
Benkert, Jean-Michel

Working Paper

Bilateral trade with loss-averse agents

Working Paper, No. 188

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Benkert, Jean-Michel (2016) : Bilateral trade with loss-averse agents, Working
Paper, No. 188, University of Zurich, Department of Economics, Zurich,
https://doi.org/10.5167/uzh-109940

This Version is available at:
https://hdl.handle.net/10419/162412

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-109940%0A
https://hdl.handle.net/10419/162412
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 

 
Working Paper No. 188 

 
 

Bilateral Trade with Loss-Averse Agents 
 
 
 
 
 

Jean-Michel Benkert 
 
 
 

Revised version, September 2016 
 

 

 

 

 
 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
 

 

 



Bilateral Trade with Loss-Averse Agents

Jean-Michel Benkert∗

This version: September 2016
First version: November 2014

Abstract

We study the bilateral trade problem put forward by Myerson and Satterthwaite
(1983) under the assumption that agents are loss-averse, using the model developed
by Kőszegi and Rabin (2006, 2007). We show that the endowment effect increases
the sellers information rent, and that the attachment effect reduces the buyer’s
information rent. Further, depending on the distribution of types, loss-aversion
can reduce the severity of the impossibility problem. However, the result cannot
be reversed. Turning to the design of optimal mechanisms, we show that in both
revenue and welfare maximizing mechanisms the designer optimally provides the
agents with full insurance in the money dimension and with partial insurance in the
trade dimension. In fact, when the stakes are large, loss-aversion can eliminate trade
altogether. We show that all results display robustness to the exact specification of
the reference point and provide some results on general mechanism design problems.
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1 Introduction

In many situations people evaluate an outcome relative to some reference point. For
instance, whether a house owner is willing to sell her house at some price, may depend
on whether or not that price is higher than the original purchase price (Genesove and
Mayer, 2001). Relatedly, if a buyer expects a trade to go through, her willingness to pay
for the good may increase (Ericson and Fuster, 2011). Evidence suggests that the most
relevant type of reference-dependent preferences is loss-aversion (see DellaVigna, 2009, for
a survey).1 Kahneman and Tversky’s (1979) prospect theory established the importance
and relevance of loss-aversion early on, and the literature on this phenomenon has grown
substantially since. In particular, a large body of literature finds evidence of loss-aversion
in trade situations.2 When loss-averse people trade, so-called behavioral effects may arise
and interfere. The probably best-known such behavioral effect is the endowment effect
(Thaler, 1980), which says that a person values a good she owns more, simply because she
owns it. More recently, an attachment effect, which says that if a person expects to buy a
good, her willingness to pay for it may increase, has been documented, too (Ericson and
Fuster, 2011). In spite of this empirical evidence, the question of the effects of loss-aversion
on trade has not been addressed by the theoretical literature. In this paper, we aim to fill
this gap and study the bilateral trade problem put forward by Myerson and Satterthwaite
(1983) (henceforth MS) under the assumption that agents are loss-averse. To do so, we
make use of the model developed by Kőszegi and Rabin (2006, 2007) (henceforth KR), in
which the reference point is formed endogenously as the expectation over the outcome.3

In the bilateral trade problem, a privately informed seller wants to sell one unit of an
indivisible good to a privately informed buyer and both agents have quasi-linear utility
over ownership of the good and money. We depart from the classic framework in MS and
allow for both agents to have reference-dependent preferences as modeled in KR. More
precisely, an agent derives the standard material utility from ownership of the good and
money, and, in addition, experiences gain-loss utility with respect to both, money and
ownership of the good, separately. Thus, following KR we assume that the agents bracket
gains and losses narrowly. Further, we employ the choice acclimating personal equilibrium
(CPE) introduced in Kőszegi and Rabin (2007) as our equilibrium concept. The reference
point is thus formed endogenously as the rational expectation over the outcome and agents
take an optimal action, taking into account that this action determines their reference

1There is a substantial literature providing evidence of loss-aversion, e.g., Fehr and Goette (2007),
Post, van den Assem, Baltussen, and Thaler (2008), Crawford and Meng (2011) and Pope and Schweitzer
(2011).

2See Ericson and Fuster (2014) for an excellent review on the role of loss-aversion in explaining
(behavioral) effects in exchange situations, and, in particular, the endowment effect.

3Ericson and Fuster (2011), Abeler, Falk, Goette, and Huffman (2011), Crawford and Meng (2011),
Gill and Prowse (2012), Karle, Kirchsteiger, and Peitz (2015), and Bartling, Brandes, and Schunk (2015)
provide evidence for the assumption that the reference point is determined by expectations.
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point and the eventual outcome. In particular, this framework gives rise to the endowment
and attachment effect and allows us to study their effect on trade, building on established
models.

The natural starting point in the analysis is the question of the feasibility of ex post
efficient trade, that is, trade taking place whenever the buyer values the good more than
the seller, while keeping a balanced budget. The famous impossibility result in MS shows
that it is impossible to implement ex post efficient trade under incentive compatibility
and individual rationality. This result is commonly interpreted in terms of the difference
between the gains from trade and the informations rents: trade between the buyer and the
seller does not create enough gains to cover the information rents that need to be given
to the agents. It turns out that a good way to approach the problem of the feasibility of
ex post efficient trade with loss-averse agents is to study the effect of loss-aversion on the
gains from trade and the information rents. Given that the agents are loss-averse, they
dislike ex-post variations in their payoffs. Hence, on average, the presence of gain-loss
utility reduces the overall utility of both agents and the gains from trade. As predicted
by the attachment and endowment effect, however, we find that loss-aversion affects the
behavior of the buyer and seller differently: the buyer has a weaker incentive to misreport
her type in the presence of loss-aversion, while the seller has a stronger incentive to do
so. As a consequence, the buyer’s information rent decreases in the presence of loss-
aversion, whereas the seller’s information rent increases. Hence, loss-aversion has an
ambiguous effect on the sum of information rents, which makes it a priori unclear whether
the famous impossibility result persists in the presence of loss-aversion. Nevertheless we
can show that the impossibility result persists in same generality as in MS, that is, for
arbitrary and asymmetric distributions with full and overlapping support. It is noteworthy
that the attachment effect can actually mitigate the impossibility problem in the sense of
requiring a lower subsidy to induce materially efficient trade under incentive compatibility
and individual rationality. The impossibility result cannot be reversed, however, because
incentive compatibility puts limits on how loss-averse the agents can be, which limits the
strength of the attachment effect. As we show at the end of the paper in a robustness
section, this limiting effect of incentive compatibility on the strength of behavioral effects
extends to other models of reference-dependent utility than the one considered in the
main analysis.

Having confirmed the impossibility result in the presence of loss-aversion, we turn to
the problem of designing optimal mechanisms. In the revenue maximizing mechanism,
the designer acts as an intermediary between the seller and the buyer and tries to make a
profit from the resulting trade. In the welfare maximizing mechanism, the designer wants
to maximize the agents’ sum of utilities subject to a budget constraint. We show that in
the presence of loss-aversion any revenue or welfare maximizing mechanism features what
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we call interim deterministic transfers, that is, the transfer of an agent is independent
of the other agent’s report and is thus deterministic given her own type. Turning to
the optimal trade rule, we impose the assumption that types are drawn from the uniform
distribution to keep the model tractable. However, it is not possible to obtain the optimal
trade rule using pointwise maximization because the agents’ expected utility depends on
the mechanism through the reference point. In order to derive the optimal trade rule we
make use of the reduced-form approach to auctions. Border (1991) characterizes which
interim allocation probabilities are implementable by some ex post allocation rule in the
case of single-unit auctions. Che, Kim, and Mierendorff (2013) provide a substantial
generalization of this result to multi-unit auctions, and also extend the reduced-form
approach from auctions to the bilateral trade setting. Thus, instead of maximizing over
the ex post trade rule, we maximize directly over the interim trade probabilities and can
explicitly derive the optimal trade rule. We show that the designer optimally induces
less trade than in the absence of loss-aversion. Thus, the designer eliminates all ex post
variation in the agents’ transfers, thereby fully insuring them against any losses in the
money dimension, and partially insures them against losses in the trade dimension by
reducing the trade probability. Full insurance in the trade dimension boils down to trade
always or never taking place, which is generally not optimal. For sufficiently high stakes
and degrees of loss-aversion, however, the designer indeed provides the agents with full
insurance by eliminating trade altogether.

Our final results concern the robustness of the optimal mechanisms and of the im-
possibility result in the presence of loss-aversion for other specifications of the formation
of the reference point. KR note that their equilibrium concept CPE is similar to mod-
els of disappointment-aversion such as those introduced by Bell (1985) and Loomes and
Sugden (1986). The CPE specifies the reference point endogenously as the full distri-
bution of a lottery, whereas the reference point corresponds to the certainty equivalent
of the lottery in these models of disappointment-aversion. Masatlioglu and Raymond
(forthcoming) find that the intersection of preferences induced by the CPE and any of
the listed disappointment-aversion models is simply expected utility. Thus, although the
models seem to be very similar on first glance, the induced preferences are generically
different. Nevertheless, we show that the optimal mechanisms derived in this paper for
CPE are also optimal for the models by Bell (1985) and Loomes and Sugden (1986) and
that the impossibility result continues to hold, too. Further, we briefly explore the possi-
bility of an exogenously given fixed reference point. We model this using the framework
from Spiegler (2012) where the agents have an exogenously given reference point and feel
losses in case of negative deviations, but feel no gains in the case of positive deviations.
While we cannot fully characterize the set of parameters for which the impossibility result
extends to this framework, we show that it persists for a large range of parameters, for
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instance, whenever the degree of loss-aversion is symmetric across the agents.
Finally, the appendix contains a section on general mechanism design problems with

loss-averse agents. In particular, this allows us to prove the optimality of determinis-
tic transfers in revenue and welfare maximizing mechanisms beyond the bilateral trade
problem.

This paper is organized as follows. The next section contains a more detailed discussion
of the related literature. In Section 3 we present the model, solution concept and notation
used throughout the paper. In Section 4 we study the effect of loss-aversion on the gains
of trade and information rents in order to address the impossibility result. Section 5
contains the derivation of the revenue and welfare maximizing mechanisms. In Section 6
we show that these optimal mechanisms display robustness to the exact specification of
the reference point and Section 7 concludes. All proofs are relegated to the appendix.

2 Related literature

The paper contributes to three strands of literature: the literature on bilateral trade,
behavioral mechanism design, and theoretical applications of reference-dependent utility
in general.

Garratt and Pycia (2015) examine the bilateral trade problem relaxing the assumption
that the agents have quasi-linear utility.4 Allowing for risk-aversion and wealth effects,
they show that ex post efficient trade is possible under some conditions. The impossibility
result can be reversed in this setting, because the presence of risk-aversion and wealth
effects gives rise to additional gains from trade, which then suffice to cover the agents’
information rent. In earlier work, Chatterjee and Samuelson (1983) extend their analysis
of the double-auction for risk-neutral agents to the case of risk-averse agents. They
find that when agents “become infinitely risk-averse” an ex post efficient outcome can be
achieved.

Bierbrauer and Netzer (2016) modify the standard mechanism design framework by in-
troducing intention-based social preferences. They study the implementability of incentive-
compatible social choice functions and how it depends on the designer’s information on
the degree of agents’ reciprocity. Like the reference point in the present paper, intentions
are determined endogenously. In an application to the bilateral trade problem, they show
that the impossibility result can be reversed in their setting if the kindness-weights are
known. Roughly, the incentive compatibility constraints can be turned slack by introduc-
ing an action which generates sufficiently strong feelings of kindness, thereby essentially
eliminating any tension between ex post efficiency and the agents’ incentives. Kucuksenel

4See also the references in Garratt and Pycia (2015) for more work on the bilateral trade problem in
the classic framework with quasi-linear utility following MS.
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(2012) considers the mechanism design problem under the assumption that agents are
altruistic. He also considers the bilateral trade problem as an application and finds that
the more altruistic agents are, the higher the probability of efficient trade taking place.
Intuitively, as agents become more altruistic, their utility becomes more aligned with the
expected gains from trade, reducing the tension between ex post efficiency and the agents’
incentives. Wolitzky (2016) applies general results on mechanism design with agents who
maximize expected maxmin utility to the bilateral trade problem. He fully characterizes
when the impossibility result by MS is reversed or when it persists in this setting. A
reversal is possible because in the case of maxmin agents, the gains from trade need only
be larger than the sum of agents’ minimal information rents.

Cavallo (2011) considers the problem of reallocating a good from an agent to other
agents, using an individual rationality constraint which is required to be satisfied before an
agent learns her own type, having already learned the other agents’ types. This individual
rationality constraint allows him to implement ex post efficient social choice functions.
In this setting, he considers a mechanism in which the designer extracts all surplus from
the agents, a mechanism in which all agents and the designer obtain the same expected
share of surplus, and a mechanism which aims at minimizing the risk of agents being
worse off ex post than if they had not participated. Finally, the three mechanisms are
evaluated numerically under the assumption that agents are loss-averse, finding that the
third mechanism remains efficient for higher degrees of loss-aversion than the two other
mechanisms. Salant and Siegel (2016) study the efficient allocation of a divisible asset for
different types of reallocation costs. For concave reallocation cost, the initial allocation
can be interpreted as the reference point and deviations from the reference point lead to
losses (but no gains) that are symmetric across agents. They show that expected surplus
is maximized for fully concentrated initial allocations, i.e., completely opposite reference
points across agents, but even then ex post efficiency may not be attained, suggesting
some robustness of the impossibility result with a fixed reference point. We pick up on
this robustness to exogenously given reference points in Section 6.

There are numerous theoretical papers working under the assumption of loss-averse
agents, while applying it to different settings. Three papers are particularly closely related
to ours. Eisenhuth (2013) considers the problem of a risk-neutral seller who wants to
maximize revenue by selling a good to loss-averse buyers. Using the framework of KR,
he finds that the optimal auction is an all-pay auction with reserve price when agents
bracket narrowly, and that it is a first-price auction with reserve price in the case of
wide bracketing. In the appendix, we generalize the all-pay-result in the case of narrow
bracketing and show that it holds for any revenue maximizing mechanisms and in fact
extends to welfare maximizing mechanisms, too. Rosato (2015) considers a sequential
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bargaining model with a risk-neutral seller and a loss-averse buyer.5 In the framework
of KR and assuming wide bracketing, he shows that the buyer’s loss-aversion softens
the rent-efficiency trade-off for the seller. Just as in the present paper, this is driven
by the attachment effect: the buyer is willing to accept lower offers to avoid the risk
of a breakdown of the negotiations. Using the dynamic model of reference-dependent
utility in Kőszegi and Rabin (2009), Duraj (2015) considers the impact of news utility
in mechanism design models.6 In his framework, in addition to being loss-averse over
consumption utility, agents are also loss-averse over changes in beliefs about their current
and future consumption. He shows that any mechanism which is incentive compatible in
the presence of loss-aversion on news utility, is also incentive compatible in the framework
of the present paper. In the context of bilateral trade, he shows on the one hand that, when
the realization of the outcome is delayed, the extra slack in the incentive compatibility
constraints due to news utility is enough to reverse the impossibility result, contrasting the
robustness result in the present paper. On the other hand, he shows that the optimality of
deterministic transfers in revenue-maximizing mechanisms in the present paper extends to
the setting with news utility and a delayed realization of the outcome. In the case without
delay, which proves to be more tractable than the setting with delay as well as the setting
in the present paper, he solves for the welfare maximizing mechanism. Less closely related,
de Meza and Webb (2007) consider incentive design under loss-aversion, Gill and Stone
(2010) model a two-player rank-order tournament when agents are loss-averse, Carbajal
and Ely (2016) study optimal price discrimination when a monopolist faces a continuum
of consumers with reference-dependent preferences, Rosato (2014) proposes expectations-
based loss-aversion as an explanation for the “afternoon effect” observed in sequential
auctions, and Karle and Peitz (2014) investigate firm strategy in imperfect competition.

3 Model

3.1 Utility, Social Choice Functions and Mechanisms

The set of agents is given by I = {S,B} where S and B denote seller and buyer, respec-
tively. It is commonly known that the type of agent i ∈ I has distribution Fi with full
support on the set Θi = [ai, bi] ⊂ R+, and is private information. Let Θ = ΘS ×ΘB. We

5See Shalev (2002) and Driesen, Perea, and Peters (2012) for other approaches incorporating loss-
aversion to bargaining.

6Both Duraj (2015) and Duraj’s master thesis, from which said paper evolved, have been made avail-
able to us through personal communication. We thank Niccolò Lomys for making the connection. In
the master thesis, Duraj also derives some results in the framework of the present paper. In particular,
imposing stronger symmetry assumptions than here, he proves the robustness of the impossibility result
and the optimality of deterministic transfers in revenue maximizing mechanisms.
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interpret the type of an agent as her valuation of the good.7 A social alternative is given
by x = (y, tS, tB) ∈ X = {0, 1} × R2, where y indicates whether or not trade takes place
and tS and tB denote the respective transfers of the seller and buyer.

Following KR, we allow for the agents to be loss-averse in the trade and in the money
dimension. That is, the buyer derives the standard material utility from obtaining and
paying for the good, and additionally, the buyer feels weighted gain-loss utility with
respect to getting the good as well as weighted gain-loss utility with respect to paying
for the good. Loss-aversion is captured by value functions in the sense of Kahneman and
Tversky (1979) given by

µki (x) =

x if x ≥ 0,

λki x else,

for some λki > 1, which reflects the degree of loss-aversion.8 Thus, the riskless total utility
is given by

uS(x, rS, θS) = (1− y)θS + tS + η1
Sµ

1
S

(
r1
SθS − yθS

)
+ η2

Sµ
2
S(tS − r2

S) (1)

uB(x, rB, θB) = yθB − tB + η1
Bµ

1
B(yθB − r1

BθB) + η2
Bµ

2
B(r2

B − tB) (2)

where ηki ≥ 0 are the weights put on gain-loss utility. The parameters ri = {r1
i , r

2
i } are

the so-called riskless reference level. Following KR we will allow the reference point to be
the agent’s rational expectations and therefore a probability distribution over all riskless
reference levels (see more below). We will refer to (1− y)θS + tS and yθB− tB as material
utility and to the other terms as gain-loss utility in the trade and money dimension,
respectively. We adopt the following assumption from Herweg, Müller, and Weinschenk
(2010):9

Assumption 1 (No Dominance of Gain-Loss Utility) Λi = η1
i (λ

1
i − 1) ≤ 1, i ∈ I.

This assumption ensures that gain-loss utility does not dominate material utility and plays
an important role for incentive compatibility. We will maintain this assumption through-
out the paper and discuss the implications of relaxing it after deriving the impossibility

7We could alternatively assume that the seller does not own the good but has to produce it. The
seller’s type would then represent her marginal cost of production. All the results that follow would go
through in this case.

8We follow the literature by abstracting from diminishing sensitivity.
9This condition is commonly imposed, see for instance de Meza and Webb (2007), Eisenhuth and Ewers

(2012), Eisenhuth (2013), Karle and Peitz (2014), and Rosato (2014). KR show that this condition ensures
that agents will not choose stochastically dominated options.
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result in Section 4. We follow KR by assuming that there is a separate gain-loss term for
each of the two material utility dimensions, trade and money utility.10

A social choice function (SCF) f : Θ → X assigns a collective choice f(θS, θB) ∈ X
to each possible profile of the agents’ types (θS, θB) ∈ Θ. In the present bilateral trade
setting, a social choice function takes the form f = (yf , tfS, t

f
B). Let F denote the set

of all SCFs and Y the set of all trade mechanisms, i.e., the set containing all yf . A
mechanism Γ = (MS,MB, g) is a collection of message sets (MS,MB) and an outcome
function g : MS × MB → X. We denote the direct mechanism by Γd = (ΘS,ΘB, f).
Since agents privately observe their types, they can condition their message on their type.
Consequently, a pure strategy for agent i in a mechanism Γ is a function si : Θi → Mi.
Note that g(sS(θS), sB(θB)) ∈ X. Let Si denote the set of all pure strategies of agent
i. Further, we denote the truthful strategy sti(θi) = θi. Throughout, the operator E−i
denotes the expectation over the random variables θ̃−i taking the value θi as given.

3.2 Equilibrium Concept and Revelation Principle

We use the concept of an (interim) choice-acclimating personal equilibrium (CPE) intro-
duced in Kőszegi and Rabin (2007). The set of all riskless reference levels is given by
the set of all social alternatives X. Essentially, the set X captures all the outcomes that
could materialize at the end of the agents’ interaction. In a mechanism Γ, agent i’s action
induces a distribution over the set of social alternatives X, conditional on the other agent
playing s−i. It is this endogenously generated distribution over X that forms the agent’s
reference point, or rather, reference distribution in a CPE. Effectively, when an agent
evaluates an outcome, she is comparing it to all other possible social alternatives that
could have materialized given the distribution induced over them. Moreover, when the
agent takes an action in a CPE, she takes the action anticipating that it will not only
determine the outcome of the mechanism, but also the distribution over the set X and,
therefore, the reference point.

Moving to the interim stage and allowing the reference point to be the agent’s rational
expectations, we can define the interim expected utility of the seller with type θS, in the
mechanism Γ, when playing action m ∈MB, given that the buyer plays strategy sB as

US(m,sB,Γ|θS) =∫ bB

aB

(1− yg(m, sB(θB)))θS + tgS(m, sB(θB)) dFB(θB)

10The assumption that the loss-aversion parameters are commonly known may seem restrictive. How-
ever, we are essentially assuming that the functional form of the utility function is common knowledge,
thereby following for instance Maskin and Riley (1984) who assume in their study of optimal auctions
with risk-averse buyers that the buyers’ parameter of risk-aversion is commonly known.
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+

∫ bB

aB

∫ bB

aB

η1
Sµ

1
S

(
yg(m, sB(θ′B))θS − yg(m, sB(θB))θS

)
dFB(θ′B) dFB(θB) (3)

+

∫ bB

aB

∫ bB

aB

η2
Sµ

2
S

(
tg(m, sB(θB))− tg(m, sB(θ′B))

)
dFB(θ′B) dFB(θB)

= θS

∫ bB

aB

(1− yg(m, sB(θB))) dθB +

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)

+ θSη
1
S

∫ bB

aB

∫ bB

aB

µ1
S

(
yg(m, sB(θ′B))− yg(m, sB(θB))

)
dFB(θ′B) dFB(θB)

+ η2
S

∫ bB

aB

∫ bB

aB

µ2
S

(
tgS(m, sB(θB))− tgS(m, sB(θ′B))

)
dFB(θ′B) dFB(θB).

The expression in (3) may require some explanation. The first line corresponds to
material utility, the second to gain-loss utility in the trade dimension and the third to
gain-loss utility in the money dimension. The double integral has a clear intuition. To
illustrate, consider the third line containing the money gain-loss utility. Fix any θB in the
domain of integration of the outer integral and suppose this was the actual realization
of the buyer’s type. The seller would then receive a transfer of tgS(m, sB(θB)), which
she would compare to the reference point. The reference point, or rather distribution, is
induced endogenously and corresponds to the distribution of possible transfers. Thus, for
every θ′B in the domain of the inner integral we get a possible transfer tgS(m, sB(θ′B)) given
the buyer’s strategy and the seller’s message. The seller compares the actual transfer
tgS(m, sB(θB)) with all these other possible transfers and the value function µ2

S weights
these comparisons differently, depending on whether they result in a loss or a gain. The
inner integral then aggregates the gains and loss weighted by the induced probability
distribution. Next, integrate over all the values θB in the domain of the outer integral
to get the familiar interim expected utility. In summary, the seller aggregates over each
possible realization of transfers and for each of these possible realizations she compares the
outcome with all other possible outcomes, aggregating gains and losses in each comparison.

Given our interpretation that the seller owns the good, her outside option is type-
dependent and given by θS. To simplify notation later, we will consider the seller’s net
utility from trade, which, with some abuse of notation, allows us to compactly write
US(m, sB,Γ|θS) = −θS ṽS(m) + t̃S(m), where

ṽS(m) =

∫ bB

aB

yg(m, sB(θB)) dFB(θB)

− η1
S

∫ bB

aB

∫ bB

aB

µ1
S (yg(m, sB(θ′B))− yg(m, sB(θB))) dFB(θ′B) dFB(θB),

t̃S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)
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+ η2
S

∫ bB

aB

∫ bB

aB

µ2
S (tgS(m, sB(θB))− tgS(m, sB(θ′B))) dFB(θ′B) dFB(θB).

This compact notation highlights the fact that not only material utility, but also overall
utility is linear in the type. Moreover, it will turn out to be useful to further define

t̄S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB),

wS(m) =

∫ bB

aB

∫ bB

aB

µ2
B (tgS(m, sB(θB))− tgS(sS(θS), sB(θ′B))) dFB(θ′B) dFB(θB),

allowing us to write t̃S(m) = t̄S(m)+η2
SwS(m). Similarly, we can write the buyer’s utility

as UB(m, sS,Γ|θB) = θB ṽB(m) + t̃B(m), defining the functions ṽB and t̃B analogously.
We can now define our equilibrium concept, which follows Eisenhuth (2013).

Definition 1 A strategy profile s∗ = (s∗S, s
∗
B) is a CPE of the mechanism Γ = (MS,MB, g)

if s∗i (θi) ∈ arg maxmi∈Mi
Ui(mi, s

∗
−i,Γ|θi) for all i ∈ I and θi ∈ Θi.

Definition 2 A mechanism Γ implements a SCF f if there is a CPE strategy profile
s = (sS, sB) such that g(sS(θS), sB(θB)) = f(θS, θB) for all (θS, θB) ∈ Θ.

Definition 3 A SCF f is CPE incentive compatible (CPEIC) if the truthful profile st =

(stS, s
t
B) is a CPE strategy in the direct mechanism Γd.

As a first result we note that the revelation principle for CPE holds in our setting.

Proposition 1 (Revelation Principle for CPE) A social choice function f can be
implemented in CPE by some mechanism Γ if and only if f is CPEIC.

The proof is contained in Appendix A, where we prove the revelation principle for
general social choice functions, thus showing that its validity extends beyond the bilateral
trade setting. Henceforth, we focus on direct mechanisms and no longer explicitly list the
mechanism as an argument in the utility function.

3.3 Incentive Compatibility and Efficiency

In this section we characterize the set of all CPEIC social choice functions and intro-
duce some familiar concepts, such as individual rationality and ex post budget balance.
Moreover, we take a closer look at the materially efficient SCF, i.e., trade being induced
whenever the buyer’s valuation exceeds the seller’s marginal cost of production.

Proposition 2 The SCF f = (yf , tfS, t
f
B) is CPEIC if and only if,

(i) ṽS is non-increasing and ṽB is non-decreasing, and
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(ii) we can write utility as

US(θS, s
t
B|θS) = US(bS, s

t
B|bS) +

∫ bS

θS

ṽS(t) dt, (4)

UB(θB, s
t
S|θB) = UB(aB, s

t
S|aB) +

∫ θB

aB

ṽB(t) dt. (5)

The proof is contained in Appendix A, where we prove the result for general social
choice functions. Recall that the functions ṽB and ṽS contain terms of gain-loss utility.
Thus, while the incentive-compatibility conditions in Proposition 2 take the same form
as in the absence of loss-aversion, it need not follow that the set of incentive-compatible
SCF coincides. We say that a SCF is individually rational if for both agents i ∈ I

Ui(θi, s
t
−i|θi) ≥ 0 ∀θi ∈ Θi, (IR)

and that it is ex post budget balanced if

tfS(θS, θB) = tfB(θS, θB), ∀(θS, θB) ∈ Θ. (BB)

Setting the outside option in (IR) equal to zero is without loss of generality.11 An agent
could choose to walk away and not participate in the mechanism as soon as she learns
her type. Doing so would rule out any possibility of trade and payment or receipt of
any transfers. Therefore, the reference points of the agent would be equal to zero, as she
anticipates that no trade or transfers can take place if she walks away. Consequently,
there would be no feelings of gain or loss, as well as zero material utility when the agent
walks away.

We say that a mechanism has interim deterministic transfers, when, given her own
type, an agent’s transfer does not depend on almost all types of the other agent. Similarly,
a trade rule is interim deterministic, when, given her own type, the trade rule coincides
for almost all types of the other agent. A mechanism with interim deterministic transfers
and an interim deterministic trade rule is called interim deterministic.

A trade mechanism is materially efficient if

yf (θS, θB) =

1 if θB ≥ θS,

0 if θB < θS.
(ME)

In the classic framework with no loss-aversion, material efficiency and budget balance
taken together are equivalent to Pareto efficiency. In particular, MS’s impossibility result

11Recall that we are considering net utility and have thus already taken care of the seller’s type-
dependent outside option.
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shows that no Pareto efficient mechanism simultaneously satisfies individual rationality
and incentive compatibility. We will thus use these concepts as a benchmark allowing us
to analyze the impact of the introduction of loss-aversion in a familiar environment and
to draw a clear comparison to the classic framework.

4 Information Rents and Gains From Trade

The impossibility theorem in MS is commonly interpreted in terms of the difference be-
tween the gains from trade and the informations rents: trade between the buyer and the
seller does not create enough gains to cover the information rents that need to be given
to the agents. As a consequence, it is not possible to implement materially efficient trade
under incentive compatibility and individual rationality without subsidizing the agents.
The question arises how and to what extent the presence of loss-aversion changes this
result. We have already noted that the attachment effect should facilitate trade, whereas
the endowment effect should impede it. In what follows, we will formalize these notions.
We begin by considering the effect of loss-aversion on the gains from trade.

Lemma 1 Loss-aversion decreases the gains from trade of a mechanism if and only if the
mechanism is not interim deterministic.

The proof of the lemma is straightforward. Loss-averse agents dislike ex post variations in
their payoffs, which reduces their interim utility. Only in the case of an interim determin-
istic mechanism, ex post variations in the transfers and the trade outcome are completely
eliminated (from an interim perspective) and therefore loss-aversion does not decrease the
gains from trade.

The effect of loss-aversion on the information rents is more subtle and interesting. We
will now illustrate this using a simple mechanism. Consider the materially efficient trade
rule (ME) with transfers given by

tB(θS, θB) = −θB ṽB(θB),

tS(θS, θB) = θS ṽS(θS).

This mechanism is special in two ways. First, under complete information, this mechanism
fully extracts all rents from the agents. Hence, the mechanism is individual rational, but,
as we will see momentarily, it is not incentive compatible. Second, the transfers are interim
deterministic. Hence, the agent does not feel any gains or losses in the money dimension.

We begin by considering the effects of loss-aversion on the buyer. The expected utility
of reporting type θ′B when θB is the agent’s true type (and conditional on the seller
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reporting her type truthfully) is given by12

UB(θ′B, s
t
S|θB) = θB ṽB(θ′B)− t̃B(θ′B)

= (θB − θ′B)FS(θ′B)︸ ︷︷ ︸
material utility

+ ΛB(θ′B − θB)(1− FS(θ′B))FS(θ′B)︸ ︷︷ ︸
gain-loss utility

. (6)

In the classic framework of MS without loss-aversion (i.e., with ΛB = 0), a buyer of type
θB would have an incentive to imitate a lower type θ′B. This effect is still present as we
can see from equation (6). Note that for the material utility we have (θB−θ′B)FS(θ′B) > 0

for θB > θ′B, making a downward deviation profitable for the buyer in the same way as
it does in the absence of loss-aversion. However, loss-aversion adds a new, countervailing
effect: there is an incentive to imitate a higher type. When looking at the gain-loss utility
in equation (6), we indeed have ΛB(θ′B − θB)(1 − FS(θB))FS(θB) > 0 for θB < θ′B. The
intuition is as follows. Loss-averse agents dislike payoff uncertainty. Since overall utility
and, in particular, gain-loss utility is linear in the type, a higher buyer type dislikes the
uncertainty more than a lower type. Recall that the mechanism we are considering in
this example is fully rent-extracting. This allows us to decompose the transfer in two
parts, one extracting the material utility, and the other extracting the gain-loss utility.
When a buyer of type θB truthfully reports her type this yields a gain-loss utility of
−ΛBθB(1 − FS(θB)FS(θB) and the corresponding component in the transfer is given by
ΛBθB(1− FS(θB)FS(θB) so that the gain-loss (dis-)utility is fully extracted. A deviation
to a higher buyer type yields a transfer with a gain-loss component intended to extract
the gain-loss utility of type, who values gains and losses more strongly. Thus, imitating a
higher type is profitable, as it yields a transfer which extracts the gain-loss (dis-)utility of
a higher buyer type and, therefore, leaves the buyer with some rent. The assumption that
gain-loss utility does not dominate material utility (ΛB ≤ 1) ensures that overall the buyer
still has an incentive to imitate a lower type. However, in the presence of loss-aversion
this incentive is diminished. As a consequence, the buyer’s information rent is smaller in
the presence of loss-aversion. This reduction in the incentives to imitate a lower type and,
in conjunction with that, the decrease in the information rent is precisely the attachment
effect. Formally, and more generally, we can observe the reduction in the information rent
of the buyer due to the attachment effect in an incentive compatible mechanism using the
integral representation of the utility (see Proposition 2).

Turning to the seller, we can write the expected utility of reporting type θ′S when θS
is her true type as

US(θ′S, s
t
B|θS) = −θS ṽS(θ′S) + t̃S(θ′S)

12We omit the derivations as they mirror the steps in the proof of Proposition 3 in Appendix B.1.
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= (θ′S − θS)(1− FB(θ′S))︸ ︷︷ ︸
material utility

+ ΛS(θ′S − θS)FB(θ′S)(1− FB(θ′S))︸ ︷︷ ︸
gain-loss utility

. (7)

In contrast to the case of the buyer, the analogous exercise as above reveals that the
presence of loss-aversion amplifies the seller’s incentive to imitate a high type. This
increase in the incentives to imitate a higher type and in the information rent captures
precisely the endowment effect. We summarize these findings in the following lemma.

Lemma 2 Loss-aversion in the trade dimension decreases the buyer’s and increases the
seller’s information rent, respectively.

The overall effect of loss-aversion on the sum of information rents is ambiguous and as
a consequence it is a priori unclear whether the impossibility result persists. As we will
see, although the severity of the impossibility problem can be mitigated by loss-aversion,
it cannot be reversed. The result follows in two steps. First, observe that Lemmas 1
and 2 imply that it is sufficient to show the impossibility in the case when neither the
seller nor the buyer are loss-averse in the money dimension, and, moreover, the seller
is not loss-averse in the trade dimension either. To see this, note that loss-aversion in
the money dimension does not affect the agents’ information rents, but may decrease
the gains from trade. Thus, loss-aversion in the money dimension makes the problem
unambiguously harder. The above discussion of the endowment effect showed that the
seller’s information rent increases in the presence of loss-aversion in the trade dimension.
In addition, loss-aversion in the trade dimension decreases the gains from trade, since the
materially efficient trade rule is not interim deterministic. Thus, any loss-aversion on the
seller’s side makes the problem unambiguously harder. Hence, it suffices to consider the
case when the seller is not loss-averse and the buyer is loss-averse in the trade dimension
only. Put differently, only the attachment effect could potentially reverse the impossibility
result. Making use of this insight, the second step is to proceed analogously to the proof
in MS. That is, impose budget balance as well as incentive compatibility to obtain an
expression for the sum of utilities of the “worst” buyer and seller types in the materially
efficient mechanism and show that it is strictly negative. Indeed, we obtain

UB(aB) + US(bS) =

−
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

(8)

< 0,

which violates individual rationality for any ΛB ≤ 1. This proves our first main result
(see Appendix B.1 for the details).
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Proposition 3 For any degree of loss-aversion in the money or good dimension there
exists no SCF simultaneously satisfying CPEIC, IR, ME and BB.

The minimal subsidy needed to induce materially efficient trade under CPEIC and
IR (see equation (8)) can be interpreted as a measure of the severity of the impossibility
problem and will generally depend on the degree of loss-aversion and the distribution of
the buyer’s types. Indeed, taking the derivative of the minimal subsidy in equation (8)
with respect to ΛB, we can see that the attachment effect mitigates the impossibility
problem by dominating the diminishing effect of loss-aversion on the gains from trade
whenever∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− FS(x))− (1− FS(x))FS(x)xfB(x) dx ≥ 0.

To get a feel for this condition, consider the families of distributions FS(x) = xs and
FB(x) = xb on [0, 1] for b, s > 0. Whenever b > 2s2 − 1 the buyer’s loss-aversion makes
the problem easier. In words, the likelier low seller types and high buyer types are, the
less severe is the impossibility problem. This is in line with the intuition underlying
the attachment effect. When low seller types are likely, a buyer puts a relatively high
probability on trade taking place and thus has a strong attachment to the good (a high
reference point). Hence, when low seller types and high buyer types are likely, on average
the buyer will have a high attachment effect, thereby mitigating the impossibility problem.
Note that in the absence of loss-aversion, it is also true that the minimal subsidy is lower
the likelier low seller types and high buyer types are. In the presence of the attachment
effect, however, this is reinforced.

Another noteworthy point is that for the extreme types, i.e., types who lie outside the
intersection of the intervals, loss-aversion does not matter. This finding is very intuitive.
To see this, observe that for these types trade is interim deterministic and hence there is
no gain-loss utility as there is no room for ex post variations in payoffs. Put differently,
expectations-based loss-aversion only has bite when there is unresolved uncertainty, which
is only the case for types lying strictly in the intersection of the type spaces.

The fact that the impossibility result is not reversed is linked to the assumption that
ΛB ≤ 1, i.e., that gain-loss utility does not dominate. For instance, when types are drawn
from [0, 1] with distributions FS(x) = x and FB(x) = x10 the subsidy in equation (8)
turns into a surplus for ΛB ≥ 13/3. However, in this example ΛB ≤ 1 is a necessary
condition for the materially efficient mechanism to be incentive compatible for the buyer.
Hence, incentive compatibility puts limits on the feasible degree of loss-aversion, and, as
a consequence, on the strength of the attachment effect, meaning that the impossibility
result cannot be reversed. However, as we will discuss next, ΛB ≤ 1 is in general only a
sufficient condition for incentive compatibility and not always necessary.
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KR showed that the assumption Λi ≤ 1 ensures that agents do not choose stochasti-
cally dominated options. As we noted when introducing the assumption, it is commonly
imposed in the literature, typically for technical reasons. In the present context, it is
easy to show that the assumption is a sufficient condition for the materially efficient trade
rule to be incentive compatible in the presence of loss-aversion. Moreover, whenever
FS(aB) = 0 the assumption is not only sufficient, but also necessary. That is, whenever
the smallest buyer type has a zero probability of trading, the materially efficient trading
rule is CPEIC if and only if ΛB ≤ 1. In particular, this is true when the types of both
agents are drawn from the same support. It turns out, however, that when FS(aB) > 0 the
assumption is no longer necessary.13 Indeed, when FS(aB) < 1/2 the necessary condition
reads ΛB ≤ 1/(1 − 2FS(aB)) and when FS(aB) ≥ 1/2 no restrictions need to be put on
ΛB. In the light of the above result the question thus arises whether the impossibility
result persists when FS(aB) > 0 and the assumption is relaxed, as this would allow us
to strengthen the attachment effect and possibly set the required subsidy in equation (8)
equal to zero.

To this end, one can show that the impossibility result continues to hold for ΛB ≤
1/(1−FS(aB)). This condition ensures that the lowest buyer type aB is in fact the “worst”
buyer type.14 For ΛB > 1/(1− FS(aB)), the worst buyer type is some intermediate type
and the above approach to proving the impossibility result fails: if the lowest buyer type
is no longer the worst type, satisfying individual rationality for the lowest buyer type
does no longer guarantee satisfying individual rationality for all types. The observation
that an intermediate type is the worst type is reminiscent of the related model of part-
nership dissolution (Cramton, Gibbons, and Klemperer, 1987; Fieseler, Kittsteiner, and
Moldovanu, 2003). In this model, the good is initially not exclusively owned by one agent
only, but by several agents. As a result, the worst type of an agent may be an intermediate
type. However, in spite of this similarity, the approach taken in that model cannot be
extended to the present context due to the endogeneity of the reference point. In sum,
although counter examples have proved elusive, a reversal of the impossibility for when
ΛB > 1/(1 − FS(aB)) cannot be ruled out. Note, however, that for sufficiently high de-
grees of loss-aversion the gains-from trade disappear completely. Thus, even if the buyer’s
information rent can be reduced using the attachment effect, impossibility will obtain for
sufficiently high degrees of loss-aversion because it will eliminate off the gains from trade.

In the above we have only discussed the degree of loss-aversion of the buyer. Analogous
arguments regarding the necessity and sufficiency of ΛS ≤ 1 for incentive-compatibility of

13In Herweg et al. (2010), who first introduced this assumption, the assumption plays a similar role
as here. It provides a sufficient but not necessary condition to satisfy incentive compatibility of certain
contracts.

14Rosato (2014) makes the assumption that gain-loss utility does not dominate precisely to ensure that
the lowest type of an agent is the worst type.
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the seller apply. However, as loss-aversion on the side of the seller makes the impossibility
problem only harder, relaxing the assumption that gain-loss utility does not dominate
does not affect our result.

5 Optimal Mechanisms

5.1 The Revenue Maximization Problem

The preceding section has confirmed the impossibility result in a framework with loss-
averse agents under the standard assumption that gain-loss utility does not dominate.
In particular, a designer who wants to ensure materially efficient trade while satisfying
incentive compatibility and individual rationality cannot make a positive profit. A natural
question is thus whether a materially inefficient trade mechanism satisfying incentive
compatibility and individual rationality can lead to a positive profit for the designer. To
answer this question we consider the design of revenue maximizing mechanisms in the
presence of loss-averse agents. We will first consider the case of general distributions and
prove that the designer insures the agents against ex post variations in their payoffs. More
specifically, we show that in the presence of loss-aversion optimal transfers are interim
deterministic. We then restrict attention to the case where both the seller and buyer
types are distributed uniformly on [a, b] with b = a + 1. The preceding, more general
analysis of the impossibility result suggests that the symmetry of the type spaces is not
a too restrictive assumption, as loss-aversion does not matter for the extreme types for
whom trade is interim deterministic. We focus on the uniform distribution for tractability
and because it allows us to derive the trade rule explicitly.

The revenue-maximizing designer’s problem reads

max
(yf ,tfS ,t

f
B)∈F

∫ bB

aB

∫ bS

aS

(
tfB(θS, θB)− tfS(θS, θB)

)
dFS(θS) dFB(θB),

subject to CPEIC and IR. (RM)

We begin by rewriting this problem into a more accessible form which will allow us to
gain some intuition first. The complete derivations and proofs of this section are contained
in Appendix B.2. The first step is to impose the envelope representation of the utility
due to the CPEIC and the individual rationality constraint. The objective function then
reads ∫ bB

aB

(
η2
BwB(θB) + θB ṽB(θB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)
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+

∫ bS

aS

(
η2
SwS(θS)− θS ṽS(θS)−

∫ bB

θS

ṽS(t) dt

)
dFS(θS).

In the absence of loss-aversion, the envelope representation of utility would allow us to
maximize over the trade rule only instead of both the trade rule and transfers. With
loss-aversion in the money dimension, however, this is not the case. Indeed, recall that
we defined

wS(θS) =

∫ bB

aB

∫ bB

aB

µ2
S

(
tfS(θS, θB)− tfS(θS, θ

′
B)
)
dFB(θ′B) dFB(θB),

and thus the objective function still depends on transfers. This expression and its analog
for the buyer collect all gain-loss utility with respect to money. Nevertheless, the problem
can be reduced to only choosing the optimal trade rule, because in any optimal mechanism
the transfers of the seller will not depend on the buyer’s type, and vice versa. To see this,
note that

wS(θS) =

∫ bB

aB

∫ bB

aB

µ2
S

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
dFB(θ′B) dFB(θB)

=

∫ bB

aB

∫ bB

aB

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) > tfS(θS , θ

′
B)] dFB(θ′B) dFB(θB)

+

∫ bB

aB

∫ bB

aB

λ2
S

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) < tfS(θS , θ

′
B)] dFB(θ′B) dFB(θB)

=

∫ bB

aB

∫ bB

aB

(
tfS(θS , θB)− tfS(θS , θ

′
B)
)
1[tfS(θS , θB) > tfS(θS , θ

′
B)] dFB(θ′B) dFB(θB)

− λ2
S

∫ bB

aB

∫ bB

aB

(
tfS(θS , θ

′
B)− tfS(θS , θB)

)
1[tfS(θS , θ

′
B) > tfS(θS , θB)] dFB(θ′B) dFB(θB)

= (1− λ2
S)

∫ bB

aB

∫ bB

aB

(
tfS(θS , θ

′
B)− tfS(θS , θB)

)
1[tfS(θS , θ

′
B) > tfS(θS , θB)]dFB(θ′B)dFB(θB),

where 1 denotes the indicator function. The key step in the above derivation lies in the
last equality. Comparing the two integrands on the third and second to last lines, we
notice that they look the same but that θB and θ′B are interchanged. To see the equality,
change the order of integration in the integral on the second to last line and perform
a change of variables for the resulting integral. This shows that the two integrals are
actually the same and allows us to sum them. Thus, since λ2

S > 1 we find wS(θS) ≤ 0.

As the expression enters the designer’s maximization problem positively, she optimally
sets wS(θS) = 0. Note that a transfer achieves wS(θS) = 0 if and only if the transfer
is independent of almost all buyer types. Thus, interim deterministic transfers are the
only transfers that achieve wS(θS) = 0. The argument for the transfers of the buyer is
analogous.

Proposition 4 If the mechanism (yf , tfS, t
f
B) is a solution to the revenue maximization

problem (RM), then the transfer functions tfS and tfB are interim deterministic.
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Intuitively, loss-averse agents dislike ex post variations in their payoffs. By mak-
ing the transfers independent of the other agent’s type, the designer completely insures
the agents from any ex post variation in the transfers. Thus, starting from any mecha-
nism with non-interim deterministic transfers, the designer can extract more surplus from
the agents by choosing appropriate interim deterministic transfers, effectively selling the
agents insurance. Note that interim deterministic transfers are also a solution in the op-
timal mechanism in MS. However, in the presence of loss-aversion interim deterministic
transfers are the only solution. Proposition 4 in fact extends beyond the bilateral trade
setting to general social choice functions, as we show in Appendix A, thus generalizing
the corresponding result on auctions in Eisenhuth (2013).

For the remainder of this section we will assume that the seller and buyer types are
distributed uniformly on [a, b] with b = a+ 1 and explicitly derive the optimal trade rule.
The assumption allows us to rewrite the maximization problem to

max
yf∈Y

∫ b

a

(2θB − 1− a)yB(θB) (1 + ΛB [yB(θB)− 1]) dθB

−
∫ b

a

(2θS − a)yS(θS) (1− ΛS [yS(θS)− 1]) dθS, (RM’)

subject to yB(θB) being non-decreasing and yS(θS) being non-increasing,

where yB(θB) =
∫ b
a
yf (θS, θB) dθS and yS(θS) =

∫ b
a
yf (θS, θB) dθB denote the interim

trade probabilities of the buyer and seller, respectively. Let us inspect the objective
function in (RM’) more closely. The first integral corresponds to the expected payment
the designer receives from the buyer and the second integral to the expected payment the
designer makes to the seller. Note that the seller integral is always positive. The buyer
integral is positive whenever (2θB − 1 − a) ≥ 0. Clearly, any optimal mechanism will
therefore only induce trade for buyer types θB ≥ (1 + a)/2. Given this, both integrals
are increasing in the trade probabilities yB and yS, respectively. Thus, the designer faces
the intuitive trade-off that inducing trade comes at cost in the form of the payment due
to the seller and with a benefit in the form of the payment from the buyer. Further,
the form of the objective function suggests that even in the presence of loss-aversion the
designer wants to induce trade between high buyer and low seller types in particular.
Put differently, the designer wants to buy the good from a low-value seller and sell it
to a high-value buyer, as this yields a large profit margin. However, as a consequence of
expectations-based loss-aversion it matters for an agent’s utility whether trade takes place
with only a few or many types of the other agent, as this affects her expectations, which in
turn determine her expected gain-loss utility. Thus, there are in some sense externalities
between the outcomes of different types. Indeed, because the agent’s expected utility
depends on the mechanism through the reference point, pointwise maximization of the
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objective function is not possible. In order to nevertheless explicitly derive the optimal
trade rule, we make use of the reduced-form approach developed first by Border (1991)
and recently generalized by Che et al. (2013). In the case of single-unit auctions, Border
(1991) characterized which interim allocation probabilities are implementable by some ex
post allocation rule. Che et al. (2013) generalize this to the case of multi-unit auctions
when agents may face capacity constraints. In particular, the results in Che et al. (2013)
extend to the bilateral trade setting, allowing us to revert to this reduced-form approach.
The conditions derived in Che et al. (2013) allow us to maximize directly over the interim
trade probabilities yB and yS instead of the ex post trade rule yf . Using the conditions
that ensure that these trade probabilities can actually be implemented by some ex post
trade rule, we can eliminate the seller’s trade probability from the problem and maximize
over yB only. This allows us to transform the problem into one which can be solved using
standard techniques from calculus of variations.

Proposition 5 The revenue maximizing trade rule is given by

yRM(θS, θB) =

1 if θS ≤ δRM(θB),

0 otherwise.

If ΛS ≤ (1 − ΛB(a + 1))/a and ΛB ≤ 1/(1 + a), there exists θ̄B ∈ [a, a + 1] such that
δRM(θB) = a for θB < θ̄B, and

δRM(θB) =
(2θB − 1− a)(1− ΛB(2a+ 1) + aΛS) + a− ΛSa

2

2(1− ΛB(2θB − a− 1) + ΛS(2θB − 1− 2a))
,

for θB ≥ θ̄B. If ΛS > (1− ΛB(a + 1))/a or ΛB > 1/(1 + a) we have δRM(θB) = a for all
θB ∈ [a, a+ 1].

This result requires some discussion as it has several noteworthy features. First, in
the absence of loss-aversion in the trade dimension, i.e., for ΛS = ΛB = 0, we obtain the
mechanism from MS in the framework without loss-aversion given by δ(θB) = θB − 1/2.
Second, the amount of trade taking place is monotonically decreasing in the degree of
loss-aversion and for sufficiently high degrees of loss-aversion no trade takes place at all.
Third, the trade-reducing effect of buyer loss-aversion is stronger than the one of seller
loss-aversion.15 This may come as a surprise in view of the endowment and attachment
effect. In particular, when confirming the impossibility result under loss-aversion, the
endowment effect made the problem unambiguously harder, while the attachment effect
had the potential to mitigate it, depending on the distribution of types. However, when

15For any value of a, as loss-aversion increases, the buyer loss-aversion will always lead to no trade
taking place more quickly than seller loss-aversion.
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Figure 1: Illustration of the optimal trade rules for a = 1. The shaded area indicates for
which pairs of types trade is taking place.

types are distributed uniformly, the attachment effect does not mitigate the impossibility
problem. Moreover, loss-aversion affects the types of buyers and sellers the designer is
most interested in differently. Indeed, the attachment and endowment effect are generally
stronger for higher types, as these types value the gain-loss utility more strongly than
low types. Moreover, as we already noted above, inducing trade increases the payment
received from the buyer but it also increases the payment made to the seller. It is for this
reason that the designer wants trade to take place in particular with high buyer types
and low seller types. Hence, the effect of loss-aversion is more pronounced for the buyer
types than the seller types which are attractive from the revenue maximizing designer’s
point of view. Put differently, the adverse effect of loss-aversion is increasing in the type
of the agents. Since the designer cares most about high buyer types and low seller types,
buyer loss-aversion has a stronger impact on the trade frequency than seller loss-aversion.

Fourth, and perhaps most interestingly, the optimal mechanism depends on the type
space. In the context of loss-aversion, this suggest that the size of the stakes matters.
In particular, for high stakes, i.e., high values of a, less trade takes place for any degree
of loss-aversion. This is in sharp contrast to the case without loss-aversion, where the
optimal mechanism is independent of the size of the stakes. Intuitively, the potential
material gains from trade remain the same even when the stakes are high, because only
the difference between valuation matters. However, as the stakes increase, the potential
losses increase. Since the designer needs to compensate the agents for these losses with
appropriate transfers to maintain individual rationality, the losses eventually eat up all
the potential material gains. Hence, at some point the best the designer can do is to
induce no trade at all.

Finally, as already noted, by optimally making transfers interim deterministic, the
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designer provides the agents with insurance in the money dimension. Similarly, one can
interpret the reduction in the trade dimension as partial insurance. Full insurance in this
dimension would correspond to trade always or trade never taking place, which in general
is not optimal. However, reducing the probability for trade lowers expectations and, as a
consequence, there is less room for losses which benefits the agents.

5.2 The Welfare Maximization Problem

In this section, we put ourselves in the shoes of a benevolent designer who wants to
maximize ex ante welfare by maximizing the sum of ex ante expected utilities. In addition
to CPEIC and IR, we impose a budget balance condition. Namely, we do not want the
designer to inject money in the economy on average. This is in line with the preceding
section, where we looked at ex ante revenue maximization. We say that a mechanism is
ex ante budget balanced if∫ bS

aS

∫ bB

aB

(
tfS(θS, θB)− tfB(θS, θB)

)
dFS(θS) dFB(θB) = 0. (AB)

The designer’s problem reads

max
(yf ,tfB ,t

f
S)∈F

∫ bS

aS

US(θS, s
t
B|θS) dFS(θS) +

∫ bB

aB

UB(θB, s
t
S|θB) dFB(θB),

subject to CPEIC, IR and AB. (WM)

To solve this problem we will proceed as we did in the preceding section. We also obtain
the result that in any welfare maximizing mechanisms transfers will be interim determin-
istic.

Proposition 6 If the mechanism (yf , tfS, t
f
B) is a solution to the welfare maximization

problem (WM), then the transfer functions tfS and tfB are interim deterministic.

The proof is analogous to the revenue maximization problem. In fact, just as in the case
of revenue maximizing mechanisms, this result extends beyond the bilateral trade setting
and applies to general social choice functions (see Appendix A). To make further progress
we again impose that types are uniformly distributed on [a, b] = [a, a + 1]. However, the
presence of the budget constraint makes the problem less tractable, as we need to pin down
the Lagrange multiplier. As a consequence, we need to impose symmetric degrees of loss-
aversion in the trade dimension, i.e., ΛB = ΛS = Λ. Imposing incentive compatibility and
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budget balance we can obtain the Lagrangian to the problem which reads

L(yf , γ) =

∫ b

a

(θB + γ(2θB − 1− a))yB(θB) (1 + ΛB [yB(θB)− 1]) dθB

−
∫ b

a

(θS + γ(2θS − a))yS(θS) (1− ΛS [yS(θS)− 1]) dθS.

To derive the optimal trade rule we proceed as before for the revenue maximizing
mechanism. That is, we make use of the reduced-form implementability conditions in
Che et al. (2013) to derive the optimal interim trade probabilities. From there we recover
an ex post allocation rule which implements these probabilities and therefore is an optimal
trade rule.

Proposition 7 The welfare maximizing trade rule is given by

yWM(θS, θB) =

1 if θS ≤ δWM(θB),

0 otherwise.

If Λ < 1/(1 + a), there exists θ̄B ∈ [a, a+ 1] such that δWM(θB) = a for θB < θ̄B , and

δWM(θB) =
(2aΛ + Λ− 1)((2a2 + 2a+ 1)Λ2 −M − (2a+ 1)Λ)

2(aΛ− 1)(M + aΛ2 − (a+ 1)Λ + 1)

+ θB
(aΛ + Λ− 1)(M − a(Λ + 1)Λ− Λ2 + 1)

(aΛ− 1)(M + aΛ2 − (a+ 1)Λ + 1)
,

for θB ≥ θ̄B, where

M =
√

(3a2 + 3a+ 1)Λ4 − (2a+ 1)Λ3 + a(a+ 1)Λ2 − (2a+ 1)Λ + 1.

If Λ ≥ 1/(1 + a) we have δWM(θB) = a for all θB ∈ [a, a+ 1].

The optimal mechanism once more has some noteworthy features. First, in the absence
of loss-aversion we get δWM(θB) = θB − 1/4 which is the mechanism from MS in the
framework without loss-aversion.

Second, we can compare the condition for trade taking place with the corresponding
conditions in the revenue maximizing mechanism. There trade took place if ΛS ≤ (1 −
ΛB(a + 1))/a and ΛB ≤ 1/(1 + a). Clearly, the condition on the buyer loss-aversion is
the more restrictive one. When either of these conditions are violated, any mechanism
which induces trade yields a negative expected revenue. Hence, for Λ ≥ 1/(1 + a) any
mechanism which induces trade violates the budget balance constraint. Consequently, no
trade is the only feasible welfare maximizing mechanism. Moreover, just as in the case of
revenue maximization, the size of the stakes matter.
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Finally, as in the revenue maximization problem, optimal transfers are interim deter-
ministic. Thus, the designer provides the agents with insurance in the money dimension.
As already noted, this result is not specific to the bilateral trade setting, but applies to
any welfare maximizing mechanism.

6 Alternative reference-point formation

The model by KR used in this paper has arguably become the workhorse model in the
context of reference-dependent utility. A particularly appealing feature of the model is
the endogenously determined reference point using the agent’s rational expectations. As
noted earlier (see footnote 3), a number of studies provide evidence for the assumption
that a person’s reference point is determined by her expectations. However, there are
different ways one can model this. KR note that the equilibrium concepts in the models
on disappointment-aversion by Bell (1985) and Loomes and Sugden (1986) are closely
related to the CPE. The CPE specifies the reference point as the full distribution of a
lottery, whereas the reference point corresponds to the certainty equivalent of the lottery
in these models of disappointment-aversion. However, Masatlioglu and Raymond (forth-
coming) find that the intersection of preferences induced by the CPE and any of these
disappointment-aversion models is only expected utility. Thus, although the models seem
to be very similar, the induced preferences do generally not coincide. Nevertheless, the
impossibility result in Section 4 remains valid and the optimal mechanisms derived in Sec-
tion 5 coincide if we specify the reference point as the certainty equivalent of the lottery
as in Bell (1985) and Loomes and Sugden (1986). Hence, the optimal mechanisms we
derived earlier exhibits robustness to the specific formation of the reference-point.16 To
keep the analysis concise, we focus on the seller only. The arguments are essentially the
same for the buyer. Under the alternative specification of the reference point the utility
of the seller reads

US(θS, s
t
B|θS) =

∫ bB

aB

(
−yf (θS, θB)θS + tfS(θS, θB)

)
dFB(θB)

+

∫ bB

aB

η1
Sµ

1
S

(
EB[yf (θS, θ̃B)]θS − yf (θS, θB)θS

)
dFB(θB)

+

∫ bB

aB

η2
Sµ

2
S

(
tfS(θS, θB)− EB[tfS(θS, θ̃B)]

)
dFB(θB).

Comparing this alternative expression to the expected utility we worked with (see equation
(3)), we notice that the material utility on the first line remains unchanged, while the

16Copic and Ponsatí (2008) have studied the bilateral trade problem in the context of robust mechanism
design in the vein of Bergemann and Morris (2005). The robustness we have in mind here is closer to the
behaviorally robust mechanisms in Bierbrauer and Netzer (2016).
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gain-loss utility in the second line takes a new form. Indeed, instead of comparing the
induced outcome to every single potential outcome in the reference lottery, the agent now
compares the outcome only to the certainty equivalent of the reference lottery, which
enters the value function directly. Two observations about the alternative gain-loss utility
yield the robustness result. Consider the money dimension first and recall that µ2

S is a
concave function. Thus, by Jensen’s inequality we get∫ bB

aB

η2
Sµ

2
S

(
tfS(θS, θB)− EB[tfS(θS, θ̃B)]

)
dFB(θB)

≤ η2
Sµ

2
S

(∫ bB

aB

(
tfS(θS, θB)− EB[tfS(θS, θ̃B)]

)
dFB(θB)

)
= 0,

as
∫ bB
aB
tfS(θS, θB) dFB(θB) = EB[tfS(θS, θ̃B)] by definition. Therefore, the result in Lemma 3

in Appendix A that wS(θS) ≤ 0 carries through to this specification. Hence, irrespective
of which of the two specifications of the reference point we use, interim deterministic
transfers are optimal.

Consider the trade dimension next and notice that EB[yf (θS, θ̃B)] ∈ [0, 1] while
yf (θS, θB) ∈ {0, 1}. Thus, the binary nature of trade implies that an agent feels only
either gains or losses in the trade dimension, irrespective of the reference lottery and
outcome. We can thus rewrite∫ bB

aB

η1
Sµ

1
S

(
EB [yf (θS , θ̃B)]θS − yf (θS , θB)θS

)
dFB(θB)

= θSη
1
S

∫ bB

aB

(
λ1
Sy

f (θS , θB)
(
EB [yf (θS , θ̃B)]− 1

)
+ (1− yf (θS , θB))EB [yf (θS , θ̃B)]

)
dFB(θB)

= θSη
1
S

∫ bB

aB

∫ bB

aB

(
λ1
Sy

f (θS , θB)(yf (θS , θ
′
B)− 1) + (1− yf (θS , θB))yf (θS , θ

′
B)
)
dFB(θ′B) dFB(θB)

= θSη
1
S

∫ bB

aB

∫ bB

aB

µ1
S(yf (θS , θ

′
B)− yf (θS , θB)) dFB(θ′B) dFB(θB),

where the final line is the very expression of gain-loss utility in the trade dimension un-
der the specification used throughout the paper. Thus, regarding gain-loss utility in the
trade dimension the two different specifications of the reference point are equivalent.17

Consequently, all of our results continue to hold under the alternative specification of the
reference point, as the two specifications are equivalent conditional on interim determin-
istic transfers.

While the two formulations disagree on the precise way the reference-point is formed,
they agree that it is the agents’ expectations which determine the reference-point en-
dogenously. Alternatively, one could consider a model in which the reference-point is
exogenously given and not determined by the agent’s expectations. We briefly explore

17Notice that this finding does not hinge on the piece-wise linearity of µ1
i , but is solely due to the

binary nature of trade.
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this direction using the model of loss-aversion used in Spiegler (2012) and reconsider the
impossibility result in this framework. In the model by Spiegler (2012) agents have an
exogenously given reference point ri and feel losses in case of negative deviations, but
they feel no gains in case of positive deviations. Thus, a buyer feels a loss of λBrBθB
when no trade happens, while the seller feels a loss of λS(1 − rS)θS when trade does
happen. Similarly to the model by KR, loss-aversion in the money dimension will only
make the impossibility problem harder, as it decreases gains from trade without affecting
information rents. We can write agents’ expected utility as

UB(θB, rB) = θByB(θB)− t̄B(θB)− (1− yB(θB))λBrBθB

and

US(θS, rS) = −θSyS(θS) + t̄S(θS)− yS(θS)λS(1− rS)θS.

Collecting terms we observe that, as in the analysis in Section 4, seller-loss aversion makes
the problem unambiguously harder while the effect is ambiguous in case of the buyer.
Hence, the endowment and attachment effect are once more at work. One can then follow
essentially the same steps as we did for the proof of Proposition 3 to obtain that an
incentive compatible, materially efficient, and budget balanced mechanism implies

UB(aB) + US(bS) =∫ ∫ (
(1 + λBrB)

(
θB −

1− FB(θB)

fB(θB)

)
− (1 + λS(1− rS))

(
θS +

FS(θS)

fS(θS)

))
y(θS , θB)dFB(θB)dFS(θS)

− λBrB
∫ (

θB −
1− FB(θB)

fB(θB)

)
dFB(θB).

Thus, making use of the result in MS, one can see that a sufficient condition for the
impossibility result to persist is given by λBrB ≤ λS(1 − rS). Whether the impossibility
result extends in full generality, is not clear however.

7 Conclusion

There are countless papers on mechanism design and vast evidence of the prevalence of
loss-aversion in people’s behavior. Yet, as highlighted in a recent survey by Kőszegi (2014),
work combining these two highly relevant fields is scarce. The present paper contributes
to this literature by investigating optimal mechanisms in a bilateral trade setting with
loss-averse agents.

We address three problems in the bilateral trade context. First, the traditionally im-
portant question of inducing materially efficient trade; second, the economically relevant
issue of revenue maximization; third, the socially important design of welfare maximizing
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institutions. We find that the presence of loss-aversion generally makes all three problems
harder, as a higher subsidy is required to induce materially efficient trade, and maximal
revenue and welfare are reduced. The endowment and attachment effects, which are well-
documented empirically, are apparent in our results and provide an intuitive explanation.
The common theme in all three problems is that of insurance. In both, welfare and
revenue maximizing mechanisms, interim deterministic transfers are optimal, providing
agents with full insurance in the money dimension. Additionally, less trade takes place in
the presence of loss-aversion, which can be interpreted as partial insurance in the trade
dimension. Further, loss-aversion affects the optimal mechanisms in a surprising and
yet intuitive fashion. First, while both buyer and seller loss-aversion reduce the optimal
amount of trade, buyer loss-aversion has a more pronounced impact, because loss-aversion
affects high types more strongly than low types, and the designer is particularly interested
in high buyer types and low seller types. Second, the size of the stakes matter for the
optimal mechanism: when the stakes are high, the designer optimally induces less trade,
because the agents need to be compensated for risking large losses.

Interestingly and somewhat surprisingly, all of these findings display robustness to the
exact specification of the endogenous reference point. This is of practical relevance, as the
designer of some economic institution may have evidence that individuals are loss-averse,
but be unsure about the precise formation process of the reference point. The robustness
result suggests that lacking this information may not be too much of a problem, as long
as loss-averse individuals are provided with insurance.
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A A General Mechanism Design Approach

In this section we briefly consider general mechanisms, that is, we do not limit ourselves
to the bilateral trade problem. This allows us to generalize the result in Eisenhuth (2013)
that the optimal auction is an all-pay auction to the result that any revenue maximiz-
ing mechanism features interim deterministic transfer and further extend this to welfare
maximizing mechanisms.

An environment E = [I,X, (Θi, vi)i∈I , Fi] is characterized by the following compo-
nents. There is a finite set of N agents denoted by I = {1, . . . , N}. The set of social
alternatives is given by X = Y × T with typical element x = (y, t1, t2, . . . , tN). The (gen-
eral) set Y is the set of projects and the set T ⊆ RN is the set of transfers. We consider an
independent private values setting. Hence, the type of agent i is private information and
is independently drawn from a distribution Fi with bounded support Θi = [ai, bi] ⊂ R+.
Throughout, we use the conventional notation Θ =

∏N
i=1 Θi, with typical element θ,

and Θ−i =
∏

j 6=i Θj, with typical element θ−i. The agents and the principal have identical
prior beliefs. Following KR, agents’ riskless total utility is additively separable in material
utility and in gain-loss utility, and is defined as

ui(x, ri, θi) = θivi(y) + ti + η1
i µ

1
i

(
θivi(y)− θivi(r1

i )
)

+ η2
i µ

2
i

(
ti − r2

i

)
, (9)

with some η1
i , η

2
i ≥ 0, and where

µji (s) =

s s ≥ 0,

λjis s < 0,

for j = 1, 2 is a value function in the sense of Kahneman and Tversky (1979), with λji > 1,
thereby capturing loss-aversion. The parameters ri = (r1

i , r
2
i ) are the riskless reference

levels. Following KR we allow for the reference point to be stochastic, i.e., to be a reference
lottery over all riskless reference levels. More specifically, the reference point is equal to
the agent’s rational expectations.

A social choice function (SCF) f : Θ→ X assigns a collective choice f(θ1, . . . , θN) ∈ X
to each possible profile of the agents’ types (θ1, . . . , θN) ∈ Θ. We denote the set of all SCFs
F . A mechanism Γ = (M1, . . . ,MN , g) is a collection of N message sets (M1, . . . ,MN)

and an outcome function g : M1 × . . . ×MN → X. We denote the direct mechanism by
Γd = (Θ1, . . . ,ΘN , f). Since agents privately observe their types, they can condition their
message on their type. Consequently, a pure strategy for agent i in a mechanism Γ is a
function si : Θi → Mi. Note that g(s1(θ1), . . . , sN(θN)) = x ∈ X. Let Si denote the set
of all pure strategies of agent i. Further, we denote the truthful strategy sti(θi) = θi.
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Our equilibrium concept is based on the choice-acclimating personal equilibrium (CPE)
(Kőszegi and Rabin, 2007). We thus allow for the reference point to be a distribution over
the set X. In a mechanism Γ, this distribution is induced endogenously for each agent:
conditional on the other agents playing s−i, agent i induces a distribution over the set
of social alternatives, X, by playing the strategy si. Hence, the loss-averse agent will
compare any given social alternative to all possible social alternatives, allowing for gain
or loss feelings in every comparison. Moving to the interim stage and allowing for a ref-
erence lottery, we can define the interim expected utility of agent i with type θi, in the
mechanism Γ, when reporting mi, given that the other agents play s−i as

Ui(mi, s−i,Γ|θi) = θi

∫
Θ−i

vi(y
g(mi, θ−i)) dF−i(θ−i) +

∫
Θ−i

tgi (mi, θ−i) dF−i(θ−i)

+ θiη
1
i

∫
Θ−i

∫
Θ−i

µ1
i

(
vi(y

g(mi, θ−i))− vi(yg(mi, θ
′
−i))

)
dF−i(θ

′
−i) dF−i(θ−i)

+ η2
i

∫
Θ−i

∫
Θ−i

µ2
i

(
tgi (mi, θ−i)− tgi (mi, θ

′
−i)
)
dF−i(θ

′
−i) dF−i(θ−i).

We can now define our equilibrium concept, which follows Eisenhuth (2013).

Definition 4 A strategy profile s∗ = (s∗1, . . . , s
∗
N) is an interim CPE of the mechanism

Γ = (M1, . . . ,MN , g) if for all i ∈ I and θi ∈ Θi,

s∗i (θi) ∈ arg max
mi∈Mi

Ui(mi, s
∗
−i,Γ|θi).

Definition 5 A mechanism Γ implements a social choice function f in CPE if there is
a CPE strategy profile, s = (s1, . . . , sN) of Γ, such that

g(s1(θ1), . . . , sN(θN)) = f(θ1, . . . , θN)

for all (θ1, . . . , θN) ∈ Θ.

Definition 6 A social choice function f is CPEIC if the truthful profile st = (st1, . . . , s
t
N)

is a CPE strategy in the direct mechanism Γd.

With these definitions in hand we can now prove the revelation principle for CPE.

Proposition 8 (Revelation Principle for CPE) A social choice function f can be
implemented in CPE by some mechanism Γ if and only if f is CPEIC.

Proof. Suppose f was CPEIC. Then, by definition the strategy profile st a CPE in the
direct mechanism Γd and thus, again by definition, the direct mechanism implements f
in CPE. Conversely, suppose there is a mechanism Γ = (M1, . . . ,MN , g) that implements
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f in CPE. If s∗ = (s∗1, . . . , s
∗
N) is a CPE, then for all i,m′i ∈Mi and θi

Ui(s
∗
i (θi), s

∗
−i,Γ|θi) ≥ Ui(m

′
i, s
∗
−i,Γ|θi)

by definition of the CPE. In particular, this is also true form′i = s∗i (θ̂i) for all i ∈ I, θ̂i ∈ Θi.
Therefore, given that s∗ = (s∗1, . . . , s

∗
N) is a CPE we have for all i ∈ I, θi, θ̂i ∈ Θi,

Ui(s
∗
i (θi), s

∗
−i,Γ|θi) ≥ Ui(s

∗
i (θ̂i), s

∗
−i,Γ|θi)

Since Γ implements f in CPE we have

g(s∗1(θ1), . . . , s∗N(θN)) = f(θ1, . . . , θN),

implying

Ui(s
t
i(θi), s

t
−i,Γ

d|θi) ≥ Ui(s
t
i(θ̂i), s

t
−i,Γ

d|θi)

for all i ∈ I, θi,θ̂i ∈ Θi. Thus, the truthful strategy profile st is a CPE in the direct
mechanism and therefore the social choice function f is CPEIC.

Henceforth, we restrict attention to direct mechanisms and no longer explicitely lost
the mechanism as an argument in the utility function. Proceeding as in the main text we
can write Ui(mi, s

t
−i|θi) = θiṽi(mi) + t̃i(mi). It will turn out to be useful to further define

t̄i(mi) =

∫
Θ−i

tfi (mi, θ−i) dF−i(θ−i),

wi(mi) =

∫
Θ−i

∫
Θ−i

µ2
i

(
tfi (mi, θ−i)− tfi (mi, θ

′
−i)
)
dF−i(θ

′
−i) dF−i(θ−i),

which allows us to write t̃i(mi) = t̄i(mi)+η2
iwi(mi). With this in hand we get the following

condition for a social choice function f to be CPEIC:

Ui(θi, s
t
−i|θi) ≥ Ui(θ̂i, s

t
−i|θi) ∀i ∈ I,∀θ̂i ∈ Θi. (CPEIC)

We are now in a position to characterize the set of all CPEIC social choice functions.

Proposition 9 The social choice function f = (yf , tf1 , . . . , t
f
N) is CPEIC if and only if,

for all i ∈ I,

(i) ṽi is non-decreasing, and

(ii) Ui(θi, st−i|θi) = Ui(ai, s
t
−i|ai) +

∫ θi
ai
ṽi(s) ds for all θi ∈ Θi.
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Proof. Suppose the social choice function f is CPEIC. Take some θ̂i > θi, then by CPEIC

Ui(θi, s
t
−i|θi) ≥ θiṽi(θ̂i) + t̃i(θ̂i) = Ui(θ̂i, s

t
−i|θ̂i) + (θi − θ̂i)ṽi(θ̂i)

and analogously

Ui(θ̂i, s
t
−i|θ̂i) ≥ θ̂iṽi(θi) + t̃i(θi) = Ui(θi, s

t
−i|θi) + (θ̂i − θi)ṽi(θi).

Thus,

ṽi(θ̂i) ≥
Ui(θ̂i, s

t
−i|θ̂i)− Ui(θi, st−i|θi)

θ̂i − θi
≥ ṽi(θi),

implying that ṽi is non-decreasing because we assumed θ̂i > θi. Now, letting θ̂i → θi we
get that for all θi we have

∂Ui(θi, s
t
−i|θi)

∂θi
= ṽi(θi)

and so

Ui(θi, s
t
−i|θi) = Ui(ai, s

t
−i|ai) +

∫ θi

ai

ṽi(s) ds

for all θi ∈ Θi. Conversely, suppose that conditions (i) and (ii) hold. Without loss of
generality, take any θi > θ̂i. Then,

Ui(θi, s
t
−i|θi)− Ui(θ̂i, st−i|θ̂i) =

∫ θi

θ̂i

ṽi(s) ds

≥
∫ θi

θ̂i

ṽi(θ̂i) ds

= (θi − θ̂i)ṽi(θ̂i).

Hence,

Ui(θi, s
t
−i|θi) ≥ Ui(θ̂i, s

t
−i|θ̂i) + (θi − θ̂i)ṽi(θ̂i) = θiṽi(θ̂i) + t̃i(θ̂i)

and similarly

Ui(θ̂i, s
t
−i|θ̂i) ≥ Ui(θi, s

t
−i|θi) + (θ̂i − θi)ṽi(θi) = θ̂iṽi(θi) + t̃i(θi).

Consequently, f is CPEIC.
We are now in a position to prove that interim deterministic transfers are part of any
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revenue or welfare maximizing mechanism.

Proposition 10 Deterministic transfers are part of a solution to the problem

min
(yf ,tf1 ,...,t

f
N )∈F

N∑
i=1

∫ bi

ai

t̄i(θi) dFi(θi),

subject to CPEIC and IR.

We first prove a lemma which we will use repeatedly.

Lemma 3 We have wi(θi) ≤ 0 for all i and θi ∈ Θi.

Proof. Recall that we defined

wi(θi) =

∫
Θ−i

∫
Θ−i

µ2
i

(
tfi (θi, θ−i)− t

f
i (θi, θ

′
−i)
)
dF−i(θ

′
−i) dF−i(θ−i).

We can rewrite these expressions as follows

wi(θi) =

∫
Θ−i

∫
Θ−i

µ2
i

(
tfi (θi, θ−i)− tfi (θi, θ

′
−i)
)
dF−i(θ

′
−i) dF−i(θ−i)

=

∫
Θ−i

∫
Θ−i

(
tfi (θi, θ−i)− tfi (θi, θ

′
−i)
)
1[tfi (θi, θ−i)− tfi (θi, θ

′
−i) > 0] dF−i(θ

′
−i) dF−i(θ−i)

+

∫
Θ−i

∫
Θ−i

λ2
i

(
tfi (θi, θ−i)− tfi (θi, θ

′
−i)
)
1[tfi (θi, θ−i)− tfi (θi, θ

′
−i) < 0] dF−i(θ

′
−i) dF−i(θ−i)

=

∫
Θ−i

∫
Θ−i

(
tfi (θi, θ−i)− tfi (θi, θ

′
−i)
)
1[tfi (θi, θ−i)− tfi (θi, θ

′
−i) > 0] dF−i(θ

′
−i) dF−i(θ−i)

− λ2
i

∫
Θ−i

∫
Θ−i

(
tfi (θi, θ

′
−i)− t

f
i (θi, θ−i)

)
1[tfi (θi, θ

′
−i)− t

f
i (θi, θ−i) > 0] dF−i(θ

′
−i) dF−i(θ−i)

= (1− λ2
i )

∫
Θ−i

∫
Θ−i

(
tfi (θi, θ

′
−i)− t

f
i (θi, θ−i)

)
1[tfi (θi, θ

′
−i)− t

f
i (θi, θ−i) > 0] dF−i(θ

′
−i) dF−i(θ−i),

where 1 denotes the indicator function. Thus, since λ2
i > 1 we find wi(θi) ≤ 0.

Note that any transfers achieve wi(θi) = 0 if and only if the transfer does not depend on
almost all types of the other agents, i.e., for interim deterministic transfers.

Proof of Proposition 10. We begin by simplifying the problem. In order for the
CPEIC constraint to be satisfied, conditions (i) and (ii) from Proposition 9 must be
satisfied. Using the utility functions from condition (ii), we can rewrite the minimization
problem to

min
(yf ,tf1 ,...,t

f
N )∈F

N∑
i=1

∫ bi

ai

(
t̄i(ai) + η2

iwi(ai)− θiṽi(θi)− η2
iwi(θi) +

∫ θi

ai

ṽi(s) ds

)
dFi(θi),

subject to ṽi being non-decreasing for all i ∈ I and IR.
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By Lemma 3 we have wi(θi) ≤ 0 for all i and θi ∈ Θi. Note that these terms enter
the problem negatively. Since we want to minimize the objective function, we optimally
choose transfers such that wi(θS) = 0 for all θi ∈ Θi to minimize the integrands pointwise
and therefore minimize the integrals. Doing so does not contradict the IR constraint, on
the contrary, it relaxes it. Thus, choosing interim deterministic transfers is optimal and
part of a solution to the problem.

Proposition 11 Deterministic transfers are part of a solution to the problem

min
(yf ,tf1 ,...,t

f
N )∈F

N∑
i=1

∫ bi

ai

Ui(θi, s
t
−i|θi) dFi(θi),

subject to CPEIC, IR and AB.

Proof. In order for the CPEIC constraint to be satisfied, conditions (i) and (ii) from
Proposition 9 must be satisfied. Using the utility functions from condition (ii), we can
rewrite the objective function in the problem to

N∑
i=1

(
Ui(ai, s

t
−i|ai) +

∫ bi

ai

∫ θi

ai

ṽi(s) ds dFi(θi)

)
. (10)

We still have condition (i) from Proposition 9, as well as the IR and AB to keep as
constraints. Recall that we can write utility as

Ui(θi, s
t
−i|θi) = θiṽi(θi) + t̄i(θi) + η2

iwi(θi),

and, further, using the same notation, we can write the AB constraint as

N∑
i=1

∫ bi

ai

t̄i(θi) dFi(θi) = 0.

Thus, given the CPEIC constraint (condition (ii) in particular) we can write the AB
constraint as

N∑
i=1

∫ bi

ai

(
η2
iwi(θi) + θiṽi(θi)− Ui(ai, st−i|ai)−

∫ θi

ai

ṽi(t) dt

)
dFi(θi) = 0. (11)

Using the rewritten objective function in (10) and using the form of the AB constraint in
(11), we can set up a Lagrangian:

L(yf , tf1 , . . . , t
f
N , γ) =

N∑
i=1

(1− γ)Ui(ai, s
t
−i|ai) +

N∑
i=1

(1− γ)

∫ bi

ai

∫ θi

ai

ṽi(s) ds dFi(θi)
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+ γ
N∑
i=1

∫ bi

ai

η2
iwi(θi) dFi(θi) + γ

N∑
i=1

∫ bi

ai

θiṽi(θi) dFi(θi),

where γ is the Lagrange multiplier. By Lemma 3 we have wi(θi) ≤ 0 for i ∈ I, which
enter the Lagrangian positively. In order to maximize the Lagrangian, we can choose
interim deterministic transfers which result in wi(θi) = 0 for i ∈ I. This is in line with the
remaining constraints given by condition (i) from Proposition 9 and the IR constraint.

B Proofs

B.1 Impossibility Result

We begin by noting that

ṽB(θB)

=

∫ bS

aS

yf (θS , θB) dFS(θS) + η1
B

∫ bS

aS

∫ bS

aS

µ1
B

(
yf (θS , θB)− yf (θ′S , θB)

)
dFS(θ′S) dFS(θS),

= yB(θB) + η1
B

∫ bS

aS

∫ bS

aS

yf (θS , θB)(1− yf (θ′S , θB))− λ1
B(1− yf (θS , θB))yf (θ′S , θB) dFS(θ′S) dFS(θS),

= yB(θB)(1 + ΛB(yB(θB)− 1))

and analogously ṽS(θS) = yS(θS)(1− ΛS(yS(θS)− 1)), where

yB(θB) =

∫ bS

aS

yf (θS, θB)dFS(θS), yS(θS) =

∫ bB

aB

yf (θS, θB)dFB(θB).

Imposing CPEIC we can write the sum of the agents’ ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS

= UB(aB) +

∫ bB

aB

∫ θB

aB

yB(t)(1 + ΛB(yB(t)− 1))dtfB(θB)dθB

+ US(bS) +

∫ bS

aS

∫ bS

θS

yS(t)(1− ΛS(yS(t)− 1))dtfS(θS)dθS

= UB(aB) +

∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB

+ US(bS) +

∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Note that the monotonicity constraints are satisfied due to Assumption 1, i.e., ΛB,ΛS ≤ 1.
Further, from Lemmas 1 and 2 and the corresponding discussion in the main text we know
that we can set the loss-aversion in the money dimension to zero. This allows us to express
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the sum of the agents’ ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS

=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS, θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

where we used CPEIC and integration by parts towards the end. Putting these two
equations together we get

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS , θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

−
∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB −
∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Individual rationality requires UB(aB)+US(bS) ≥ 0. We will now show that this condition
is never satisfied for any combination of buyer and seller loss-aversion. From our discussion
in the main text, we know that it is sufficient to consider the case ΛS = 0, i.e., no loss-
aversion on the trade-dimension for the seller. This allows us to simplify and rewrite
to

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

([
θB −

1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

+ ΛB

∫ bB

aB

yB(θB)(yB(θB)− 1)

[
θB −

1− FB(θB)

fB(θB)

]
fB(θB)dθB.

MS show in their proof of Theorem 1 (p. 269) that∫ bB

aB

∫ bS

aS

([
θB −

1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

= −
∫ bS

aB

(1− FB(x))FS(x) dx.

Further, we have yB(θB) = FS(θB) since we are considering the ex post efficient mecha-
nism. Putting this together yields
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UB(aB) + US(bS) = −
∫ bS

aB

(1− FB(x))FS(x) dx

+ ΛB

∫ bB

aB

FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx.

Careful inspection of the limits of the integrals shows that

UB(aB) + US(bS) = −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) dx

+ ΛB

∫ min{bS ,bB}

max{aB ,aS}
FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx

= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) + ΛB(1− FS(x))FS(x)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx

= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

< 0,

violating individual rationality. To conclude the proof, recall from our discussion of
the information rents, that loss-aversion in the money dimension makes the problem
unambiguously harder, as it reduces the gains from trade without affecting the information
rents. Thus, impossibility in the absence of loss-aversion in the money dimension implies
impossibility in the presence of loss-aversion in the money dimension.

B.2 Revenue Maximizing Mechanism

Step 1. We begin by imposing CPEIC. In order for the CPEIC constraint to be satisfied,
conditions (i) and (ii) from Proposition 2 must be satisfied. Using the utility functions
given in equations (4) and (5) from condition (ii), we can rewrite the objective function
in the problem (RM) to∫ bB

aB

(
η2
BwB(θB) + θB ṽB(θB)− UB(aB, s

t
S|aB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)

+

∫ bS

aS

(
η2
SwS(θS)− θS ṽS(θS)− US(bS, s

t
B|bS)−

∫ bB

θS

ṽS(t) dt

)
dFS(θS).

From the IR constraint we have UB(aB, θS|aB) ≥ 0 and US(bS, θB|bS) ≥ 0, which enter
the objective function negatively. Since we are maximizing the objective function, we
choose transfers such that UB(aB, θS|aB) = 0 and US(bS, θB|bS) = 0. If the expected
utility of these “worst” types was not equal to zero in the optimal mechanism, we could
modify the transfers by adding lump-sum transfers and reduce their expected utility to
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zero without affecting CPEIC. Moreover, wB and wS, which are negative by Lemma 3,
enter positively. Thus, we impose an additional restriction on transfers, namely that they
are interim deterministic, which leads to wB(θB) = wS(θS) = 0 for all θB, θS ∈ [a, b].
Note that these two restrictions on transfers do not contradict each other. Given this, the
problem reduces to

max
(yf

∫ bB

aB

(
θB ṽB(θB)−

∫ θB

aB

ṽB(t) dt

)
dFB(θB)

+

∫ bS

aS

(
−θS ṽS(θS)−

∫ bS

θS

ṽS(t) dt

)
dFS(θS)

subject to ṽS being non-increasing, ṽB being non-decreasing,

which proves Proposition 4.
Step 2. We next impose that types are uniformly distributed on [a, a+ 1] and rewrite the
objective function in this reduced problem. Using integration by parts we get∫ b

a

(
θB ṽB(θB)−

∫ θB

a

ṽB(t) dt

)
dθB +

∫ b

a

(
−θS ṽS(θS)−

∫ b

θS

ṽS(t) dt

)
dθS

=

∫ b

a

(2θB − 1− a)ṽB(θB) dθB −
∫ b

a

(2θS − a)ṽS(θS) dθS.

Further, we can write

ṽB(θB) =

∫ b

a

yf (θS, θB) dθS + η1
B

∫ b

a

∫ b

a

µ1
(
yf (θS, θB)− yf (θ′S, θB)

)
dθ′S dθS

= yB(θB) + η1
B

[
yB(θB)(1− yB(θB))− λ1

B(1− yB(θB))yB(θB)
]

= yB(θB) + yB(θB)ΛB (yB(θB)− 1)

= yB(θB)(1 + ΛB (yB(θB)− 1) ,

where
∫ b
a
yf (θS, θB) dθS = yB(θB). Analogously, we can write ṽS(θS) = yS(θS)(1 −

ΛS(yS(θS) − 1)). Note that therefore the constraints that ṽS is non-increasing and ṽB

non-decreasing are equivalent to yS being non-increasing and yB being non-decreasing
given the assumption that gain-loss utiltiy does not dominate. Thus, we have reduced
the maximization problem to

max
yf∈Y

∫ b

a

(2θB − 1− a)yB(θB)(1 + ΛB (yB(θB)− 1) dθB

−
∫ b

a

(2θS − a)yS(θS)(1− ΛS(yS(θS)− 1)) dθS, (RM’)

subject to yB being non-decreasing and yS being non-increasing.
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Step 3. We will make use of the reduced-form approach as in Che et al. (2013) to maximize
directly over the interim trade probabilities yB and yS instead of the ex post allocation
rule yf . First, we perform a change of variables to rewrite the objective function to

max
yf∈Y

∫ 1

0
(2x− 1 + a)qB(x)(1 + ΛB (qB(x)− 1) dx−

∫ 1

0
(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx,

where qi(x) = yi(x+ a) for all x ∈ [0, 1]. Making use of Corollary 6 in Che et al. (2013),
we maximize directly over qB and qS subject to an allocation and an aggregate constraint.
The problem then reads

max
qB ,qS

∫ 1

0
(2x− 1 + a)qB(x)(1 + ΛB (qB(x)− 1) dx−

∫ 1

0
(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx,

subject to qB being non-decreasing, qS being non-increasing, the allocation constraint∫ 1

θS

(1− qS(t)) dt+

∫ 1

θB

qB(t) dt ≤ 1− θBθS

for all (θB, θS) ∈ [0, 1]2 and the aggregate constraint∫ 1

0

(1− qS(t)) dt+

∫ 1

0

qB(t) dt = 1.

The allocation constraint is the condition known from Border (1991) and aggregate con-
straint ensures that the good is either allocated to the buyer or the seller. Following the
proof of Lemma 4 in Mierendorff (2016) we can rewrite the allocation constraint to∫ 1

θS

(1− qS(t)) dt ≤ min
θB∈[0,1]

[
1− θSθB −

∫ 1

θS

qB(t) dt

]
for all θB ∈ [0, 1] and since we are minimizing a convex function on the right-hand side,
we obtain∫ 1

θS

(1− qS(t)) dt ≤ 1− q−1
B (θS)θS −

∫ 1

y−1
B (θS)

qB(t) dt

for all θS ∈ [0, 1]. This constraint is satisfied with equality when q∗S(t) = 1 − q−1
B (t),

where q−1
B denotes the generalized inverse. In what follows, we will show that for a given,

non-decreasing function qB, the function q∗S(t) = 1− q−1
B (t) minimizes∫ 1

0

(2x+ a)qS(x)(1− ΛS(qS(x)− 1)) dx

subject to the allocation and aggregate constraint and to qS being non-increasing. This
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implies that is enough to maximize over the set of all non-decreasing trade probabilities
qB such that qS(t) = 1− q−1

B (t). Consider some other candidate to the solution, q̃S which
satisfies the allocation constraints and is different from q∗S on a set of positive measure.
Then there must exist an interval [

¯
u, ū] such that∫ 1

θS

(1− q̃S(t)) dt <

∫ 1

θS

(1− q∗S(t)) dt

for all θS ∈ [
¯
u, ū]. We will now construct a function q̂S which does better than the

candidate q̃S, thereby proving that q∗S is indeed optimal. To do this, we show that there
exist p̄,

¯
p ∈ [0, 1] and p ∈ (

¯
p, p̄) such that (1) q̂S(t) = q̃S(t) for all t /∈ [

¯
p, p̄], (2) q̂S(t) ≥ q̃S(t)

for all t ∈ [p, p̄], (3) q̂S(t) ≤ q̃S(t) for all t ∈ [
¯
p, p), (4)∫ p̄

¯
p

q∗S(t)− q̃S(t) dt = 0,

and (5)∫ 1

θS

(1− q̂S(t)) dt ≤
∫ 1

θS

(1− q∗S(t)) dt

for all θS ∈ [0, 1]. Fix some p̄ ∈ [
¯
u, ū] and define q̂S(t) = q̃S(t) for all t > p̄. Note that by

the aggregate constraint there must exist 0 ≤ p < p̄ such that∫ 1

p

(1− q̂S(t)) dt =

∫ 1

p

(1− q∗S(t)) dt

when q̂S(t) = q̃S(p̄) for all t ∈ [p, p̄]. This construction satisfies the monotonicity and
the allocation constraint. If there now exists a 0 ≤

¯
p < p such that q̂S(t) = q̃S(

¯
p) for all

t ∈ [
¯
p, p) and q̂S(t) = q̃S(t) for all t <

¯
p with∫ p̄

¯
p

q̂S(t)− q̃S(t) dt = 0

we are done. If not, then we must have even with
¯
p = 0 that∫ p̄

p

q̂S(t)− q̃S(t) dt+

∫ p

0

q̂S(t)− q̃S(t) dt > 0.

If ∫ p̄

p

q̂S(t)− q̃S(t) dt−
∫ p

0

q̃S(t) dt < 0,
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then there must exist c > 0 such that q̂S(t) = c for t ∈ [0, p) yields∫ p̄

p

q̂S(t)− q̃S(t) dt+

∫ p

0

q̂S(t)− q̃S(t) dt = 0.

If not, then increase p until∫ p̄

p

q̂S(t)− q̃S(t) dt−
∫ p

0

q̃S(t) dt = 0.

Such a p exists and the such constructed q̂S satisfies the above (1) to (5). Thus, we have
constructed q̂S from q̃S by shifting trade probability from high types to low types, while
satisfying the allocation constraint. This was possible, because q̃S is different from q∗S on
a set of positive measure and the aggregate constraint needs to be satisfied.

We will now show, that∫ 1

0

(2x+ a)q̂S(x) (1− ΛS [q̂S(x)− 1]) dx ≤
∫ 1

0

(2x+ a)q̃S(x) (1− ΛS [q̃S(x)− 1]) dx,

implying that q̃S cannot be a minimizer. We have∫ 1

0

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

=

∫ p̄

¯
p

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

by our construction of q̂S. Furthermore, whenever q̂S(x) > q̃S(x), we also have
q̂S(x) (1− ΛS [q̂S(x)− 1]) > q̃S(x) (1− ΛS [q̃S(x)− 1]). Thus, we obtain∫ p̄

¯
p

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

≤ (2p+ a)

∫ p̄

¯
p

(q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

because the difference in the brackets is positive until p and then negative. Rewrite this
difference to obtain∫ p̄

¯
p

(q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx

= (1 + ΛS)

∫ p̄

¯
p

(q̂S(x)− q̃S(x)) dx+ ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) (q̂S(x) + q̃S(x)) dx.

The first integral is equal to zero by construction. In the second integral, note that the
first bracket is negative until p and then positive and the second bracket is a decreasing
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function. Thus,

ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) (q̂S(x) + q̃S(x)) dx

≤ (q̂S(p) + q̃S(p)) ΛS

∫ p̄

¯
p

(q̃S(x)− q̂S(x)) dx

= 0.

Overall, we have showed that∫ 1

0

(2x+ a) (q̂S(x) (1− ΛS [q̂S(x)− 1])− q̃S(x) (1− ΛS [q̃S(x)− 1])) dx ≤ 0

proving that q̃S was not a minimizer and that q∗S indeed is the solution to the problem.
Step 4. Having eliminated the seller’s interim trade probability from the problem using
the allocation and aggregate constraints, the maximization problem reads

max
qB

∫ 1

0

(2x− 1 + a)qB(x) (1 + ΛB [qB(x)− 1]) dx

−
∫ 1

0

(2x+ a)(1− q−1
B (x))

(
1 + ΛSq

−1
B (x)

)
dx

subject to qB being non-decreasing. We now use the substitution x = qB(t) to eliminate
q−1
B from the problem and obtain

∫ 1

0
(2x− 1 + a)qB(x) (1 + ΛB [qB(x)− 1]) dx−

∫ q−1
B (1)

q−1
B (0)

(2yB(x) + a)(1− x) (1 + ΛSx) q′B(x) dx

Note that qB is differentiable almost everywhere and therefore the substitution is well-
defined. We will guess and verify that y−1

B (0) = 0 and y−1
B (1) = 1. The objective then

becomes∫ 1

0

(2x− 1 + a)qB(x) (1 + ΛB [qB(x)− 1])− (2qB(x) + a)(1− x) (1 + ΛSx) y′B(x) dx.

We perform one final substitution to ensure the positivity of qB and let qB(t) = u2(t). We
then obtain∫ 1

0

(2x− 1 + a)u2(x)
(
1 + ΛB

[
u2(x)− 1

])
− (2u2(x) + a)(1− x) (1 + ΛSx) 2u(x)u′(x) dx

=

∫ 1

0

J(x, u, u′) dx.

We know from methods of calculus of variations that a necessary condition for a solution
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to the problem is characterized by

d

dx
Ju′(x, u, u

′) = Ju(x, u, u
′).

We obtain the candidates for a maximum given by

u(x) = 0 and u(x) = ±
√

(2x− 1)(1− ΛB) + 2a2ΛS − a((2x− 1)ΛS + 2− ΛB)√
2(1− (2x− 1− a)ΛB + (2x− 1− 2a)ΛS)

where the second candidate is only well-defined for all

x ≥ x̄ =
2a2ΛS + aΛB + aΛS − 2a+ ΛB − 1

2(aΛS + ΛB − 1)
.

Note that x ≤ a + 1 when ΛS ≤ (1 − ΛB(a + 1))/a and ΛB ≤ 1/(1 + a). Reversing the
substitutions we obtain that the optimal interim trade probability for the buyer is

y∗B(θB) =
2θB(1− 2ΛB − 2ΛSa) + 2a2ΛS + a(ΛB + ΛS − 2) + ΛB − 1

2(1− ΛB(2θB − 1− a) + ΛS(2θB − 1− 2a))

if ΛS ≤ (1 − ΛB(a + 1))/a and ΛB ≤ 1/(1 + a) and y∗B(θB) = 0 otherwise. This interim
trade probability (and the corresponding for the seller) can be obtained by the ex post
trade rule described in Proposition 5.
Step 5. One can easily verify that the IR constraints are satisfied.

B.3 Welfare Maximizing Mechanism

Step 1. We first rewrite the problem as a function of the trade rule only. We can rewrite
the objective function to (imposing ΛB = ΛS = Λ)∫ b

a

UB(θB, s
t
S|θB) dθB +

∫ b

a

US(θS, s
t
B|θS) dθS

=

∫ b

a

(
θByB(θB)(1 + Λ(yB(θB)− 1))− t̄B(θB) + η2

BwB(θB)
)
dθB

−
∫ b

a

(
θSyS(θS)(1− Λ(yS(θS)− 1))− t̄S(θS)− η2

SwS(θS)
)
dθS.

Note that by the budget constraint (AB) we have∫ b

a

tB(θB) dθB =

∫ b

a

tS(θS) dθS.

Further, wB(θB) and wS(θS) enter the objective positively. By Lemma 3 both are negative
and, hence, optimally set to zero by choosing interim deterministic transfers. This yields
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∫ b

a

UB(θB, s
t
S|θB) dθB +

∫ b

a

US(θS, s
t
B|θS) dθS

=

∫ b

a

θByB(θB)(1 + Λ(yB(θB)− 1)) dθB −
∫ b

a

θSyS(θS)(1− Λ(yS(θS)− 1)) dθS.

Mirroring the arguments in the proof of the revenue maximizing mechanism, the budget
constraint AB and the CPEIC can be jointly written as∫ b

a

(2θB − 1− a)yB(θB) (1 + Λ [yB(θB)− 1]) dθB

=

∫ b

a

(2θS − a)yS(θS) (1− Λ [yS(θS)− 1]) dθS,

as well as the monotonicity constraints. Thus, the maximization problem is a function of
the trade rule only.
Step 2. We can set up the Lagrangian as

L(yf , γ) =

∫ b

a

(θB + γ(2θB − 1− a))yB(θB) (1 + Λ [yB(θB)− 1]) dθB

−
∫ b

a

(θS + γ(2θS − a))yS(θS) (1− Λ [yS(θS)− 1]) dθS.

Note that we must have γ ≥ 0, because relaxing the budget constraint (i.e., allowing the
designer to run a deficit) can only increase the objective. Hence, (θB + γ(2θB − 1 − a))

and (θS + γ(2θS − a)) are strictly increasing in θB and θS, respectively. Therefore, the
arguments in the proof of the revenue maximizing mechanism carry through and we can
again maximize over the interim trade probabilities directly and eliminate yS from the
problem.
Step 3. Mirroring the steps in the proof of the revenue maximizing mechanism we obtain
an expression for the interim trade probability of the buyer. Using the budget constraint
and the assumption that Λ = ΛB = ΛS we can eliminate the Lagrange multiplier from this
expression. Next, reversing the change in variables we obtain the buyer’s interim trade
probability given by from which we can recover the ex post allocation rule which gives
rise to the interim trade probabilities and is given in Proposition 7. The optimality of no
trade for large enough stakes follows directly from the revenue maximizing mechanism.
We know from there that for Λ ≤ 1/(1 + a) any mechanism which induces trade yields
a negative expected revenue. Hence, any mechanism which induces trade violates the
budget balance constraint. Consequently, for Λ ≤ 1/(1 + a) no trade is the only feasible
welfare maximizing mechanism.
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Step 4. One can easily verify that the IR constraints are satisfied.
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