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Abstract

Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of

returns. To address this problem, we promote a nonlinear shrinkage estimator that is more

flexible than previous linear shrinkage estimators and has just the right number of free

parameters (that is, the Goldilocks principle). This number is the same as the number of

assets. Our nonlinear shrinkage estimator is asymptotically optimal for portfolio selection

when the number of assets is of the same magnitude as the sample size. In backtests with

historical stock return data, it performs better than previous proposals and, in particular,

it dominates linear shrinkage.

KEY WORDS: Large-dimensional asymptotics, Markowitz portfolio selection,

nonlinear shrinkage.

JEL CLASSIFICATION NOS: C13, C58, G11.
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1 Introduction

Markowitz’s portfolio selection requires estimates of (i) the vector of expected returns and

(ii) the covariance matrix of returns. Green et al. (2013) list over 300 papers that have been

written on the first estimation problem. By comparison, much less has been written about

the covariance matrix. The one thing we do know is that the textbook estimator, the sample

covariance matrix, is inappropriate. This is a simple degrees-of-freedom argument. The number

of degrees of freedom in the sample covariance matrix is of order N2, where N is the number of

investable assets. In finance, the sample size T can be of the same order of magnitude as N .1

Then the number of points in the historical data base is also of order N2. We cannot possibly

estimate O(N2) free parameters from a data set of order N2. The number of degrees of freedom

has to be an order of magnitude smaller than N2, or else portfolio selection inevitably turns

into what Michaud (1989) calls “error maximization”.

Recent proposals by Ledoit and Wolf (2003, 2004a,b), Kan and Zhou (2007), Brandt et al.

(2009), DeMiguel et al. (2009a, 2013), Frahm and Memmel (2010), and Tu and Zhou (2011),

among others, show that this topic is currently gathering a significant amount of attention. All

these articles resolve the problem by going from O(N2) degrees of freedom to O(1) degrees of

freedom. They look for estimators of the covariance matrix, its inverse, or the portfolio weights

that are optimal in a space of dimension one, two, or three. For example, the linear shrinkage

approach of Ledoit and Wolf (2004b) finds a covariance matrix estimator that is optimal in

the one-dimensional space of convex linear combinations of the sample covariance matrix with

the (properly scaled) identity matrix. Another important class of models with O(1) degrees of

freedom, which has a long tradition in finance, is the class of factor models; for example, see

Bekaert et al. (2009) and the references therein.

Given a data set of size O(N2), estimating O(1) parameters is easy. The point of the

present paper is that we can push this frontier. From a data set of size O(N2), we should

be able, using sufficiently advanced technology, to estimate O(N) free parameters consistently

instead of merely O(1). The sample covariance matrix with its O(N2) degrees of freedom is too

loose, but the existing literature with only O(1) degrees of freedom is too tight. O(N) degrees

of freedom is ‘just right’ for a data set of size O(N2): it is the Goldilocks order of magnitude.2

The class of estimators we consider was introduced by Stein (1986) and is called “nonlinear

shrinkage”. This means that the small eigenvalues of the sample covariance matrix are pushed

up and the large ones pulled down by an amount that is determined individually for each

eigenvalue. Since there are N eigenvalues, this gives N degrees of freedom, as required. The

challenge is to determine the optimal shrinkage intensity for each eigenvalue. It cannot be

optimal in the general sense of the word: it can only be optimal with respect to a particular

loss function. We propose to use a loss function that captures the objective of an investor or

1Such is the case when one invests in single stocks. There are other settings, such as strategic asset allocation,

where the dimension of the universe is much smaller.
2The Goldilocks principle refers to the classic fairy tale The Three Bears, where young Goldilocks finds a

bed that is neither too soft nor too hard but ‘just right’. In economics, this term describes a monetary policy

that is neither too accomodative nor too restrictive but ‘just right’.
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researcher using portfolio selection and has been previously considered by Kan and Smith

(2008). Our first theoretical contribution is to prove that this loss function has a well-

defined limit under large-dimensional asympotics, that is, when the dimension N goes to

infinity along with the sample size T , and to compute its limit in closed form. Our second

theoretical contribution is to characterize the nonlinear shrinkage formula that minimizes the

limit of the loss. This original work results in an estimator of the covariance matrix that is

asymptotically optimal for portfolio selection in the N -dimensional class of nonlinear shrinkage

estimators when the number of investable assets, N , is large. We also prove uniqueness in

the sense that all optimal estimators are asymptotically equivalent to one another, up to

multiplication by a positive scalar.

To put this result in perspective, the statistics literature has only obtained nonlinear

shrinkage formulas that are optimal with respect to some generic loss functions renowned

for their tractability; see Ledoit and Wolf (2014). Note that all the work must be done anew

for every loss function. Thus, our analytical results bridge the gap between theory and practice.

Interestingly, there is a technology called beamforming (Capon, 1969) that is essential for radars,

wireless communication and other areas of signal processing, and is mathematically equivalent

to portfolio selection. This equivalence implies that our covariance matrix estimator is also

optimal for beamforming. The same is true for fingerprinting, the technique favored by the

Intergovernmental Panel on Climate Change (IPCC, 2001, 2007) to measure the change of

temperature on Earth. Thus, the applicability of our optimality result reaches beyond finance.

One caveat is that the optimal estimator we obtain is only an ‘oracle’, meaning that it

depends on a certain unobservable quantity, which happens to be a complex-valued function

tied to the distribution of sample eigenvalues. The only way to make the nonlinear shrinkage

approach usable in practice (that is, bona fide) is to find a consistent estimator of this

unobservable function. Fortunately this problem has been solved before (Ledoit and Wolf,

2012, 2015), so the transition from oracle to bona fide is completely straightforward in our case

and requires no extra work.

Our optimal nonlinear shrinkage estimator dominates its competitors on historical stock

returns data. For N = 100 assets, we obtain a global minimum variance portfolio with 10.99%

annualized standard deviation, vs. 13.11% for the usual estimator, the sample covariance

matrix. The amount of improvement is more pronounced in high dimensions. For example, for

a universe comparable to the S&P 500, our global minimum variance portfolio has an almost

50% lower out-of-sample volatility than the 1/N portfolio promoted by DeMiguel et al. (2009b).

We improve over the linear shrinkage estimator of Ledoit and Wolf (2004b) across the board.

Having O(N) free parameters chosen optimally confers a decisive advantage over having only

O(1) free parameters. We also demonstrate superior out-of-sample performance for portfolio

strategies that target a certain exposure to an exogenously specified proxy for the vector of

expected returns (also called a signal). This has implications for research on market efficiency,

as it improves the power of a test for the ability of a candidate characteristic to explain the
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cross-section of stock returns.3

The remainder of the paper is organized as follows. Section 2 derives the loss function

tailored to portfolio selection. Section 3 finds the limit of this loss function under large-

dimensional asymptotics. Section 4 finds a covariance matrix estimator that is asymptotically

optimal with respect to the loss function defined in Section 2. Section 5 presents empirical

findings for the global mininum variance portfolio supporting the usefulness of the proposed

estimator. Section 6 concludes. The Appendix contains all tables and mathematical proofs as

well as empirical findings for a ‘full’ Markowitz portfolio with signal.

2 Loss Function for Portfolio Selection

The number of assets in the investable universe is denoted by N . Let m denote an N × 1

cross-sectional signal or combination of signals that proxies for the vector of expected returns.

Subrahmanyam (2010) documents at least 50 such signals. Hou et al. (2015) bring the tally

up to 80 signals, McLean and Pontiff (2016) to 97 (but without listing them), and Green et al.

(2013) to 333 signals (extended bibliography available upon request). Further overviews are

provided by Ilmanen (2011) and Harvey et al. (2016).

It is not a goal of our paper to contribute to this strand of literature, that is, to come up

with an improved cross-section signal m. Our focus is only on the estimation of the covariance

matrix.

2.1 Out-of-Sample Variance

The goal of researchers and investors alike is to put together a portfolio strategy that loads

on the vector m, however decided upon. Let Σ denote the N × N population covariance

matrix of asset returns; note that Σ is unobservable. Portfolio selection seeks to maximize the

reward-to-risk ratio:

max
w

w′m√
w′Σw

, (2.1)

where w denotes an N × 1 vector of portfolio weights. This optimization problem abstracts

from leverage and short-sales constraints in order to focus on the core of Markowitz (1952)

portfolio selection: the trade-off between reward and risk. A vector w is a solution to (2.1)

if and only if there exists a strictly positive scalar a such that w = a×Σ−1m. This claim can

be easily verified from the first-order condition of (2.1). The scale of the vector of portfolio

weights can be set by targeting a certain level of expected returns, say b, in which case we get

w =
b

m′Σ−1m
×Σ−1m . (2.2)

In general, the weights will not sum up to one. Thus, 1−∑N
i=1wi is the share in the risk-free

asset; the same reasoning can be found in Engle and Colacito (2006, Section 2).

3For example, see Bell et al. (2014) for such a test.
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Note that expression (2.2) is not scale-invariant with respect to b and m: if we double b,

the portfolio weights double; and if we replace m by 2m, the portfolio weights are halved.

Scale dependence can be eliminated simply by setting b ..=
√
m′m. In practice, the covariance

matrix Σ is not known and needs to be estimated from historical data. Let Σ̂ denote a generic

(invertible) estimator of the covariance matrix. The plug-in estimator of the optimal portfolio

weights is

ŵ ..=

√
m′m

m′Σ̂−1m
× Σ̂−1m . (2.3)

All investing takes place out of sample by necessity. Since the population covariance matrix Σ

is unknown and the covariance matrix estimator Σ̂ is not equal to it, out-of-sample performance

is different from in-sample performance. We want the portfolio with the best possible behavior

out of sample. This is why we define the loss function for portfolio selection as the out-of-sample

variance of portfolio returns conditional on Σ̂ and m.

Definition 2.1. The loss function is

L

(
Σ̂, Σ,m

)
..= ŵ′Σŵ = m′m× m′Σ̂−1ΣΣ̂−1m

(
m′Σ̂−1m

)2 . (2.4)

(This loss function has previously been considered by Kan and Smith (2008).)

In terms of assessing the broad scientific usefulness of this line of research, it is worth

pointing out that the loss function in Definition 2.1 also handles the problems known as

optimal beamforming in signal processing and optimal fingerprinting in climate change research,

because they are mathematically equivalent to optimal portfolio selection, as evidenced in

Du et al. (2010) and Ribes et al. (2009), respectively.

Remark 2.1. The usual approach would be to minimize the risk function which is defined

as the expectation of the loss function (2.4). However, in our asymptotic framework, the loss

function converges almost surely to a nonstochastic limit, as we will show in Theorem 3.1.

Therefore, there is no need to take the expectation.

2.2 Out-of-Sample Sharpe Ratio

An alternative objective of interest to financial investors is the Sharpe ratio. The vector m

represents the investor’s best proxy for the vector of expected returns given the information

available to her, so we use m to evaluate the numerator of the Sharpe ratio. From the weights

in equation (2.3), we deduce the Sharpe ratio as

ŵ′m√
ŵ′Σŵ

=

√
m′m

m′Σ̂−1m
×m′Σ̂−1m× m′Σ̂−1m√

m′m
× 1√

m′Σ̂−1ΣΣ̂−1m

=
m′Σ̂−1m√

m′Σ̂−1ΣΣ̂−1m

=

√√√√ m′m

L

(
Σ̂, Σ,m

) .
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Since we do not optimize over the Euclidian norm of the vector m, which is a given, the

objective of maximizing the Sharpe ratio is therefore equivalent to minimizing the loss function

of Definition 2.1.

Note that this equivalence only holds conditional on the expected returns proxy m.

As indicated at the beginning of Section 2, we do not delve into the issue of how to choose m.

2.3 Quadratic Objective Function

Yet another way to control the trade-off between risk and return is to maximize the expectation

of a quadratic utility function of the type W − γW 2, where W represents the final wealth and

γ is a risk aversion parameter. As above, we use the cross-sectional return predictive signal m

in lieu of the unavailable first moment because it is the investor’s proxy of future expected

returns conditional on her information set. Plugging in the weights of equation (2.3) yields

W0 +W0ŵ
′m− γ

[(
W0 +W0ŵ

′m
)2

+W 2
0 ŵ

′Σŵ
]

= W0 +W0

√
m′m

m′Σ−1m
×m′Σ−1m

− γW 2
0



(
1 +

√
m′m

m′Σ−1m
×m′Σ−1m

)2

+
m′m

(m′Σ−1m)2
×m′Σ̂−1ΣΣ̂−1m




= W0 +W0

√
m′m− γW 2

0

[
1 + 2

√
m′m+m′m+ L

(
Σ̂, Σ,m

)]
,

where W0 stands for the agent’s initial wealth. Since we do not optimize over the Euclidian

norm of the vector m, which is a given, and we do not optimize over the initial wealth W0

either, this objective is also equivalent to minimizing the loss function of Definition 2.1. This

equivalence is further confirmation that the loss function L
(
Σ̂, Σ,m

)
is the right quantity to

look at in the context of portfolio selection.

3 Large-Dimensional Asymptotic Limit of the Loss Function

The framework defined in Assumptions 3.1–3.4 below is standard in the literature on covariance

matrix estimation under large-dimensional asymptotics; see Bai and Silverstein (2010) for an

authoritative and comprehensive monograph on this subject. These assumptions have to be

formulated explicitly here for completeness’ sake, and as they may not be so familiar to finance

audiences we have interspersed additional explanations whenever warranted. The remainder of

the section from Remark 3.2 onwards focuses on finance-related issues. Some of the assumptions

made in Section 2 are restated below in a manner more suitable for the large-dimensional

framework, and the subscript T will be affixed to the quantities that require it.

Assumption 3.1 (Dimensionality). Let T denote the sample size and N ..= N(T ) the

number of variables. It is assumed that the ratio N/T converges, as T → ∞, to a limit

c ∈ (0, 1) ∪ (1,+∞) called the concentration. Furthermore, there exists a compact interval

included in (0, 1) ∪ (1,+∞) that contains N/T for all T large enough.
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Quantities introduced in Section 2 will henceforth be indexed by the subscript T so that

we can study their asymptotic behavior. Unlike the proposals by Kan and Zhou (2007),

Frahm and Memmel (2010), and Tu and Zhou (2011), our method can also handle the case

c > 1, where the sample covariance matrix is not invertible. The case c = 1 is ruled out in the

theoretical treatment for technical reasons, but the empirical results in Section 5 indicate that

our method works well in practice even in this challenging case.

Assumption 3.2 (Population Covariance Matrix).

a) The population covariance matrix ΣT is a nonrandom symmetric positive-definite matrix

of dimension N .

b) Let τT ..= (τT,1, . . . , τT,N )′ denote a system of eigenvalues of ΣT sorted in increasing

order. The empirical distribution function (e.d.f.) of population eigenvalues is defined

as: ∀x ∈ R, HT (x) ..= N−1
∑N

i=1 1[τT,i,∞)(x), where 1 denotes the indicator function of

a set. It is assumed that HT converges weakly to a limit law H, called the limiting spectral

distribution (function).

c) Supp(H), the support of H, is the union of a finite number of closed intervals, bounded

away from zero and infinity.

d) There exists a compact interval [h, h] ⊂ (0,∞) that contains Supp(HT ) for all T large

enough.

The existence of a limiting population spectral distribution is a usual assumption in the

literature on large-dimensional asymptotics, but given that it is relatively new in finance, it is

worth providing additional explanations. In item a) the population covariance matrix harbors

the subscript T to signify that it depends on the sample size: it changes as T goes to infinity

because its dimension N is a function of T , as stated in Assumption 3.1. Item b) defines the

cross-sectional distribution of population eigenvalues HT as the nondecreasing function that

returns the proportion of eigenvalues to the left of any given number. HT converges to some

limit H which can be interpreted as the ‘signature’ of the population covariance matrix: it says

what proportion of eigenvalues are big, small, etc. Items c) and d) are technical assumptions

requiring the supports of H and HT to be well behaved.

Assumption 3.3 (Data Generating Process). XT is a T × N matrix of i.i.d. random

variables with mean zero, variance one, and finite 12th moment. The matrix of observations

is YT ..= XT ×
√
ΣT , where

√
ΣT denotes the symmetric positive-definite square root of ΣT .

Neither
√
ΣT nor XT are observed on their own: only YT is observed.

Remark 3.1. The matrix which we denote
√
ΣT is not obtained by the Cholesky decomposi-

tion of the population covariance matrix ΣT , because then it would be lower triangular. Instead√
ΣT is the symmetric positive-definite matrix obtained by keeping the same eigenvectors

as ΣT , but recombining them with the square roots of the population eigenvalues, namely(√
τT,1, . . . ,

√
τT,N

)′
.
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If asset returns have nonzero means, as is usually the case, then it is possible to remove

the sample means, and our results still go through because it only constitutes a rank-one

perturbation for the large-dimensional matrices involved, as shown in Theorem 11.43 of

Bai and Silverstein (2010). While the bound on the 12th moment simplifies the mathematical

proofs, numerical simulations (not reported here) indicate that a bounded fourth moment

would be sufficient in practice.

The sample covariance matrix is defined as ST
..= T−1Y ′

TYT = T−1
√
ΣTX

′
TXT

√
ΣT . It

admits a spectral decomposition ST = UTΛTU
′
T , where ΛT is a diagonal matrix, and UT is

an orthogonal matrix: UTU
′
T = U ′

TUT = IT , where IT (in slight abuse of notation) denotes

the identity matrix of dimension N ×N . Let ΛT
..= Diag(λT ), where λT

..= (λT,1, . . . , λT,N )′.

We can assume without loss of generality that the sample eigenvalues are sorted in increasing

order: λT,1 ≤ λT,2 ≤ · · · ≤ λT,N . Correspondingly, the ith sample eigenvector is uT,i, the

ith column vector of UT . The e.d.f. of the sample eigenvalues is given by: ∀x ∈ R, FT (x) ..=

N−1
∑N

i=1 1[λT,i,∞)(x), where 1 denotes the indicator function of a set.

The literature on sample covariance matrix eigenvalues under large-dimensional asymp-

totics is based on a foundational result due to Marčenko and Pastur (1967). It has been

strengthened and broadened by subsequent authors reviewed in Bai and Silverstein (2010).

Under Assumptions 3.1–3.3, there exists a limiting sample spectral distribution F continuously

differentiable on (0,+∞) such that

∀x ∈ (0,+∞) FT (x)
a.s.−→ F (x). (3.1)

In addition, the existing literature has unearthed important information about the limiting

spectral distribution F , including an equation that relates F to H and c. This means

that, asymptotically, one knows the average number of sample eigenvalues that fall in any

given interval. Another useful result concerns the support of the distribution of the sample

eigenvalues. Theorem 6.3 of Bai and Silverstein (2010) and Assumptions 3.1–3.3 imply that the

support of F , Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals
⋃κ

k=1[ak, bk],

where 0 < a1 < b1 < · · · < aκ < bκ < ∞, with the addition of the singleton {0} in the case

c > 1.

Assumption 3.4 (Class of Estimators). We consider positive-definite covariance matrix esti-

mators of the type Σ̂T
..= UT ∆̂TU

′
T , where ∆̂T is a diagonal matrix: ∆̂T

..= Diag
(
δ̂T (λT,1) . . . ,

δ̂T (λT,N )
)
, and δ̂T is a real univariate function which can depend on ST . We assume that

there exists a nonrandom real univariate function δ̂ defined on Supp(F ) and continuously

differentiable such that δ̂T (x)
a.s−→ δ̂(x), for all x ∈ Supp(F ). Furthermore, this convergence

is uniform over x ∈ ⋃κ
k=1[ak + η, bk − η], for any small η > 0. Finally, for any small

η > 0, there exists a finite nonrandom constant K̂ such that almost surely, over the set

x ∈ ⋃κ
k=1[ak − η, bk + η], δ̂T (x) is uniformly bounded by K̂ from above and by 1/K̂ from below,

for all T large enough. In the case c > 1 there is the additional constraint 1/K̂ ≤ δ̂T (0) ≤ K̂

for all T large enough.

This is the class of rotation-equivariant estimators introduced by Stein (1975, 1986):
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rotating the original variables results in the same rotation being applied to the covariance

matrix estimator. Rotation equivariance is appropriate in the general case where the

statistician has no a priori information about the orientation of the eigenvectors of the

covariance matrix.

The financial interpretation of rotating the original variables is to repackage the N

individual stocks listed on the exchange into an equal number N of funds that span the same

space of attainable investment opportunities. The assumption of rotation equivariance simply

means that the covariance matrix estimator computed from the N individual stocks must be

consistent with the one computed from the N funds.

The fact that we keep the sample eigenvectors does not mean that we assume they are close

to the population eigenvectors. It only means that we do not know how to improve upon them.

If we believed that the sample eigenvectors were close to the population eigenvectors, then

the optimal covariance matrix estimator would have eigenvalues very close to the population

eigenvalues. As we will see below, this is not at all what we do, because it is not optimal. Our

nonlinear shrinkage formula differs from the population eigenvalues precisely because it needs

to minimize the impact of sample eigenvectors estimation error.

We call δ̂T (·) the shrinkage function (or at times the shrinkage formula) because, in all

applications of interest, its effect is to shrink the set of sample eigenvalues by reducing its

dispersion around the mean, pushing up the small ones and pulling down the large ones.

Shrinkage functions need to be as well behaved asymptotically as spectral distribution functions,

except possibly on a finite number of arbitrarily small regions near the boundary of the support.

The large-dimensional asymptotic properties of a generic rotation-equivariant estimator Σ̂T are

fully characterized by its limiting shrinkage function δ̂(·).

Remark 3.2. The linear shrinkage estimator of Ledoit and Wolf (2004b) also belongs to this

class of rotation-equivariant estimators, with the shrinkage function given by

δ̂T (λT,i) ..= (1− k̂) · λT,i + k̂ · λ̄T where λ̄T
..=

1

N

N∑

j=1

λT,j . (3.2)

Here, the shrinkage intensity k̂ ∈ [0, 1] is determined in an asymptotically optimal fashion; see

Ledoit and Wolf (2004b, Section 3.3).

Remark 3.3. If rotation equivariance is lost, this means that our method can be improved

further still by taking into account a priori information about the orientation of the underlying

data structure. Although this line of research is not the main thrust of the paper, we describe

how to implement such an extension in Section 5.2.

Estimators in the class defined by Assumption 3.4 are evaluated according to the limit as

T and N go to infinity together (in the manner of Assumption 3.1) of the loss function defined

in equation (2.4). For this limit to exist, some assumption on the return predictive signal

is required.4 The assumption that we make below is coherent with the rotation-equivariant

4The return predictive signal can be interpreted as an estimator of the vector of expected returns, which is

not available in practice.
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framework that we have built so far.

Assumption 3.5 (Return Predictive Signal). mT is distributed independently of ST and its

distribution is rotation invariant.

Remark 3.4. Assumption 3.5 may be hard to uphold for models that link expected returns

to covariances. However, our methodology does not take a stance on the origin of the return

predictive signal. It is designed to work well over the widest range, as opposed to being custom-

tailored to a specific signal. Hence features of specific signals, such as expected returns being

linked to covariances, are not accomodated by our methodology. Presumably, the performance

of our method can be further improved by taking such linkages into account, but then the

optimal nonlinear shrinkage formula would have to be derived anew for every different model

of expected returns. Doing so lies beyond the scope of the present paper, but constitutes a

promising avenue for future research.

Rotation invariance means that the normalized return predictive signal mT /
√
m′

TmT is

uniformly distributed on the unit sphere. This setting favors covariance matrix estimators that

work well across the board, without indicating a preference about the orientation of the vector

of expected returns. Furthermore, it implies that mT is distributed independently of any Σ̂T

that belongs to the rotation-equivariant class of Assumption 3.4. The limit of the loss function

defined in Section 2 is given by the following theorem, where C+ ..= {a+i·b : a ∈ R, b ∈ (0,∞)}
denotes the strict upper half of the complex plane; here, i ..=

√
−1.

Theorem 3.1. Under Assumptions 3.1–3.5,

m′
TmT × m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT(

m′
T Σ̂

−1
T mT

)2
a.s.−→

κ∑

k=1

∫ bk

ak

dF (x)

x |s(x)|2 δ̂(x)2
+ 1{c>1}

1

c s(0) δ̂(0)2
[∫

dF (x)

δ̂(x)

]2 , (3.3)

where, for all x ∈ (0,∞), and also for x = 0 in the case c > 1, s(x) is defined as the unique

solution s ∈ R ∪ C
+ to the equation

s = −
[
x− c

∫
τ

1 + τ s
dH(τ)

]−1

. (MP)

The important message of the theorem is that there is a nonstochastic limit of the loss

function. This means that we do not have to take expectations, since all randomness vanishes

in the large-dimensional limit. Then the line of attack will be to find the nonlinear shrinkage

function that minimizes the limiting loss. The formulas themselves are not particularly

intuitive, especially because much of the action takes place in the complex plane, but since

they are relatively easy to compute and implement, this is not much of a handicap.

All proofs are in Appendix B. Although equation (MP) may appear daunting at first

sight, it comes from the original article by Marčenko and Pastur (1967) that spawned the

literature on large-dimensional asymptotics. Broadly speaking, the complex-valued function
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s(x) can be interpreted as the Stieltjes (1894) transform of the limiting empirical distribution

of sample eigenvalues; see Appendix B.1 for more specific mathematical details. By contrast,

equation (3.3) is one of the major mathematical innovations of this paper.

4 Optimal Covariance Matrix Estimator for Portfolio Selection

An oracle estimator is one that depends on unobservable quantities. It constitutes an important

stepping stone towards the formulation of a bona fide estimator, that is, an estimator usable

in practice, provided the unobservable quantities can be estimated consistently.

4.1 Oracle Estimator

Equation (3.3) enables us to characterize the optimal limiting shrinkage function in the

following theorem, which represents the culmination of the new theoretical analysis developed

in the present paper.

Theorem 4.1. Define the oracle shrinkage function

∀x ∈ Supp(F ) d∗(x) ..=





1

x |s(x)|2 if x > 0,

1

(c− 1) s(0)
if c > 1 and x = 0 ,

(4.1)

where s(x) is the complex-valued Stieltjes transform defined by equation (MP). If Assumptions

3.1–3.5 are satisfied, then the following statements hold true:

(a) The oracle estimator of the covariance matrix

S∗
T

..= UTD
∗
TU

′
T where D∗

T
..= Diag

(
d∗(λT,1), . . . , d

∗(λT,N )
)

(4.2)

minimizes in the class of rotation-equivariant estimators defined in Assumption 3.4 the

almost sure limit of the portfolio-selection loss function introduced in Section 2

LT

(
Σ̂T , ΣT ,mT

)
..= m′

TmT
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT(

m′
T Σ̂

−1
T mT

)2 , (4.3)

as T and N go to infinity together in the manner of Assumption 3.1.

(b) Conversely, any covariance matrix estimator Σ̂T that minimize the a.s. limit of the

portfolio-selection loss function LT is asymptotically equivalent to S∗
T up to scaling, in

the sense that its limiting shrinkage function is of the form δ̂ = αd∗ for some positive

constant α.

S∗
T is an oracle estimator because it depends on c and s(x) which are both unobservable.

Nonetheless, deriving a bona fide counterpart to S∗
T will be easy because consistent estimators

for c and s(x) are readily available, as demonstrated in Section 4.4 below; therefore, we shall

keep our attention on S∗
T for the time being.
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As is apparent from part (b) of Theorem 4.1, minimizing the loss function characterizes the

optimal shrinkage formula only up to an arbitrary positive scaling factor α. This is inherent

to the problem of portfolio selection: equation (2.2) shows that two covariance matrices that

only differ by the scaling factor α yield the same vector of portfolio weights. The point of the

following proposition is to control the trace of the estimator in order to pick the most natural

scaling coefficient.

Proposition 4.1. Let Assumptions 3.1–3.5 hold, and let the limiting shrinkage function of

the estimator Σ̂T be of the form δ̂(·) = αd∗(·) for some positive constant α as per item (b) of

Theorem 4.1. Then,
1

N
Tr
(
Σ̂T

)
− 1

N
Tr
(
ΣT

) a.s.−→ 0 (4.4)

if and only if α = 1.

Since it is desirable for an estimator to have the same trace as the population covariance

matrix, from now on we will focus exclusively on the scaling coefficient α = 1 and the oracle

estimator S∗
T .

The optimal oracle estimator S∗
T does not depend on the vector of return signalsmT . This is

because it is designed to work well across the board for all mT , as evidenced by Assumption 3.5.

In subsequent Monte Carlo simulations (Section 5.3 and Appendix E), we will make specific

choices for mT (the unit vector and the momentum factor, respectively), but that is only for

the purpose of illustration.

One of the basic features of the optimal nonlinear transformation d∗(·) is that it preserves
the grand mean of the eigenvalues, as evidenced by Proposition 4.1. The natural follow-

up question is whether the cross-sectional dispersion of eigenvalues about their grand mean

expands or shrinks. The answer can be found by combining Theorem 1.4 of Ledoit and Péché

(2011) with Section 2.3 of Ledoit and Wolf (2004b). The former provides a heuristic

interpretation of d∗(λT,i) as an approximation to u′T,iΣTuT,i, whereas the latter shows that(
u′T,iΣTuT,i

)
i=1,...,N

are less dispersed than
(
λT,i

)
i=1,...,N

. Together they imply that the

transformation d∗ does indeed deserve to be called a “shrinkage” because it reduces cross-

sectional dispersion.

Further information regarding Theorem 4.1 can be gathered by comparing equation (4.1)

with the two shrinkage formulas obtained earlier by Ledoit and Wolf (2012). These authors

used a generic loss function renowned for its tractability, based on the Frobenius norm. The

Frobenius norm of a quadratic matrix A is defined as ‖A‖F ..=
√
Tr(AA′), so it is essentially

quadratic in nature. Ledoit and Wolf (2012) used a Frobenius-norm-based loss function in two

different ways, once with the covariance matrix and then again with its inverse:

L
1
T

(
Σ̂T , ΣT

)
..=

1

N

∥∥∥Σ̂T −ΣT

∥∥∥
2

F
and (4.5)

L
−1
T

(
Σ̂T , ΣT

)
..=

1

N

∥∥∥Σ̂−1
T −Σ−1

T

∥∥∥
2

F
, (4.6)

leading to two different optimal shrinkage formulas.
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The first unexpected result is that equation (4.1) is the same as one of the two shrinkage

formulas obtained by Ledoit and Wolf (2012), even though the loss functions are completely

different. We consider this result to be reassuring because it is easier to trust a shrinkage

formula that is optimal with respect to multiple loss functions than one which is intimately

tied to just one particular loss function.

The second unexpected result is that, among the two shrinkage formulas of Ledoit and Wolf

(2012), d∗(·) is equal to the ‘wrong’ one. Indeed, equation (2.2) makes it clear that Markowitz

(1952) portfolio selection involves not the covariance matrix itself but its inverse. Thus

we might have expected that d∗ is equal to the shrinkage formula obtained by minimizing

the loss function L
−1
T , which penalizes estimation error in the inverse covariance matrix.

It turns out that the exact opposite is true: d∗(·) is optimal with respect to L
1
T instead.

This insight could not have been anticipated without the analytical developments achieved

in Theorems 3.1 and 4.1. In particular, there have been several papers recently concerned

with the ‘direct’ estimation of the inverse covariance matrix5 using a loss function of the

type (4.6), with Markowitz (1952) portfolio selection listed as a major motivation; for example,

see Frahm and Memmel (2010), Bodnar et al. (2014), and Wang et al. (2015). But our result

shows that, unexpectedly, this approach is suboptimal in the context of portfolio selection.

Remark 4.1. To the extent that some intuition can be gleaned, it goes as follows. A bit of

linear algebra reveals that our loss function L
(
Σ̂T , ΣT ,mT

)
involves the diagonal of U ′

TΣTUT .

This is the critical ingredient that will condition the shape of the final result. L
1
T

(
Σ̂T , ΣT

)

can also be rewritten in terms of the diagonal of U ′
TΣTUT . This is why they both end up with

the same shrinkage formula. But L−1
T

(
Σ̂T , ΣT

)
involves the diagonal of U ′

TΣ
−1
T UT , which is

different from the diagonal of U ′
TΣTUT , resulting in a different shrinkage formula.

This is easy to say in hindsight, after having done the mathematical derivations in detail.

Intuition alone can be misleading; there is no short cut to bypass the hard work of going

through all the necessary calculations.

4.2 Portfolio Decomposition

In the end, the best way to gain comfort with this mathematical result may be to seek a

portfolio-decomposition interpretation of it. Starting from Section 2.1, we can express the

vector of optimal portfolio weights as

w∗
T

..= aT × (S∗
T )

−1mT = aT × UT (D
∗
T )

−1U ′
TmT = aT ×

N∑

i=1

u′T,imT

d∗(λT,i)
uT,i

≈ aT ×
N∑

i=1

u′T,imT

u′T,iΣTuT,i
uT,i ,

where aT is a suitably chosen scalar coefficient, and the last approximation comes from

Theorem 1.4 of Ledoit and Péché (2011), as mentioned earlier. Thus, the mean-variance

5The inverse covariance matrix is also called the precision matrix in the statistics literature.
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efficient portfolio can be decomposed into a linear combination of sample eigenvector portfolios,

with the ith sample eigenvector portfolio assigned a weight approximately proportional to

u′T,imT /
(
u′T,iΣTuT,i

)
. This weighting scheme is intuitively appealing because it represents the

out-of-sample reward-to-risk ratio of the ith sample eigenvector portfolio. (By “out-of-sample”,

we mean the true risk, which is determined by the population covariance matrix ΣT , and not

any estimator of it.) Thus we can be confident that the proposed nonlinear shrinkage formula

makes sense economically.

4.3 Why Shrinkage Can Be Useful Even for Small N

The amount of bias in the sample eigenvalues induced by having non-vanishing concentration

ratio c = N/T depends on the whole shape of the spectral distribution, and is not generally

available in closed form. However a particular case where a closed-form solution is known

can serve for illustration purposes: it is when all population eigenvalues are equal to one

another. The resulting cross-sectional distribution of sample eigenvalues is known as the

Marčenko-Pastur law. If all population eigenvalues are equal to, say, τ , then the support of

the Marčenko-Pastur law is the interval [τ(1−√
c)2, τ(1 +

√
c)2]. Thus the maximum relative

bias is of the order of 2
√
c for small c. Suppose that we are willing to tolerate a relative error

in the allocation of our portfolio weights across sample eigenvectors of 5% maximum. This

means that we need to have 2
√
N/T = 0.05. For a small portfolio of N = 30 stocks, which

corresponds to the number of constituents in a narrow-based index such as the Dow Jones,

this requires 192 years of daily data already. Thus, for all practical purposes, even for small

portfolios of only N = 30 stocks, using our shrinkage formula is not a luxury.

The problem of correcting the eigenvalues is highly nonlinear in nature, even for what people

may consider to be fairly low values of the concentration ratio c = N/T . Let us say, for example,

that we have five times more observations than the number of stocks. This corresponds, for

example, to one year of daily data on a portfolio of N = 50 stocks, which is probably towards

the lower end for a quantitative equity portfolio manager. At first sight it would appear that

T = 5N is sufficient to escape from the singularity problems that arise when T > N . Yet, even

when c = 1/5, a highly nonlinear correction is needed. This correction, of course, depends on

the actual shape of the spectral distribution. For the sake of illustration, we consider a broad

selection of distributions from the Beta family, linearly shifted so that the support is [1,10];

their densities are plotted in Figure 7 of Ledoit and Wolf (2012). The corresponding oracle

shrinkage functions (4.1) are displayed in Figure 1.

Visually, one can verify that the nonlinearities are quite pronounced, even thoughN is small

relative to T . Also bear in mind that all the c.d.f.s from the beta family are nicely continuous;

the nonlinear effects would be even more striking if we had used discontinuous population

spectral c.d.f.s such as in Bai and Silverstein (1998), Johnstone (2001), or Mestre (2008).

The improvement we get by correctly shrinking the sample eigenvalues in a nonlinear

fashion compensates for the fact that we do not seek to improve over the estimator of the

mean vector. It may be possible to cumulate the improvements of the two strands of literature
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by combining our method for the estimation of the covariance matrix with some other method

for the reduction in the estimation risk of the vector of expected returns. This topic is an

interesting avenue for future research but it lies outside the scope of the present paper.

Given that, by a mathematical accident, we end up with the same shrinkage formula as

Ledoit and Wolf (2012) (see discussion below equations (4.5)–(4.6)), we can recycle their Monte

Carlo simulations. When the universe dimension N is 10 times smaller than the sample size T ,

nonlinear shrinkage improve by up to 90% over the sample covariance matrix. Even when N

is 100 times smaller than T , there is still up to 60% improvement.

4.4 Bona Fide Estimator

Transforming our optimal oracle estimator S∗
T into a bona fide one is a relatively straightforward

affair thanks to the solutions provided by Ledoit and Wolf (2012, 2015). These authors develop

an estimator ŝ(x) for the unobservable Stieltjes transform s(x), and demonstrate that replacing

s(x) with ŝ(x) and replacing the limiting concentration ratio c with its natural estimator

ĉT ..= N/T is done at no loss asymptotically. Given that the estimator ŝ(x) is not novel,

a restatement of its definition for the sake of convenience is relegated to Appendix C. The

following corollary gives the bona fide covariance matrix estimator that is optimal for portfolio

selection in the N -dimensional class of nonlinear shrinkage estimators.

Corollary 4.1. Suppose that Assumptions 3.1–3.5 are satisfied, and let ŝ(x) denote the

estimator of the Stieltjes transform s(x) introduced by Ledoit and Wolf (2015) and reproduced

in Appendix C. Then the covariance matrix estimator

ŜT
..= UT D̂TU

′
T where D̂T

..= Diag
(
d̂T (λT,1), . . . , d̂T (λT,N )

)
(4.7)

and ∀i = 1, . . . , N d̂T (λT,i) ..=





1

λT,i |ŝ(λT,i)|2
if λT,i > 0,

1(
N
T − 1

)
ŝ(0)

if N > T and λT,i = 0
(4.8)

minimizes in the class of rotation-equivariant estimators defined in Assumption 3.4 the almost

sure limit of the portfolio-selection loss function LT as T and N go to infinity together in the

manner of Assumption 3.1.

This corollary is given without proof, as it is an immediate consequence of Theorem 4.1

above, via Ledoit and Wolf (2012, Proposition 4.3; 2015, Theorem 2.2).

4.5 Alternative Covariance Matrix Estimators

Estimation of a large-dimensional covariance matrix has become a large and active field of

research in recent times. A comprehensive review of the entire literature is clearly beyond the

scope of the present paper. Nevertheless, we can make some remarks to put our contribution

into perspective.
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There are two broad avenues for estimating a covariance matrix when the number of

variables is of the same magnitude as the sample size: structure-based estimation and structure-

free estimation.

Structure-based estimation makes the problem more amenable by assuming additional

structure on the covariance matrix. The three most commonly used sorts of structure in this

avenue are sparsity, graph models, and (approximate) factor models. Sparsity assumes that

most entries in the covariance matrix are (near) zero; graph models assume that most entries

in the inverse covariance matrix are (near) zero. Neither assumption is generally realistic for a

covariance matrix of financial returns. Factor models, on the other hand, have a long history

in finance; for example, see Campbell et al. (1997, Chapter 6) and Ahn et al. (2009). An

exact factor model assumes a known number of factors and a diagonal covariance matrix of

the error terms. Weaker forms assume an unknown number of factors and/or sparsity of the

covariance matrix of the error terms.6 Since the number of factors is always assumed to be

small and fixed, exact factor models have O(1) degrees of freedom. If the number of factors is

estimated from the data, there is one additional degree of freedom. If the covariance matrix

of the error terms is only assumed to be sparse rather than diagonal (that is, an approximate

factor model), the additional degrees of freedom depend on the thresholding scheme applied to

the sample covariance matrix of the residuals of the estimated factor model. To this end, one

simply uses a scheme from the literature on estimating a sparse covariance matrix and most

such schemes only have one degree of freedom; for example, see Bickel and Levina (2008),

Cai and Liu (2011), and Fan et al. (2013). As a result, even approximate factors generally

only have O(1) degrees of freedom.

Structure-free estimation typically falls in our rotation-equivariant framework. As we have

explained, the method of Ledoit and Wolf (2004b) has O(1) degrees of freedom, whereas our

new proposal has O(N) degrees of freedom. Another recent method is the one of Won et al.

(2013) which has O(1) degrees of freedom.7

5 Empirical Results

The goal of this section is to examine the out-of-sample properties of Markowitz portfolios

based on our newly suggested covariance matrix estimator. In particular, we make comparisons

to other popular investment strategies in the finance literature; some of these are based on

an alternative covariance matrix estimator while others avoid the problem of estimating the

covariance matrix altogether.

For compactness of notation, as in Section 2, we do not use the subscript T in denoting the

covariance matrix itself, an estimator of the covariance matrix, or a return predictive signal

that proxies for the vector of expected returns.

6Note that a diagonal matrix is a special case of a sparse matrix.
7The method ‘winsorizes’ the sample eigenvalues and the two degrees of freedom are the two points of

winsorization, at the lower end and at the upper end of the spectrum.
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5.1 Data and General Portfolio Formation Rules

We download daily data from the Center for Research in Security Prices (CRSP) starting in

01/01/1972 and ending in 12/31/2011. For simplicity, we adopt the common convention that

21 consecutive trading days constitute one ‘month’. The out-of-sample period ranges from

01/19/1973 through 12/31/2011, resulting in a total of 480 ‘months’ (or 10,080 days). All

portfolios are updated ‘monthly’.8 We denote the investment dates by h = 1, . . . , 480. At any

investment date h, a covariance matrix is estimated using the most recent T = 250 daily

returns, corresponding roughly to one year of past data.

We consider the following portfolio sizes: N ∈ {30, 50, 100, 250, 500}. This range covers

the majority of the important stock indexes, from the Dow Jones Industrial Average to the

S&P 500. For a given combination (h,N), the investment universe is obtained as follows. We

first determine the 500 largest stocks (as measured by their market value on the investment

date h) that have a complete return history over the most recent T = 250 days as well as a

complete return ‘history’ over the next 21 days.9 Out of these 500 stocks, we then select N at

random: these N randomly selected stocks constitute the investment universe for the upcoming

21 days. As a result, there are 480 different investment universes over the out-of-sample period.

5.2 Rotation Equivariance and Preconditioning

The focus of our paper is mainly on rotation-equivariant estimators, but in the empirical study

we also include some other estimators for the sake of comparison and completeness.

What rotation-equivariant estimation really means is that the researcher does not have any

a priori beliefs about the orientation of the population eigenvectors. It is thus the most general

and neutral approach, which is why we favor it. There have been several recent proposals for

the estimation of optimized portfolios that fall in the rotation-equivariant framework, and we

shall compare our nonlinear shrinkage estimator to them.

In order to make a comparison with factor models, which are not in the class of rotation-

equivariant estimators, we have to come up with an adaptation of our method that breaks

rotation equivariance. The way we do it is by pre-conditioning the data according to a

simple model. We choose an exact factor model with a single factor: the return on the equal-

weighted portfolio of the stocks in the investment universe.10 Let Σ̂F denote the covariance

matrix estimator that comes from fitting this exact factor model. We precondition the data

by right-multiplying the observation matrix YT by Σ̂
−1/2
F . Doing so removes the structure

contained in the factor matrix Σ̂F . We then apply our nonlinear shrinkage technology to the

preconditioned data YT × Σ̂
−1/2
F , which yields an output Σ̂C . The final estimator is then

8‘Monthly’ updating is common practice to avoid an unreasonable amount of turnover, and thus transaction

costs.
9The latter, forward-looking restriction is not a feasible one in real life but is commonly applied in the related

finance literature on the out-of-sample evaluation of portfolios.
10The motivation for using the equal-weighted portfolio of the stocks in the investment universe as (single)

factor is that no outside information is needed. As a result, the method is entirely self-contained and can be

applied by anyone to any universe of assets.
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obtained by reincorporating the structure from the factor model:

Σ̂ ..= Σ̂
1/2
F × Σ̂C × Σ̂

1/2
F . (5.1)

This approach can accomodate other a priori beliefs about the orientation of the population

eigenvectors simply by changing the preconditioning matrix Σ̂F .

5.3 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio, in the

absence of short-sales constraints.11 The problem is formulated as

min
w

w′Σw (5.2)

subject to w′1 = 1 , (5.3)

where 1 denotes a vector of ones of dimension N × 1. It has the analytical solution

w =
Σ−11

1′Σ−11
. (5.4)

The natural strategy in practice is to replace the unknown Σ by an estimator Σ̂ in

formula (5.4), yielding a feasible portfolio

ŵ ..=
Σ̂−11

1′Σ̂−11
. (5.5)

Alternative strategies, motivated by estimating the optimal w of (5.4) ‘directly’, as opposed

to ‘indirectly’ via the estimation of Σ, have been proposed recently by Frahm and Memmel

(2010).

Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, since it abstracts from having to estimate the vector of expected

returns at the same time. In addition, researchers have established that estimated GMV

portfolios have desirable out-of-sample properties not only in terms of risk but also in terms

of reward-to-risk (that is, in terms of the Sharpe ratio); for example, see Haugen and Baker

(1991), Jagannathan and Ma (2003), and Nielsen and Aylursubramanian (2008). As a result,

such portfolios have become an addition to the large array of products sold by the mutual fund

industry.

The following 11 portfolios are included in the study.

• 1/N : The equal-weighted portfolio promoted by DeMiguel et al. (2009b), among others.

This portfolio can be viewed as a special case of (5.5) where Σ̂ is given by the N × N

identity matrix. This strategy avoids any parameter estimation whatsoever.

• Sample: The portfolio (5.5) where Σ̂ is given by the sample covariance matrix; note

that this portfolio is not available when N > T , since the sample covariance matrix is

not invertible in this case.
11The problem of estimating a ‘full’ Markowitz portfolio with momentum signal is considered in Appendix E.
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• FM: The dominating portfolio of Frahm and Memmel (2010). The particular version

we use is defined in their equation (10), where the reference portfolio wR is given by

the equal-weighted portfolio. This portfolio is a convex linear combination of the two

previous portfolios 1/N and Sample. Therefore, it is also not available when N > T .

• FYZ: The GMV portfolio with gross-exposure constraint of equation (2.6) of Fan et al.

(2012). As suggested in their paper, we take the sample covariance matrix as an estimator

of Σ and set the gross-exposure constraint parameter equal to c = 2.

• Lin: The portfolio (5.5) where the matrix Σ̂ is given by the linear shrinkage estimator

of Ledoit and Wolf (2004b).

• NonLin: The portfolio (5.5) where Σ̂ is given by the estimator Ŝ of Corollary 4.1.

• NL-Inv: The portfolio (5.5) where Σ̂−1 is given by the ‘direct’ nonlinear shrinkage

estimator of Σ−1 based on generic a Frobenius-norm loss. This estimator was first

suggested by Ledoit and Wolf (2012) for the case N < T ; the extension to the case

T ≥ N can be found in Ledoit and Wolf (2014).

• SF: The portfolio (5.5) where Σ̂ is given by the single-factor covariance matrix Σ̂F used in

the construction of the single-factor-preconditioned nonlinear shrinkage estimator (5.1).

• FF: The portfolio (5.5) where Σ̂ is given by the covariance matrix estimator based on

the (exact) three-factor model of Fama and French (1993).12

• POET: The portfolio (5.5) where Σ̂ is given by the POET covariance matrix estimator

of Fan et al. (2013). This method uses an approximate factor model where the factors are

taken to be the principal components of the sample covariance matrix and thresholding

is applied to covariance matrix of the principal orthogonal complements.13

• NL-SF The portfolio (5.5) where Σ̂ is given by the single-factor-preconditioned nonlinear

shrinkage estimator (5.1).

We report the following three out-of-sample performance measures for each scenario. (All

measures are annualized and in percent for ease of interpretation.)

• AV: We compute the average of the 10,080 out-of-sample returns in excess of the risk-free

rate and then multiply by 250 to annualize.

• SD: We compute the standard deviation of the 10,080 out-of-sample returns in excess of

the risk-free rate and then multiply by
√
250 to annualize.

• SR: We compute the (annualized) Sharpe ratio as the ratio AV/SD.

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV portfolio

is given by (5.4). It is designed to minimize the variance (and thus the standard deviation)

rather than to maximize the expected return or the Sharpe ratio. Therefore, any portfolio that

12Data on the three Fama & French factors were downloaded from Ken French’s website.
13In particular, we use K = 5 factors, soft thresholding, and the value of C = 1.0 for the thresholding

parameter. Among several specifications we tried, this one worked best on average.
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implements the GMV portfolio should be primarily evaluated by how successfully it achieves

this goal.

We also consider the question of whether one portfolio delivers a lower out-of-sample

standard deviation than another portfolio at a level that is statistically significant. Since

we consider seven portfolios, there are 21 pairwise comparisons. To avoid a multiple testing

problem and since a major goal of this paper is to show that nonlinear shrinkage improves

upon linear shrinkage in portfolio selection, we restrict attention to the single comparison

between the two portfolios Lin and NonLin. For a given scenario, a two-sided p-value for the

null hypothesis of equal standard deviations is obtained by the prewhitened HACPW method

described in Ledoit and Wolf (2011, Section 3.1).14

The results are presented in Table 1 and can be summarized as follows.

• The standard deviation of the true GMV portfolio (5.4) decreases in N . So the same

should be true for any good estimator of the GMV portfolio. As N increases from

N = 30 to N = 500, the standard deviation of 1/N decreases by only 1.1 percentage

points. On the other hand, the standard deviations of Lin and Nonlin decrease by 3.9

and 4.4 percentage points, respectively. Therefore, sophisticated estimators of the GMV

portfolio are successful in overcoming the increased estimation error for a larger number

of assets and indeed deliver a markedly better performance.

• 1/N is consistently outperformed in terms of the standard deviation by all other portfolios

with the exception of Sample and FM for N = 250, when the sample covariance matrix

is nearly singular.

• FM improves upon Sample but, in turn, is outperformed by the other ‘sophisticated’

rotation-equivariant portfolios. It is generally also outperformed by the factor-based

portfolios, with the exception of FF and POET for N = 30.

• The performance of FZY and Lin is comparable.

• NonLin has the uniformly best performance among the rotation-equivariant portfolios

and the outperformance over Lin is statistically significant at the 0.1 level for N = 30

and statistically significant at the 0.01 level for N = 50, 100, 250, 500.

• In terms of economic significance, for N = 250 and 500, we get Sharpe ratio gains of

0.08 and 0.06, respectively. In relative terms, this corresponds to boosts of 15% and 12%,

respectively. (Note that even stronger gains are realized in the ‘full’ Markowitz portfolio

with momentum signal; see Appendix E).

• NonLin also outperforms NL-Inv, though the differences are always small.

• Among the four factor-based portfolios, NL-SF is uniformly the best; in particular, NL-

SF outperforms the three-factor model FF which in return outperforms the single-factor

model SF. NL-SF outperforms NonLin in terms of the standard deviation and, generally,

also in terms of the Sharpe ratio (except for N = 250).

14Since the out-of-sample size is very large at 10,080, there is no need to use the computationally more involved

bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred for small sample sizes.
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Summing up, in the global minimum variance portfolio problem, NonLin dominates the

other six rotation-equivariant portfolios portfolios in terms of the standard deviation and, in

addition, dominates Lin in terms of the Sharpe ratio. NL-SF constitutes a further improvement

over NonLin.

Remark 5.1. It is true that the economic significance of our improvements is stronger for

larger values of N . When academics research anomalies in the cross-sectional of stock returns,

forming low-volatility portfolios that load on the candidate characteristic produces a more

powerful test than looking at the top decile minus the bottom decile. This requires the

estimated covariance matrix for all the stocks in the CRSP universe that are alive at a given

point in time, which reaches well into the thousands. Bell et al. (2014) show how such an

approach can be implemented. In view of the heightened t-statistic thresholds advocated by

Harvey et al. (2016) to deal with the multiple testing problem, we are going to need a more

powerful test.

A second mission of finance professors is to forge tools that can be used by practictioners to

implement investment methodologies that are scientifically correct, and in the simplest sense

this means: Markowitz portfolio selection. Quantitative asset managers specializing in single-

stock equities commonly use large values of N so that they benefit from a “cross-sectional

law of large numbers”. For example, in the US, there is decent liquidity in the constituents

of the Russell 3000 Index. In Europe, it is easy to get a 600-stock universe with sufficient

liquidity, and the same again in Japan. This is also true of hedge fund strategies such as

Statistical Arbitrage, even though they tend to have a higher turnover than classic long-only

fund managers. As for pure technical players, who display a strong preference for liquid stocks,

they can still find more than 500 names worthy of being traded in the US. Therefore, demand

for covariance matrix estimators that excel in the large-N domain is strong.

5.4 Analysis of Weights

We also provide some summary statistics on the vectors of portfolio weights ŵ over time. In

each ‘month’, we compute the following four characteristics:

• Min: Minimum weight.

• Max: Maximum weight.

• SD: Standard deviation of weights.

• MAD-EW: Mean absolute deviation from equal-weighted portfolio computed as

1

N

N∑

i=1

∣∣ŵi −
1

N

∣∣ .

For each characteristic, we then report the average outcome over the 480 portfolio formations

(that is, over the 480 ‘months’).

The results are presented in Table 2. Not surprisingly, the most dispersed weights among

the rotation-equivariant portfolios are found for Sample, followed by FM and FZY. The three
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shrinkage methods have generally the least dispersed weights, with NonLin and NL-Inv being

more dispersed than Lin for N = 30, 50 and less dispersed than Lin for N = 100, 250, 500.

There is no clear ordering among the four factor-based portfolios and the dispersion of their

weights is comparable to the rotation-equivariant shrinkage portfolios.

5.5 Robustness Checks

The goal of this section is to examine whether the outperformance of NonLin over Lin is robust

to various changes in the empirical analysis.

5.5.1 Subperiod Analysis

The out-of-sample period comprises 480 “months” (or 10,080 days). It might be possible

that the outperformance if NonLin over Lin is driven by certain subperiods but does not hold

universally. We address this concern by dividing the out-of-sample period into three subperiods

of 160 ‘months’ (or 3,360 days) each and repeating the above exercises in each subperiod.

The results are presented in Tables 3–5. It can be seen that among the rotation-equivariant

portfolios, NonLin has the best performance in terms of the standard deviation in 15 out of

the 15 cases and that the outperformance over Lin is generally with statistical significance for

N ≥ 50. Among the factor-based portfolios, NL-SF has the best performance in 14 out of

the 15 cases and it constitutes a further improvement over NonLin.

Therefore, this analysis demonstrates that the outperformance of NonLin over Lin is

consistent over time and not due to a subperiod artifact.

5.5.2 Longer Estimation Window

Generally, at any investment date h, a covariance matrix is estimated using the most recent

T = 250 daily returns, corresponding roughly to one year of past data. As a robustness check,

we alternatively use the most recent T = 500 daily returns, corresponding roughly to two years

of past data.

The results are presented in Table 6. It can be seen that they are similar to the results

in Table 1. In particular, NonLin has the uniformly best performance among the rotation-

equivariant portfolios in terms of the standard deviation and the outperformance over Lin is

statistically significant for N = 100, 250, 500. Again, NL-SF constitutes a further improvement.

5.5.3 Winsorization of Past Returns

Financial return data frequently contain unusually large (in absolute value) observations. In

order to mitigate the effect of such observations on an estimated covariance matrix, we employ

a winsorization technique, as is standard with quantitative portfolio managers; the details can

be found in Appendix D. Of course, we always use the ‘raw’, non-winsorized data in computing

the out-of-sample portfolio returns.
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The results are presented in Table 7. It can be seen that the relative performance of the

various portfolios is similar to that in Table 1, although in absolute terms, the performance is

somewhat worse. Among the rotation-equivariant portfolios, Non-Lin is no longer uniformly

best but it is always either best or a (very close) second-best after NL-Inv. Again, NL-SF

constitutes a further improvement.

5.5.4 No-Short-Sales Constraint

Since some fund managers face a no-short-sales constraint, we now impose a lower bound of

zero on all portfolio weights.

The results are presented in Table 8. Note that Sample is now available for all N whereas

FM and FZY are not available at all. It can be seen that Sample is uniformly best among the

rotation-equivariant portfolios in terms of the standard deviation, although the differences to

Lin, NonLin, and NL-SF are always small. Comparing the results to those of Table 1 shows

that disallowing short sales helps Sample but hurts Lin, NonLin, and NL-SF. These findings

are consistent with Jagannathan and Ma (2003) who demonstrate theoretically that imposing

a no-short-sales constraint corresponds to an implicit shrinkage of the sample covariance matrix

in the context of estimating the global minimum variance portfolio.

There is no clear winner among the factor-based portfolios: FF is best once, POET is best

twice, and NL-SF is best twice. (On the other hand, there is a clear loser, namely SF which

is always worst.) Overall, the factor-based portfolios have somewhat better performance than

the rotation-equivariant portfolios.

Remark 5.2. Our method can still be useful for long-only managers of a certain type; namely,

those who are benchmarked against a passive index (such as the S&P 500) and manage their

active risk. The active portfolio of such managers is really a long-short dollar-neutral overlay

on top of the passive benchmark weights. If the active short position is well diversified, the

overall no-short-sales constraint is not very binding. This is when having a good estimator of

the covariance matrix of the active positions can really pay off again.

5.5.5 Transaction Costs

An important consideration in any practical implementation of portfolio rules are transaction

costs. None of our results so far take transaction costs into account. In our setting, transaction

costs would arise due to two unrelated causes: (1) the investment universe changes from ‘month’

to ‘month’ and (2) for the stocks that belong to successive investment universes, the portfolio

weights change.

As described in Section 5.1, at the beginning of every ‘month’, the portfolio universe is

determined by selecting N stocks at random from the 500 largest stocks (as measured by

their market value) that have a complete return history. So unless N = 500, there will be

high transaction costs due these drastic changes in the investment universe alone. Such a rule

would not be of interest in any practical implementation; instead, the investment manager

would ensure that the investment universe changes only slowly over time.
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In our rules, the portfolio selection at the beginning of a ‘month’ is unconstrained and does

not pay any attention to the weights of various stocks at the end of the previous ‘month’.15

In a practical implementation, it might be preferred to use constrained portfolio selection to

actively limit portfolio turnover by taking into account the portfolio weights at the end of the

previous ‘month’; for example, see Yoshimoto (1996).

A detailed empirical study of real-life constrained portfolio selection that actively limits

portfolio turnover (and thus transaction costs) from one ‘month’ to the next is beyond the

scope of the present paper.

Instead, we provide some limited results for unconstrained portfolio selection with N = 500

only (to limit the contribution due to cause (1), changing investment universes). We assume

a bid-ask spread ranging from three to fifty basis points. This number three is rather low by

academic standards but can actually be considered an upper bound for liquid stocks nowadays;

for example, see Avramovic and Mackintosh (2013) and Webster et al. (2015, p.33).

The results are presented in Table 9. They are virtually unchanged compared to the

results for N = 500 in Table 1 in terms of the standard deviation, though all portfolios suffer

in terms of the average return and the Sharpe ratio. Unsurprisingly, 1/N suffers the least

and is the only portfolio that still has positive average return for a bid-ask-spred of fifty basis

points. Furthermore, it is noteworthy that the nonlinear shrinkage portfolios NonLin, NL-Inv,

and NL-SF all have lower average turnover than the linear shrinkage portfolio Lin and are

therefore less affected by trading costs.

5.5.6 Different Return Frequency

Finally, we change the return frequency from daily to monthly. As there is a longer history

available for monthly returns, we download data from CRSP starting at 01/1945 through

12/2011. We use the T = 120 most recent months of previous data to estimate a covariance

matrix. Consequently, the out-of-sample investment period ranges from 01/1955 through

12/2011, yielding 684 out-of-sample returns. The remaining details are as before.

The results are presented in Table 10. It can be seen that the relative performance of

the various portfolios is similar to that in Table 1. The only difference is that NL-Inv is

now sometimes better than NonLin, though the differences are always small. As with daily

returns, NonLin is always better than Lin and the outperformance is statistically significant

for N = 50, 100, 250, 500. Again, NL-SF constitutes a further improvement over NonLin.

5.5.7 Different Data Sets

So far, we have focused on individual stocks as assets, since we believe this is the most relevant

case for fund managers. On the other hand, many academics also consider the case where the

assets are portfolios.

15Note that the weights at the end of a given ‘month’ are not equal to the weights at the beginning of that

‘month’; this is because during a ‘month’, the number of shares are held fixed rather than the portfolio weights

(which would require daily rebalancing).
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To check the robustness of our findings in this regard, we consider three universes of size

N = 100 from Ken French’s Data Library:

• 100 portfolios formed on size and book-to-Market

• 100 Portfolios formed on size and operating profitability

• 100 Portfolios formed on size and investment

We use daily data. The out-of-sample period ranges for 12/13/1965 through 12/31/2015,

resulting in a total of 600 ‘months’ (or 12,600 days). At any investment date, a covariance

matrix is estimated using the most recent T = 250 daily returns.

The results are presented in Table 11. It can be seen that the relative performance of the

various portfolios is similar to that in Table 1, although in absolute terms, the performance is

much better. The latter fact is not surprising, since portfolios are generally less risky compared

to individual stocks. Among the rotation-equivariant portfolios, Non-Lin is uniformly best (and

always significantly better than Lin). Again, NL-SF constitutes a further improvement.

5.6 Illustration of Nonlinear vs. Linear Shrinkage

We now use a specific data set to illustrate how nonlinear shrinkage can differ from linear

shrinkage. Both estimators, as well as the sample covariance matrix, belong to the class of

rotation-equivariant estimators introduced in Assumption 3.4. Therefore, they can only differ

in their eigenvalues, but not in their eigenvectors.

The specific data chosen is roughly in the middle of the out-of-sample investment period16

for an investment universe of size N = 500. Figure 2 displays the shrunk eigenvalues (that is,

the eigenvalues of linear and nonlinear shrinkage) as a function of the sample eigenvalues

(that is, the eigenvalues of the sample covariance matrix). For ease of interpretation, we also

include the sample eigenvalues themselves as a function of the sample eigenvalues; this

corresponds to the identity function (or the 45-degree line).

Linear shrinkage corresponds to a line that is less steep than the 45-degree line. Small

sample eigenvalues are brought up whereas large sample eigenvalues are brought down; the

cross-over point is roughly equal to five.

Nonlinear shrinkage also brings up small sample eigenvalues and brings down large sample

eigenvalues; the cross-over point is also roughly equal to five. However the functional form is

clearly nonlinear. Compared to linear shrinkage, the small eigenvalues are larger; the middle

eigenvalues are smaller; and the large eigenvalues are about the same, with the exception of

the top eigenvalue, which is larger.

This pattern is quite typical, though there are some other instances where even the middle

and the large eigenvalues for nonlinear shrinkage are larger compared to linear shrinkage. What

is generally true throughout is that the small eigenvalues as well as the top eigenvalue are larger

for nonlinear shrinkage compared to linear shrinkage.

16Specifically, we use ‘month’ number 250 out of the 480 ‘months’ in the out-of-sample investment period.
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The financial intuition is that linear shrinkage ‘overshrinks’ the market factor, resulting in

insufficient efforts to diversify away market risk and reduce the portfolio beta. Also, linear

shrinkage ‘undershrinks’ the few dimensions that appear to be the safest in sample, resulting

in an excessive concentration of money at this end. By contrast, nonlinear shrinkage makes

better use of the diversification potential offered by the middle-ranking dimensions.

The quantity of shrinkage applied by the linear method is optimal only on average across

the whole spectrum, so it can be sub-optimal in certain segments of the spectrum, and it takes

the more sophisticated nonlinear correction to realize that.

5.7 Summary of Results

We have carried out an extensive backtest analysis, evaluating the out-of-sample performance

of our nonlinear shrinkage estimator when used to estimate the global minimum variance

portfolio; in this setting, the primary performance criterion is the standard deviation of the

realized out-of-sample returns in excess of the risk-free rate. We have compared nonlinear

shrinkage to a number of other strategies to estimate the global mininum variance portfolio,

most of them proposed in the last decade in leading finance and econometrics journals. The

portfolios considered can be classified into rotation-equivariant portfolios and portfolios based

on factor models.

Our main analysis is based on daily data with an out-of-sample investment period ranging

from 1973 throughout 2011. We have added a large number of robustness checks to study the

sensitivity of our findings. Such robustness checks include a subsample analysis, changing the

length of the estimation window of past data to estimate a covariance matrix, winsorization

of past returns to estimate a covariance matrix, imposing a no-short-sales constraint, and

changing the return frequency from daily data to monthly data (where the beginning of the

out-of-sample investment period is moved back to 1955).

Among the rotation-equivariant portfolios, nonlinear shrinkage is the clear winner. Linear

shrinkage and the gross-exposure constrained portfolio of Fan et al. (2012) have comparable

performance and share second place. Last place is generally taken by the equal-weighted

portfolio studied by DeMiguel et al. (2009b). It is even outperformed by the sample covariance

matrix, except when the number of assets is close to (or even equal to) the length of

the estimation window. The “dominating” portfolio of Frahm and Memmel (2010) indeed

dominates the sample covariance matrix but is generally outperformed by any of the other

‘sophisticated’ estimators of the global mininum variance portfolio.

A further improvement over nonlinear shrinkage can be obtained by applying nonlinear

shrinkage after preconditioning the data using a single-factor model. This ‘hybrid’ method also

outperforms two other portfolios based on factor models, namely the (exact) three-factor model

of Fama and French (1993) and the approximate factor model POET of Fan et al. (2013).

The statements of the two previous paragraphs only apply to ‘unrestricted’ estimation of

the global mininum variance portfolio when short sales (that is, negative portfolio weights) are

allowed. Consistent with the findings of Jagannathan and Ma (2003), the relative performances
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change significantly when short sales are not allowed (that is, when portfolio weights are

constrained to be non-negative). In this case, among the rotation-equivariant portfolios, the

sample covariance, linear shrinkage, and nonlinear shrinkage have comparable performance

(with the sample covariance matrix actually being best by a very slim margin), while the equal-

weighted portfolio continues to be worst. The portfolios based on factor models generally have

a somewhat better performance compared to rotation-equivariant portfolios, with no clear

winner among them.

Remark 5.3 (Alternative Nonlinear Shrinkage). Our nonlinear shrinkage estimator of the

covariance matrix is based on a loss function that is tailor-made for portfolio selection; see

Section 2. Though nobody could expect this a priori, the mathematical solution turns out

to be one-to-one the same as in that from a totally different context: namely estimating

a covariance matrix under a generic Frobenius-norm-based loss function as previously studied

by Ledoit and Wolf (2012, 2015). Since the mathematical formulas for the optimal Markowitz

portfolios (when short sales are allowed) actually require the inverse of the covariance matrix,

it might appear more intuitive to use a ‘direct’ estimator of the inverse of the covariance matrix

rather than inverting an estimator of the covariance matrix itself. ‘Direct’ nonlinear shrinkage

estimation of the covariance matrix under a generic Frobenius-norm-based loss function is

studied by Ledoit and Wolf (2012, 2014). But it turns out that such an approach generally

works less well, even though the differences are always small. This somewhat unexpected result

demonstrates the potential value of basing the estimation of the covariance matrix on a loss

function that is custom-tailored to the problem at hand (here, portfolio selection) rather than

on a generic loss function

6 Conclusion

Despite its relative simplicity, Markowitz (1952) portfolio selection remains a cornerstone of

finance, both for researches and fund managers. When applied in practice, it requires two

inputs: (i) an estimate of the vector of expected returns and (ii) an estimate of the covariance

matrix of returns. The focus of this paper has been to address the second problem, having in

mind a fund manager who already has a return predictive signal of his own choosing to address

the first problem (for which end there exists a large literature already).

Compared to previous methods of estimating the covariance matrix, the key difference of

our proposal lies in the number of free parameters to estimate. Let N denote the number of

assets in the investment universe. Then previous proposals either estimateO(1) free parameters

— a prime example being linear shrinkage advocated by Ledoit and Wolf (2003, 2004a,b) —

or estimate O(N2) free parameters — the prime example being the sample covariance matrix.

We take the stance that in a large-dimensional framework, where the number of assets is of the

same magnitude as the sample size, O(1) free parameters are not enough, while O(N2) free

parameters are too many. Instead, we have argued that ‘just the right number’ — that is, the

Goldilocks principle — is O(N) free parameters.
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Our theoretical analysis is based on a stylized version of the Markowitz (1952) portfolio-

selection problem under large-dimensional asymptotics, where the number of assets tends to

infinity together with the sample size. We derive an estimator of the covariance matrix that

is asymptotically optimal in a class of rotation-equivariant estimators. Such estimators do not

use any a priori information about the orientation of the eigenvectors of the true covariance

matrix. In particular, such estimators retain the eigenvectors of the sample covariance matrix

but use different eigenvalues. Our contribution has been to work out the asymptotically optimal

transformation of the sample eigenvalues to the eigenvalues used by the new estimator of the

covariance matrix, for the purpose of portfolio selection. We term this transformation nonlinear

shrinkage.

Having established theoretical optimality properties under a stylized setting, we then put

the new estimator to the practical test on historical stock return data. Running backtest

exercises for (a) the global minimum variance portfolio and (b) for a ‘full’ Markowitz portfolio

with a signal,17 we have found that nonlinear shrinkage outperforms previously suggested

estimators and, in particular, dominates linear shrinkage.

Furthermore, we have studied combining nonlinear shrinkage with a simple one-factor model

of stock returns. This ‘hybrid’ approach results in an additional improvement in terms of

reducing the out-of-sample volatility of portfolio returns.

Directions for future research include, among others, taking into account dependency across

time, such as ARCH/GARCH effects, and a more systematic investigation of non-rotation-

equivariant situations where certain directions in the space of asset returns are privileged.
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Società Editrice Esculapio.

Brandt, M. W., Santa-Clara, P., and Valkanov, R. (2009). Parametric portfolio policies:

Exploiting characteristics in the cross-section of equity returns. Review of Financial Studies,

22(9):3411–3447.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation.

Journal of the American Statistical Association, 106(494):672–684.

Campbell, J. Y., Lo, A. W., and MacKinlay, A. C. (1997). The Econometrics of Financial

Markets. Princeton University Press, New Jersey.

Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of

the IEEE, 57(8):1408–1418.

Chincarini, L. B. and Kim, D. (2006). Quantitative Equity Portfolio Management: An Active

Approach to Portfolio Construction and Management. McGraw-Hill, New York.

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009a). A generalized

approach to portfolio optimization: Improving performance by constraining portfolio norms.

Management Science, 55(5):798–812.

DeMiguel, V., Garlappi, L., and Uppal, R. (2009b). Optimal versus naive diversification: How

inefficient is the 1/N portfolio strategy? Review of Financial Studies, 22:1915–1953.

DeMiguel, V., Martin-Utrera, A., and Nogales, F. J. (2013). Size matters: Optimal calibration

of shrinkage estimators for for portfolio selection. Journal of Banking & Finance, 37:3018–

3034.

Du, L., Li, J., and Stoica, P. (2010). Fully automatic computation of diagonal loading levels

for robust adaptive beamforming. Aerospace and Electronic Systems, IEEE Transactions on,

46(1):449–458.

Engle, R. F. and Colacito, R. (2006). Testing and valuing dynamic correlations for asset

allocation. Journal of Business and Economic Statistics, 24(2):238–253.

29



Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and

bonds. Journal of Financial Economics, 33(1):3–56.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresholding

principal orthogonal complements (with discussion). Journal of the Royal Statistical Society,

Series B, 75(4):603–680.

Fan, J., Zhang, J., and Yu, K. (2012). Vast portfolio selection with gross-exposure constraints.

Journal of the American Statistical Association, 107(498):592–606.

Frahm, G. and Memmel, C. (2010). Dominating estimators for minimum-variance portfolios.

Journal of Econometrics, 159(2):289–302.

Green, J., Hand, J. R. M., and Zhang, X. F. (2013). The supraview of return predictive signals.

Review of Accounting Studies, 18:692–730.

Harvey, C. R., Liu, Y., and Zhu, H. (2016). ... and the cross-section of expected returns. Review

of Financial Studies, 29(1):5–68.

Haugen, R. A. and Baker, N. L. (1991). The efficient market inefficiency of capitalization-

weighted stock portfolios. The Journal of Portfolio Management, 17(3):35–40.

Hou, K., Xue, C., and Zhang, L. (2015). Digesting anomalies: An investment approach. Review

of Financial Studies, 8.

Huang, C. and Litzenberger, R. (1988). Foundations for Financial Economics. North-Holland,

New York.

Ilmanen, A. (2011). Expected Returns: An Investor’s Guide to Harvesting Market Rewards.

Wiley Finance, New York.

IPCC (2001). Climate change 2001: the scientific basis. In Houghton, J. T., Ding, Y., Griggs,

D. J., Noguer, M., van der LINDEN, P. J., Dai, X., Maskell, K., and Johnson, C., editors,

Contribution of Working Group I to the Third Assessment Report of the Intergovernmental

Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and

New York, NY, USA. 881pp.

IPCC (2007). Climate change 2007: the scientific basis. In Solomon, S., Qin, D., Manning, M.,

Marquis, M., Averyt, K., Tignor, M. M., Miller, H. L., and Chen, Z., editors, Contribution

of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York,

NY, USA. 996pp.

Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing the

wrong constraints helps. Journal of Finance, 54(4):1651–1684.

30



Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Implications

for stock market efficiency. The Journal of Finance, 48(1):65–91.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal component

analysis. Annals of Statistics, 29(2):295–327.

Kan, R. and Smith, D. R. (2008). The distribution of the sample mininum-variance frontier.

Management Science, 54:1364–1380.

Kan, R. and Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal

of Financial and Quantitative Analysis, 42(3):621–656.
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A Tables and Figures

Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.14 8.64 8.65 8.68 8.52 8.71 8.72 8.22 9.39 8.29 8.88

SD 20.05 14.21 14.11 14.11 14.16 14.08∗ 14.08 14.08 14.59 14.49 14.00

SR 0.56 0.61 0.61 0.62 0.60 0.62 0.62 0.56 0.66 0.57 0.63

N = 50

AV 9.54 4.65 4.99 4.70 5.10 5.21 5.22 5.22 5.44 5.59 5.44

SD 19.78 13.15 13.01 12.83 12.75 12.68∗∗∗ 12.68 13.04 12.51 12.60 12.28

SR 0.48 0.35 0.38 0.37 0.40 0.41 0.41 0.40 0.43 0.44 0.44

N = 100

AV 10.53 4.74 5.31 4.96 4.99 5.10 5.12 4.81 5.80 4.83 5.07

SD 19.34 13.11 12.71 11.75 11.79 11.52∗∗∗ 11.55 11.96 11.30 11.31 10.99

SR 0.54 0.36 0.42 0.42 0.42 0.44 0.44 0.40 0.51 0.43 0.46

N = 250

AV 9.57 275.02 275.02 6.73 5.81 6.26 6.43 5.95 6.60 5.90 5.71

SD 18.95 3, 542.90 3, 542.90 10.69 10.91 10.34∗∗∗ 10.49 11.30 10.47 9.93 9.46

SR 0.50 0.08 0.08 0.63 0.53 0.61 0.61 0.52 0.63 0.59 0.60

N = 500

AV 9.78 NA NA 5.90 5.03 5.34 5.41 5.30 5.87 5.32 5.53

SD 18.95 NA NA 10.21 10.20 9.65∗∗∗ 9.75 11.07 10.06 9.25 8.61

SR 0.52 NA NA 0.58 0.49 0.55 0.55 0.48 0.58 0.57 0.64

Table 1: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 10,080 daily out-of-sample returns in excess of the risk-

free rate from 01/19/1973 through 12/31/2011. In the rows labeled SD, the lowest number

in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 50

Min 0.0333 −0.0729 −0.0653 −0.0690 −0.0522 −0.0584 −0.0582 −0.0463 −0.0533 −0.0658 −0

Max 0.0333 0.2720 0.2562 0.2698 0.1902 0.2210 0.2228 0.2440 0.2472 0.2361 0

SD 0.0000 0.0737 0.0686 0.0726 0.0562 0.0614 0.0616 0.0675 0.0669 0.0678 0

MAD-EW 0.0000 0.0515 0.0479 0.0507 0.0423 0.0444 0.0444 0.0491 0.0476 0.0495 0

N = 50

Min 0.0200 −0.0762 −0.0680 −0.0695 −0.0531 −0.0537 −0.0536 −0.0393 −0.0497 −0.0496 −0

Max 0.0200 0.2219 0.2055 0.2211 0.1461 0.1556 0.1589 0.1861 0.1945 0.1790 0

SD 0.0000 0.0552 0.0506 0.0533 0.0411 0.0415 0.0418 0.0458 0.0471 0.0451 0

MAD-EW 0.0000 0.0386 0.0353 0.0367 0.0309 0.0306 0.0306 0.0327 0.0329 0.0323 0

N = 100

Min 0.0100 −0.0837 −0.0733 −0.0598 −0.0499 −0.0423 −0.0424 −0.0281 −0.0390 −0.0346 −0

Max 0.0100 0.1776 0.1595 0.1684 0.0989 0.0846 0.0890 0.1208 0.1307 0.1208 0

SD 0.0000 0.0407 0.0362 0.0333 0.0270 0.0234 0.0237 0.0258 0.0276 0.0258 0

MAD-EW 0.0000 0.0288 0.0256 0.0218 0.0205 0.0180 0.0181 0.0182 0.0191 0.0182 0

N = 250

Min 0.0040 −7.2464 −7.2464 −0.0438 −0.0362 −0.0260 −0.0263 −0.0151 −0.0228 −0.0210 −0

Max 0.0040 6.7094 6.7094 0.1225 0.0530 0.0357 0.0362 0.0628 0.0716 0.0684 0

SD 0.0000 1.9296 1.9296 0.0172 0.0150 0.0108 0.0108 0.0113 0.0127 0.0121 0

MAD-EW 0.0000 1.4159 1.4159 0.0098 0.0118 0.0085 0.0086 0.0079 0.0087 0.0084 0

N = 500

Min 0.0020 NA NA −0.0359 −0.0232 −0.0167 −0.0164 −0.0089 −0.0140 −0.0169 −0

Max 0.0020 NA NA 0.0998 0.0293 0.0199 0.0203 0.0364 0.0430 0.0446 0

SD 0.0000 NA NA 0.0106 0.0083 0.0059 0.0059 0.0058 0.0067 0.0068 0

MAD-EW 0.0000 NA NA 0.0052 0.0066 0.0046 0.0047 0.0041 0.0046 0.0047 0

Table 2: Average characteristics of the weight vectors of various estimators of the GMV

portfolio. Min stands for mininum weight; Max stands for maximum weight; SD stands for

standard deviation of the weights; and MAD-EW stands for mean absolute deviation from the

equal-weighted portfolio (that is, from 1/N). All measures reported are the averages of the

corresponding characteristic over the 480 portfolio formations.
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Period: 01/19/1973–05/08/1986

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 7.64 4.97 5.00 4.97 5.49 5.40 5.39 5.12 6.53 5.46 5.91

SD 15.43 11.63 11.54 11.63 11.42 11.39 11.39 11.21 11.30 11.46 11.32

SR 0.50 0.43 0.43 0.43 0.48 0.47 0.47 0.46 0.58 0.48 0.52

N = 50

AV 7.20 3.63 3.93 3.57 4.58 4.68 4.68 5.28 4.95 4.93 4.84

SD 14.83 10.91 10.74 10.88 10.54 10.47∗∗ 10.47 10.40 10.35 10.44 10.28

SR 0.49 0.33 0.37 0.33 0.43 0.45 0.45 0.51 0.48 0.47 0.47

N = 100

AV 8.62 6.06 6.09 6.54 6.82 6.92 6.90 6.99 5.90 6.57 6.60

SD 14.50 10.39 10.03 9.61 9.43 9.18∗∗∗ 9.18 9.03 8.88 8.89 8.77

SR 0.59 0.58 0.61 0.68 0.72 0.75 0.75 0.77 0.67 0.74 0.75

N = 250

AV 6.16 −527.27 −527.27 4.78 5.08 6.09 5.96 5.79 3.85 4.24 4.61

SD 14.18 2, 009.60 2, 009.60 8.41 8.51 7.81∗∗∗ 7.86 7.84 7.53 7.39 7.14

SR 0.43 −0.26 −0.26 0.57 0.60 0.78 0.76 0.74 0.51 0.57 0.65

N = 500

AV 6.91 NA NA 3.35 4.20 5.45 5.41 6.14 3.99 3.90 4.57

SD 14.14 NA NA 7.82 7.50 7.03∗∗∗ 7.14 7.58 7.10 6.82 6.49

SR 0.49 NA NA 0.43 0.56 0.77 0.76 0.81 0.56 0.57 0.70

Table 3: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free

rate from 01/19/1973 through 05/08/1986. In the rows labeled SD, the lowest number in

each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 05/09/1986–08/25/1999

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.56 12.06 12.01 12.04 12.23 12.08 12.10 12.43 11.09 10.78 11.76

SD 16.24 12.91 12.81 12.81 12.78 12.77 12.77 12.77 12.71 13.14 12.67

SR 0.77 0.93 0.94 0.94 0.96 0.95 0.95 0.97 0.87 0.82 0.93

N = 50

AV 12.94 7.22 7.69 7.58 7.20 7.62 7.60 7.78 8.50 8.40 8.24

SD 15.82 12.04 11.94 11.90 11.86 11.85 11.85 11.56 11.41 11.62 11.33

SR 0.82 0.60 0.64 0.64 0.61 0.64 0.64 0.67 0.75 0.72 0.73

N = 100

AV 12.45 6.68 7.23 6.92 6.84 6.56 6.61 5.24 6.22 6.28 6.17

SD 15.37 11.42 11.10 10.63 10.39 10.26∗∗∗ 10.28 10.09 9.75 9.87 9.75

SR 0.81 0.58 0.65 0.65 0.66 0.64 0.64 0.52 0.64 0.64 0.63

N = 250

AV 12.04 652.67 652.67 7.92 7.41 6.72 6.70 5.86 6.78 6.48 7.15

SD 15.09 2, 126.98 2, 126.98 10.07 9.78 9.55∗∗∗ 9.64 9.37 9.11 8.93 8.73

SR 0.80 0.31 0.31 0.79 0.76 0.70 0.70 0.63 0.74 0.73 0.82

N = 500

AV 12.12 NA NA 9.45 7.96 6.93 7.29 5.47 6.86 6.61 7.45

SD 15.01 NA NA 9.57 9.21 8.93∗∗∗ 9.06 8.95 8.44 8.11 7.86

SR 0.81 NA NA 0.99 0.86 0.78 0.80 0.61 0.81 0.81 0.95

Table 4: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free

rate from 05/09/1986 through 08/25/1999. In the rows labeled SD, the lowest number appears

in bold face. In the columns labeled Lin and NonLin, significant outperformance of one of the

two portfolios over the other in terms of SD is denoted by asterisks: *** denotes significance

at the 0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the

0.1 level.
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Period: 08/26/1999–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 13.22 8.90 8.96 9.03 7.84 8.65 8.66 7.09 10.56 8.64 8.98

SD 26.55 17.43 17.32 17.27 17.54 17.38 17.38 18.71 17.89 18.06 17.29

SR 0.50 0.51 0.52 0.52 0.45 0.50 0.50 0.38 0.59 0.48 0.52

N = 50

AV 8.49 3.10 3.34 2.95 3.52 3.34 3.38 2.60 2.88 3.46 3.25

SD 26.53 15.97 15.80 15.30 15.36 15.25∗∗ 15.25 16.39 15.25 15.25 14.79

SR 0.32 0.19 0.21 0.19 0.23 0.22 0.22 0.15 0.19 0.23 0.22

N = 100

AV 10.52 1.47 2.61 1.43 1.32 1.82 1.86 2.19 5.27 1.65 2.43

SD 25.99 16.65 16.16 14.46 14.84 14.46∗∗∗ 14.49 15.68 14.46 14.39 13.80

SR 0.40 0.09 0.16 0.10 0.09 0.13 0.13 0.14 0.36 0.11 0.18

N = 250

AV 10.50 699.67 699.67 7.50 4.95 5.97 6.63 6.20 9.17 7.00 5.36

SD 25.47 5, 394.22 5, 394.22 13.07 13.76 12.99∗∗∗ 13.24 15.29 13.75 12.72 11.90

SR 0.41 0.13 0.13 0.57 0.36 0.46 0.50 0.41 0.67 0.55 0.45

N = 500

AV 10.30 NA NA 4.91 2.93 3.65 3.53 4.29 6.76 5.45 4.57

SD 25.54 NA NA 12.64 13.07 12.24∗∗∗ 12.34 15.16 13.49 12.03 10.89

SR 0.40 NA NA 0.39 0.22 0.30 0.29 0.28 0.50 0.45 0.42

Table 5: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free

rate from 08/26/1999 through 12/31/2011. In the rows labeled SD, the lowest number in

each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.14 8.68 8.73 8.61 8.80 8.78 8.77 8.56 9.39 8.29 8.88

SD 20.05 14.15 14.11 14.12 14.11 14.09 14.09 14.82 14.25 14.49 14.00

SR 0.56 0.61 0.62 0.61 0.62 0.62 0.62 0.58 0.66 0.57 0.63

N = 50

AV 9.54 6.20 6.32 6.06 6.21 6.25 6.26 5.49 5.74 5.60 5.58

SD 19.78 12.87 12.82 12.70 12.67 12.67 12.67 13.34 12.74 12.79 12.51

SR 0.48 0.48 0.49 0.48 0.49 0.49 0.49 0.41 0.45 0.44 0.45

N = 100

AV 10.53 4.74 5.07 5.23 5.17 5.31 5.30 5.04 6.11 4.63 5.09

SD 19.34 11.95 11.85 11.51 11.59 11.48∗∗∗ 11.48 12.31 11.60 11.50 11.19

SR 0.54 0.40 0.43 0.45 0.45 0.46 0.46 0.41 0.53 0.40 0.45

N = 250

AV 9.57 7.43 7.47 6.69 6.77 6.66 6.79 6.51 6.14 5.08 5.24

SD 18.95 11.83 11.55 10.21 10.51 10.09∗∗∗ 10.12 11.67 10.87 10.26 9.63

SR 0.50 0.63 0.65 0.66 0.64 0.66 0.67 0.56 0.56 0.50 0.54

N = 500

AV 9.78 1, 200.31 1, 200.31 6.83 6.66 6.25 6.33 5.99 6.73 5.58 6.21

SD 18.95 8, 551.27 8, 551.26 9.54 10.33 9.43∗∗∗ 9.87 11.50 10.52 9.39 8.70

SR 0.52 0.14 0.14 0.72 0.64 0.66 0.64 0.52 0.64 0.59 0.71

Table 6: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. The past window to estimate the covariance matrix is taken to be of length T = 500

days instead of T = 250 days. AV stands for average; SD stands for standard deviation; and

SR stands for Sharpe ratio. All measures are based on 10,080 daily out-of-sample returns in

excess of the risk-free rate from 01/19/1973 through 12/31/2011. In the rows labeled SD, the

lowest number in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin,

significant outperformance of one of the two portfolios over the other in terms of SD is denoted

by asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.14 8.27 8.30 8.31 8.21 8.42 8.44 6.26 8.93 9.03 8.83

SD 20.05 14.57 14.42 14.46 14.38 14.38 14.37 14.82 14.35 14.79 14.11

SR 0.56 0.57 0.58 0.57 0.57 0.59 0.59 0.42 0.62 0.61 0.63

N = 50

AV 9.54 4.60 4.94 4.55 5.00 5.29 5.31 5.52 5.60 5.24 5.36

SD 19.78 13.56 13.34 13.09 13.13 12.97∗∗∗ 12.95 13.53 12.77 13.18 12.47

SR 0.48 0.34 0.37 0.35 0.38 0.41 0.41 0.41 0.44 0.40 0.43

N = 100

AV 10.53 4.84 5.29 5.71 4.89 5.04 5.08 6.40 6.14 5.37 5.08

SD 19.34 13.86 13.29 12.20 12.54 11.95∗∗∗ 11.93 12.43 11.56 11.46 11.26

SR 0.54 0.35 0.40 0.47 0.39 0.42 0.43 0.51 0.53 0.47 0.45

N = 250

AV 9.57 −2, 498.27 −2, 498.27 6.99 6.72 6.70 6.75 5.61 6.80 5.96 5.96

SD 18.95 12, 130.15 12, 130.15 10.81 11.75 10.58∗∗∗ 10.58 11.67 10.60 9.84 9.61

SR 0.50 −0.21 −0.21 0.65 0.57 0.63 0.64 0.48 0.64 0.61 0.62

N = 500

AV 9.78 NA NA 5.86 5.44 5.56 5.68 5.28 6.03 5.47 5.64

SD 18.95 NA NA 10.33 10.83 9.71∗∗∗ 9.78 11.36 10.18 8.91 8.70

SR 0.52 NA NA 0.57 0.50 0.57 0.58 0.47 0.59 0.61 0.65

Table 7: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. In the estimation of a covariance matrix, the past returns are winsorized as described

in Appendix D. AV stands for average; SD stands for standard deviation; and SR stands for

Sharpe ratio. All measures are based on 10,080 daily out-of-sample returns in excess of the risk-

free rate from 01/19/1973 through 12/31/2011. In the rows labeled SD, the lowest number

in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.14 9.75 NA NA 9.87 9.92 9.92 8.22 9.45 9.34 9.54

SD 20.05 14.21 NA NA 14.41 14.26 14.26 14.59 14.25 14.15 14.13

SR 0.56 0.69 NA NA 0.69 0.70 0.70 0.56 0.66 0.66 0.67

N = 50

AV 9.54 6.97 NA NA 6.99 7.10 7.08 5.22 7.48 7.26 7.09

SD 19.78 12.96 NA NA 13.06 12.99 12.99 13.04 12.81 12.78 12.77

SR 0.48 0.54 NA NA 0.54 0.55 0.55 0.40 0.58 0.57 0.55

N = 100

AV 10.53 6.93 NA NA 7.22 7.37 7.35 4.81 7.49 6.86 6.91

SD 19.34 12.04 NA NA 12.14 12.17 12.18 11.96 11.87 11.92 11.90

SR 0.54 0.58 NA NA 0.59 0.61 0.60 0.40 0.63 0.58 0.58

N = 250

AV 9.57 7.40 NA NA 7.40 7.51 7.58 5.95 7.50 7.19 7.05

SD 18.95 11.06 NA NA 11.09 11.20 11.29 11.30 10.80 10.75 10.81

SR 0.50 0.67 NA NA 0.67 0.67 0.67 0.53 0.69 0.67 0.65

N = 500

AV 9.78 7.21 NA NA 7.16 7.54 7.56 6.42 7.16 7.05 7.17

SD 18.95 10.57 NA NA 10.59 10.74 10.83 10.68 10.40 10.28 10.31

SR 0.52 0.68 NA NA 0.68 0.70 0.70 0.60 0.69 0.69 0.70

Table 8: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. A lower bound of zero is imposed on all portfolio weights, so that short sales are not

allowed. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 10,080 daily out-of-sample returns in excess of the risk-

free rate from 01/19/1973 through 12/31/2011. In the rows labeled SD, the lowest number

in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 500, BAS = 3 basis points

AV 9.53 NA NA 4.90 3.67 4.49 4.54 4.72 5.18 4.56 4.68

SD 18.95 NA NA 10.20 10.20 9.65∗∗∗ 9.75 11.06 10.06 9.26 8.61

SR 0.50 NA NA 0.48 0.36 0.47 0.47 0.42 0.52 0.49 0.54

N = 500, BAS = 5 basis points

AV 9.53 NA NA 4.23 2.77 3.93 3.96 4.34 4.73 4.05 4.12

SD 18.95 NA NA 10.21 10.21 9.65∗∗∗ 9.75 11.07 10.06 9.26 8.61

SR 0.50 NA NA 0.41 0.27 0.41 0.39 0.39 0.47 0.44 0.48

N = 500, BAS = 10 basis points

AV 8.95 NA NA 2.56 0.51 2.51 2.49 3.37 3.58 2.78 2.71

SD 18.95 NA NA 10.23 10.26 9.67∗∗∗ 9.77 11.08 10.08 9.28 8.63

SR 0.47 NA NA 0.25 0.05 0.26 0.25 0.30 0.36 0.30 0.31

N = 500, BAS = 20 basis points

AV 8.12 NA NA −0.78 −4.02 −0.33 −0.45 1.44 1.30 0.23 −0.10

SD 18.95 NA NA 10.34 10.49 9.75∗∗∗ 9.87 11.11 10.13 9.36 8.74

SR 0.43 NA NA −0.07 −0.38 −0.03 −0.05 0.13 0.13 0.02 −0.01

N = 500, BAS = 50 basis points

AV 5.66 NA NA −10.89 −17.60 −8.84 −9.27 −4.34 −5.55 −7.40 −8.55

SD 18.97 NA NA 11.16 12.06 10.42∗∗∗ 10.57 11.39 10.55 9.95 9.47

SR 0.30 NA NA −0.97 −1.46 −0.85 −0.88 −0.38 −0.53 −0.74 −0.90

N = 500

AT 0.69 NA NA 2.81 3.81 2.39 2.47 1.62 1.92 2.14 2.37

Table 9: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. AT stands for average turnover (from one ‘month’ to the next). All measures are

based on 10,080 daily out-of-sample returns in excess of the risk-free rate from 01/19/1973

through 12/31/2011. The returns are adjusted for transaction costs assuming a bid-ask-spread

(BAS) that ranges from three to fifty basis points. In the rows labeled SD, the lowest number

in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/1955–12/2011

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 7.05 6.43 6.46 6.64 6.82 7.35 7.30 7.95 7.40 7.04 7.13

SD 16.69 14.25 13.68 13.90 13.48 13.45 13.42 13.90 13.63 14.19 13.33

SR 0.42 0.45 0.47 0.48 0.51 0.55 0.54 0.57 0.54 0.50 0.53

N = 50

AV 6.74 3.30 3.95 3.25 4.37 4.47 4.56 5.16 5.08 4.29 4.18

SD 16.44 15.12 14.06 13.16 12.90 12.61∗∗ 12.56 13.24 12.59 12.80 12.27

SR 0.41 0.22 0.28 0.25 0.34 0.35 0.36 0.39 0.40 0.33 0.34

N = 100

AV 6.29 9.22 8.77 6.30 6.66 6.32 6.45 6.31 5.50 5.66 5.91

SD 16.06 25.98 21.36 12.99 13.67 12.70∗∗∗ 12.81 13.67 13.07 12.61 12.31

SR 0.39 0.35 0.41 0.48 0.49 0.50 0.50 0.46 0.42 0.45 0.49

N = 250

AV 7.29 NA NA 4.56 3.24 4.61 4.89 5.12 4.95 4.39 4.44

SD 16.05 NA NA 11.76 11.92 10.77∗∗∗ 10.75 12.88 11.85 10.67 10.35

SR 0.45 NA NA 0.39 0.27 0.43 0.45 0.40 0.42 0.41 0.43

N = 500

AV 7.03 NA NA 4.98 4.05 4.81 4.88 5.30 4.94 4.42 4.41

SD 15.98 NA NA 11.35 10.59 10.23∗∗ 10.37 12.73 11.66 10.11 9.90

SR 0.44 NA NA 0.44 0.38 0.47 0.47 0.42 0.42 0.43 0.44

Table 10: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 684 monthly out-of-sample returns in excess of the risk-free

rate from 01/1955 through 12/2011. In the rows labeled SD, the lowest number in each ‘division’

appears in bold face. In the columns labeled Lin and NonLin, significant outperformance of

one of the two portfolios over the other in terms of SD is denoted by asterisks: *** denotes

significance at the 0.01 level; ** denotes significance at the 0.05 level; and * denotes significance

at the 0.1 level.

42



Period: 12/13/1965–12/31/2015

1/N Sample FM FZY Lin NonLin NL-Inv SF FF POET NL-SF

N = 100 portfolios formed on size and book-to-market

AV 7.94 10.07 9.89 10.67 10.19 9.83 9.83 10.53 9.30 9.69 9.81

SD 15.98 9.09 8.98 8.77 8.43 8.14∗∗∗ 8.14 10.35 8.42 8.20 7.89

SR 0.50 1.11 1.10 1.22 1.21 1.21 1.21 1.02 1.10 1.18 1.24

N = 100 portfolios formed on size and operating profitability

AV 7.60 10.45 10.15 8.90 10.01 9.35 9.35 9.00 8.99 9.20 9.40

SD 15.98 9.48 9.36 9.37 8.78 8.30∗∗∗ 8.30 10.45 8.57 8.26 8.14

SR 0.48 1.10 1.08 0.95 1.14 1.13 1.13 0.86 1.05 1.11 1.16

N = 100 portfolios formed on size and investment

AV 8.02 10.92 10.69 9.45 10.38 10.23 10.23 10.62 9.69 10.65 10.42

SD 15.88 9.15 9.06 9.32 8.48 8.05∗∗∗ 8.05 10.23 8.44 8.11 7.94

SR 0.50 1.19 1.18 1.01 1.22 1.27 1.27 1.04 1.15 1.31 1.31

Table 11: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and SR stands for Sharpe

ratio. All measures are based on 12,600 daily out-of-sample returns in excess of the risk-

free rate from 12/13/1965 through 12/31/2015. In the rows labeled SD, the lowest number

in each ‘division’ appears in bold face. In the columns labeled Lin and NonLin, significant

outperformance of one of the two portfolios over the other in terms of SD is denoted by

asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Figure 1: Oracle shrinkage functions (4.1), mapping sample eigenvalues to shrunk eigenvalues,

for a variety of (shifted) Beta(α, β) distributions governing the population eigenvalues.
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Figure 2: Shrunk eigenvalues as a function of sample eigenvalues for sample covariance matrix,

linear shrinkage, and nonlinear shrinkage for an exemplary data set. The size of the investment

universe is N = 500.
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B Mathematical Proofs

B.1 Preliminaries

We shall use the notations Re(z) and Im(z) for the real and imaginary parts of a complex

number z, so that

∀z ∈ C z = Re(z) + i · Im(z) .

For any increasing function G on the real line, sG denotes the Stieltjes transform of G:

∀z ∈ C
+ sG(z) ..=

∫
1

λ− z
dG(λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im
[
sG(ξ + iη)

]
dξ , (B.1)

as long as G is continuous at both a and b. Bai and Silverstein (2010, p.112) give the following

version for the equation that relates F to H and c. The quantity s =.. sF (z) is the unique

solution in the set {
s ∈ C : −1− c

z
+ cs ∈ C

+

}
(B.2)

to the equation

∀z ∈ C
+ s =

∫
1

τ
[
1− c− c z s

]
− z

dH(τ) . (B.3)

Although the Stieltjes transform of F , sF , is a function whose domain is the upper half of the

complex plane, it admits an extension to the real line ∀x ∈ R \ {0} s̆F (x) ..= limz∈C+→x sF (z)

which is continuous over x ∈ R− {0}. When c < 1, s̆F (0) also exists and F has a continuous

derivative F ′ = π−1Im [s̆F ] on all of R with F ′ ≡ 0 on (−∞, 0]. (One should remember that,

although the argument of s̆F is real-valued now, the output of the function is still a complex

number.)

Recall that the limiting e.d.f. of the eigenvalues of n−1Y ′
nYn = n−1Σ

1/2
n X ′

nXnΣ
1/2
n was

defined as F . In addition, define the limiting e.d.f. of the eigenvalues of n−1YnY
′
n =

n−1XnΣnX
′
n as F ; note that the eigenvalues of n−1Y ′

nYn and n−1YnY
′
n only differ by |n − p|

zero eigenvalues. It then holds:

∀x ∈ R F (x) = (1− c)1[0,∞)(x) + c F (x) (B.4)

∀x ∈ R F (x) =
c− 1

c
1[0,∞)(x) +

1

c
F (x) (B.5)

∀z ∈ C
+ sF (z) =

c− 1

z
+ c sF (z) (B.6)

∀z ∈ C
+ sF (z) =

1− c

c z
+

1

c
sF (z) . (B.7)

Although the Stieltjes transform of F , sF , is again a function whose domain is the upper

half of the complex plane, it also admits an extension to the real line (except at zero):

∀x ∈ R \ {0}, s̆F (x) ..= limz∈C+→x sF (z) exists. Furthermore, the function s̆F is continuous
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over R\{0}. When c > 1, s̆F (0) also exists and F has a continuous derivative F ′ = π−1Im
[
s̆F
]

on all of R with F ′ ≡ 0 on (−∞, 0].

It can easily be verified that the function s(x) defined in equation (MP) is in fact none other

than s̆F (x). Equation (4.2.2) of Bai and Silverstein (2010), for example, gives an expression

analogous to equation (MP). Based on the right-hand side of equation (3.3), we can rewrite

the function d∗(·) introduced in Theorem 4.1 as:

∀x ∈
κ⋃

k=1

[ak, bk] d∗(x) =
1

x
∣∣s̆F (x)

∣∣2 =
x

|1− c− c x s̆F (x)|2
. (B.8)

B.2 Proof of Theorem 3.1

Given that it is only the normalized quantity (m′
TmT )

−1/2mT that appears in this proposition,

the parametric form of the distribution of the underlying quantity mT is irrelevant, as long

as (m′
TmT )

−1/2mT is uniformly distributed on the unit sphere. Thus, we can assume without

loss of generality that mT is normally distributed with mean zero and covariance matrix the

identity.

In this case, the assumptions of Lemma 1 of Ledoit and Péché (2011) are satisfied. This

implies that there exists a constant K1 independent of T , Σ̂T and mT such that

E

[(
1

N
m′

T Σ̂
−1
T mT − 1

N
Tr
(
Σ̂−1

T

))6
]
≤

K1

∥∥∥Σ̂−1
T

∥∥∥
N3

.

Note that
∥∥∥Σ̂−1

T

∥∥∥ ≤ K̂/h a.s. for large enough T by Assumption 3.4. Therefore,

1

N
m′

T Σ̂
−1
T mT − 1

N
Tr
(
Σ̂−1

T

)
a.s.−→ 0 .

In addition, we have

1

N
Tr
(
Σ̂−1

T

)
=

1

N

N∑

i=1

1

δ̂T (λT,i)
=

∫
1

δ̂T (x)
dFT (x)

a.s.−→
∫

1

δ̂(x)
dF (x) .

Therefore,
1

N
m′

T Σ̂
−1
T mT

a.s.−→
∫

1

δ̂(x)
dF (x) . (B.9)

A similar line of reasoning leads to

1

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT − 1

N
Tr
(
Σ̂−1

T ΣT Σ̂
−1
T

)
a.s.−→ 0 .

Notice that

1

N
Tr
(
Σ̂−1

T ΣT Σ̂
−1
T

)
=

1

N
Tr
(
U ′
TΣTUT ∆̂

−2
T

)
=

1

N

N∑

i=1

u′T,iΣTuT,i

δ̂T (λT,i)2
.

Using Theorem 4 of Ledoit and Péché (2011), we obtain that

1

N

N∑

i=1

u′T,iΣTuT,i

δ̂T (λT,i)2
a.s.−→

∫
d∗(x)

δ̂(x)2
dF (x) ,
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with the function d∗(·) defined by equation (4.1). Thus,

1

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT

a.s.−→
∫

d∗(x)

δ̂(x)2
dF (x) . (B.10)

Putting equations (B.9) and (B.10) together yields

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT(

m′
T Σ̂

−1
T mT

)2
a.s.−→

∫
d∗(x)

δ̂(x)2
dF (x)

(∫
1

δ̂(x)
dF (x)

)2 .

Theorem 3.1 then follows from noticing that N−1m′
TmT

a.s.−→ 1.

B.3 Proof of Theorem 4.1

Differentiating the right-hand side of equation (3.3) with respect to δ̂(x) for x ∈ Supp(F ) yields

the first-order condition

−2
d∗(x)F ′(x)

δ̂(x)3

[∫
dF (y)

δ̂(y)

]−2

+ 2

[∫
dF (y)

δ̂(y)2

]−3
F ′(x)

δ̂(x)

[∫
d∗(y)dF (y)

δ̂(y)2

]
= 0 ,

which is verified if and only if δ̂(x)/d∗(x) is a constant independent of x. The proportionality

constant must be strictly positive because the covariance matrix estimator Σ̂T is positive

definite, as stated in Assumption 3.4.

B.4 Proof of Proposition 4.1

Theorem 4 of Ledoit and Péché (2011) and the paragraphs immediately above it imply that

1

N

N∑

i=1

u′T,iΣTuT,i
a.s.−→

∫
d∗(x) dF (x) . (B.11)

It can be seen that the left-hand side of equation (B.11) is none other than N−1Tr(ΣT ). In

addition, note that

1

N
Tr
(
Σ̂T

)
=

1

N

N∑

i=1

δ̂T (λT,i) =

∫
δ̂T (x) dFT (x)

a.s.−→
∫

δ̂(x) dF (x) = α

∫
d∗(x) dF (x) .

(B.12)

Comparing equations (B.11) and (B.12) yields the desired result.

C Consistent Estimator of the Stieltjes Transform s(x)

The estimation method developed by Ledoit and Wolf (2015) is reproduced below solely for

the sake of convenience. Interested readers are invited to consult the original paper for details.

Note that Ledoit and Wolf (2015) denote the number of variables by p rather than by N and

the sample size by n rather than by T .
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The key idea is to introduce a nonrandom multivariate function, called the Quantized

Eigenvalues Sampling Transform — or QuEST for short — which discretizes, or quantizes,

the relationship between F , H, and c defined in equations (B.2) and (B.3). For any positive

integers T and N , the QuEST function, denoted by QT,N , is defined as

QT,N : [0,∞)N −→ [0,∞)N

v ..= (v1, . . . , vN )′ 7−→ QT,N (v) ..=
(
q1T,N (v), . . . , qNT,N (v)

)′
,

where

∀i = 1, . . . , N qiT,N (v) ..= N

∫ i/N

(i−1)/N

(
Fv

T,N

)−1
(u) du , (C.1)

∀u ∈ [0, 1]
(
Fv

T,N

)−1
(u) ..= sup{x ∈ R : Fv

T,N (x) ≤ u} , (C.2)

∀x ∈ R Fv

T,N (x) ..= lim
η→0+

1

π

∫ x

−∞
Im
[
svT,N (ξ + iη)

]
dξ , (C.3)

and ∀z ∈ C
+ s ..= svT,N (z) is the unique solution in the set

{
s ∈ C : −T −N

Tz
+

N

T
s ∈ C

+

}
(C.4)

to the equation

s =
1

N

N∑

i=1

1

vi

(
1− N

T
− N

T
z s

)
− z

. (C.5)

It can be seen that equation (C.3) quantizes equation (B.1), that equation (C.4)

quantizes equation (B.2), and that equation (C.5) quantizes equation (B.3). Thus, Fv

T,N is

the limiting distribution (function) of sample eigenvalues corresponding to the population

spectral distribution (function) N−1
∑N

i=1 1[vi,∞). Furthermore, by equation (C.2),
(
Fv

T,N

)−1

represents the inverse spectral distribution function, also known as the quantile function. By

equation (C.1), qiT,N (v) can be interpreted as a ‘smoothed’ version of the (i− 0.5)/N quantile

of Fv

T,N . Ledoit and Wolf (2015) estimate the eigenvalues of the population covariance matrix

simply by inverting the QuEST function numerically:

τ̂T ..= argmin
v∈(0,∞)N

1

N

N∑

i=1

[
qiT,N (v)− λT,i

]2
. (C.6)

From this estimator of the population eigenvalues, Ledoit and Wolf (2015) deduce an estimator

of the Stieltjes transform s(x) as follows: for all x ∈ (0,∞), and also for x = 0 in the case

c > 1, ŝ(x) is defined as the unique solution ŝ ∈ R ∪ C
+ to the equation

ŝ = −
[
x− 1

T

N∑

i=1

τ̂T,i
1 + τ̂T,i ŝ

]−1

. (C.7)
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D Winsorization of Past Returns

Unusually large returns (in absolute value) can have undesirable impacts if such data are

used to estimate a covariance matrix. We migitate this problem by properly truncating very

small and very large observations in any cross-sectional data set. Such truncation is commonly

referred to as ‘Winsorization’, a method that is widely used by quantitative portfolio managers;

for example, see Chincarini and Kim (2006, p.180).

Consider a set of numbers a1, . . . , aN . We first compute a robust measure of location that

is not (heavily) affected by potential outliers. To this end, we use the trimmed mean of the

data with trimming fraction η ∈ (0, 0.5) on the left and on the right. This number is simply

the mean of the middle (1− 2η) · 100% of the data. More specifically, denote by

a(1) ≤ a(2) ≤ . . . ≤ a(N) (D.1)

the ordered data (from smallest to largest) and denote by

M ..= ⌊η ·N⌋ (D.2)

the smallest integer less than or equal to η · N . Then the trimmed mean with trimming

fraction η is defined as

aη ..=
1

N − 2M

N−M∑

i=M+1

a(i) . (D.3)

We employ the value of η = 0.1 in practice.

We next compute a robust measure of spread. To this end, we use the mean absolute

deviation (MAD) given by

MAD(a) ..=
1

N

N∑

i=1

|ai −med(a)| , (D.4)

where med(a) denotes the sample median of a1, . . . , aN .

We finally compute upper and lower bounds defined by

alo ..= a0.1 − 5 ·MAD(a) and aup ..= a0.1 + 5 ·MAD(a) . (D.5)

The motivation here is that for a normally distributed sample, it will hold that a ≈ a0.1 and

s(a) ≈ 1.5 · MAD(a), where a and s(a) denote the sample mean and the sample median of

a1, . . . , aN , respectively. As a result, for a ‘well-behaved’ sample, there will usually be no

points below alo or above aup. Our truncation rule is then that any data point ai below alo

will be changed to alo and any data point ai above aup will be changed to aup. We apply this

truncation rule, one day at a time, to the past stock return data used to estimate a covariance

matrix. (Of course, we do not apply this truncation rule to future stock return data used to

compute portfolio out-of-sample returns.)
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E Markowitz Portfolio with Momentum Signal

We now turn attention to a ‘full’ Markowitz portfolio with a signal, thereby augmenting the

empirical results of Section 5.3 for the global mininum variance portfolio.

As discussed at the beginning of Section 2, by now a large number of variables have

been documented that can be used to construct a signal in practice. For simplicity and

reproducibility, we use the well-known momentum factor — or simply momentum for short —

of Jegadeesh and Titman (1993). For a given period investment period h and a given stock,

momentum is the geometric average of the previous 12 ‘monthly’ returns on the stock but

excluding the most recent ‘month’. Collecting the individual momentums of all the N stocks

contained in the portfolio universe yields the return predictive signal m.

In the absence of short-sales constraints, the investment problem is formulated as

min
w

w′Σw (E.1)

subject to w′m = b and w′1 = 1 , (E.2)

where b is a selected target expected return. The analytical solution of the problem is given in

Sections 3.8 and 3.9 of the textbook by Huang and Litzenberger (1988). The natural strategy

in practice is to replace the unknown Σ by an estimator Σ̂, yielding a feasible portfolio

ŵ ..=
Cb−A

BC −A2
Σ̂−1m+

B −Ab

BC −A2
Σ̂−11 , (E.3)

where A ..= m′Σ̂−11 , B ..= m′Σ̂−1m , and C ..= 1′Σ̂−11 . (E.4)

The following 12 portfolios are included in the study.

• EW-TQ: The equal-weighted portfolio of the top-quintile stocks according to momen-

tum m. This strategy does not make use of the momentum signal beyond sorting of the

stocks in quintiles.

The value of the target expected return b for portfolios listed below is then given by the

arithmetic average of the momentums of the stocks included in this portfolio (that is, the

expected return of EW-TQ according to the signal m).

• BSV: The portfolio (E.3)–(E.4) where Σ̂ is given by the identity matrix of dimension

N ×N . This portfolio corresponds to the proposal of Brandt et al. (2009).

• Sample: The portfolio (E.3)–(E.4) where Σ̂ is given by the sample covariance matrix;

note that this portfolio is not available when N > T , since the sample covariance matrix

is not invertible in this case.

• KZ: The three-fund portfolio described by equation (68) of Kan and Zhou (2007); note

that this portfolio is not available when N ≥ T − 4.

This portfolio uses the vector of sample means as signal. For a fair comparison with

other portfolios, we also compute alternative performance measures where the vector of

sample means is replaced by the momentum signal.18

18As the mathematical derivation of the KZ portfolio is based on the vector of sample means as signal, the

modification using the momentum signal is of purely heuristic nature.
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• TZ: The three-fund portfolio KZ combined with the equal-weighted portfolio as proposed

in Section 2.3 of Tu and Zhou (2011); note that this portfolio is not available when

N ≥ T − 4.

This portfolio uses the vector of sample means as signal. For a fair comparison with

other portfolios, we also compute alternative performance measures where the vector of

sample means is replaced by the momentum signal.19

• Lin: The portfolio (E.3)–(E.4) where Σ̂ is given by the linear shrinkage estimator of

Ledoit and Wolf (2004b).

• NonLin: The portfolio (E.3)–(E.4) where Σ̂ is given by the estimator Ŝ of Corollary 4.1.

• NL-Inv: The portfolio (E.3)–(E.4) where Σ̂−1 is given by the ‘direct’ nonlinear shrinkage

estimator of Σ−1 based on generic a Frobenius-norm loss. This estimator was first

suggested by Ledoit and Wolf (2012) for the case N < T ; the extension to the case

T ≥ N can be found in Ledoit and Wolf (2014).

• SF: The portfolio (E.3)–(E.4) where Σ̂ is given by the single-factor covariance matrix

Σ̂F used in the construction of the single-factor-preconditioned nonlinear shrinkage

estimator (5.1).

• FF: The portfolio (E.3)–(E.4) where Σ̂ is given by the covariance matrix estimator based

on the (exact) three-factor model of Fama and French (1993).20

• POET: The portfolio (E.3)–(E.4) where Σ̂ is given by the POET covariance matrix

estimator of Fan et al. (2013). This method uses an approximate factor model where the

factors are taken to be the principal components of the sample covariance matrix and

thresholding is applied to covariance matrix of the principal orthogonal complements.21

• NL-SF The portfolio (E.3)–(E.4) where Σ̂ is given by the single-factor-preconditioned

nonlinear shrinkage estimator (5.1).

Remark E.1 (KZ and TZ Portfolios). The two portfolios KZ and TZ are not directly

comparable to the other nine portfolios, since they are not fully invested in stocks; instead

they are partly invested in the risk-free rate.

A further issue is that the original proposals for KZ and TZ use the vector of sample

means as the signal unlike the other nine portfolios which use the momentum signal. This

discrepancy might result in an unfair comparison. Therefore, we always present two numbers

for the portfolios KZ and TZ: The first number is based on the vector of sample means as

signal and the second number is based on the momentum signal (that is, the same signal as

used by the other nine portfolios). Note that there is no theoretical justification for the second

set of numbers and it is purely heuristic approach on our part in the interest of fairness in the

sense of using a shared signal across all portfolios.

19As the mathematical derivation of the TZ portfolio is based on the vector of sample means as signal, the

modification using the momentum signal is purely ad-hoc.
20Data on the three Fama & French factors were downloaded from Ken French’s website.
21In particular, we use K = 5 factors, soft thresholding, and the value of C = 1.0 for the thresholding

parameter. Among several specifications we tried, this one appeared to work best on average.
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Our stance is that in the context of a ‘full’ Markowitz portfolio, the most important

performance measure is the out-of-sample Sharpe ratio, SR. In the ‘ideal’ investment problem

(E.1)–(E.2), minimizing the variance (for a fixed target expected return b) is equivalent to

maximizing the Sharpe ratio (for a fixed target expected return b). In practice, because of

estimation error in the signal, the various strategies do not have the same expected return;

thus, focusing on the out-of-sample standard deviation is inappropriate.

We also consider the question whether one portfolio delivers a higher out-of-sample Sharpe

ratio than another portfolio at a level that is statistically significant. Since we consider eight

portfolios, there are 28 pairwise comparisons. To avoid a multiple testing problem and since

a major goal of this paper is to show that nonlinear shrinkage improves upon linear shrinkage

in portfolio selection, we restrict attention to the single comparison between the two portfolios

Lin and NonLin. For a given scenario, a two-sided p-value for the null hypothesis of equal

Sharpe ratios is obtained by the prewhitened HACPW method described in Ledoit and Wolf

(2008, Section 3.1).22

The results are presented in Table 12 and can be summarized as follows.

• We again observe that Sample breaks down for N = 250, when the sample covariance

matrix is close to singular.

• KZ and TZ have the lowest Sharpe ratios throughout and some of the numbers are even

negative.

• The overall order, from worst to best, of the remaining five rotation-equivariant portfolios

is EW-TQ, BSV, Lin, NL-Inv, and NonLin.

• NonLin has the uniformly best performance among the rotation-equivariant portfolios

and the outperformance over Lin is statistically significant at the 0.05 level for N =

250, 500.

• The outperformance is also economically significant for N = 250 and 500, as it is of the

order of a 0.15 increase in the Sharpe ratio. This means the Sharpe ratio goes up by

about one-fifth of its original level, which in the industry would be considered a valuable

improvement.

• Among the four factor-based portfolios, NL-SF is best in four out of the five cases and

FF best in one case (for N = 250). Comparing NonLin to NL-SF, there is no winner:

out of the five cases, Non-Lin is better two times, worse two times, and equally good one

time.

Summing up, in a ‘full’ Markowitz problem with momentum signal, NonLin dominates the

remaining seven rotation-equivariant portfolios in terms of the Sharpe ratio. On balance, its

performance can be considered equally as good compared to the factor-based portfolio NL-SF

(which is overall the best among the four factor-based portfolios).

22Since the out-of-sample size is very large at 10,080, there is no need to use the computationally more

expensive bootstrap method described in Ledoit and Wolf (2008, Section 3.2), which is preferred for small

sample sizes.
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Remark E.2. It should be pointed out that for all shrinkage estimators of the covariance

matrix (that is, Lin, NonLin, NL-Inv, and NL-SF), the Sharpe ratios here are higher compared

to the GMV portfolios for all N . Therefore, using a return predictive signal can really pay off,

if done properly.

E.1 Analysis of Weights

We also provide some summary statistics on the vectors of portfolio weights ŵ over time. In

each ‘month’, we compute the following four characteristics:

• Min: Minimum weight.

• Max: Maximum weight.

• SD: Standard deviation of weights.

• MAD-EW: Mean absolute deviation from equal-weighted portfolio computed as

1

N

N∑

i=1

∣∣∣ŵi −
1

N

∣∣∣ .

For each characteristic, we then report the average outcome over the 480 portfolio formations

(that is, over the 480 ‘months’).

The results are presented in Table 13. Not surprisingly, the most dispersed weights are

found for Sample, followed by three shrinkage methods, EW-TQ, and BSV. The least dispersed

weights are always found for KZ and TZ, which is owed to the fact that these two portfolios are

not fully invested in the N stocks but also invest (generally to a large extent) in the risk-free

rate. NonLin and NL-Inv are comparably dispersed to Lin for N = 30, 50 but less dispersed

than Lin for N = 100, 250, 500.

There is no clear ordering among the four factor-based portfolios and the dispersion of their

weights is comparable to the rotation-equivariant shrinkage portfolios.

E.2 Robustness Checks

The goal of this section is to examine whether the outperformance of NonLin over Lin is robust

to various changes in the empirical analysis.

E.2.1 Subperiod Analysis

The out-of-sample period comprises 480 ‘months’ (or 10,080 days). It might be possible that

the outperformance of NonLin over Lin is driven by certain subperiods but does not hold

universally. We address this concern by dividing the out-of-sample period into three subperiods

of 160 ‘months’ (or 3,360 days) each and repeating the above exercises in each subperiod.

The results are presented in Tables 14–16. It can be seen that NonLin is better than Lin in

terms of the Sharpe ratio in 14 out of the 15 cases; though statistical significance only obtains

in the first subperiod for N = 250, 500.
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Therefore, this analysis demonstrates that the outperformance of NonLin over Lin is

consistent over time and not due to a subperiod artifact. On balance, NonLin can be considered

equally as good as NL-SF.

E.2.2 Longer Estimation Window

Generally, at any investment date h, a covariance matrix is estimated using the most recent

T = 250 daily returns, corresponding roughly to one year of past data. As a robustness check,

we alternatively use the most recent T = 500 daily returns, corresponding roughly to two years

of past data.

The results are presented in Table 17. It can be seen that they are similar to the results

in Table 12. In particular, NonLin has the uniformly best performance in terms of the Sharpe

ratio, though the outperformance over Lin is not statistically significant. Again, on balance,

NonLin and NL-SF are equally good.

E.2.3 Winsorization of Past Returns

Financial return data frequently contain unusually large (in absolute value) observations. In

order to mitigate the effect of such observations on an estimated covariance matrix, we employ

a winsorization technique, as is standard with quantitative portfolio managers; the details can

be found in Appendix D. Of course, we always use the ‘raw’, non-winsorized data in computing

the out-of-sample portfolio returns.

The results are presented in Table 18. It can be seen that they are similar to the results

in Table 12. In particular, NonLin has the uniformly best performance among the rotation-

equivariant portfolios in terms of the Sharpe ratio, though the outperformance over Lin is not

statistically significant. Again, on balance, NonLin and NL-SF are equally good.

E.2.4 No-Short-Sales Constraint

Since some fund managers face a no-short-sales constraint, we now impose a lower bound of

zero on all portfolio weights.

The results are presented in Table 19. Note that Sample is now available for all N , whereas

KZ and TZ are not available at all. In contrast to the previous results for the global mininum

variance portfolio in Section 5.5.4, improved estimation of the covariance matrix still pays

off, even if to a lesser extent compared to allowing short sales. In particular — comparing

the results for the rotation-equivariant portfolios — Lin, NonLin, and NL-Inv improve upon

Sample in terms of the Sharpe ratio for all N . Although BSV has the best performance for

N = 30, NonLin has the best performance for N = 50, 100, 250, 500. In particular, NonLin

always outperforms Lin, though no longer with statistical significance.

There is no clear winner among the factor-based portfolios: FF is best twice, POET is best

once, and NL-SF is best twice. (On the other hand, there is a clear loser, namely SF which is

always worst.) Overall, the factor-based portfolios have a somewhat worse performance than
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the rotation-equivariant portfolios, which is in contrast to the results for the global minimum

variance portfolio in Section 5.5.4.

E.2.5 Transaction Costs

Again, a detailed empirical study of real-life constrained portfolio selection that actively limits

portfolio turnover (and thus transaction costs) from one ‘month’ to the next is beyond the

scope of the present paper.

Instead, we provide some limited results for unconstrained portfolio selection with N = 500

only (to limit the contribution due to cause (1), changing investment universes). We assume

a bid-ask spread ranging from three to fifty basis points. This number three is rather low by

academic standards but can actually be considered an upper bound for liquid stocks nowadays;

for example, see Avramovic and Mackintosh (2013) and Webster et al. (2015, p.33).

The results are presented in Table 20. It can be seen that the performance of all portfolios

suffers in absolute terms, with EW-TQ and BSV affected the least. For bid-ask-spread of three

basis points, the ranking of the various portfolios is the same compared that for N = 500 in

Table 12. But as the bid-ask-spread increases, the ranking changes. In particular, for a bid-

ask-spread of fifty basis points, only EW-TQ and BSV achieve a positive average return and

a positive Sharpe ratio. Furthermore, it is noteworthy that the nonlinear shrinkage portfolios

NonLin, NL-Inv, and NL-SF all have lower average turnover than the linear shrinkage portfolio

Lin and are therefore less affected by trading costs.

E.2.6 Different Return Frequency

Finally, we change the return frequency from daily to monthly. As there is a longer history

available for monthly returns, we download data from CRSP starting at 01/1945 through

12/2011. We use the T = 120 most recent months of previous data to estimate a covariance

matrix. Consequently, the out-of-sample investment period ranges from 01/1955 through

12/2011, yielding 684 out-of-sample returns. The remaining details are as before.

The results are presented in Table 21. It can be seen that they are qualitatively similar to

the results for daily data in Table 12. In particular, among the rotation-equivariant portfolios,

NonLin is uniformly best and better than Lin with statistical significance for N = 250 and

N = 500. Furthermore, among the factor-based portfolios, NL-SF is the best overall (now best

in three out of five cases whereas before best in four out of five cases). Finally, NonLin has

somewhat better performance on balance compared to NL-SF.

E.2.7 Different Data Sets

So far, we have focused on individual stocks as assets, since we believe this is the most relevant

case for fund managers. On the other hand, many academics also consider the case where the

assets are portfolios.

To check the robustness of our findings in this regard, we consider three universes of size

N = 100 from Ken French’s Data Library:
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• 100 portfolios formed on size and book-to-Market

• 100 Portfolios formed on size and operating profitability

• 100 Portfolios formed on size and investment

We use daily data. The out-of-sample period ranges for 12/13/1965 through 12/31/2015,

resulting in a total of 600 ‘months’ (or 12,600 days). At any investment date, a covariance

matrix is estimated using the most recent T = 250 daily returns.

The results are presented in Table 22. It can be seen that they are similar to the results in

Table 12 in a relative sense, though they are better in an absolute sense. Among the rotation-

equivariant portfolios, NonLin is best twice and Lin is best once (thought the differences are

not statistically significant). Among the factor-based portfolios, POET is best twice and NL-

SF is best once. Finally, for these data sets, NL-SF is uniformly better than NonLin (though

not with statistical significance).

Remark E.3 (Optimal versus Näıve Diversification). DeMiguel et al. (2009b) claim that it is

very difficult to outperform the ‘näıve’ equal-weighted portfolio with ‘sophisticated’ Markowitz

portfolios due to the estimation error in the inputs required by Markowitz portfolios; their

claim is concerning outperformance in terms of the Sharpe ratio and certainty equivalents.

In contrast, we find that shrinkage estimation of the covariance matrix combined with the

momentum signal results in consistently higher Sharpe ratios compared to the equal-weighted

portfolio.23 In particular, this outperformance also holds in recent times when the momentum

signal was not as strong anymore as in the more distant past; see Tables 5 and 16. This finding

is encouraging to ‘sophisticated’ investment managers: If they can come up with a good signal

and combine it with nonlinear shrinkage estimation of the covariance matrix, outperforming

the equal-weighted portfolio is far from a hopeless task.

E.3 Summary of Results

We have carried out an extensive backtest analysis, evaluating the out-of-sample performance

of our nonlinear shrinkage estimator when used to estimate a ‘full’ Markowitz portfolio with

momentum signal; in this setting, the primary performance criterion is the Sharpe ratio of

realized out-of-sample returns (in excess of the risk-free rate). We have compared nonlinear

shrinkage to a number of other strategies to estimate the global mininum variance portfolio,

most of them proposed in the last decade in leading finance and econometrics journals. The

portfolios considered can be classified into rotation-equivariant portfolios and portfolios based

on factor models.

Our main analysis is based on daily data with an out-of-sample investment period ranging

from 1973 throughout 2011. We have added a large number of robustness checks to study the

sensitivity of our findings. Such robustness checks include a subsample analysis, changing the

23Of the many scenarios considered, there is a single one where the equal-weighted portfolio has a higher

Sharpe ratio than linear shrinkage combined with the momentum signal, namely with monthly data for N = 30;

see Tables 10 and 21. On the other hand, the equal-weighted portfolio has always a lower Sharpe ratio than

nonlinear shrinkage combined with the momentum signal.
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length of the estimation window of past data to estimate a covariance matrix, winsorization

of past returns to estimate a covariance matrix, imposing a no-short-sales constraint, and

changing the return frequency from daily data to monthly data (where the beginning of the

out-of-sample investment period is moved back to 1955).

Among the rotation-equivariant portfolios, nonlinear shrinkage is the clear winner; in

particular, it consistently outperforms linear shrinkage. Among the factor-based portfolios,

applying nonlinear shrinkage after preconditioning the data using a single-factor model is the

overall the best. When comparing this ‘hybrid’ method to linear shrinkage, there is no winner;

on balance, the two methods perform about equally well.

The statements of the previous paragraph only apply to ‘unrestricted’ estimation of

the Markowitz portfolio when short sales (that is, negative portfolio weights) are allowed.

Consistent with the findings of Jagannathan and Ma (2003), the relative performances change

when short sales are not allowed (that is, when portfolio weights are constrained to be non-

negative). In this case, ‘sophisticated’ portfolios still outperform the sample covariance matrix,

though to a lesser extent compared to unrestricted estimation. Moreover, nonlinear shrinkage

is overall best, outperforming all factor-based portfolios in particular.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.22 4.14/0.83 2.38/0.72 11.29 11.87 11.87 11.76 11.87 10.82 11.83

SD 25.77 23.15 18.86 16.31/1.58 19.64/1.84 18.58 18.57 18.57 18.76 18.47 18.80 18.16

SR 0.48 0.58 0.60 0.25/0.52 0.12/0.39 0.61 0.64 0.64 0.48 0.64 0.58 0.65

N = 50

AV 16.26 14.90 10.32 0.13/− 0.02 0.50/− 0.89 11.70 12.12 12.04 11.08 11.35 10.77 11.43

SD 24.60 22.18 16.86 2.66/8.83 2.25/6.57 16.30 16.23 16.24 16.34 15.99 16.15 15.80

SR 0.66 0.67 0.61 0.05/− 0.07 −0.00/− 0.14 0.72 0.75 0.74 0.68 0.71 0.67 0.72

N = 100

AV 15.74 14.98 10.93 −4.70/− 0.56 1.23/1.88 11.97 12.31 12.31 10.67 11.86 10.66 11.00

SD 22.44 20.32 16.00 25.34/15.41 1.85/2.48 14.68 14.30 14.30 14.68 14.16 14.04 13.82

SR 0.70 0.74 0.68 −0.19/− 0.04 0.66/0.76 0.82 0.86 0.86 0.73 0.84 0.76 0.80

N = 250

AV 14.17 13.03 275.01 NA NA 10.04 11.12 11.38 10.80 11.45 10.32 10.36

SD 21.77 19.86 3, 542.92 NA NA 12.82 12.14 12.32 13.20 12.33 11.74 11.26

SR 0.65 0.66 0.08 NA NA 0.78 0.92∗∗ 0.92 0.82 0.93 0.88 0.92

N = 500

AV 14.67 13.58 NA NA NA 8.92 9.94 9.87 9.86 10.62 9.37 9.85

SD 21.54 19.63 NA NA NA 11.82 11.09 11.26 12.77 11.68 10.69 10.10

SR 0.68 0.69 NA NA NA 0.75 0.90∗∗ 0.88 0.77 0.91 0.88 0.97

Table 12: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 10,080 daily out-of-

sample returns in excess of the risk-free rate from 01/19/1973 through 12/31/2011. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 50

Min 0.0000 −0.0687 −0.1371 −0.0098 −0.0092 −0.1095 −0.1164 −0.1165 −0.1026 −0.1108 −0.1191 −0.1109

Max 0.1667 0.1287 0.3173 0.0136 0.0139 0.2344 0.2612 0.2629 0.2792 0.2904 0.2757 0.2908

SD 0.0678 0.0452 0.0988 0.0051 0.0051 0.0805 0.0853 0.0854 0.0877 0.0896 0.0900 0.0899

MAD-EW 0.0533 0.0343 0.0722 0.0326 0.0321 0.0618 0.0642 0.0642 0.0656 0.0659 0.0677 0.0664

N = 50

Min 0.0000 −0.0466 −0.1198 −0.0118 −0.0110 −0.0895 −0.0883 −0.0886 −0.0763 −0.0879 −0.0847 −0.0848

Max 0.1000 0.0823 0.2588 0.0143 0.0144 0.1733 0.1838 0.1873 0.2117 0.2244 0.2088 0.2242

SD 0.0404 0.0271 0.0716 0.0051 0.0049 0.0554 0.0558 0.0561 0.0582 0.0607 0.0588 0.0604

MAD-EW 0.0320 0.0206 0.0519 0.0196 0.0191 0.0428 0.0425 0.0426 0.0431 0.0440 0.0437 0.0441

N = 100

Min 0.0000 −0.0257 −0.1105 −0.0130 −0.0120 −0.0682 −0.0591 −0.0594 −0.0478 −0.0583 −0.0542 −0.0575

Max 0.0500 0.0446 0.2027 0.0144 0.0141 0.1148 0.0986 0.1032 0.1368 0.1483 0.1373 0.1515

SD 0.0201 0.0135 0.0501 0.0045 0.0043 0.0343 0.0301 0.0305 0.0321 0.0342 0.0326 0.0344

MAD-EW 0.0160 0.0102 0.0362 0.0100 0.0096 0.0265 0.0236 0.0237 0.0234 0.0245 0.0239 0.0247

N = 250

Min 0.0000 −0.0110 −7.2457 NA NA −0.0452 −0.0334 −0.0338 −0.0242 −0.0314 −0.0297 −0.0330

Max 0.0200 0.0187 6.7088 NA NA 0.0620 0.0426 0.0433 0.0711 0.0807 0.0774 0.0875

SD 0.0080 0.0054 1.9294 NA NA 0.0182 0.0133 0.0134 0.0139 0.0153 0.0148 0.0160

MAD-EW 0.0064 0.0041 1.4157 NA NA 0.0144 0.0105 0.0106 0.0100 0.0108 0.0107 0.0114

N = 500

Min 0.0000 −0.0056 NA NA NA −0.0285 −0.0209 −0.0207 −0.0137 −0.0187 −0.0216 −0.0208

Max 0.0100 0.0095 NA NA NA 0.0342 0.0239 0.0243 0.0406 0.0476 0.0494 0.0551

SD 0.0040 0.0027 NA NA NA 0.0099 0.0071 0.0071 0.0071 0.0081 0.0082 0.0088

MAD-EW 0.0032 0.0020 NA NA NA 0.0079 0.0056 0.0056 0.0051 0.0057 0.0058 0.0062

Table 13: Average characteristics of the weight vectors of various estimators of the Markowitz

portfolio with momentum signal. Min stands for mininum weight; Max stands for maximum

weight; SD stands for standard deviation of the weights; and MAD-EW stands for mean

absolute deviation from the equal-weighted portfolio (that is, from 1/N). All measures reported

are the averages of the corresponding characteristic over the 480 portfolio formations.
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Period: 01/19/1973–05/08/1986

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.84 12.15 8.05 7.29/0.82 7.65/0.95 8.93 8.74 8.73 8.99 8.99 7.67 9.25

SD 21.37 18.79 15.33 22.12/1.12 33.77/1.12 15.03 15.05 15.04 14.83 14.79 15.07 14.81

SR 0.55 0.65 0.53 0.33/0.73 0.23/0.85 0.59 0.58 0.58 0.61 0.61 0.51 0.62

N = 50

AV 13.62 12.02 6.97 −0.25/1.13 0.27/− 2.72 8.28 9.02 8.89 8.40 7.70 8.59 8.00

SD 19.50 17.66 13.52 2.61/1.73 1.49/10.30 13.14 13.05 13.06 12.80 12.66 12.95 12.64

SR 0.70 0.68 0.52 −0.10/0.65 0.18/− 0.26 0.63 0.69 0.68 0.66 0.61 0.66 0.63

N = 100

AV 12.64 13.77 9.51 0.86/1.32 1.27/2.27 10.16 10.38 10.36 9.04 8.59 8.96 9.55

SD 17.77 16.20 12.74 1.69/14.10 1.91/2.54 11.58 11.32 11.33 10.96 10.73 10.79 10.71

SR 0.71 0.85 0.75 0.51/0.09 0.67/0.89 0.88 0.92 0.91 0.82 0.80 0.83 0.89

N = 250

AV 11.90 12.32 −527.28 NA NA 7.99 10.02 9.96 10.05 8.10 8.65 8.82

SD 16.88 15.55 2, 009.60 NA NA 10.21 9.31 9.39 9.42 8.95 8.91 8.66

SR 0.70 0.79 −0.26 NA NA 0.78 1.08∗∗∗ 1.06 1.07 0.90 0.97 1.02

N = 500

AV 12.35 12.73 NA NA NA 6.86 9.65 9.48 10.21 8.34 8.47 9.03

SD 16.59 15.32 NA NA NA 8.73 8.12 8.29 8.83 8.09 7.89 7.60

SR 0.74 0.83 NA NA NA 0.79 1.19∗∗∗ 1.14 1.16 1.03 1.07 1.19

Table 14: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 3,360 daily out-of-

sample returns in excess of the risk-free rate from 01/19/1973 through 05/08/1986. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 05/09/1986–08/25/1999

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 14.06 11.89 12.27 −1.04/0.64 0.56/1.17 12.21 12.36 12.36 12.18 10.67 11.61 11.84

SD 23.70 21.94 19.13 3.66/1.34 1.29/2.44 18.68 18.55 18.55 18.42 18.48 19.00 18.19

SR 0.59 0.54 0.64 −0.28/0.48 0.43/0.48 0.65 0.67 0.67 0.66 0.58 0.61 0.65

N = 50

AV 19.81 18.06 10.08 0.70/0.48 1.47/0.01 11.46 11.74 11.73 10.82 11.29 10.31 11.40

SD 22.96 20.48 16.65 1.36/1.38 2.84/3.91 16.19 16.16 16.17 16.01 15.92 15.97 15.71

SR 0.86 0.88 0.61 0.52/0.34 0.52/0.00 0.71 0.73 0.73 0.68 0.71 0.65 0.73

N = 100

AV 20.25 18.20 12.63 0.64/2.44 1.34/2.19 13.20 14.00 14.07 9.79 11.48 11.06 11.65

SD 20.42 18.33 15.59 2.91/3.35 1.97/2.76 14.38 14.30 14.28 14.64 14.36 14.20 13.92

SR 0.99 0.99 0.81 0.22/0.73 0.68/0.79 0.92 0.98 0.99 0.67 0.80 0.78 0.84

N = 250

AV 18.12 15.08 652.50 NA NA 11.74 12.44 12.51 9.48 11.38 10.61 12.55

SD 19.57 17.78 2127.18 NA NA 11.95 11.86 12.01 12.24 11.65 11.60 11.00

SR 0.93 0.85 0.31 NA NA 0.98 1.05 1.04 0.78 0.98 0.91 1.14

N = 500

AV 18.95 16.35 NA NA NA 12.19 12.67 12.71 8.53 10.95 10.54 12.23

SD 19.39 17.62 NA NA NA 11.05 10.82 11.03 11.65 10.75 10.37 9.82

SR 0.98 0.93 NA NA NA 1.10 1.17 1.15 0.73 1.02 1.02 1.24

Table 15: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 3,360 daily out-of-

sample returns in excess of the risk-free rate from 05/09/1986 through 08/25/1999. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 08/26/1999–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.50 16.05 13.34 6.16/1.02 −1.08/0.02 12.71 14.54 14.52 14.11 15.95 13.16 14.40

SD 31.21 27.82 21.58 17.20/2.11 3.99/1.71 21.47 21.54 21.54 22.28 21.53 21.72 20.96

SR 0.37 0.58 0.62 0.36/0.48 −0.27/0.01 0.59 0.68 0.67 0.63 0.74 0.61 0.69

N = 50

AV 15.35 14.63 13.91 −0.06/− 1.66 −0.23/0.04 15.35 15.59 15.50 14.01 15.07 13.41 14.88

SD 30.15 27.29 19.82 3.54/15.14 2.22/2.84 19.03 18.95 18.97 19.50 18.80 18.96 18.51

SR 0.51 0.54 0.70 −0.02/− 0.11 −0.10/0.01 0.81 0.82 0.82 0.72 0.80 0.71 0.80

N = 100

AV 14.33 12.97 10.65 −15.61/− 5.45 1.06/1.19 12.54 12.52 12.53 13.17 15.51 11.96 11.80

SD 27.89 25.30 19.06 43.75/22.42 1.65/2.10 17.49 16.76 16.78 17.67 16.75 16.53 16.28

SR 0.51 0.51 0.56 −0.36/− 0.24 0.65/0.57 0.72 0.75 0.75 0.75 0.93 0.72 0.73

N = 250

AV 12.51 11.68 699.80 NA NA 10.40 10.92 11.67 12.87 14.88 11.69 9.72

SD 27.45 25.02 5, 394.16 NA NA 15.69 14.67 14.93 16.87 15.51 14.13 13.57

SR 0.46 0.47 0.13 NA NA 0.66 0.74 0.78 0.77 0.96 0.83 0.72

N = 500

AV 12.71 11.67 NA NA NA 7.70 7.51 7.42 10.84 12.59 9.11 8.30

SD 27.22 24.71 NA NA NA 14.84 13.63 13.78 16.60 15.10 13.16 12.33

SR 0.47 0.47 NA NA NA 0.52 0.55 0.54 0.65 0.83 0.69 0.67

Table 16: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 3,360 daily out-of-

sample returns in excess of the risk-free rate from 08/26/1999 through 12/31/2011. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.32 0.29/0.52 0.15/− 0.42 11.51 11.55 11.54 11.88 12.06 10.81 11.68

SD 25.77 23.15 18.44 0.93/2.61 1.22/5.76 18.32 18.33 18.33 18.90 18.51 18.76 18.25

SR 0.48 0.58 0.61 0.31/0.20 0.13/− 0.07 0.63 0.63 0.63 0.63 0.65 0.58 0.64

N = 50

AV 16.26 14.90 11.58 1.91/1.18 2.23/− 51.96 12.17 12.38 12.35 11.24 11.69 10.96 11.77

SD 24.60 22.18 16.25 7.52/3.12 10.80/326.59 16.12 16.11 16.11 16.50 16.16 16.31 15.91

SR 0.66 0.67 0.71 0.25/0.38 0.21/− 0.16 0.76 0.77 0.77 0.68 0.72 0.67 0.74

N = 100

AV 15.74 14.98 11.07 0.53/− 3.97 4.11/0.34 11.88 11.77 11.75 11.58 12.45 11.24 11.28

SD 22.44 20.32 14.54 2.29/26.46 22.56/5.34 14.15 14.03 14.04 14.62 14.15 13.86 13.64

SR 0.70 0.74 0.76 0.23/− 0.15 0.18/0.06 0.84 0.84 0.84 0.79 0.88 0.81 0.83

N = 250

AV 14.17 13.03 11.25 3.28/− 4.26 0.60/− 2.04 10.72 11.05 11.16 11.27 11.54 9.87 10.64

SD 21.77 19.86 13.70 9.44/30.63 5.76/42.38 12.26 11.85 11.88 13.41 12.66 11.82 11.28

SR 0.65 0.66 0.82 0.35/− 0.14 0.10/− 0.05 0.87 0.93 0.94 0.84 0.91 0.83 0.94

N = 500

AV 14.67 13.58 1, 205.18 NA NA 10.53 10.57 10.55 10.52 10.97 9.51 10.36

SD 21.54 19.63 8, 551.62 NA NA 11.95 10.89 11.33 12.99 12.11 10.77 10.09

SR 0.68 0.69 0.14 NA NA 0.88 0.97 0.93 0.81 0.91 0.88 1.03

Table 17: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. The past window to estimate the covariance

matrix is taken to be of length T = 500 days instead of T = 250 days. AV stands for average;

SD stands for standard deviation; and SR stands for Sharpe ratio. All measures are based

on 10,080 daily out-of-sample returns in excess of the risk-free rate from 01/19/1973 through

12/31/2011. In the rows labeled SR, the largest number in each ‘division’ appears in bold face.

In the columns labeled Lin and NonLin, significant outperformance of one of the two portfolios

over the other in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level;

** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.27 0.82/− 0.54 2.08/0.59 11.38 11.87 11.89 11.89 12.23 12.19 11.99

SD 25.77 23.15 19.16 3.61/3.67 4.68/3.02 18.83 18.77 18.77 19.06 18.66 19.28 18.46

SR 0.48 0.58 0.59 0.23/− 0.15 0.45/0.19 0.60 0.63 0.63 0.62 0.66 0.63 0.65

N = 50

AV 16.26 14.90 10.71 1.62/2.54 −5.88/− 2.19 11.46 12.11 12.04 11.30 11.68 10.24 11.69

SD 24.60 22.18 17.12 8.05/7.80 32.69/18.76 16.65 16.55 16.55 16.61 16.10 16.54 15.97

SR 0.66 0.67 0.63 0.20/0.33 −0.18/− 0.12 0.69 0.73 0.73 0.68 0.73 0.62 0.73

N = 100

AV 15.74 14.98 10.47 0.52/− 0.98 1.12/2.72 11.39 11.81 11.78 10.84 12.07 10.07 10.75

SD 22.44 20.32 16.39 18.21/15.78 6.16/16.12 15.05 14.74 14.70 14.93 14.24 14.29 13.98

SR 0.70 0.74 0.64 0.03/− 0.06 0.18/0.18 0.76 0.80 0.80 0.73 0.85 0.70 0.77

N = 250

AV 14.17 13.03 −2, 498.52 NA NA 10.70 11.36 11.37 10.87 11.67 10.24 10.56

SD 21.77 19.86 12, 130.23 NA NA 13.82 12.46 12.48 13.38 12.38 11.56 11.35

SR 0.65 0.66 −0.21 NA NA 0.77 0.91∗ 0.91 0.81 0.94 0.89 0.93

N = 500

AV 14.67 13.58 NA NA NA 9.16 10.43 10.35 10.05 10.99 9.76 10.16

SD 21.54 19.63 NA NA NA 12.59 11.33 11.45 12.91 11.69 10.28 10.16

SR 0.68 0.69 NA NA NA 0.73 0.92∗∗ 0.90 0.78 0.94 0.95 1.00

Table 18: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. In the estimation of a covariance matrix, the

past returns are winsorized as described in Appendix D. AV stands for average; SD stands for

standard deviation; and SR stands for Sharpe ratio. All measures are based on 10,080 daily

out-of-sample returns in excess of the risk-free rate from 01/19/1973 through 12/31/2011. In

the rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 12.06 NA NA 12.12 12.42 12.40 11.65 12.06 11.93 11.88

SD 25.77 23.15 23.07 NA NA 23.05 23.01 23.00 23.30 23.17 23.09 23.06

SR 0.48 0.58 0.52 NA NA 0.53 0.54 0.54 0.50 0.52 0.52 0.51

N = 50

AV 16.26 14.90 13.16 NA NA 13.65 13.93 13.91 12.98 12.95 13.13 13.16

SD 24.60 22.18 20.93 NA NA 20.84 20.88 20.99 21.06 20.96 20.93 20.94

SR 0.66 0.67 0.63 NA NA 0.65 0.67 0.67 0.61 0.62 0.63 0.63

N = 100

AV 15.74 14.98 14.50 NA NA 14.85 14.90 14.87 14.06 14.19 14.30 4.14

SD 22.44 20.32 18.63 NA NA 18.59 18.62 18.60 18.71 18.61 18.57 18.59

SR 0.70 0.74 0.78 NA NA 0.80 0.80 0.80 0.75 0.76 0.77 0.76

N = 250

AV 14.17 13.03 12.57 NA NA 13.04 13.58 13.59 12.53 13.06 12.64 12.57

SD 21.77 19.86 16.60 NA NA 16.57 16.65 16.67 16.78 16.56 16.47 16.44

SR 0.65 0.66 0.76 NA NA 0.79 0.82 0.82 0.75 0.79 0.77 0.76

N = 500

AV 14.67 13.58 13.66 NA NA 13.82 14.41 14.19 13.53 13.96 13.74 13.76

SD 21.54 19.63 15.26 NA NA 15.26 15.40 15.48 15.64 15.39 15.17 15.19

SR 0.68 0.69 0.90 NA NA 0.91 0.94 0.92 0.87 0.91 0.91 0.91

Table 19: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. A lower bound of zero is imposed on all portfolio

weights, so that short sales are not allowed. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 10,080 daily out-of-

sample returns in excess of the risk-free rate from 01/19/1973 through 12/31/2011. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 500, BAS = 3 basis points

AV 14.30 13.15 NA NA NA 7.28 9.03 8.90 9.03 9.69 8.36 8.78

SD 21.54 19.63 NA NA NA 11.82 11.16 11.30 12.77 11.68 10.69 10.11

SR 0.66 0.67 NA NA NA 0.62 0.81∗∗∗ 0.79 0.71 0.83 0.78 0.87

N = 500

AT 1.03 1.20 NA NA NA 4.58 2.93 3.04 2.32 2.60 2.84 3.01

N = 500, BAS = 5 basis points

AV 14.06 12.87 NA NA NA 6.19 8.33 8.17 8.48 9.08 7.68 8.06

SD 21.54 19.63 NA NA NA 11.84 11.17 11.31 12.78 11.69 10.70 10.11

SR 0.65 0.66 NA NA NA 0.52 0.75∗∗∗ 0.72 0.66 0.78 0.72 0.80

N = 500, BAS = 10 basis points

AV 13.44 12.16 NA NA NA 3.47 6.58 6.37 7.09 7.53 5.99 6.27

SD 21.54 19.63 NA NA NA 11.92 11.20 11.35 12.80 11.71 10.73 10.15

SR 0.62 0.62 NA NA NA 0.29 0.59∗∗∗ 0.56 0.55 0.64 0.56 0.62

N = 500, BAS = 20 basis points

AV 12.22 10.73 NA NA NA −1.98 3.09 2.75 4.33 4.43 2.62 2.70

SD 21.55 19.64 NA NA NA 12.23 11.33 11.49 12.88 11.82 10.86 10.30

SR 0.57 0.55 NA NA NA −0.16 0.27∗∗∗ 0.24 0.34 0.38 0.24 0.26

N = 500, BAS = 50 basis points

AV 8.54 6.44 NA NA NA −18.31 −7.37 −8.09 −3.96 −4.86 −7.52 −8.03

SD 21.60 19.73 NA NA NA 14.23 12.22 12.44 13.41 12.51 11.76 11.33

SR 0.40 0.33 NA NA NA −1.29 −0.60∗∗∗ −0.65 −0.29 −0.39 −0.64 −0.71

N = 500

AT 1.03 1.20 NA NA NA 4.58 2.93 3.04 2.32 2.60 2.84 3.01

Table 20: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. AT stands for average turnover (from one ‘month’

to the next). All measures are based on 10,080 daily out-of-sample returns in excess of the

risk-free rate from 01/19/1973 through 12/31/2011. The returns are adjusted for transaction

costs assuming a bid-ask-spread (BAS) that ranges from three to fifty basis points. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/1955–12/2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 7.87 7.03 6.29 7.50/33.63 8.06/24.99 6.55 7.05 7.08 7.56 6.79 5.32 6.42

SD 19.90 18.08 17.49 40.55/174.90 22.41/127.33 16.31 16.16 16.15 16.35 16.34 16.51 16.01

SR 0.40 0.39 0.36 0.18/0.19 0.36/0.20 0.40 0.44∗ 0.44 0.46 0.42 0.32 0.40

N = 50

AV 8.94 9.58 5.57 2.48/46.82 6.00/31.48 6.71 7.77 7.77 8.00 7.54 7.28 7.43

SD 19.32 17.88 17.82 40.80/168.54 20.95/107.86 15.24 14.60 14.63 15.31 14.99 14.75 14.55

SR 0.46 0.54 0.31 0.06/0.28 0.29/0.29 0.44 0.53∗∗ 0.53 0.52 0.50 0.49 0.51

N = 100

AV 9.32 9.74 4.03 −1.87/5.41 3.18/6.09 8.16 8.55 8.63 7.81 7.50 7.63 7.62

SD 18.47 16.95 28.82 36.16/57.59 19.80/30.45 14.50 12.99 13.09 14.09 13.79 12.67 12.68

SR 0.50 0.57 0.14 −0.05/0.09 0.16/0.20 0.56 0.66∗ 0.66 0.55 0.54 0.60 0.61

N = 250

AV 10.88 10.62 NA NA NA 5.52 8.22 8.50 8.86 8.61 7.79 7.82

SD 17.91 16.58 NA NA NA 13.98 11.85 11.83 13.87 12.94 11.52 11.37

SR 0.61 0.64 NA NA NA 0.39 0.69∗∗ 0.72 0.64 0.67 0.67 0.69

N = 500

AV 10.17 10.21 NA NA NA 5.44 7.82 7.53 9.10 8.64 7.69 7.27

SD 17.70 16.41 NA NA NA 12.90 11.06 11.54 13.51 12.55 10.68 10.69

SR 0.57 0.62 NA NA NA 0.42 0.71∗∗∗ 0.65 0.67 0.68 0.72 0.68

Table 21: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 684 monthly out-of-

sample returns in excess of the risk-free rate from 01/1955 through 12/2011. In the rows

labeled SR, the largest number in each ‘division’ appears in bold face. In the columns labeled

Lin and NonLin, significant outperformance of one of the two portfolios over the other in terms

of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes significance

at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 12/13/1965–12/31/2015

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N =100 portfolios formed on size and book-to-market

AV 9.97 10.15 11.90 3.19/8.01 4.08/2/24 12.23 12.07 12.01 12.45 11.91 12.77 11.97

SD 16.81 16.40 9.70 6.01/33.10 2.88/11.88 9.06 8.81 8.83 11.35 9.23 8.83 8.57

SR 0.59 0.62 1.23 0.53/0.24 1.42/0.19 1.35 1.37 1.36 1.10 1.29 1.45 1.40

N =100 portfolios formed on size and operating profitability

AV 9.83 10.15 12.75 4.59/2.38 3.42/2.47 12.20 11.45 11.42 11.25 11.34 11.45 11.55

SD 16.74 16.47 10.18 7.29/3.71 2.65/6.11 9.47 8.97 9.00 11.170 9.27 8.96 8.82

SR 0.59 0.62 1.25 0.63/0.64 1.29/0.40 1.29 1.28 1.27 1.01 1.22 1.28 1.31

N =100 portfolios formed on size and investment

AV 10.05 10.23 13.02 5.04/3.77 4.68/3.52 12.41 12.15 12.05 12.33 11.67 12.67 12.29

SD 16.75 16.42 9.76 7.97/3.66 6.21/3.33 9.09 8.65 8.67 11.04 9.07 8.66 8.55

SR 0.60 0.62 1.33 0.63/1.03 0.75/1.06 1.37 1.40 1.39 1.12 1.29 1.46 1.44

Table 22: Annualized performance measures (in percent) for various estimators of the

Markowitz portfolio with momentum signal. AV stands for average; SD stands for standard

deviation; and SR stands for Sharpe ratio. All measures are based on 12,600 daily out-of-

sample returns in excess of the risk-free rate from 12/13/1965 through 12/31/2015. In the

rows labeled SR, the largest number in each ‘division’ appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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