval [u2i−1, u2i] will be ωi + 2. Let us call

these points ξi0, . . . , ξ
i
ωi+1, with the convention that ξi0

..= u2i−1 and ξ
i
ωi+1

..= u2i. Thus, what

is left is to define ξi1, . . . , ξ
i
ωi
.

There are many ways to choose such a grid, depending on how densely we want to cover

the various parts of the interval. The simplest idea would be to have uniform coverage

through a linearly spaced grid. But it is more judicious to increase coverage density

near the edges of the interval because this is where a lot of the action is taking place.

Silverstein and Choi (1995) demonstrate that the limiting density of sample eigenvalues

has “square root”-type behavior near boundary points. This fact points us towards the
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inverse c.d.f. function of the beta distribution with parameters (0.5, 0.5), also known as the

arcsine distribution:

∀j ∈ {0, . . . , ωi + 1} ξij
..= u2i−1 + (u2i − u2i−1) sin

2

[
πj

2(ωi + 1)

]
. (5.1)

Compared to the beta distribution with parameters (1, 1), which is the uniform distribution,

reducing both parameters from 1 to 0.5 increases coverage density near the edges of the

interval. Note that the density of the arcsine distribution goes to infinity at the edges of

the interval (as does the derivative of the square root function), but the c.d.f., its inverse

and the grid all remain well-behaved. The goal here is to enhance numerical accuracy.

5.2 Derivative of the Grid Points

In keeping with our earlier stated objective (see Section 4.4) of building towards an

analytical formula for the partial derivative of λi with respect to τk for all i, k ∈ {1, . . . , p},
at this stage we need to compute ∂ξij/∂τk for all j ∈ {1, . . . , ωi}. From equation (5.1) we

can see immediately that it is

∂ξij
∂τk

=

{
1− sin2

[
πj

2(ωi + 1)

]}
∂u2i−1

∂τk
+ sin2

[
πj

2(ωi + 1)

]
∂u2i
∂τk

, (5.2)

where ∂u2i−1/∂τk and ∂u2i/∂τk are given by equation (4.6).

6 Solving the Fundamental Equation in u-Space

In this section we will assume that the interval index i ∈ {1, . . . , ν} is fixed.

6.1 Statement of the Problem

Given a grid coverage (ξij)j=0,...,ωi
of the ith support interval, the third operation solves the

Fundamental Equation at ξij. For every j = 0, . . . , ωi + 1, define the function

∀y ∈ [0,+∞) Γi
j(y)

..=
1

p

p∑

k=1

τ 2k
(τk − ξij)

2 + y2
− 1

c
.

Since by definition of the grid ξij lies in the support SU , equation (4.1) implies that

Γi
j(0) ≥ 0. In addition, it is easy to verify that Γi

j is strictly decreasing on [0,+∞) and

that limy→+∞ Γi
j(y) = −1/c.
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The solution to the Fundamental Equation at ξij is the thus unique y ∈ [0,+∞) such that

Γi
j(y) = 0 . (6.1)

Call it yij; this line of attack is directly inspired by Ledoit and Wolf (2012, Section 2.3).

From the definition of the ξij’s in Section 5.1, it is obvious that yi1 = yiωi+1 = 0. What

remains to be determined is (yij)j=1,...,ωi
. In the remainder of this section we will assume

that j is fixed in the set {1, . . . , ωi}.
The solution y to the equation Γi

j(y) = 0 is computed by some standard numerical

routine that finds the zero of a real univariate function. As usual, we need to input into

this routine a lower bound yi
j
∈ [0,+∞) such that Γi

j(y
i
j
) ∈ (0,+∞) and an upper bound

yij ∈ (0,+∞) such that Γi
j(y

i
j) < 0.

6.2 Lower Bound

From Section 4, (t1, . . . , tK) is the vector of unique nonzero population eigenvalues, with

corresponding weights (w1, . . . , wK). Let δij
..= mink∈{1,...,K}(tk − ξji )

2 and Ωj
i

..=
{
k ∈

{1, . . . , K} : (tk − ξji )
2 = δij

}
. Then we have

Γi
j(y) ≥

∑
k∈Ωj

i
wkt

2
k

δij + y2
− 1

c
. (6.2)

Looking at the right-hand side of equation (6.2), we see that

∑
k∈Ωj

i
wkt

2
k

δij + y2
− 1

c
≥ 0 ⇐⇒ y2 ≤ c

∑

k∈Ωj
i

wkt
2
k − δij .

Therefore, if we set

yi
j
..=

√
max

(
0, c
∑

k∈Ωj
i
wkt2k − δij

)

2
,

then Γ(yi
j
) ∈ (0,+∞), as desired.

6.3 Upper Bound

We use the inequalities

∀k ∈ {1, . . . , K} 1

(tk − ξij)
2 + y2

≤ 1

δij + y2
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Γi
j(y) ≤

∑K
k=1wkt

2
k

δij + y2
− 1

c
. (6.3)

Note that if we set

yij
..=

√√√√c
K∑

k=1

wkt2k − δij + 1 ,

then ∑K
k=1wkt

2
k

δij + (yij)
2
− 1

c
< 0 ;

therefore, by equation (6.3), Γi
j(y

i
j) < 0, as desired.

6.4 Output

Launching a standard numerical routine to find the zero of the function Γi
j(·) over the

interval (yi
j
, yij) yields y

i
j, the solution to the Fundamental Equation at ξij. The output of

this operation is more conveniently expressed as the complex number zij
..= ξij +

√
−1 yij.

6.5 Derivative

The derivative of the real part of zij with respect to τk has been computed in Section 5.2.

As for the derivative of the imaginary part, yij, consider the function

Γ̃i
j(y; τ1, . . . , τp)

..=
1

p

p∑

k=1

τ 2k(
τk − ξij

)2
+ y2

− 1

c
.

We can view yij as a function of (τ1, . . . , τp): y
i
j = ỹij(τ1, . . . , τp). Then the manner in which

yij is obtained in Section 6.1 can be expressed through the equation

Γ̃i
j

(
ỹij(τ1, . . . , τp); τ1, . . . , τp

)
= 0.

Taking the partial derivative with respect to τk while holding the other population

eigenvalues constant yields

∂Γ̃i
j

∂y
·
∂ỹij
∂τk

+
∂Γ̃i

j

∂τk
= 0 ,
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∂ỹij
∂τk

= −

∂Γ̃i
j

∂τk

∂Γ̃i
j

∂y

.

The partial derivatives of the function Γ̃i
j are

∂Γ̃i
j

∂τk
(y; τ1, . . . , τp) =

2τk(
τk − ξij

)2
+ y2

−
2τ 2k

(
τk − ξij

)
[(
τk − ξij

)2
+ y2

]2

∂Γ̃i
j

∂y
(y; τ1, . . . , τp) = −2

p∑

l=1

τ 2l y[(
τl − ξij

)2
+ y2

]2 .

Therefore,

∂ỹij
∂τk

(τ1, . . . , τp) =

τk
(τk − ξij)

2 + (yij)
2
−

τ 2k (τk − ξij)

[(τk − ξij)
2 + (yij)

2]2

p∑

l=1

τ 2l y
i
j

[(τl − ξij)
2 + (yij)

2]2

. (6.4)

Now this is only part of the answer because in this analysis we held ξij constant, whereas

in reality it is also a function of the population eigenvalues. Thus, the partial derivative of

yij with respect to τk is given by the formula

∂yij
∂τk

=
∂ỹij
∂τk

+
∂yij
∂ξij

·
∂ξij
∂τk

, (6.5)

where ∂ỹij/∂τk is given by equation (6.4) and ∂ξij/∂τk is given by equation (5.2). All that

remains to be computed is ∂yij/∂ξ
i
j. This is done by temporarily ignoring direct dependency

on population eigenvalues and setting up the function

Γ̂(y; ξ) ..=
1

p

p∑

k=1

τ 2k
(τj − ξ)2 + y2

− 1

c
.

Differentiating the equation Γ̂(y; ξ) = 0 yields:

∂Γ̂

∂y
dy +

∂Γ̂

∂ξ
dξ = 0 =⇒ ∂y

∂ξ
= −

∂Γ̂

∂ξ

∂Γ̂

∂y

.
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The partial derivatives of the function Γ̂ are

∂Γ̂

∂ξ
(y; ξ) = 2

p∑

l=1

τ 2l (τl − ξ)
[
(τl − ξ)2 + y2

]2

and
∂Γ̂

∂y
(y; ξ) = −2

p∑

l=1

τ 2l y[
(τl − ξ)2 + y2

]2 ;

therefore,

∂yij
∂ξij

=

p∑

l=1

τ 2l (τl − ξij)[(
τl − ξij

)2
+
(
yij
)2]2

p∑

l=1

τ 2l y
i
j[(

τl − ξij
)2

+
(
yij
)2]2

.

Plugging this formula into equation (6.5) yields the partial derivative of yij with respect to τk.

7 Density of the Limiting Distribution of the Sample

Eigenvalues

7.1 Mapping

This is the operation where we leave u-space and map back to (x, F (x)) where F is the

limiting distribution of sample eigenvalues. The underlying mathematics for this mapping

can be found in equations (2.7)–(2.8) of Ledoit and Wolf (2012). The mapping can be

expressed with the notation of the present paper as

x ..= u− c u
1

p

p∑

k=1

τk
τk − u

.

In the remainder of this section, we will assume that the interval index i ∈ {1, . . . , ν} is

fixed. For every j ∈ {0, 1, . . . , ωi + 1}, map zij into

xij = zij − c zij
1

p

p∑

k=1

τk
τk − zij

. (7.1)

Even though zij is generally a complex number, equation (6.1) guarantees that xij is real.

Using Section (2.3) of Ledoit and Wolf (2012), we can also obtain the value of the
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limiting sample spectral density F ′ evaluated at xij as F
′(xij) = f i

j where

f i
j =

1

cπ
Im

[
− 1

zij

]
=

1

cπ

yij
(xij)

2 + (yij)
2
. (7.2)

Note that f i
1 = f i

ωi+1 = 0.

The output of this operation is (xij, f
i
j)j=0,1,...,ωi+1, for every i ∈ {1, . . . , ν}.

7.2 Derivative

From equation (7.2), it is easy to compute the partial derivative of f i
j with respect to τk as

∂f i
j

∂τk
=

1

cπ
Im

[
∂zij
∂τk

· 1
(
zij
)2

]
, (7.3)

where
∂zij
∂τk

=
∂xij
∂τk

+
√
−1

∂yij
∂τk

, (7.4)

∂xij/∂τk is given by equation (5.2), and ∂yij/∂τk is given by equation (6.5).

In order to differentiate equation (7.1) more easily, introduce the function mLH defined

as per Section 2.2 of Ledoit and Wolf (2012):

∀z ∈ C
+ mLH(z; τ1, . . . , τp) ..=

1

p

p∑

l=1

τl
τl − z

= 1 + z
1

p

p∑

l=1

1

τl − z
.

This enables us to rewrite equation (7.1) as

xij = zij − c zij mLH(z
i
j; τ1, . . . , τp) . (7.5)

The full derivative of mLH(z
i
j; τ1, . . . , τp) with respect to τk is

dmLH

dτk
=
∂mLH

∂τk
+
∂mLH

∂zij
·
∂zij
∂τk

,

where the last term is given by equation (7.4). The partial derivatives of mLH are

∂mLH

∂τk
= −zij ×

1

p

1

(τk − zij)
2

and
∂mLH

∂zij
=

1

p

p∑

l=1

τl
(τl − zij)

2
;
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therefore,

dmLH

dτk
= −zij ×

1

p

1

(τk − zij)
2
+
∂zij
∂τk

× 1

p

p∑

l=1

τl
(τl − zij)

2
.

Finally, differentiating equation (7.5) enables us to compute the partial derivative of xij

with respect to τk as follows:

∂xij
∂τk

=
∂zij
∂τk

×
[
1− c ·mLH(z

i
j; τ1, . . . , τp)

]
− c · zij

dmLH

dτk
(zij; τ1, . . . , τp) . (7.6)

8 Cumulative Distribution Function

8.1 Numerical Integration of the Density

The objective is to compute F i
j

..= F (xij). We know that

F (0) = F 1
0 = max

(
0, 1− 1

c

)
. (8.1)

Since the support of F is ∪ν
i=1[x

i
0, x

i
ωi+1] (with the possible addition of {0} if p > n), as soon

as ν is greater than or equal to two, F i+1
0 = F i

ωi+1, for i = 1, . . . , ν − 1. Bai and Silverstein

(1999) show that

∀i = 1, . . . , ν F i
ωi+1 =

1

p

i∑

j=1

ωj . (8.2)

All that remains is to compute F i
j for j ∈ {1, . . . , ωi}. First, we will get an approximation

of F i
j by using the trapezoidal integration formula over [xi0, x

i
j]. Then we will refine this

approximation using the fact stated in equation (8.2). The trapezoidal method yields the

approximation:

∀j = 1, . . . , ωi + 1 F̃ i
j

..= F i
0 +

1

2

j∑

l=1

(xil − xil−1)(f
i
l + f i

l−1) . (8.3)

Now the problem is that F̃ i
ωi+1 thus defined would generally differ from

∑i
j=1 ωj/p due to

numerical error in the integration formula. This is why, in a second step, we refine the

approximation by computing

F i
j

..= F i
0 +

(
F̃ i
j − F i

0

) F i
ωi+1 − F i

0

F̃ i
ωi+1 − F i

0

for j = 1, . . . , ωi . (8.4)
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8.2 Derivatives with Respect to Population Eigenvalues

The computation of these derivatives is subdivided into two steps that mirror the ones

performed in Section 8.1. First, by differentiating equation (8.3) with respect to xil and f
i
l

we obtain:

∀j = 1, . . . , ωi + 1
∂F̃ i

j

∂τk
=

1

2

j∑

l=1

(
∂xil
∂τk

− ∂xil−1

∂τk

)(
f i
l + f i

l−1

)

+
1

2

j∑

l=1

(
xil − xil−1

)(∂f i
l

∂τk
+
∂f i

l−1

∂τk

)
, (8.5)

where the partial derivatives of xil and f i
l with respect to τk are given by equations (7.6)

and (7.3), respectively. Second, differentiating equation (8.4) with respect to F̃ i
j and F̃ i

ωi+1

yields:

∂F i
j

∂τk
=
(
F i
ωi+1 − F i

0

)
∂F̃ i

j

∂τk
− F i

0

F̃ i
ωi+1 − F i

0

−
(
F i
ωi+1 − F i

0

) ∂F̃ i
ωi+1

∂τk
·

F̃ i
j − F i

0(
F̃ i
ωi+1 − F i

0

)2 , (8.6)

where the partial derivatives of F̃ i
j and F̃ i

ωi+1 with respect to τk are given by equation (8.5).

9 Discretization of the Sample Spectral C.D.F.

9.1 Sample Eigenvalues

The final operation involves extracting from F a set of p sample eigenvalues (λ1, . . . , λp).

First, we take care of zero eigenvalues when c > 1. By equation (8.1) we know that

if p < n then λ1, . . . , λp−n = 0 .

In what follows we will assume that we have fixed an interval index i in the set {1, . . . , ν}.
Let the function X i(α) denote the approximation to

∫ α

F i
0
F−1(x)dx that is obtained by

fitting a piecewise linear function to F−1(·) over the interval [F i
0, F

i
ωi+1]. This piecewise

linear function passes through every point (F i
j , x

i
j)j=0,...,ωi+1. Using once again the
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trapezoidal integration formula, we get:

∀j = 0, . . . , ωi

∫ F i
j+1

F i
j

F−1(x) dx ≈ X i(F i
j+1)−X i(F i

j ) =
(
F i
j+1 − F i

j

) xij + xij+1

2
.

(9.1)

For every integer κ such that pF i
0 ≤ κ < pF i

ωi+1, define j(κ) as the unique integer in

{0, . . . , ωi} such that F i
j(κ) ≤ κ < F i

j(κ)+1. Then we have:

∫ κ/p

F i
j(κ)

F−1(x) dx ≈ X i(κ/p)−X i
(
F i
j(κ)

)
, where

X i(κ/p)−X i
(
F i
j(κ)

)
=

(
κ

p
− F i

j(κ)

)
xij(κ) +

κ
p
− F i

j(κ)

2
(
F i
j(κ)+1 − F i

j(κ)

) (xij(κ)+1 − xij(κ)
)



=

(
κ

p
− F i

j(κ)

)
xij(κ) +

(
κ
p
− F i

j(κ)

)2

2
(
F i
j(κ)+1 − F i

j(κ)

) (xij(κ)+1 − xij(κ)
)
. (9.2)

Putting together equations (9.1)–(9.2) yields:

X i(κ/p) =

j(κ)−1∑

l=0

(
F i
l+1 − F i

l

) xil + xil+1

2

+

(
κ

p
− F i

j(κ)

)
xij(κ) +

(
κ
p
− F i

j(κ)

)2

2
(
F i
j(κ)+1 − F i

j(κ)

) (xij(κ)+1 − xij(κ)
)
.

Finally, we can define the sample eigenvalues that belong to the ith support interval as:

∀κ ∈ {pF i
0 + 1, pF i

0 + 2, . . . , pF i
ωi+1} λκ ..= X i

(
κ

p

)
−X i

(
κ− 1

p

)
. (9.3)

9.2 Partial Derivatives of Sample Eigenvalues w.r.t. Population

Eigenvalues

As in Section 9.1, we handle separately the zero eigenvalues when the sample covariance

matrix is singular:

if p < n then ∀κ = 1, . . . , p− n
∂λκ
∂τk

= 0.
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In the remainder of this section we will assume that we have fixed an interval index i in

the set {1, . . . , ν}. Differentiating equation (9.1) with respect to F i
j and xij yields:

∀j = 0, . . . , ωi
∂X i

∂τk
(F i

j+1)−
∂X i

∂τk
(F i

j ) =
1

2

(
∂F i

j+1

∂τk
−
∂F i

j

∂τk

)(
xij + xij+1

)

+
1

2

(
F i
j+1 − F i

j

)(∂xij
∂τk

+
∂xij+1

∂τk

)
, (9.4)

where the partial derivatives of F i
j and xij with respect to τk are given by equations (8.6)

and (7.6), respectively. Similarly, differentiating equation (9.2) yields:

∂X i

∂τk

(
κ

p

)
− ∂X i

∂τk

(
F i
j(κ)

)
=

(
κ

p
− F i

j(κ)

)
∂xij(κ)
∂τk

−
∂F i

j(κ)

∂τk
xij(κ)

−
∂F i

j(κ)

∂τk
×

(
κ
p
− F i

j(κ)

)2

F i
j(κ)+1 − F i

j(κ)

(
xij(κ)+1 − xij(κ)

)

+

(
κ
p
− F i

j(κ)

)2

2
(
F i
j(κ)+1 − F i

j(κ)

)
(
∂xij(κ)+1

∂τk
−
∂xij(κ)
∂τk

)

−
(
∂F i

j(κ)+1

∂τk
−
∂F i

j(κ)

∂τk

) (
κ
p
− F i

j(κ)

)2

2
(
F i
j(κ)+1 − F i

j(κ)

)2
(
xij(κ)+1 − xij(κ)

)
.

(9.5)

We obtain the partial derivative of X i with respect to τk evaluated at κ/p from equations

(9.4)–(9.5) in the following way:

∂X i

∂τk

(
κ

p

)
=

j(κ)−1∑

l=0

[
∂X i

∂τk
(F i

l+1)−
∂X i

∂τk
(F i

l )

]
+

[
∂X i

∂τk

(
κ

p

)
− ∂X i

∂τk

(
F i
j(κ)

)]
,

which enables us to compute the partial derivatives of the sample eigenvalues that belong

to the ith support interval with respect to the population eigenvalues as:

∀κ ∈ {pF i
0 + 1, pF i

0 + 2, . . . , pF i
ωi+1} ∀k = 1, . . . , p

∂λκ
∂τk

=
∂X i

∂τk

(
κ

p

)
− ∂X i

∂τk

(
κ− 1

p

)
.

(9.6)

This derivation concludes the description of the numerical implementation of the QuEST

function and its analytical Jacobian.
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10 Monte Carlo Simulations

Section 5.1.1 of Ledoit and Wolf (2015) already provides some preliminary evidence

documenting the accuracy of the estimator of the population eigenvalues obtained by

numerically inverting the QuEST function. The simulations presented below are more

extensive. They highlight the convergence rate in log-log scale for various shapes of the

population spectrum.

10.1 Population Spectrum

The population eigenvalues are taken from the distribution of 1+ (κ− 1)X, where κ is the

condition number and X is a random variable whose support is the compact interval [0, 1].

Throughout the whole simulation study, we carry four different shapes for the distribution

of X.

1. The original shape is left-skewed: it is the Kumaraswamy (1980) distribution with

parameters (3, 1/3). The Kumaraswamy family is similar in spirit to the Beta family,

but more tractable: the density, the c.d.f. and the quantile function are all available

in closed form. For reference, the c.d.f. of Kumaraswamy(3, 1/3) is

∀x ∈ [0, 1] H1(x) = 1−
(
1− x3

)1/3
. (10.1)

All the other shapes are derived from this one.

2. The next shape is right-skewed, obtained by taking the mirror image of the density

about the midpoint of the support. Jones (2009, p. 73) observes that there is “a

pleasing symmetry” in this case: it is equivalent to taking the mirror image of the

c.d.f. about the 45 degrees line, that is, replacing it with its inverse, the quantile

function:

∀x ∈ [0, 1] H2(x) =
[
1− (1− x)3

]1/3
. (10.2)

3. A symmetric bimodal distribution is generated by combining right-skewness on

[0, 1/2] with left-skewness on [1/2, 1]:

∀x ∈ [0, 1] H3(x) =





1

2

[
1− (1− 2x)3

]1/3
if x ∈ [0, 1/2] ,

1−
[
1− (2x− 1)3

]1/3

2
if x ∈ [1/2, 1] .

(10.3)
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4. Finally a symmetric unimodal distribution is generated by combining left-skewness

on [0, 1/2] with right-skewness on [1/2, 1]:

∀x ∈ [0, 1] H4(x) =





1− [1− (2x)3]
1/3

2
if x ∈ [0, 1/2] ,

1 + [1− (2− 2x)3]
1/3

2
if x ∈ [1/2, 1] .

(10.4)

All four densities diverge to infinity, so the set of shapes chosen is a challenging one.

10.2 Intuition

Given the sample eigenvalues λn,1 ≤ λn,2 ≤ · · · ≤ λn,p, we estimate the population

eigenvalues τn,1 ≤ τn,2 ≤ · · · ≤ τn,p by numerically inverting the QuEST function:

τ̂ n
..= argmin

t∈[0,∞)p

1

p

p∑

i=1

[
qin,p(t)− λn,i

]2
. (10.5)

The simulation study presented below centers on the base-case scenario where the condition

number is κ = 10, variates are normally distributed, and the concentration ratio is c = 1/3.

For dimension p = 1, 000, Figure 2 provides a side-by-side comparison of the population

spectra specified in Section 10.1 with their sample counterparts.
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Figure 2: Population vs. sample spectrum. Top panel is the direct QuEST function, bottom
panel the inverse of the QuEST function for estimation purposes.

Let us start with the top panel. It shows the effect of the QuEST function. For each of the

four distribution shapes, the population eigenvalues in the top left graph get mapped into

the limiting sample spectra shown in the top right graph. This illustrates the transformation

coming out of the Fundamental Equation. There is a lot of distortion, but the relative

positions of the four color-coded c.d.f.’s have been preserved. Therefore, the information

has not been destroyed: it is just waiting to be deciphered by a suitable method. We are

essentially facing a severe nonlinear bias-correction problem.

The bottom panel goes in the opposite direction: the QuEST function gets inverted.

At the bottom right are sample eigenvalues generated in one Monte Carlo simulation.

Observe how closely they match the nonrandom distributions in the top right. This

is because, as mentioned above, in the large-dimensional asymptotic limit randomness

vanishes. Then numerically inverting the QuEST function yields the estimator of

population eigenvalues shown in the bottom left graph. It closely matches the truth

(shown top left). The distortion has been undone, and the original shapes of the spectral
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distributions have been restored. The bottom panel is our estimation procedure in

a nutshell.

10.3 Base-Case Scenario

Ledoit and Wolf (2015, Theorem 2.2) prove that the mean squared deviation between

estimated and true population eigenvalues p−1
∑p

i=1 [τ̂n,i − τn,i]
2 converges almost surely

to zero under large-dimensional asymptotics. This quantity is scale-sensitive, whereas the

problem is scale-invariant. This is why we study in Monte Carlo simulations the scale-

adjusted quantity

1

p

p∑

i=1

[τ̂n,i − τn,i]
2

(
1

p

p∑

i=1

τn,i

)2 (10.6)

instead, called the (empirical) normalized mean squared error. This change in performance

measure does not make any difference to strong the consistency result, given that

Ledoit and Wolf (2015) assume that the population eigenvalues are bounded away from

zero and infinity. But we do not want to give the visual impression that covariance matrices

with a larger trace are estimated less accurately, since on a relative basis it is not true.

The matrix dimension ranges from p = 30 to p = 1, 000. Convergence of the scale-

adjusted mean squared deviation defined by equation (10.6) is displayed in Figure 3 on a

log-log scale for the four distribution shapes.

30



10
2

10
3

10
−3

10
−2

10
−1

Matrix Dimension p (Log Scale)

N
or

m
al

iz
ed

 M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
Lo

g 
S

ca
le

)

Convergence of Spectrum Estimator

 

 

left−skewed
right−skewed
bimodal
unimodal

Figure 3: Consistency of the estimator of population eigenvalues in the base case scenario.

In all log-log graphs presented in this paper, including this one, the scales of the x- and

y-axes have been equalized, so that the −45◦ line corresponds to a convergence rate of p.

Each point in the curves corresponds to the average across 1, 000 Monte Carlo simulations.

In terms of speed, Figure 4 shows that the numerical recipe presented in this paper for

the implementation of the QuEST function is sufficiently fast for practical purposes.2

2These numbers were run using Matlab R2014b on an Apple Mac Pro with a 3.5 GHz Intel Xeon E5
processor.
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Figure 4: Speed benchmark for computing the QuEST function and estimating population
eigenvalues.

The remainder of Section 10 is dedicated to demonstrating the robustness of the base–case

convergence pattern in three directions: different concentration ratios c = p/n, condition

numbers κ, and variate distributions D.
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10.4 Concentration Ratio

First, we increase the concentration ratio c = p/n. We pick two values: c = 1 and c = 2.

The first case is not covered by the mathematical theory of Ledoit and Wolf (2015), but the

numerical results displayed on the left panel of Figure 5 seem to indicate that satisfactory

convergence is achieved nonetheless. In the second case, we manage to consistently estimate

p eigenvalues, in spite of the fact that the sample covariance matrix has only n = p/2

nontrivial eigenvalues. Note that this is the only graph where we let n (instead of p) range

from 30 to 1, 000, because of n < p.
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Figure 5: Consistency of the estimator of population eigenvalues for higher concentration
ratios. Color and line-style code are as in Figures 2 and 3.
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10.5 Condition Number

The second axis of deviation from the baseline case is to look at condition numbers other

than κ = 10. We consider a smaller condition number, κ = 2, and a larger one, κ = 100.

The results are displayed in Figure 6.
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Figure 6: Consistency of the estimator of population eigenvalues for various condition
numbers. Color and line-style code are as in Figures 2 and 3.

These results show that we can still obtain convergence in spite of changes in the condition

number.
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10.6 Distribution of the Variates

Finally, we deviate from the base-case scenario in the direction of having other distributions

than Gaussian for the random variates. First, we take a fat-tailed distribution: the

“Student” t-distribution with 5 degrees of freedom; and second, the most thin-tailed of

all distributions: the Bernoulli coin toss distribution with probability 1/2. The results are

displayed in Figure 7.
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Figure 7: Consistency of the estimator of population eigenvalues when the variates have
thick or thin tails. Color and line-style code are as in Figures 2 and and 3.

35



We also consider a skewed distribution: the exponential. The results are displayed in

Figure 8.
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Figure 8: Consistency of the estimator of population eigenvalues when the variates are
skewed. Color and line-style code are as in Figures 2 and and 3.

These results show that we can obtain convergence across a variety of variate distributions.

10.7 Overview of the Simulation Results

The Monte Carlo simulations presented above illustrate the ability of the estimator of

population eigenvalues constructed by numerically inverting the QuEST function to get

closer to the truth as the matrix dimension and the sample size go to infinity together. This

exercise has been extensive, involving a grand total of 320, 000 Monte Carlo simulations.

The point was to build practical comfort around the theoretical result. Best-fit lines in log-

log space have slopes that vary in the range from −0.70 to −1.10, giving some empirical

indication about the exponent of the convergence rate of the mean squared deviation

between true and estimated population eigenvalues.
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11 Conclusion

When the matrix dimension is not negligible with respect to the sample size, finite-

dimensional asymptotic approximations are no longer close to the truth: We enter the

Marčenko and Pastur (1967) zone instead. In this zone, the sample eigenvalues are a very

distorted version of their population counterparts. Only after the publication of El Karoui

(2008) and Mestre (2008) did researchers in the field of large-dimensional multivariate

statistics start to harbor any hope of unwinding this distortion.

Ledoit and Wolf (2015) put forward a natural discretization of the Fundamental

Equation of Random Matrix Theory that can be inverted numerically. Even though

the sample eigenvalues are far from their population counterparts, the distortion can be

inverted through this particular procedure. The present paper describes in great detail

how to discretize the Marčenko-Pastur equation. We also provide extensive Monte Carlo

simulations demonstrating the practical effectiveness of the method in terms of recovering

the population eigenvalues. There are many applications in the field of multivariate

statistics, starting with nonlinear shrinkage estimation of covariance matrices as proposed

by Ledoit and Wolf (2012, 2015).
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