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Abstract

This paper introduces a new method for deriving covariance matrix estimators that are

decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is

to employ large-dimensional asymptotics: the matrix dimension and the sample size go to

infinity together, with their ratio converging to a finite, nonzero limit. As the main focus,

we apply this method to Stein’s loss. Compared to the estimator of Stein (1975, 1986), ours

has five theoretical advantages: (1) it asymptotically minimizes the loss itself, instead of

an estimator of the expected loss; (2) it does not necessitate post-processing via an ad hoc

algorithm (called “isotonization”) to restore the positivity or the ordering of the covariance

matrix eigenvalues; (3) it does not ignore any terms in the function to be minimized; (4)

it does not require normality; and (5) it is not limited to applications where the sample

size exceeds the dimension. In addition to these theoretical advantages, our estimator also

improves upon Stein’s estimator in terms of finite-sample performance, as evidenced via

extensive Monte Carlo simulations. To further demonstrate the effectiveness of our method,

we show that some previously suggested estimators of the covariance matrix and its inverse

are decision-theoretically optimal in the large-dimensional asymptotic limit with respect to

the Frobenius loss function.

KEY WORDS: Large-dimensional asymptotics, nonlinear shrinkage estimation,

random matrix theory, rotation equivariance, Stein’s loss.
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1 Introduction

The estimation of a covariance matrix is one of the most fundamental problems in multivariate

statistics. It has countless applications in econometrics, biostatistics, signal processing, neuro-

imaging, climatology, and many other fields. One recurrent problem is that the traditional

estimator (that is, the sample covariance matrix) is ill-conditioned and performs poorly when

the number of variables is not small compared to the sample size. Given the natural eagerness of

applied researchers to look for patterns among as many variables as possible, and their practical

ability to do so thanks to the ever-growing processing power of modern computers, theoreticians

are under pressure to deliver estimation techniques that work well in large dimensions.

A famous proposal for improving over the sample covariance matrix in such cases is due to

Stein (1975, 1986). He considers the class of “rotation-equivariant” estimators that keep the

eigenvectors of the sample covariance matrix while shrinking its eigenvalues. This means that

the small sample eigenvalues are pushed up and the large ones pulled down, thereby reducing

(or “shrinking”) the overall spread of the set of eigenvalues. Stein’s estimator is based on the

scale-invariant loss function commonly referred to as “Stein’s loss”.

Stein’s shrinkage estimator broke new ground and fathered a large literature on rotation-

equivariant shrinkage estimation of a covariance matrix. For example, see the articles by

Haff (1980), Lin and Perlman (1985), Dey and Srinivasan (1985), Daniels and Kaas (2001),

Ledoit and Wolf (2004, 2012), Chen et al. (2009), Won et al. (2013), and the references therein.

Although Stein’s estimator is still considered the “gold standard” (Rajaratnam and Vincenzi,

2016) and has proven hard to beat empirically, a careful reading of Stein’s original articles reveals

several theoretical limitations.

1. The estimator proposed by Stein (1975, 1986) does not minimize the loss, nor the risk (that

is, the expected loss), but instead an unbiased estimator of the risk. This is problematic

because the primary objects of interest are the loss and the risk. A priori there could

exist many unbiased estimators of the risk, so that minimizing them could lead to different

estimators. Furthermore, the resulting estimators may not minimize the primary objects

of interest: the loss or the risk.

2. The formula derived by Stein generates covariance matrix estimators that may not be

positive semidefinite. To solve this problem, he recommends post-processing the estimator

through an “isotonizing” algorithm. However, this is an ad hoc fix whose impact is not

understood theoretically. In addition, the formula generates covariance matrix estimators

that do not necessarily preserve the ordering of the eigenvalues of the sample covariance

matrix. Once again, this problem forces the statistician to resort to the ad hoc isotonizing

algorithm.

3. In order to derive his formula, Stein ignores a term in the unbiased estimator of the

risk that involves the derivatives of the shrinkage function. No justification, apart from

tractability, is given for this omission.

4. Stein’s estimator requires normality, an assumption often violated by real data.

5. Finally, Stein’s estimator is only defined when the sample size exceeds the dimension.
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One important reason why Stein’s estimator is highly regarded in spite of its theoretical lim-

itations is that several Monte Carlo simulations, such as the ones reported by Lin and Perlman

(1985), have shown that it performs remarkably well in practice, as long as it is accompanied

by the ad hoc isotonizing algorithm.

Our paper develops a shrinkage estimator of the covariance matrix in the spirit of Stein (1975,

1986) with two significant improvements: first, it solves the five theoretical problems listed above;

and second, it performs better in practice, as evidenced by extensive Monte-Carlo simulations.

We respect Stein’s framework by adopting Stein’s loss as the metric by which estimators are

evaluated, and by restricting ourselves to his class of rotation-equivariant estimators that have

the same eigenvectors as the sample covariance matrix.

The key difference is that we carry this framework from finite samples into the realm of “large-

dimensional asymptotics”, where the number of variables and the sample size go to infinity

together, with their ratio (called the “concentration”) converging to a finite, nonzero limit.

Such an approach enables us to harness mathematical results from what is commonly known as

“Random Matrix Theory” (RMT). It should be noted that Stein (1986) himself acknowledges

the usefulness of RMT. But he uses it for illustration purposes only, which opens up the question

of whether RMT could contribute more than that and deliver an improved Stein-type estimator

of the covariance matrix. Important new results in RMT enable us to answer these questions

positively in the present paper.

We show that, under a certain set of assumptions, Stein’s loss (properly normalized)

converges almost surely to a nonrandom limit, which we characterize explicitly. We embed the

eigenvalues of the covariance matrix estimator into a “shrinkage function”, and we introduce the

notion of a “limiting” shrinkage function. The basic idea is that, even though the eigenvalues of

the sample covariance matrix are random, the way they should be asymptotically transformed

is nonrandom, and is governed by some limiting shrinkage function. We derive a necessary

and sufficient condition for the limiting shrinkage function to minimize the large-dimensional

asymptotic limit of Stein’s loss. Finally, we construct a covariance matrix estimator that satisfies

this condition and thus is asymptotically optimal under Stein’s loss in our large-dimensional

framework, and in the class of nonlinear shrinkage estimators under consideration. Large-

dimensional asymptotics enable us to:

1. show that Stein’s loss, the corresponding risk, and Stein’s unbiased estimator of the risk

are all asymptotically equivalent;

2. bypass the need for an isotonizing algorithm;

3. justify that the term involving the derivatives of the shrinkage function (which was ignored

by Stein) vanishes indeed;

4. dispense with the normality assumption; and

5. handle the challenging case where the dimension exceeds the sample size.

These five theoretical advantages translate into significantly improved finite-sample performance

over Stein’s estimator, as we demonstrate through a comprehensive set of Monte Carlo

simulations. In particular, concerning point 4., Stein (1975, 1986) assumes normality to show
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that the relevant objective function is an unbiased estimator of the risk. But as we establish

in the present paper, this objective function converges to the same limit as the risk in an

appropriate asymptotic setting. Hence, our results demonstrate that Stein’s estimator — as

well as our new estimator — is also a relevant estimator when normality does not hold.

Our procedure is divided into two distinct steps: first, we find an “oracle” estimator that

is asymptotically optimal but depends on unobservable population quantities; second, we find

a bona fide estimator that depends only on observable quantities, is asymptotically equivalent

to the oracle, and thus inherits its the oracle’s asymptotic optimality property. The second

step is not original, as we adapt technology developed earlier by Ledoit and Wolf (2012, 2015).

However, the first step is a key original contribution of the present paper, made possible by the

introduction of the new concept of “limiting shrinkage function”. In order to demonstrate its

effectiveness, we apply it to the estimators of Ledoit and Wolf (2012, 2015) and prove that these

previously suggested estimators are asymptotically optimal with respect to their respective loss

functions. (This optimality result strengthens the two earlier papers.) In passing, we unearth

deep, unexpected connections between Stein’s loss and the quadratic loss functions used by

Ledoit and Wolf (2012, 2015).

Additional evidence for our method being effective is the fact that it enables us to discover a

new oracle covariance matrix estimator that is optimal with respect to the “Symmetrized Stein’s

loss” within our class of nonlinear shrinkage estimators, under large-dimensional asymptotics.

Not only does this estimator aim to be close to the population covariance matrix, but at the

same time it aims to have an inverse close to the inverse of the population covariance matrix.

Such symmetry is mathematically elegant and points to a promising avenue for future research.

The remainder of the paper is organized as follows. Section 2 briefly summarizes the finite-

sample theory of Stein (1975, 1986). Section 3 details the adjustments necessary to transplant

Stein’s theory from finite samples to large-dimensional asymptotics. Section 4 showcases the

effectiveness of our new method for deriving oracle estimators of the covariance matrix that are

asymptotically optimal in the nonlinear shrinkage class with respect to various loss functions.

Section 5 develops our feasible estimator of a covariance matrix, which is asymptotically optimal

in the nonlinear shrinkage class with respect to Stein’s loss. Section 6 extends the analysis to

the challenging case where the matrix dimension exceeds the sample size, the sample covariance

matrix is singular, and Stein’s estimator is not even defined. Section 7 investigates the case

where the largest eigenvalue goes to infinity at the same rate as the matrix dimension while the

bulk of the eigenvalues remain bounded. Section 8 studies finite-sample properties via Monte

Carlo simulations. Section 9 shows an empirical application to real data. Section 10 contains

concluding remarks. All mathematical proofs are collected in an appendix.

2 Shrinkage in Finite Samples under Stein’s Loss

This section expounds the finite-sample theory of Stein (1975, 1986), with minor notational

changes designed to enhance compatibility with the large-dimensional analysis conducted in

subsequent sections. Such changes are highlighted where appropriate.
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2.1 Finite-Sample Framework

Assumption 2.1 (Dimension). The number of variables p and the sample size n are both fixed

and finite; p is smaller than n.

Assumption 2.2 (Population Covariance Matrix). The population covariance matrix Σn is a

nonrandom symmetric positive-definite matrix of dimension p× p.

Let τn
..= (τn,1, . . . , τn,p)

′ denote a system of eigenvalues of Σn. The empirical distribution

function (e.d.f.) of the population eigenvalues is defined as

∀x ∈ R Hn(x) ..=
1

p

p∑

i=1

1[τn,i,+∞)(x) ,

where 1 denotes the indicator function of a set.

Note that all relevant quantities are indexed by n because in subsequent sections we let the

sample size n go to infinity (together with the dimension p).

Assumption 2.3 (Data Generating Process). Xn is a matrix of i.i.d. standard normal random

variables of dimension n×p. The matrix of observations is Yn ..= Xn×
√
Σn, where

√
denotes

the symmetric positive-definite square root of the matrix. Neither
√
Σn nor Xn are observed on

their own: only Yn is observed.

The sample covariance matrix is defined as Sn ..= n−1Y ′
nYn = n−1

√
ΣnX

′
nXn

√
Σn. It admits

a spectral decomposition Sn = UnΛnU
′
n, where Λn is a diagonal matrix, and Un is an orthogonal

matrix: UnU
′
n = U ′

nUn = In, where In (in slight abuse of notation) denotes the identity matrix of

dimension p× p. Let Λn
..= Diag(λn) where λn

..= (λn,1, . . . , λn,p)
′. We can assume without loss

of generality that the sample eigenvalues are sorted in increasing order: λn,1 ≤ λn,2 ≤ · · · ≤ λn,p.

Correspondingly, the ith sample eigenvector is un,i, the ith column vector of Un.

Definition 2.1 (Estimators). We consider covariance matrix estimators of the type S̃n ..=

UnD̃nU
′
n, where D̃n is a diagonal matrix: D̃n

..= Diag(ϕ̃n(λn,1) . . . , ϕ̃n(λn,p)), and ϕ̃n is a

(possibly random) real univariate function which can depend on Sn.

(Since ϕ̃n is allowed to depend on Sn, in particular, ϕ̃n(λn,i) is not necessarily a function of λn,i

only but may depend on the other λn,j also.)

This is the class of “rotation-equivariant” estimators introduced by Stein (1975, 1986):

rotating the original variables results in the same rotation being applied to the estimate of

the covariance matrix. Such rotation equivariance is appropriate in the general case where

the statistician has no a priori information about the orientation of the eigenvectors of the

covariance matrix.

We call ϕ̃n the “shrinkage function” because, in all applications of interest, its effect is to

shrink the set of sample eigenvalues by reducing its dispersion around the mean, pushing up

the small ones and pulling down the large ones. Note that Stein (1986) does not work with the

function ϕ̃n(·) itself but with the vector (ϕ̃n,1, . . . , ϕ̃n,p)
′ ..=

(
ϕ̃n(λn,1), . . . , ϕ̃n(λn,p)

)′
instead.

This is equivalent because the sample eigenvalues are distinct with probability one, and because
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the values taken by the shrinkage function ϕ̃n(·) outside the set {λn,1, . . . , λn,p} do not make

their way into the estimator S̃n. Of these two equivalent formulations, the functional one is

easier to generalize into large-dimensional asymptotics than the vector one, for the same reason

that authors in the Random Matrix Theory (RMT) literature have found it more tractable to

work with the e.d.f. of the sample eigenvalues,

∀x ∈ R Fn(x) ..=
1

p

p∑

i=1

1[λn,i,+∞)(x) ,

than with the vector of the sample eigenvalues.

Definition 2.2 (Loss Function). Estimators are evaluated according to the following scale-

invariant loss function used by Stein (1975, 1986) and commonly referred to as Stein’s loss:

L
S
n(Σn, S̃n) ..=

1

p
Tr(Σ−1

n S̃n)−
1

p
log det(Σ−1

n S̃n)− 1 ,

and its corresponding risk function RS
n(Σn, S̃n) ..= E[LS

n(Σn, S̃n)]. Here, we introduce Tr(·) as

the notation for the trace operator.

Note that Stein (1975, 1986) does not divide by p, but this normalization is necessary

to prevent the loss function from going to infinity with the matrix dimension under large-

dimensional asymptotics; it makes no difference in finite samples. By analogy with Stein’s loss,

we will refer to RS
n(Σn, S̃n) as “Stein’s risk”.

Stein’s loss is proportional to the Kullback and Leibler (1951) divergence from the multivari-

ate normal distribution with zero mean and covariance matrix Σn to the multivariate normal

distribution with zero mean and covariance matrix S̃n, which is commonly expressed in the

following notation:

L
S
n(Σn, S̃n) =

2

p
DKL

(
N(0, S̃n)

∥∥∥N(0,Σn)
)
. (2.1)

2.2 Stein’s Loss in Finite Samples

Stein (1986) introduces a function closely related to the nonlinear shrinkage function: ψ̃(x) ..=

ϕ̃(x)/x. Under Assumptions 2.1–2.3, Stein shows that the risk function satisfies the identity

RS
n(Σn, S̃n) = E[Θn(Σn, S̃n)], where

Θn(Σn, S̃n) ..=
n− p+ 1

np

p∑

j=1

ψ̃n(λn,j)−
1

p

p∑

j=1

log[ψ̃n(λn,j)] + log(n)

+
2

np

p∑

j=1

∑

i>j

λn,jψ̃n(λn,j)− λn,iψ̃n(λn,i)

λn,j − λn,i

+
2

np

p∑

j=1

λn,jψ̃
′
n(λn,j)−

1

p

p∑

j=1

E[log(χ2
n−j+1)]− 1 , (2.2)

with

ψ̃′
n(x)

..=
∂ψ̃n(x)

∂x
.
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Therefore, the random quantity Θn(Σn, S̃n) can be interpreted as an “unbiased estimator of the

risk (function)”.

Ignoring the term (2/np)
∑p

j=1 λn,jψ̃
′
n(λj), the unbiased estimator of risk is minimized when

the shrinkage function ϕ̃n satisfies ∀i = 1, . . . , p, ϕ̃n(λn,i) = ϕ∗
n(λn,i), where

∀i = 1, . . . , p ϕ∗
n(λn,i)

..=
λn,i

1− p− 1

n
− 2

p

n
λn,i ×

1

p

∑

j 6=i

1

λn,j − λn,i

. (2.3)

Although this approach broke new ground and had a major impact on subsequent

developments in multivariate statistics, a drawback of working in finite samples is that

expression (2.3) diverges when some λn,j gets infinitesimally close to another λn,i. In

such cases, Stein’s original estimator can exhibit violation of eigenvalues ordering or even

negative eigenvalues. It therefore necessitates post-processing through an ad hoc isotonizing

algorithm whose effect is hard to quantify theoretically; for example, see the insightful work of

Rajaratnam and Vincenzi (2016). Eschewing isotonization is one of our motivations for going

to large-dimensional asymptotics.

The appendix of Lin and Perlman (1985) gives a detailed description of the isotonizing

algorithm. If we call the isotonized shrinkage function ϕST
n , Stein’s “isotonized” estimator is

SST
n

..= UnD
ST
n U ′

n , where DST
n

..= Diag
(
ϕST
n (λn,1), . . . , ϕ

ST
n (λn,p)

)
. (2.4)

3 Shrinkage in Large Dimensions under Stein’s Loss

This section largely mirrors the previous one and contains adjustments designed to convert from

finite samples to large-dimensional asymptotics, where the dimension goes to infinity together

with the sample size.

3.1 Large-Dimensional Asymptotic Framework

Assumption 3.1 (Dimension). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the ratio p/n converges, as n → ∞, to a limit c ∈ (0, 1) called

the “limiting concentration”. Furthermore, there exists a compact interval included in (0, 1) that

contains p/n for all n large enough.

The extension to the case p > n is covered in Section 6.

Assumption 3.2.

a. The population covariance matrix Σn is a nonrandom symmetric positive-definite matrix

of dimension p× p.

b. Let τn
..= (τn,1, . . . , τn,p)

′ denote a system of eigenvalues of Σn, and Hn the e.d.f. of

population eigenvalues. It is assumed that Hn converges weakly to a limit law H, called

the “limiting spectral distribution (function)”.
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c. Supp(H), the support of H, is the union of a finite number of closed intervals, bounded

away from zero and infinity.

d. There exists a compact interval [h, h] ⊂ (0,∞) that contains
{
τn,1, . . . , τn,p

}
for all n large

enough.

The existence of a limiting concentration (ratio) and a limiting population spectral

distribution are both standard assumptions in the literature on large-dimensional asymptotics;

see Bai and Silverstein (2010) for a comprehensive review. The assumption that Supp(Hn) is

uniformly bounded away from zero is widespread and made by such authors as Johnstone (2001),

Bickel and Levina (2008), Mestre (2008a), Won et al. (2013), and Khare et al. (2015), among

others. The assumption that Supp(Hn) is uniformly bounded away from infinity is even more

widespread and made by such authors as Bai and Silverstein (1998, 1999, 2004), Johnstone

(2001), Bickel and Levina (2008), Mestre (2008a), El Karoui (2008), Won et al. (2013), and

Khare et al. (2015), among others. In particular, our set of assumptions is much less restrictive

than the “spike model” of Johnstone (2001) which is still widely in use; for example, see

Donoho et al. (2014). (Note that Bickel and Levina (2008) use only the assumption of an upper

bound for estimating the covariance matrix itself, whereas they use the assumption of both a

lower and an upper bound for estimating the inverse of the covariance matrix.)

Furthermore, since in Assumption 3.2.d, the lower bound h can be arbitrarily small and

the upper bound h can be arbitrarily large, the assumption also covers the case of a poorly

conditioned covariance matrix. Indeed, Monte Carlo simulations reported in Figure 8.3 indicate

that our estimator performs well in practice even when the smallest eigenvalue goes to zero,

while Monte Carlo simulations reported in Figure 8.9 indicate that our estimator performs well

in practice even when the largest eigenvalue goes to infinity.

In order to streamline the language, we adopt the convention throughout the paper that

the words “limit”, “convergence”, “asymptotic”, and variations thereof, signify convergence

under large-dimensional asymptotics as defined by Assumptions 3.1–3.2, unless explicitly stated

otherwise.

Assumption 3.3 (Data Generating Process). Xn is an n× p matrix of i.i.d. random variables

with mean zero, variance one, and finite 12th moment. The matrix of observations is Yn ..=

Xn ×
√
Σn. Neither

√
Σn nor Xn are observed on their own: only Yn is observed.

Note that we no longer require normality.

Remark 3.1 (Moment condition). The existence of a finite 12th moment is assumed to prove

certain mathematical results using the methodology of Ledoit and Péché (2011). However,

Monte Carlo studies in Ledoit and Wolf (2012, 2015) indicate that this assumption is not needed

in practice and can be replaced with the existence of a finite fourth moment.

The literature on sample covariance matrix eigenvalues under large-dimensional asymptotics

is based on a foundational result by Marčenko and Pastur (1967). It has been strengthened and

broadened by subsequent authors including Silverstein (1995), Silverstein and Bai (1995), and
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Silverstein and Choi (1995), among others. These works imply that, under Assumptions 3.1–3.3,

there exists a continuously differentiable limiting sample spectral distribution F such that

∀x ∈ R Fn(x)
a.s.−→ F (x) . (3.1)

In addition, the existing literature has unearthed important information about the limiting

spectral distribution F , including an equation that relates F to H and c. The version of this

equation given by Silverstein (1995) is that m ..= mF (z) is the unique solution in the set

{
m ∈ C : −1− c

z
+ cm ∈ C

+

}
(3.2)

to the equation

∀z ∈ C
+ mF (z) =

∫
1

τ
[
1− c− c z mF (z)

]
− z

dH(τ) , (3.3)

where C
+ is the half-plane of complex numbers with strictly positive imaginary part and, for

any increasing function G on the real line, mG denotes the Stieltjes transform of G:

∀z ∈ C
+ mG(z) ..=

∫
1

λ− z
dG(λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im
[
mG(ξ + iη)

]
dξ , (3.4)

if G is continuous at a and b. Although the Stieltjes transform of F , mF , is a function whose

domain is the upper half of the complex plane, it admits an extension to the real line, since

Silverstein and Choi (1995) show that: ∀λ ∈ R, limz∈C+→λmF (z) =.. m̆F (λ) exists and is

continuous.

Another useful result concerns the support of the distribution of the sample eigenvalues.

Assumptions 3.1–3.3 together with Bai and Silverstein (1998, Theorem 1.1) imply that the

support of F , denoted by Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals:

Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ <∞.

Assumption 3.4. We assume that there exists a nonrandom real univariate function ϕ̃ defined

on Supp(F ) and continuously differentiable on
⋃κ

k=1[ak, bk] such that ϕ̃n(x)
a.s−→ ϕ̃(x) for all

x ∈ Supp(F ). Furthermore, this convergence is uniform over x ∈ ⋃κ
k=1[ak + η, bk − η], for any

small η > 0. Finally, for any small η > 0, there exists a finite nonrandom constant K̃ such that

almost surely, over the set x ∈ ⋃κ
k=1[ak−η, bk+η], |ϕ̃n(x)| is uniformly bounded by K̃, for all n

large enough.

Remark 3.2. The uniformity convergence in Assumption 3.4 means that for any small η > 0,

there exists a set of probability one such that on this set, supx∈Aη
|ϕ̃n(x) − ϕ̃(x)| −→ 0, with

Aη
..=
⋃κ

k=1[ak + η, bk − η]. This assumption is used in the proof of Lemma A.2.
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Shrinkage functions need to be as well behaved asymptotically as spectral distribution

functions, except possibly on a finite number of arbitrarily small regions near the boundary

of the support. The large-dimensional asymptotic properties of a generic rotation-equivariant

estimator S̃n are fully characterized by its limiting shrinkage function ϕ̃.

Throughout the paper, we call the set of estimators specified by Definition 2.1 and

Assumption 3.4 “the class of nonlinear shrinkage estimators”. We argue that this is not

a restrictive definition for two reasons: first, for finite dimension p and sample size n, the

shrunk eigenvalues
(
ϕ̃n(λn,1) . . . , ϕ̃n(λn,p)

)
can be anything in R

n; second, all we require is

that the shrinkage function ϕ̃n remains bounded and converges uniformly to some continuously

differentiable limit ϕ̃. It would be very difficult to deal mathematically with shrinkage functions

that are unbounded, or that alternate between vastly different shapes without ever converging

to any specific one.

3.2 Stein’s Loss under Large-Dimensional Asymptotics

Instead of minimizing the unbiased estimator of risk Θn(Σn, S̃n) defined in equation (2.2), as

Stein (1975, 1986) does, we minimize limp,n→c∞LS
n(Σn, S̃n), where the loss function LS

n comes

from Definition 2.2, and limp,n→c∞Θn(Σn, S̃n). Here, we introduce the notation “p, n →c ∞”

as indicating that both p and n go to infinity together, with their ratio p/n converging to a

constant c; see Assumption 3.1.

The almost sure existence and equality of these two limits is established below.

Theorem 3.1. Under Assumptions 3.1–3.4,

L
S
n(Σn, S̃n)

a.s.−→ M
S
c (H, ϕ̃)

..=
κ∑

k=1

∫ bk

ak

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x)

+

∫
log(t) dH(t)− 1 . (3.5)

The proof is in Appendix A.1. The connection with Stein’s finite sample-analysis is further

elucidated by an equivalent result for the unbiased estimator of risk.

Proposition 3.1. Under Assumptions 3.1–3.4,

Θn(Σn, S̃n)
a.s.−→ M

S
c (H, ϕ̃) . (3.6)

The proof is in Appendix A.2. Proposition 3.1 shows that, under large-dimensional asymp-

totics, minimizing the unbiased estimator of risk is asymptotically equivalent to minimizing

the loss, with probability one. It also shows that ignoring the term (2/np)
∑p

j=1 λn,jψ̃
′
n(λj) in

the unbiased estimator of risk, which was an ad hoc approximation by Stein in finite samples,

is justified under large-dimensional asymptotics, since this term vanishes in the limit.

Theorem 3.1 enables us to characterize the set of asymptotically optimal estimators under

Stein’s loss in large dimensions.
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Corollary 3.1. Suppose Assumptions 3.1–3.4 hold.

a. A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant estimators

described in Definition 2.1 the almost sure limit (3.5) of Stein’s loss if and only if its

limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ∗(x), where

∀x ∈ Supp(F ) ϕ∗(x) ..=
x

1− c− 2 c xRe[m̆F (x)]
. (3.7)

The resulting oracle estimator of the covariance matrix is

S∗
n

..= Un × Diag
(
ϕ∗(λn,1), . . . , ϕ

∗(λn,p)
)
× U ′

n .

b. The minimum of the almost sure limit (3.5) of Stein’s loss is equal to

lim
p,n→c∞

L
S
n(Σn, S

∗
n) =

∫
log(t) dH(t)−

κ∑

k=1

∫ bk

ak

log

[
x

1− c− 2 c xRe[m̆F (x)]

]
dF (x) .

(3.8)

Equation (3.7) follows immediately from Theorem 3.1 by differentiating the right-hand side

of equation (3.5) with respect to ϕ̃(x). Equation (3.8) obtains by plugging equation (3.7) into

equation (3.5) and simplifying.

The fact that the denominator on the right-hand side of equation (3.7) is nonzero and that

the optimal limiting shrinkage function ϕ∗ is strictly positive and bounded over the support

of F is established by the following proposition, whose proof is in Appendix A.3.

Proposition 3.2. Under Assumptions 3.1–3.3,

∀x ∈ Supp(F ) 1− c− 2 c xRe[m̆F (x)] ≥
a1

h
.

The covariance matrix estimator based on the nonlinear shrinkage function ϕ∗ is an “oracle”

estimator, as it depends on mF , the Stieltjes transform of the limiting spectral distribution of

the sample covariance matrix. mF is unobservable, as it depends on H, the limiting spectral

distribution of the population covariance matrix, which is itself unobservable. Nonetheless, as

we will show in Section 5, this oracle estimator plays a pivotal role because it is the foundation on

which a bona fide estimator enjoying the same asymptotic optimality properties can be erected.

3.3 Comparison with Other Estimators

The techniques developed above are sufficiently general to enable us to compute the almost sure

limit of Stein’s loss for other covariance matrix estimators as well. Countless estimators of the

covariance matrix have been proposed in the literature and it is well beyond the scope of the

present paper to review them all. We restrict attention to three estimators that will be included

in the Monte Carlo simulations of Section 8 and the in empirical application of Section 9.
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3.3.1 Sample Covariance Matrix

The sample covariance matrix fits in our framework by taking the shrinkage function: ϕS
n(x)

..= x,

for all x ∈ R. It converges to the limiting shrinkage function ϕS(x) ..= x uniformly over R.

Applying Theorem 3.1 yields the almost sure limit of Stein’s loss for the sample covariance

matrix:

L
S
n(Σn, Sn)

a.s.−→ M
S
c

(
H,ϕS

)
=

∫
log(t) dH(t)−

κ∑

k=1

∫ bk

ak

{
c+ 2 c xRe[m̆F (x)] + log(x)

}
dF (x) .

(3.9)

Corollary 3.1 implies that the limiting loss of the sample covariance matrix MS
c

(
H,ϕS

)
is at

least as high as that of the optimal nonlinear shrinkage function MS
c (H,ϕ∗). However, it may

be possible a priori that the losses are equal for some parameter configurations. By directly

comparing equations (3.8) and (3.9), we can establish that this is nowhere the case.

Proposition 3.3. For any c ∈ (0, 1) and any cumulative distribution function H satisfying

Assumption 3.2.c, MS
c

(
H,ϕS

)
>MS

c

(
H,ϕ∗

)
.

3.3.2 Minimax Estimator

Theorem 3.1 of Dey and Srinivasan (1985) presents a covariance matrix estimator that is

minimax with respect to Stein’s loss within the class of rotation-equivariant estimators specified

in Definition 2.1. These authors acknowledge that the same estimator was presented by Charles

Stein in a series of lectures given at the University of Washington, Seattle in 1982. Their

minimax estimator is obtained by multiplying the ith sample eigenvalue by the coefficient

∆i
..=

n

n+ p+ 1− 2(p+ 1− i)
i = 1, . . . , p . (3.10)

In terms of notation, the term (p+1− i) in the denominator appears in the original paper as i

because Dey and Srinivasan (1985) sort eigenvalues in descending order, whereas we use the

convention that they are sorted in ascending order. Also, we need to introduce the quantity n

in the denominator because Dey and Srinivasan (1985) work with the eigenvalues of n × Sn,

whereas we work with the eigenvalues of Sn.

The coefficient ∆i from equation (3.10) has a long history, having been originally introduced

by Stein (1956, equation (4.11)) and James and Stein (1961, equation (85)) in the context

of minimax estimators of the covariance matrix that are not rotation-equivariant. We can

rewrite ∆i as

∆i =
n

n− p− 1 + 2 pFn (λn,i)
i = 1, . . . , p . (3.11)

Therefore, the minimax shrinkage function is defined in finite samples as

∀x ∈ R ϕM
n (x) ..=

x

1− p+ 1

n
+ 2

p

n
Fn(x)

, (3.12)

and converges almost surely to the limiting shrinkage function

∀x ∈ R ϕM (x) ..=
x

1− c+ 2 c F (x)
(3.13)
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uniformly over the support of F . Plugging ϕM into Theorem 3.1 yields the almost sure limit of

Stein’s loss for the minimax estimator:

M
S
c (H,ϕ

M ) ..=

∫ {
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)
− log

[
x

1− c+ 2cF (x)

]}
dF (x) +

∫
log(t)dH(t)− 1

(3.14)

As in Section 3.3.1 above, Corollary 3.1 implies that the limiting loss of the minimax estimator

MS
c

(
H,ϕM

)
is at least as high as that of the optimal nonlinear shrinkage function MS

c (H,ϕ∗).

However, it may be possible a priori that the losses are equal for some parameter configurations.

By directly comparing equations (3.8) and (3.14), we can establish that this is nowhere the case.

Proposition 3.4. For any c ∈ (0, 1) and any cumulative distribution function H satisfying

Assumption 3.2.c, MS
c

(
H,ϕM

)
>MS

c

(
H,ϕ∗

)
.

Thus, our estimator strictly improves pointwise upon the minimax estimator according to

Stein’s loss, which implies that the minimax estimator is inadmissible in the large-dimensional

asymptotic limit.

3.3.3 Linear Shrinkage

Let ϕL
n denote the linear shrinkage formula of Ledoit and Wolf (2004, equation (14)).

Proposition 3.5. The linear shrinkage function ϕL
n converges almost surely to

ϕL : x 7−→
∫
λ dF (λ) +

∫
t2dH(t)−

[∫
t dH(t)

]2

∫
λ2dF (λ)−

[∫
λ dF (λ)

]2
[
x−

∫
λ dF (λ)

]
(3.15)

uniformly over the support of F .

Any interested reader can obtain the almost sure limit of Stein’s loss for the optimal linear

shrinkage estimator MS
c

(
H,ϕL

)
simply by plugging equation (3.15) into Theorem 3.1. The

resulting formula is cumbersome, so we omit it to save space. By Corollary 3.1, MS
c

(
H,ϕL

)
is

always at least as high as the limiting loss of the optimal nonlinear shrinkage functionMS
c (H,ϕ∗).

There are some special cases where the two limiting losses may be equal: These are the cases

where the optimal nonlinear shrinkage function ‘happens’ to be exactly linear; one such case

is when all population eigenvalues are equal to one another. However, in the generic case,

nonlinear shrinkage is strictly better asymptotically, since linear shrinkage estimators form a two-

dimensional subspace nested inside the p-dimensional space of nonlinear shrinkage estimators

(where p is arbitrarily large).

4 Beyond Stein’s Loss

Although the present paper focuses mainly on Stein’s loss and the nonlinear shrinkage

function ϕ∗, a key innovation relative to Ledoit and Wolf (2012, 2015) is the method of
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Section 3.2 for finding an oracle estimator that minimizes the limit of a prespecified loss

function under large-dimensional asymptotics; or, alternatively, for proving that an existing

estimator is asymptotically optimal with respect to some specific loss function. It is important

to demonstrate that the effectiveness of this method extends beyond Stein’s loss. Since Section 4

constitutes a digression from the central theme of the paper as stated in the title itself, we

limit ourselves to loss functions that either are intimately related to Stein’s loss or have been

previously used by Ledoit and Wolf (2012, 2015).

4.1 Inverse Stein’s Loss

The first natural extension is to apply Stein’s loss to the inverse of the covariance matrix, also

called the “precision matrix”. Equation (1.3) of Tsukuma (2005) thus defines the loss function

L
SINV
n (Σn, S̃n) ..= L

S
n(Σ

−1
n , S̃−1

n ) =
1

p
Tr(ΣnS̃

−1
n )− 1

p
log det(ΣnS̃

−1
n )− 1 .

Its limit is given by the following theorem, whose proof is in Appendix B.1.

Theorem 4.1. Under Assumptions 3.1–3.4,

L
SINV
n (Σn, S̃n)

a.s.−→
κ∑

k=1

∫ bk

ak

{
x

|1− c− c x m̆F (x)|2 ϕ̃(x)
+ log[ϕ̃(x)]

}
dF (x)

−
∫

log(t) dH(t)− 1 . (4.1)

Differentiating the right-hand side of equation (4.1) with respect to ϕ̃(x) yields an oracle

estimator that is optimal with respect to the Inverse Stein’s loss in large dimensions.

Corollary 4.1. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in

the class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of

the Inverse Stein’s loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ◦(x), where

∀x ∈ Supp(F ) ϕ◦(x) ..=
x

|1− c− c x m̆F (x)|2
. (4.2)

4.2 Frobenius Loss

Ledoit and Wolf (2012, 2015) use the following loss function based on the squared Frobenius

distance:

L
F
n (Σn, S̃n) ..=

1

p
Tr

[(
Σn − S̃n

)2]
.

Its limit is given by the following theorem, whose proof is in Appendix B.2.

Theorem 4.2. Under Assumptions 3.1–3.4,

L
F
n (Σn, S̃n)

a.s.−→
∫
x2 dH(x) +

κ∑

k=1

{
− 2

∫ bk

ak

x ϕ̃(x)

|1− c− c x m̆F (x)|2
dF (x) +

∫ bk

ak

ϕ̃(x)2dF (x)

}
.

(4.3)
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Differentiating the right-hand side of equation (4.3) with respect to ϕ̃(x) enables us to

characterize the set of asymptotically optimal estimators under the Frobenius loss in large

dimensions.

Corollary 4.2. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in

the class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit

of the Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ◦(x).

To the best of our knowledge, the close relationship between Frobenius loss and Inverse

Stein’s loss had not been observed before.

Both Ledoit and Wolf (2012, Section 3.1) and Ledoit and Wolf (2013, Section 3) use the

Frobenius loss and the oracle nonlinear shrinkage estimator ϕ◦. But in these two papers the

justification for using this oracle estimator is different (namely, as an approximation to the

“finite-sample optimal” estimator). Therefore, Corollary 4.2 strengthens these two earlier papers

by providing a more formal justification for the oracle estimator they use.

4.3 Inverse Frobenius Loss

Ledoit and Wolf (2012, Section 3.2) apply the Frobenius loss to the precision matrix:

L
FINV
n (Σn, S̃n) ..= L

F
n (Σ

−1
n , S̃−1

n ) =
1

p
Tr

[(
Σ−1
n − S̃−1

n

)2]
.

Its limit is given by the following theorem, whose proof is in Appendix B.3.

Theorem 4.3. Under Assumptions 3.1–3.4,

L
FINV
n (Σn, S̃n)

a.s.−→
∫
dH(x)

x2
+

κ∑

k=1

{
−2

∫ bk

ak

1− c− 2cxRe[m̆F (x)]

x ϕ̃(x)
dF (x)+

∫ bk

ak

1

ϕ̃(x)2
dF (x)

}
.

(4.4)

Differentiating the right-hand side of equation (4.4) with respect to ϕ̃(x) enables us to

characterize the set of asymptotically optimal estimators under the Inverse Frobenius loss in

large dimensions.

Corollary 4.3. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in

the class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of

the Inverse Frobenius loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ∗(x).

The Inverse Frobenius loss yields the same oracle estimator as Stein’s loss. This surprising

mathematical result shows that a bona fide covariance matrix estimator based on the nonlinear

shrinkage function ϕ∗ — which we shall obtain in Section 5 — can be justified in multiple ways.
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4.4 Symmetrized Stein’s Loss

The correspondence between Stein’s loss and Frobenius loss is crossed. The shrinkage

function ϕ∗ should be used to estimate the covariance matrix according to Stein’s loss, and to

estimate the precisionmatrix according to Frobenius loss. According to Stein’s loss, the function

ϕ◦ optimally estimates the precision matrix, but according to Frobenius loss, it optimally

estimates the covariance matrix instead. Thus, if we are interested in estimating the covariance

matrix, but have no strong preference between Stein’s loss and Frobenius loss, should we take

ϕ∗ or ϕ◦? Similarly, if a researcher needs a good estimator of the precision matrix, but has

no opinion on the relative merits of Stein’s loss versus Frobenius loss, should we recommend

ϕ◦ or ϕ∗?

In the machine learning literature, loss functions that pay equal attention to the twin

problems of estimating the covariance matrix and estimating its inverse take pride of place. A

representative example is equation (17.8) of Moakher and Batchelor (2006).1 The “Symmetrized

Stein’s loss (function)” is defined as

L
SSYM
n (Σn, S̃n) ..=

LS
n(Σn, S̃n) + LS

n(Σ
−1
n , S̃−1

n )

2
=

1

2p
Tr
(
Σ−1
n S̃n +ΣnS̃

−1
n

)
− 1 .

This loss function is symmetric in the sense that LSSYM
n (Σn, S̃n) = LSSYM

n (Σ−1
n , S̃−1

n ), and also

in the sense that LSSYM
n (Σn, S̃n) = LSSYM

n (S̃n,Σn). It is equal to the Jeffreys (1946) divergence

between the multivariate normal distribution with zero mean and covariance matrix Σn and the

multivariate normal distribution with zero mean and covariance matrix S̃n, rescaled by the

factor 1/p. Its limit is given by the following theorem.

Theorem 4.4. Under Assumptions 3.1–3.4,

L
SSYM
n (Σn, S̃n)

a.s.−→1

2

κ∑

k=1

∫ bk

ak

1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)dF (x)

+
1

2

κ∑

k=1

∫ bk

ak

x

|1− c− c x m̆F (x)|2 ϕ̃(x)
dF (x)− 1 . (4.5)

The proof follows trivially from Theorems 3.1 and 4.1 and is thus omitted. Differentiating

the right-hand side of equation (4.5) with respect to ϕ̃(x) enables us to characterize the set of

asymptotically optimal estimators under the Symmetrized Stein’s loss in large dimensions.

Corollary 4.4. Under Assumptions 3.1–3.4, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators described in Definition 2.1 the almost sure limit of the

Symmetrized Stein’s loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ),

ϕ̃(x) = ϕ⊛(x), where

∀x ∈ Supp(F ) ϕ⊛(x) ..=
√
ϕ∗(x)ϕ◦(x) . (4.6)

This nonlinear shrinkage function has not been discovered before. The resulting oracle

estimator of the covariance matrix is S⊛

n
..= Un × Diag

(
ϕ⊛(λn,1), . . . , ϕ

⊛(λn,p)
)
× U ′

n. This

1We thank an anonymous referee for bringing this reference to our attention.
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estimator is generally attractive because it strikes a balance between the covariance matrix and

its inverse, and also between Stein’s loss and Frobenius loss. Furthermore, Jensen’s inequality

guarantees that ∀x ∈ R, ϕ∗(x) < ϕ⊛(x) < ϕ◦(x).

4.5 Synthesis

Section 4 constitutes somewhat of a digression from the central theme of the paper, but we can

take away from it several important points:

1. Given that a key technical innovation of the present paper is the method for obtaining

oracle estimators that are asymptotically optimal with respect to some prespecified loss

function, Section 4 demonstrates that this method can handle a variety of loss functions.

2. This method also strengthens the earlier papers of Ledoit and Wolf (2012, 2015) by

providing a more formal justification for their oracle estimators.

3. The oracle estimator that is optimal with respect to Stein’s loss turns out to be also

optimal with respect to the Inverse Frobenius loss, an unexpected connection. Conversely,

the oracle estimator that is optimal with respect to the Inverse Stein’s loss is also optimal

with respect to the Frobenius loss.

4. The covariance matrix estimator that is optimal with respect to the Symmetrized Stein’s

loss is both new and interesting in that it is equally attentive to both the covariance

matrix and its inverse. Modern analyses such as Moakher and Batchelor’s (2006) indicate

that this is a desirable property for loss functions defined on the Riemannian manifold of

symmetric positive-definite matrices. To wit, Stein’s loss does not even define a proper

notion of distance, whereas Stein’s Symmetrized loss is the square of a distance; see

Moakher and Batchelor (2006, p. 288).

5 Optimal Covariance Matrix Estimation

The procedure for going from an oracle estimator to a bona fide estimator has been developed

by Ledoit and Wolf (2012, 2015). Here we repeat it for convenience, adapting it to Stein’s loss.

The basic idea is to first obtain a consistent estimator of the eigenvalues of the population

covariance matrix and to then derive from it a consistent estimator of the Stieltjes transform of

the limiting sample spectral distribution.

5.1 The QuEST Function

Ledoit and Wolf (2015) introduce a nonrandom multivariate function, called the “Quantized

Eigenvalues Sampling Transform”, or QuEST for short, which discretizes, or “quantizes”, the

relationship between F , H, and c defined in equations (3.1)–(3.4). For any positive integers
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n and p, the QuEST function, denoted by Qn,p, is defined as

Qn,p : [0,∞)p −→ [0,∞)p (5.1)

t ..= (t1, . . . , tp)
′ 7−→ Qn,p(t) ..= (q1n,p(t), . . . , q

p
n,p(t))

′ , (5.2)

where

∀i = 1, . . . , p qin,p(t)
..= p

∫ i/p

(i−1)/p

(
F t

n,p

)−1
(u) du , (5.3)

∀u ∈ [0, 1]
(
F t

n,p

)−1
(u) ..= sup{x ∈ R : F t

n,p(x) ≤ u} , (5.4)

∀x ∈ R F t

n,p(x)
..= lim

η→0+

1

π

∫ x

−∞
Im
[
mt

n,p(ξ + iη)
]
dξ , (5.5)

and ∀z ∈ C
+ m ..= mt

n,p(z) is the unique solution in the set
{
m ∈ C : −n− p

nz
+
p

n
m ∈ C

+

}
(5.6)

to the equation

m =
1

p

p∑

i=1

1

ti

(
1− p

n
− p

n
z m
)
− z

. (5.7)

It can be seen that equation (5.5) quantizes equation (3.4), that equation (5.6) quantizes

equation (3.2), and that equation (5.7) quantizes equation (3.3). Thus, F t

n,p is the limiting dis-

tribution (function) of sample eigenvalues corresponding to the population spectral distribution

(function) p−1
∑p

i=1 1[ti,+∞). Furthermore, by equation (5.4),
(
F t

n,p

)−1
represents the inverse

spectral distribution function, also known as the “quantile function”. By equation (5.3), qin,p(t)

can be interpreted as a ‘smoothed’ version of the (i− 0.5)/p quantile of F t

n,p.

5.2 Consistent Estimator of the Population Eigenvalues

Ledoit and Wolf (2015) estimate the eigenvalues of the population covariance matrix by

numerically inverting the QuEST function.

Theorem 5.1. Suppose that Assumptions 3.1–3.3 are satisfied. Define

τ̂n
..= argmin

t∈(0,∞)p

1

p

p∑

i=1

[
qin,p(t)− λn,i

]2
, (5.8)

where λn
..= (λn,1, . . . , λn,p)

′ are the eigenvalues of the sample covariance matrix Sn, and

Qn,p(t) ..= (q1n,p(t), . . . , q
p
n,p(t))′ is the nonrandom QuEST function defined in equations (5.1)–

(5.7); both τ̂n and λn are assumed sorted in nondecreasing order. Let τ̂n,i denote the ith entry

of τ̂n (i = 1, . . . , p), and let τn
..= (τn,1, . . . , τn,p)

′ denote the population covariance matrix

eigenvalues sorted in nondecreasing order. Then

1

p

p∑

i=1

[τ̂n,i − τn,i]
2 a.s.−→ 0 .

The proof is given by Ledoit and Wolf (2013, Theorem 2.2). The solution to equation (5.8)

can be found by standard nonlinear optimization software such as SNOPT
TM

(Gill et al., 2002)

or the MATLAB
TM

Optimization Toolbox.
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5.3 Asymptotically Optimal Estimator of the Covariance Matrix

Recall that, for any t ..= (t1, . . . , tp)
′ ∈ (0,+∞)p, equations (5.6)–(5.7) define mt

n,p as the

Stieltjes transform of F t

n,p, the limiting distribution function of sample eigenvalues corresponding

to the population spectral distribution function p−1
∑p

i=1 1[ti,+∞). The domain of mt

n,p is

the strict upper half of the complex plane, but it can be extended to the real line, since

Silverstein and Choi (1995) prove that ∀λ ∈ R, limz∈C+→λm
t

n,p(z) =.. m̆t

n,p(λ) exists. An

asymptotically optimal estimator of the covariance matrix can be constructed simply by plugging

into equation (3.7) the estimator of the population eigenvalues obtained in equation (5.8). The

proof of Theorem 5.2 is in Appendix C.

Theorem 5.2. Under Assumptions 3.1–3.4, the covariance matrix estimator

Ŝ∗
n

..= UnD̂
∗
nU

′
n where D̂∗

n
..= Diag

(
ϕ̂∗
n(λn,1), . . . , ϕ̂

∗
n(λn,p)

)

and ∀i = 1, . . . , p ϕ̂∗
n(λn,i)

..=
λn,i

1− p

n
− 2

p

n
λn,i Re

[
m̆τ̂n

n,p(λn,i)
] (5.9)

minimizes in the class of rotation-equivariant estimators described in Definition 2.1 the almost

sure limit (3.5) of Stein’s loss as n and p go to infinity together.

Remark 5.1 (Alternative loss functions). Similarly, plugging the consistent estimator m̆τ̂n
n,p

in place of the unobservable m̆F in the oracle estimators derived in Section 4 yields bona

fide covariance matrix estimators that minimize the almost sure limits of their respective

loss functions. In the case of Inverse Stein’s loss and Frobenius loss, the resulting optimal

estimator Ŝ◦ is the same as the estimator defined by Ledoit and Wolf (2015). In the case of

Inverse Frobenius loss, the resulting optimal estimator is Ŝ∗. In the case of Symmetrized Stein’s

loss, the resulting optimal estimator is Ŝ⊛ ..=
√
Ŝ∗Ŝ◦. A further study of the estimator Ŝ⊛,

involving a comprehensive set of Monte Carlo simulations to examine finite-sample performance,

lies beyond the scope of the present paper and is left for future research.

Both Stein (1975) and the present paper attack the same problem with two very different

mathematical techniques, so how far apart are the resulting estimators? The answer hinges

on the concept of a “Cauchy principal value” (PV). The convolution of a compactly supported

function g(t) with the Cauchy kernel (t − x)−1 is generally an improper integral due to the

singularity at t = x. However, there is a way to properly define this convolution as

∀x ∈ R G(x) ..= PV

∫ ∞

−∞

g(t)

t− x
dt ..= lim

εց0

[∫ x−ε

−∞

g(t)

t− x
dt+

∫ ∞

x+ε

g(t)

t− x
dt

]
.

Henrici (1988, pp. 259–262) is a useful reference for principal values. Stein’s shrinkage function

and ours (equations (2.3) and (5.9) respectively) can be expressed as

∀i = 1, . . . , p ϕ∗
n(λn,i) =

λn,i

1− p− 1

n
+ 2

p

n
× PV

∫ ∞

−∞

λn,i
λn,i − λ

dFn(λ)

∀i = 1, . . . , p ϕ̂∗
n(λn,i) =

λn,i

1− p

n
+ 2

p

n
× PV

∫ ∞

−∞

λn,i
λn,i − λ

dF τ̂n
n,p(λ)
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The only material difference is that the step function Fn is replaced by the smooth function F τ̂n
n,p .

It is reassuring that two approaches using such unrelated mathematical techniques generate

concordant results.

Both Fn and F τ̂n
n,p estimate the limiting sample spectral distribution F , but not in the same

way: the former is the “näıve” estimator, while the latter is the product of cutting-edge research

in Random Matrix Theory. Convolving the Cauchy kernel with a step function such as Fn is

dangerously unstable when two consecutive steps happen to be too close to each other. This is

why Stein’s original estimator needs to be regularized ex post through the isotonizing algorithm.

By contrast, our estimator of the sample spectral distribution is sufficiently regular ex ante

to admit convolution with the Cauchy kernel without creating instability. This is why our

approach is more elegant in theory, and also has the potential to be more accurate in practice,

as Monte Carlo simulations in Section 8 will confirm.

On a more anecdotal note, the shrinkage function of the minimax estimator in Theorem 3.1

of Dey and Srinivasan (1985) can also be expressed in nearly identical format as

∀i = 1, . . . , p ϕM
n (λn,i) =

λn,i

1− p+ 1

n
+ 2

p

n
× Fn (λn,i)

. (5.10)

We can see that the overall pattern is surprisingly similar, except for the fact that the empirical

sample spectral distribution Fn(x) acts as a substitute for the function x 7→ PV
∫

x
x−λ dF

τ̂n
n,p(x).

The only evident common points are that both functions take the value zero at x = 0, and they

both converge to the limit one as x goes to infinity.

5.4 Comparison with Other Approaches from Decision Theory

Given that we claim our estimator is “decision-theoretically optimal” in a sense that is not

completely standard, it is important to compare and constrast our approach with the rest of

the literature on decision-theoretical estimation of the covariance matrix.

5.4.1 Commonalities

The first common point is that our approach is firmly rooted in decision theory in the sense

that the decision (choice of estimator) depends on the loss function: Stein’s Loss, Stein’s Inverse

Loss, and Stein’s Symmetrized Loss all lead to different estimators. This has always been a

central feature of decision-theoretic estimation, and we are no exception. Thus, the estimator

given in Theorem 5.2 is more properly referred to as “decision-theoretically optimal with respect

to Stein’s Loss”.

The second common point is that, in keeping with a long tradition in decision-theoretic

estimation of the covariance matrix, we consider only rotation-equivariant estimators that are

obtained by manipulating the sample eigenvalues, while preserving the sample eigenvectors.

This manipulation is operated by what we call the shrinkage function ϕ̃n and, for fixed n, is

unconstrained.

Up to this point, any reader steeped in decision-theoretic estimation of the covariance matrix

is still in familiar territory.
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5.4.2 Key Difference

The key difference is that we do not work in finite samples but in the large-dimensional

asymptotic limit, where the ratio of dimension to sample size converges to some limit c > 0.

This approach has a number of consequences that need to be spelled out.

First, manipulating the covariance matrix itself becomes difficult, since its dimension keeps

changing and goes to infinity. This is why — instead of working directly with the initial

object of interest, the covariance matrix — we work with its eigenvalues and, more precisely,

with limiting spectral distributions. Doing so requires spectral distributions to have well-

defined, nonstochastic limits. In the standard setup of Random Matrix Theory, which we

adopt, the spectral distribution of the population covariance matrix converges to a well-defined,

nonstochastic limit H; and so does the spectral distribution of the sample covariance matrix.

Here the only restriction is that we limit ourselves (for mathematical reasons) to population

covariance matrices whose condition number does not explode with the dimension. This point

is discussed in depth below Assumption 3.2.

Second, manipulating an estimator of the covariance matrix also becomes difficult, for the

same reasons as above. This is why we introduce in Assumption 3.4 the notion of a limiting

shrinkage function ϕ̃: It guarantees that the spectral distribution of the shrunk covariance

matrix also has a well-defined, nonstochastic limit. It would be hard to see how we could

proceed otherwise. The only restrictions are that the nonlinear shrinkage function must remain

bounded, that the convergence must be uniform, and that the limiting shrinkage function must

be continuously differentiable. Making these relatively reasonable technical assumptions is what

enables us to derive sweeping results.

5.4.3 Relation to Minimax

A pervasive concept in decision theory is that of a minimax estimator. This means that the

estimator ϕ̃ minimizes the worst-case risk supH MS
c (H, ϕ̃) in the class of estimators considered.

Such an approach is justified because in general the risk cannot be directly minimized, since it

depends on the unknown parameter itself (which, in this case, is H).

Our situation here is completely different: H can be estimated consistently and hence,

asymptotically, the risk can be directly minimized. Indeed this is precisely what Theorem 5.2

says. Thus, it would be misleading to describe our estimator as minimax: A more accurate

characterization is that it is pointwise optimal for any H, or uniformly better for all H. This

is, obviously, a stronger notion of decision-theoretic optimality than minimax, and one that is

generally unattainable in finite samples.

6 Extension to the Singular Case

So far, we have only considered the case p < n, as does Stein (1975, 1986). We do not know

whether Stein was uninterested in the case singular case p > n or whether he could not solve

the problem of how to then shrink the zero eigenvalues of the sample covariance matrix. Either
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way, another key contribution of the present paper is that we can also handle this challenging

case. Assumption 3.1 now has to be modified as follows.

Assumption 6.1 (Dimension). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the ratio p/n converges, as n→ ∞, to a limit c ∈ (1,∞) called the

“limiting concentration”. Furthermore, there exists a compact interval included in (1,∞) that

contains p/n for all n large enough.

Under Assumption 6.1, F is a mixture distribution with mass (c − 1)/c at zero and a

continuous component whose compact support is bounded away from zero; for example, see

Ledoit and Wolf (2015, Section 2.1). Define

∀x ∈ R F (x) ..= (1− c)1[0,∞)(x) + c F (x) ,

so that F corresponds to the continuous component of F , normalized to be a proper distribution

(function).

Now Assumptions 3.2, 3.3, and 6.1 together with Bai and Silverstein (1998, Theorem 1.1)

imply that the support of F , denoted by Supp(F ), is the union of a finite number κ ≥ 1

of compact intervals: Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Furthermore, Supp(F ) = {0} ∪ Supp(F ). Note that with this notation, there is no further need

to modify Assumption 3.4.

As a first step in deriving the bona fide estimator, we establish the almost sure existence of

the limit of Stein’s loss in the case p > n.

Theorem 6.1. Under Assumptions 3.2–3.4 and 6.1,

L
S
n(Σn, S̃n)

a.s.−→
κ∑

k=1

∫ bk

ak

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x)

+

∫
log(t) dH(t) +

c− 1

c

{[ c

c− 1
· m̆H(0)− m̆F (0)

]
ϕ̃(0)− log[ϕ̃(0)]

}
− 1 .

(6.1)

The proof is in Appendix D.1. As a second step, Theorem 6.1 enables us to characterize

the set of asymptotically optimal estimators under Stein’s loss in large dimensions in the case

p > n.

Corollary 6.1. Suppose Assumptions 3.2–3.4 and 6.1 hold.

(i) A covariance matrix estimator S̃n minimizes in the class of rotation-equivariant estimators

described in Definition 2.1 the almost sure limit (6.1) of Stein’s loss if and only if its

limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ∗(x), where

ϕ∗(0) ..=

(
c

c− 1
· m̆H(0)− m̆F (0)

)−1

,

and ∀x ∈ Supp(F ) ϕ∗(x) ..=
x

1− c− 2 c xRe[m̆F (x)]
. (6.2)

The resulting oracle estimator of the covariance matrix is

S∗
n

..= Un × Diag
(
ϕ∗(λn,1), . . . , ϕ

∗(λn,p)
)
× U ′

n .
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(ii) The minimum of the almost sure limit (6.1) of Stein’s loss is equal to

lim
p,n→c∞

L
S
n(Σn, S

∗
n) =

∫
log(t) dH(t)−

κ∑

k=1

∫ bk

ak

log

[
x

1− c− 2 c xRe[m̆F (x)]

]
dF (x)

+
c− 1

c
log
[ c

c− 1
· m̆H(0)− m̆F (0)

]
. (6.3)

Equation (6.2) follows immediately from Theorem 6.1 by differentiating the right-hand side

of equation (6.1) with respect to ϕ̃(x). Equation (6.3) obtains by plugging equation (6.2) into

equation (6.1) and simplifying.

As a third step, the procedure for going from the oracle estimator to the bona fide estimator

is similar to the case p < n. But we also have to find strongly consistent estimators of the

quantities m̆H(0) and m̆F (0) which did not appear in the oracle shrinkage function in the case

p < n.

Let τ̂n
..= (τ̂n,1, . . . , τ̂n,p)

′ denote the vector of estimated population eigenvalues defined as

in Theorem 5.1. A strongly consistent estimator of m̆H(0) is given by

̂̆mH(0) ..=
1

p

p∑

i=1

1

τ̂n,i
. (6.4)

As explained in Ledoit and Wolf (2015, Section 3.2.2), a strongly consistent estimator of the

quantity m̆F (0) is the unique solution m =.. ̂̆mF (0) in (0,∞) to the equation

m =

[
1

n

p∑

i=1

τ̂n,i
1 + τ̂n,im

]−1

. (6.5)

Theorem 6.2. Under Assumptions 3.2–3.4 and 6.1, the covariance matrix estimator

Ŝ∗
n

..= UnD̂
∗
nU

′
n where D̂∗

n
..= Diag

(
ϕ̂∗
n(λn,1), . . . , ϕ̂

∗
n(λn,p)

)
,

∀i = 1, . . . , p− n ϕ̂∗
n(λn,i)

..=

(
p/n

p/n− 1
· ̂̆mH(0)− ̂̆mF (0)

)−1

, (6.6)

and ∀i = p− n+ 1, . . . , p ϕ̂∗
n(λn,i)

..=
λn,i

1− p

n
− 2

p

n
λn,i Re

[
m̆τ̂n

n,p(λn,i)
] (6.7)

minimizes in the class of rotation-equivariant estimators described in Definition 2.1 the almost

sure limit (6.1) of Stein’s loss.

The proof is in Appendix D.2.

Remark 6.1 (Case p = n). We have treated the cases p < n and p > n. The remaining

case p = n cannot be treated theoretically, since a large number of fundamental results from

the RMT literature used in our proofs rule out the case c = 1, where c is recalled to be the

limiting concentration; see Assumption 3.1 and 6.1. Nevertheless, we can address the case p = n

in Monte Carlo simulations; see Figure 8.2.
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7 The Arrow Model

In common with a large portion of the existing literature, Assumption 3.1 requires the largest

population eigenvalue to remain bounded. There are some applications where this may be

unrealistic. In this section, we investigate what happens when the largest eigenvalue goes to

infinity at the same rate as the dimension and the sample size, while the bulk of the eigenvalues

remain bounded.

7.1 Specification

In keeping with standard nomenclature, we call the eigenvalues that remain bounded the “bulk”.

To distinguish our model from Johnstone’s (2001) “spike” model, where the largest eigenvalues

remains bounded, we call the eigenvalues that shoot up to infinity “arrows”. Therefore,

Assumption 3.2.d becomes:

Assumption 3.2.e (Arrow Model). There exists a compact interval
[
h, h

]
⊂ (0,∞) that

contains the set {τn,1, . . . , τn,p−k} for all n large enough, where k is a fixed integer. There

exist k constants (βj)j=1,...,k with 0 < β1 < . . . < βk s.t. ∀j = 1, . . . , k, τn,p−k+j ∼ βj p.

We consider only values of n and p large enough so that the ordering of the arrow eigenvalues(
τn,p−k+j

)
j=1,...,k

matches the ordering of the slopes (βj)j=1,...,k.

This is challenging because the papers by Yin et al. (1988), Bai et al. (1988), Johnstone

(2001), Baik et al. (2005), and Baik and Silverstein (2006) that study the asymptotic behavior

of the largest sample eigenvalue all assume it to be bounded. Given the dearth of background

results applicable to the arrow model, this section is (by necessity) exploratory in nature. Until

the underlying probability theory literature has caught up, the robustness of Theorem 5.2

against Assumption 3.2.e must remain a conjecture.

Nevertheless, we can make some significant inroads by resorting to alternative methods such

as the Weyl inequalities and perturbation theory. Given that this investigation plays only a

supporting role relative to the main contributions of the paper, and that even the most basic

properties have to be established from scratch, we restrict ourselves to the single-arrow case:

k = 1.

Assumption 3.2.f (Single Arrow Model). There exist a compact interval
[
h, h

]
⊂ (0,∞) that

contains the set {τn,1, . . . , τn,p−1} for all n large enough, and a constant β1 > 0 s.t. τn,p ∼ β1 p.

This section presents a collection of propositions that, together, indicate that the single

arrow model is no particular cause for concern. The basic intuition is that the arrow sticks out

like a sore thumb in any data set of sufficient size. Therefore, it is easy to detect its presence,

separate it from the bulk, measure its variability (eigenvalue), find its orientation (eigenvector),

apply an appropriate amount of shrinkage to it, partial it out, and then deal with the bulk as

usual. We present preliminary evidence suggesting that our proposed estimator Ŝ∗
n does all of

the above automatically.
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7.2 Spectral Separation

All the proofs from this section are in Appendix E. Our first proposition shows that the bulk

sample eigenvalues (λn,1, . . . , λn,p−1) remain bounded, while the arrow sample eigenvalue λn,p

goes to infinity.

Proposition 7.1. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3, λn,p−1 remains bounded

a.s. for large n, and λn,p
a.s.−→ ∞.

It means that we observe what RMT calls “spectral separation” between the bulk and the

arrow. The size of the gap grows arbitrarily large. The good news is that the QuEST function

automatically follows the same pattern of spectral separation.

Proposition 7.2. Under Assumptions 3.1, 3.2.a–c and 3.2.f, qp−1
n,p (τn) remains bounded and

qpn,p (τn) −→ ∞.

The similarity between Proposition 7.1 and Proposition 7.2 gives reassurance about the

ability of the QuEST function (5.2) to separate the arrow from the bulk.

7.3 Sample Arrow Eigenvalue

Our next proposition shows that the arrow sample eigenvalue is asymptotically equivalent to

its population counterpart

Proposition 7.3. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3, λn,p
a.s.∼ τn,p.

It is suprising that the sample arrow eigenvalue is asymptotically equivalent to its population

counterpart because it is so different from what happens in the bulk, where there is a

considerable amount of deformation between sample and population eigenvalues. As it turns

out, the QuEST function automatically refrains from deforming the arrow eigenvalue, as

demonstrated by the following proposition.

Proposition 7.4. Under Assumptions 3.1, 3.2.a–c and 3.2.f, qpn,p (τn) ∼ τn,p.

The similarity between Proposition 7.3 and Proposition 7.4 gives reassurance about the

ability of the QuEST function to detect the location of the arrow.

7.4 Shrinking the Arrow Eigenvalue

Next we turn to the optimal shrinkage formula. It is not trivial to define what “optimal” means

for the arrow because Theorem 3.1 does not take into account finite-rank perturbations. It is

necessary to go back to the finite-sample framework of Section 2. In finite samples, the optimal

nonlinear shrinkage formula is given by the following lemma.

Lemma 7.1. Under Assumptions 2.1–2.3, the covariance matrix estimator in the rotation-

equivariant class of Definition 2.1 that minimizes Stein’s loss in finite samples is

SFS
n

..= UnD
FS
n U ′

n , where DFS
n

..= Diag

(
1

u′n,1Σ
−1
n un,1

, . . . ,
1

u′n,pΣ
−1
n un,p

)
. (7.1)
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This finite-sample optimal estimator cannot be constructed in practice because it depends

on the inverse of the population covariance matrix. But it shows that the optimal nonlinear

shrinkage of the sample eigenvalues transforms λn,p into 1/u′n,pΣ
−1
n un,p. The limit of this

quantity in an arrow model under large-dimensional asymptotics is given by the following

proposition.

Proposition 7.5. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3,

1

u′n,pΣ
−1
n un,p

a.s.∼ τn,p
1 + c

. (7.2)

This is also a surprising result: given that the sample arrow eigenvalue is close to

the population arrow eigenvalue, one might have expected that the optimally shrunk arrow

eigenvalue would be close to it also. But it is in fact smaller by a factor 1 + c. This poses a

stern test for our proposed covariance matrix estimator: will the optimal nonlinear shrinkage

formula recognize the need to apply a divisor, and if so will it find the correct arrow shrinkage

coefficient of 1 + c? The next proposition answers both questions in the affirmative.

Proposition 7.6. Under Assumptions 3.1, 3.2.a–c, 3.2.f and 3.3,

λn,p

1− p

n
− 2

p

n
λn,p Re

[
m̆τn

n,p(λn,p)
] a.s.∼ τn,p

1 + c
. (7.3)

The similarity between Proposition 7.5 and Proposition 7.6 gives reassurance about the

ability of the nonlinear shrinkage formula in Corollary 3.1.a. to shrink the arrow optimally.

7.5 Wrap-Up

What happens at the arrow level has vanishingly small impact on what happens in the bulk

because: (i) the gap between the group of bulk eigenvalues and the arrow eigenvalue widens

up to infinity; (ii) the magnitude of the influence between eigenvalues is controlled by the

mathematical structure of the Stieltjes transform, making it inversely proportional to the

distance between them; and (iii) the proportion of eigenvalues in the bulk converges to one.

The bottom line is that the presence of an arrow should not pose any special challenge to

our approach for the following reasons:

• spectral decomposition separates the arrow from the bulk due to its signature variability,

• the QuEST function recognizes that sample and population arrow eigenvalues are close,

• our nonlinear shrinkage formula correctly divides the arrow sample eigenvalue by 1 + c,

• and nonlinear shrinkage of bulk sample eigenvalues remains largely unaffected.

This analysis does not pretend to tie up all the loose ends, but we believe that the accumulated

mathematical evidence is sufficient to alleviate potential concerns on this front. To get to the

bottom of this matter would require a comprehensive overhaul of the underlying probability

theory literature, which obviously lies beyond the scope of the present paper. The theoretical

results presented in this section lay the foundation for more in-depth studies of the arrow

model, and go a long way towards explaining why our nonlinear shrinkage estimator performs

well numerically in the arrow model simulated in Section 8.
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8 Monte Carlo Simulations

For compactness of notation, in this section, “Stein’s estimator” stands for “Stein’s isotonized

estimator” always.

The isotonized shrinkage estimator of Stein (1986) is widely acknowledged to have very

good performance in Monte Carlo simulations, which compensates for theoretical limitations

such as the recourse to an ad hoc isotonizing algorithm, minimizing an unbiased estimator of

risk instead of the risk itself, and neglecting the derivatives term in equation (2.2). The article

by Lin and Perlman (1985) is a prime example of the success of Stein’s estimator in Monte

Carlo simulations.

We report a set of Monte Carlo simulations comparing the nonlinear shrinkage estimator

developed in Theorem 5.2 with Stein’s estimator. There exist a host of alternative rotation-

equivariant shrinkage estimators of a covariance matrix; see the literature review in the

introduction. Including all of them in the Monte Carlo simulations is certainly beyond the

scope of the paper. Nonetheless, we do include the sample covariance matrix and the linear

shrinkage estimator of Ledoit and Wolf (2004); we also include the minimax estimator of

Dey and Srinivasan (1985, Theorem 3.1)

The chosen metric is the Percentage Relative Improvement in Average Loss (PRIAL) relative

to Stein’s estimator. For a generic estimator Σ̂n, define

PRIAL(SST
n , Σ̂n) ..=

[
1− RS

n(Σn, Σ̂n)

RS
n(Σn, SST

n )

]
× 100% .

Thus PRIAL(SST
n , SST

n ) = 0% and PRIAL(SST
n ,Σn) = 100% by construction. The quantity

that we report is PRIAL(SST
n , Σ̂n), where the empirical risks of SST

n and Σ̂n are computed as

averages across 1,000 Monte Carlo simulations.

Unless stated otherwise, the ith population eigenvalue is equal to τn,i ..= H−1((i − 0.5)/p)

(i = 1, . . . , p), where H is the limiting population spectral distribution, and the distribution of

the random variates comprising the n× p data matrix Xn is Gaussian.

Our numerical experiments are built around a ‘baseline’ scenario and we vary different design

elements in turn. In the baseline case, p = 100, n = 200, and H is the distribution of 1 +W ,

where W ∼ Beta(2, 5). This distribution is right-skewed, meaning that there are a lot of small

eigenvalues and a few large ones, which is representative of many practically relevant situations;

see the solid line in Figure 8.4 below. In this case, the PRIAL of our new nonlinear shrinkage

estimator relative to Stein’s is 43%.

Convergence

First, we vary the matrix dimension p from p = 30 to p = 200 while keeping the concentration

ratio p/n fixed at the value 1/2. The results are displayed in Figure 8.1.
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Figure 8.1: Evolution of the PRIAL of various estimators relative to Stein’s estimator as matrix

dimension and sample size go to infinity together. The left panel shows all the results, whereas

the right panel zooms in on positive improvements for better visual clarity.

The minimax estimator and the sample covariance matrix fail to beat Stein’s estimator. Both

linear and nonlinear shrinkage improve over Stein; the improvement is strong across the board,

and stronger in small-to-medium dimensions.

Concentration

Second, we vary the concentration (ratio) from p/n = 0.05 to p/n = 1.0 while keeping the

product p× n constant at the value 20, 000. The results are displayed in Figure 8.2.
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Figure 8.2: PRIAL of four different estimators relative to Stein’s estimator as a function of the

concentration ratio p/n. The left panel shows all the results, whereas the right panel zooms in

on positive improvements for better visual clarity.

Once again, minimax performs better than the sample covariance matrix, yet worse than Stein’s

estimator. Both linear and nonlinear shrinkage improve over Stein; the improvement is good
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across the board and stronger when the matrix dimension is close to the sample size. In

particular, nonlinear shrinkage can handle the case p/n = 1 even though it is not covered by

the mathematical treatment; see Remark 6.1.

Condition Number

Third, we vary the condition number of the population covariance matrix. We do this by

taking H to be the distribution of a + (2 − a)W , where W ∼ Beta(2, 5). Across all values of

a ∈ [0.01, 2], the upper bound of the support of H remains constant at the value 2 while the

lower bound of the support is equal to a. Consequently, the condition number decreases in a

from 32 to 1. The results are displayed in Figure 8.3.
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Figure 8.3: PRIAL of four estimators relative to Stein’s estimator across various condition

numbers. The left panel shows all the results, whereas the right panel zooms in on the range of

PRIALs between ±100% for better visual clarity.

The minimax estimator and the sample covariance matrix again fail to beat Stein’s estimator.

The improvement delivered by nonlinear shrinkage is always strictly positive and increases as

the population covariance matrix becomes better conditioned. Linear shrinkage always beats

the sample covariance matrix but has otherwise mixed results, possibly due to the fact that it

is optimized with respect to the Frobenius loss instead of Stein’s loss.

Shape

Fourth, we vary the shape of the distribution of the population eigenvalues. We take H

to be the distribution of 1 +W , where W ∼ Beta(α, β) for various pairs of parameters (α, β).

The corresponding densities are displayed in Figure 8.4.
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Figure 8.4: Densities of various shifted Beta distributions. Note that the density of Beta(β, α)

is just the mirror image (around the mid point of the support) of the density of Beta(α, β).

The results are presented in Figure 8.5. To preserve the clarity of the picture, we only report the

PRIAL of the nonlinear shrinkage estimator; but the other results are in line with Figure 8.1.
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Figure 8.5: PRIAL of the nonlinear shrinkage estimator relative to Stein’s estimator for various

shapes of the population spectral distribution.

There is no obvious pattern; the improvement is good across all distribution shapes and the

baseline case (α, β) = (2, 5) is neither the best nor the worst.

Clustered Eigenvalues

Fifth, we consider a different type of distribution for the population eigenvalues: a discrete

distribution. More specifically, we assume that the population covariance matrix has 20% of its

eigenvalues equal to 1, 40% equal to 3 and 40% equal to 10. This is a particularly interesting and

difficult example introduced and analyzed in detail by Bai and Silverstein (1998); in particular,

30



it produces highly nonlinear patterns. As in Figures 8.1 and 8.4, we vary the matrix dimension

p from p = 30 to p = 200 while keeping the concentration ratio p/n fixed at the value 1/2. The

results are displayed in Figure 8.6.
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Figure 8.6: Evolution of the PRIAL of various estimators relative to Stein’s estimator as matrix

dimension and sample size go to infinity together. The limiting population spectral distribution

is discrete.

Nonlinear shrinkage improves over Stein for all dimensions, though not by much. The other

estimators are worse than Stein for all dimensions. Linear shrinkage is at a disadvantage in this

setup due to the highly nonlinear nature of the optimal shrinkage transformation.

Non-normality

Sixth, we vary the distribution of the variates Xn. Beyond the (standard) normal

distribution with kurtosis 0, we also consider the coin-toss Bernoulli distribution, which is

platykurtic with kurtosis −2, and the (standard) Laplace distribution, which is leptokurtic

with kurtosis 3. The results are presented in Table 8.1.

Distribution Nonlinear Linear Minimax Sample

Normal 43% 46% −983% −2210%

Bernoulli 42% 43% −1020% −2307%

Laplace 44% 52% −889% −1980%

Table 8.1: PRIAL for different distributions of the variates.

One can see that the results in the normal case carry over qualitatively to the non-normal cases.

Singular Case with Fixed Concentration Ratio

Seventh, we study the challenging case p > n where the sample covariance matrix is singular

and Stein’s estimator is not defined. We set the concentration ratio c = p/n equal to two, take
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the same distribution for H as in the baseline case, and simulate Gaussian variates. The

dimension ranges from p = 30 to p = 400. The benchmark is the minimum of the almost sure

limit of Stein’s loss in the class of nonlinear shrinkage estimators; see equation (6.3). For this

choice of H and c, the minimum is equal to 0.007232385 (evaluated numerically). The average

loss across 1, 000 Monte Carlo simulations for our nonlinear shrinkage estimator and for linear

shrinkage is displayed in Figure 8.7.
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Figure 8.7: Stein’s loss for the linear and nonlinear shrinkage estimators when dimension

exceeds sample size. The benchmark is the minimum of the limit of Stein’s loss among rotation-

equivariant estimators.

These results confirm that our nonlinear shrinkage estimator minimizes Stein’s loss asymptoti-

cally even in the difficult case where variables outnumber observations. The loss of the linear

shrinkage estimator is slightly higher. Due to the fact that p > n, Stein’s and the minimax

estimator are not defined, and the loss of the sample covariance matrix is not defined either.

Singular Case with Fixed Matrix Dimension

In order to further study the singular case, we fix the matrix dimension p at a high number, in

this case p = 1000, and let the sample size n vary from n = 100 to n = 1000.2 We take the same

distribution for H as in the baseline case and simulate Gaussian variates. The concentration

ratio varies from c = 10 to c = 1. The average loss across 1, 000 Monte Carlo simulations for

our nonlinear shrinkage estimator and for linear shrinkage is displayed in Figure 8.8.

2We thank an anonymous referee for suggesting this numerical experiment.
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Figure 8.8: Stein’s loss for the linear and nonlinear shrinkage estimators in the singular case

with fixed dimension. The benchmark is the minimum of the limit of Stein’s loss among rotation-

equivariant estimators.

The loss of the linear shrinkage estimator is higher than the loss of our nonlinear shrinkage

estimator, especially for large concentrations. Since p ≥ n, Stein’s estimator and the minimax

estimator are not defined, and the loss of the sample covariance matrix is not defined either.

Arrow Model

Finally, we study the performance of our nonlinear shrinkage estimator in the case where

the largest population eigenvalue is of order n, in violation of Assumption 3.2.d. Inspired

by a factor model where all pairs of variables have 50% correlation and all variables have

unit standard deviation, and by the arrow model defined by Assumption 3.2.f, we set τn,p

equal to 1 + 0.5(p − 1). The other eigenvalues are set as per the baseline scenario. Thus,

τn
..= (H−1(0.5/(p−1)), . . . , H−1((p−1.5)/(p−1)), 1+0.5(p−1))′, where H is the distribution

of 1 + W , and W ∼ Beta(2, 5). The dimension ranges from p = 30 to p = 200, and the

concentration ratio p/n is fixed at the value 1/2. The results are displayed in Figure 8.9.
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Figure 8.9: PRIAL of the new nonlinear shrinkage estimator relative to Stein’s estimator when

the top eigenvalue goes to infinity. The left panel shows all the results above −20000%, whereas

the right panel zooms in on the results above 0% for better visual clarity.

Our nonlinear shrinkage estimator still dominates convincingly Stein’s estimator, even though

Assumption 3.2.d is violated; none of the other estimators can beat Stein.

Overall Assessment

We have conducted an extensive set of Monte Carlo simulatons. To start with the obvious,

both the sample covariance matrix and the minimax estimator perform universally worse than

the reference estimator of Stein (1975, 1986), often with PRIALs in the −1000% zone.

More intriguing is the competition between Stein’s estimator and linear shrinkage. In theory,

this setup should favor Stein because linear shrinkage is so much simpler (by glancing over

nonlinearities) and minimizes the Frobenius loss instead of Stein’s loss. In practice, linear

shrinkage still beats Stein across a wide variety of situations, often by a substantial margin; for

example, see Figures 8.1 and 8.2. Conversely, Stein’s estimator improves over linear shrinkage

in other situations where nonlinear effects are more prominent; for example, see Figures 8.6

and 8.9. Thus, we witness the emergence of two different regimes.

How does nonlinear shrinkage perform? In the regime where linear shrinkage soundly beats

Stein, nonlinear shrinkage also improves over Stein by a similarly substantial margin. In the

other regime where Stein beats linear shrinkage, nonlinear shrinkage always dominates Stein.

Thus, nonlinear shrinkage can be said to combine the best of Stein and linear shrinkage.

9 Empirical Application

The goal of this section is to examine the out-of-sample properties of Markowitz portfolios based

on various covariance matrix estimators.
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9.1 Data and General Portfolio-Formation Rules

We download daily data from the Center for Research in Security Prices (CRSP) starting

in 01/01/1980 and ending in 12/31/2015. For simplicity, we adopt the common convention

that 21 consecutive trading days constitute one ‘month’. The out-of-sample period ranges

from 01/08/1986 through 12/31/2015, resulting in a total of 360 ‘months’ (or 7560 days). All

portfolios are updated ‘monthly’.3 We denote the investment dates by h = 1, . . . , 360. At any

investment date h, a covariance matrix is estimated using the most recent n = 252 daily returns,

which roughly corresponds to using one year of past data.

We consider the following portfolio sizes: p ∈ {50, 100, 150, 200, 250}. For a given

combination (h, p), the investment universe is obtained as follows. We find the set of stocks that

have a complete return history over the most recent n = 252 days as well as a complete return

‘future’ over the next 21 days.4 We then look for possible pairs of highly correlated stocks,

that is, pairs of stocks that returns with a sample correlation exceeding 0.95 over the past

252 days. With such pairs, if they should exist, we remove the stock with the lower volume of

the two on investment date h.5 Of the remaining set of stocks, we then pick the largest p stocks

(as measured by their market capitalization on investment date h) as our investment universe.

In this way, the investment universe changes slowly from one investment date to the next.

9.2 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio, in the

absence of short-sales constraints. The problem is formulated as

min
w
w′Σw (9.1)

subject to w′
1 = 1 , (9.2)

where 1 denotes a vector of ones of dimension p× 1. It has the analytical solution

w =
Σ−1

1

1

′Σ−1
1

. (9.3)

The natural strategy in practice is to replace the unknown Σ by an estimator Σ̂ in formula (9.3),

yielding a feasible portfolio

ŵ ..=
Σ̂−1

1

1

′Σ̂−1
1

. (9.4)

Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, since it abstracts from having to estimate the vector of expected

returns at the same time. In addition, researchers have established that estimated GMV

3‘Monthly’ updating is common practice to avoid an unreasonable amount of turnover and thus transaction

costs. During a ‘month’, from one day to the next, we hold number of shares fixed rather than portfolio weights;

in this way, there are no transactions at all during a ‘month’.
4The latter, forward-looking restriction is not a feasible one in real life but is commonly applied in the related

finance literature on the out-of-sample evaluation of portfolios.
5The reason is that we do not want to include highly similar stocks.
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portfolios have desirable out-of-sample properties not only in terms of risk but also in terms of

reward-to-risk (that is, in terms of the information ratio); for example, see Haugen and Baker

(1991), Jagannathan and Ma (2003), and Nielsen and Aylursubramanian (2008). As a result,

such portfolios have become an addition to the large array of products sold by the mutual-fund

industry. The following six portfolios are included in the study.

• 1/N : the equal-weighted portfolio. This portfolio is a standard benchmark and has been

promoted by DeMiguel et al. (2009), among others. This portfolio can actually seen as a

special case of portfolio (9.4), where the ‘estimator’ Σ̂ is simply the identity matrix.

• Sample: the portfolio (9.4), where the estimator Σ̂ is the sample covariance matrix.

• Stein: the portfolio (9.4), where the estimator Σ̂ is Stein’s estimator.

• Minimax: the portfolio (9.4), where the estimator Σ̂ is from Dey and Srinivasan (1985).

• Lin: the portfolio (9.4), where the estimator Σ̂ is the estimator of Ledoit and Wolf (2004).

• NonLin: the portfolio (9.4), where the estimator Σ̂ is the estimator of Theorem 5.2.

We report the following three out-of-sample performance measures for each scenario.

• AV: We compute the average of the 7560 out-of-sample log returns and then multiply

by 252 to annualize.

• SD: We compute the standard deviation of the 7560 out-of-sample log returns and then

multiply by
√
252 to annualize.

• IR: We compute the (annualized) information ratio as the ratio AV/SD.6

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV portfolio is

given by (9.3). It is designed to minimize the variance (and thus the standard deviation) rather

than to maximize the expected return or the information ratio. Therefore, any portfolio that

implements the GMV portfolio should be primarily evaluated by how successfully it achieves

this goal. A high out-of-sample average return, AV, and a high out-of-sample information ratio,

IR, are naturally also desirable, but should be considered of secondary importance from the

point of view of evaluating the quality of a covariance matrix estimator.

The results are presented in Table 9.1 and can be summarized as follows; unless stated

otherwise, the findings are with respect to the standard deviation as performance measure.

• All ‘sophisticated’ portfolios outperform the ‘näıve’ 1/N portfolio for p ≤ 200. But for

p = 250, Sample, Stein, and Minimax break down and underperform 1/N ; on the other

hand, Lin and NonLin continue to outperform 1/N .

• NonLin is uniformly best. For p ≤ 200, Stein is second-best and Lin is third-best; on the

other hand, for p = 250, Lin is second-best.

• In terms of the information ratio, NonLin is best followed by Lin and Stein.

6This version of the information ratio, which simply uses zero as the benchmark, is widely used in the mutual

fund industry.
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Period: 01/08/1986–12/31/2015

1/N Sample Stein Minimax Lin NonLin

p = 50

AV 11.87 9.16 9.32 9.32 9.34 9.28

SD 22.78 15.06 14.61 14.71 14.63 14.58

IR 0.52 0.61 0.64 0.64 0.64 0.64

p = 100

AV 12.10 8.52 9.38 9.08 9.20 9.39

SD 21.56 14.69 13.06 13.46 13.33 13.01

IR 0.56 0.58 0.72 0.67 0.69 0.72

p = 150

AV 12.57 9.84 9.29 9.49 9.41 9.36

SD 21.00 15.64 12.27 12.98 12.67 12.16

IR 0.60 0.63 0.76 0.73 0.74 0.77

p = 200

AV 12.67 9.71 9.56 9.91 10.13 9.70

SD 20.57 19.56 11.80 13.27 12.12 11.49

IR 0.61 0.49 0.81 0.75 0.84 0.84

p = 250

AV 13.15 43.24 25.52 20.03 10.63 9.57

SD 20.24 245.50 82.91 52.49 11.72 11.00

IR 0.65 0.18 0.31 0.38 0.91 0.88

Table 9.1: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for

information ratio. All measures are based on 7560 daily out-of-sample returns from 01/08/1986

through 12/31/2015. In the rows labeled SD, the lowest number appears in bold face.

10 Concluding Remarks

Estimating a covariance matrix is one of the two most fundamental problems in statistics,

with a host of important applications. But in a large-dimensional setting, when the number of

variables is not small compared to the sample size, the traditional estimator (that is, the sample

covariance matrix) is ill-conditioned and performs poorly.

This paper revisits the pioneering work of Stein (1975, 1986) to construct an improved

estimator of a covariance matrix, based on the scale-invariant loss function commonly known

as Stein’s loss. The estimator originally proposed by Stein suffers from a certain number of

limitations, among which the two most visible ones are: first, the possibility of violation of
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eigenvalue ordering; and second, the possibility of negative eigenvalues (that is, a covariance

matrix estimator that is not positive-semidefinite). As a dual remedy, Stein proposed an ad hoc

isotonizing algorithm to be applied to the eigenvalues of his original estimator.

Stein’s estimator minimizes an unbiased estimator of risk in finite samples, within a certain

class of rotation-equivariant estimators (and assuming multivariate normality). In contrast, we

have opted for large-dimensional asymptotic analysis, considering the same class of rotation-

equivariant estimators. We show that the unbiased estimator of risk for such an estimator,

under mild regularity conditions (where even the assumption of multivariate normality can be

dropped), almost surely converges to a nonrandom limit; and that this limit is actually equal

to the almost sure limit of the value of the loss. Our alternative estimator is then based on

minimizing this limiting expression of the loss. Unlike Stein’s estimator, ours also works when

the dimension exceeds the sample size.

Our paper represents an original contribution not only with respect to Stein’s papers but also

with respect to the recent literature on large-dimensional asymptotics. Indeed, our asymptotic

optimality results — made possible by the introduction of the new concept of a ‘limiting

shrinkage function’ — provide a more formal justification to estimators based on the Frobenius

loss proposed by Ledoit and Wolf (2012, 2015).

We use a two-step method, whereby we first derive an optimal oracle estimator using our

new technique, and then find an equivalent bona fide estimator using methodology developed by

Ledoit and Wolf (2012, 2015). The end product is a covariance matrix estimator that minimizes

the almost sure limit of the loss function in the class of nonlinear shrinkage estimators, as sample

size and dimension go to infinity together.

When applied to Stein’s loss, our method delivers an estimator that both circumvents

the theoretical difficulties that beset Stein’s estimator and also enjoys improved finite-sample

performance, as evidenced by extensive Monte Carlo simulations.

An in-depth study of linear shrinkage estimators that are asymptotically optimal with

respect to other loss functions, such as the Symmetrized Stein’s loss, is beyond the scope of this

paper but points to promising avenues for future research.

An in-depth exploration of what we call the ‘arrow model’ — where the largest population

eigenvalue goes to infinity at the same rate as the matrix dimension — and of its implications

for covariance matrix estimation are also left as a fruitful avenue for future research.
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Appendix

For notational simplicity, the proofs below assume that in the case p < n, the support of F is

a single compact interval [a, b] ⊂ (0,+∞). But they generalize easily to the case where Supp(F )

is the union of a finite number κ of such intervals, as maintained in Assumptions 3.2 and 3.4.

On the same grounds, we make a similar assumption on the support of F in the case p > n; see

Section 6.

When there is no ambiguity, the first subscript, n, can be dropped from the notation of the

eigenvalues and eigenvectors.

A Proof of Mathematical Results in Section 3.2

A.1 Proof of Theorem 3.1

Definition A.1. For any integer k, define ∀x ∈ R, ∆
(k)
n (x) ..= p−1

∑p
i=1 u

′
iΣ

k
nui × 1[λi,+∞)(x).

Lemma A.1. Under Assumptions 3.1–3.3, there exists a nonrandom function ∆(−1) defined

on R such that ∆
(−1)
n (x) converges almost surely to ∆(−1)(x), for all x ∈ R. Furthermore, ∆(−1)

is continuously differentiable on R and satisfies ∀x ∈ R, ∆(−1)(x) =
∫ x
−∞ δ(−1)(λ)dF (λ), where

∀λ ∈ R δ(−1)(λ) ..=




0 if λ ≤ 0,

1− c− 2 c λRe[m̆F (λ)]

λ
if λ > 0 .

Proof of Lemma A.1. The proof of Lemma A.1 follows directly from Ledoit and Péché (2011,

Theorem 5) and the corresponding proof, bearing in mind that we are in the case c < 1 because

of Assumption 3.1.

Lemma A.2. Under Assumptions 3.1–3.4,

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
ϕ̃(x) d∆(−1)(x) .

Proof of Lemma A.2. Restrict attention to the set Ω1 of probability one on which ∆
(−1)
n (x)

converges to ∆(−1)(x), for all x, and on which also the almost sure uniform convergence and the

uniform boundedness of Assumption 3.4 hold for all rational, small η > 0. Wherever necessary,

the results in the proof are understood to hold true on this set Ω1.

Note that

1

p
Tr
(
Σ−1
n S̃n

)
=

1

p

p∑

i=1

(
u′iΣ

−1
n ui

)
ϕ̃n(λi) =

∫
ϕ̃n(x) d∆

(−1)
n (x) . (A.1)

Since ϕ̃ is continuous and ∆
(−1)
n converges weakly to ∆(−1),

∫ b

a
ϕ̃(x) d∆(−1)

n (x)−→
∫ b

a
ϕ̃(x) d∆(−1)(x) . (A.2)
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Since
∣∣ϕ̃
∣∣ is continuous on [a, b], it is bounded above by a finite constant K̃1. Fix ε > 0. Since

∆(−1) is continuous, there exists a rational η1 > 0 such that

∣∣∆(−1)(a+ η1)−∆(−1)(a)
∣∣+
∣∣∆(−1)(b)−∆(−1)(b− η1)

∣∣ ≤ ε

6 K̃1

. (A.3)

Since ∆
(−1)
n (x)−→∆(−1)(x), for all x ∈ R, there exists N1 ∈ N such that

∀n ≥ N1 max
x∈{a,a+η1,b−η1,b}

∣∣∆(−1)
n (x)−∆(−1)(x)

∣∣ ≤ ε

24 K̃1

. (A.4)

Putting equations (A.3)–(A.4) together yields

∀n ≥ N1

∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a)
∣∣+
∣∣∆(−1)

n (b)−∆(−1)
n (b− η1)

∣∣ ≤ ε

3 K̃1

. (A.5)

Therefore, for all n ≥ N1,
∣∣∣∣∣

∫ b−η1

a+η1

ϕ̃(x) d∆(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x)

∣∣∣∣∣

≤ K̃1

[∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a)
∣∣+
∣∣∆(−1)

n (b)−∆(−1)
n (b− η1)

∣∣
]

≤ ε

3
. (A.6)

Since ϕ̃n(x)−→ϕ̃(x) uniformly over x ∈ [a+ η1, b− η1], there exists N2 ∈ N such that

∀n ≥ N2 ∀x ∈ [a+ η1, b− η1] |ϕ̃n(x)− ϕ̃(x)| ≤ ε h

3
.

By Assumption 3.2, there exists N3 ∈ N such that, for all n ≥ N3, maxx∈R |∆(−1)
n (x)| =

Tr(Σ−1
n )/p is bounded by 1/h . Therefore for all n ≥ max(N2, N3)

∣∣∣∣
∫ b−η1

a+η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b−η1

a+η1

ϕ̃(x) d∆(−1)
n (x)

∣∣∣∣ ≤
ε h

3
× 1

h
=
ε

3
. (A.7)

Arguments analogous to those justifying equations (A.3)–(A.5) show there exists N4 ∈ N

such that

∀n ≥ N4

∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a− η1)
∣∣+
∣∣∆(−1)

n (b+ η1)−∆(−1)
n (b− η1)

∣∣ ≤ ε

3 K̃
,

for the finite constant K̃ of Assumption 3.4 Therefore, for all n ≥ N4,

∣∣∣∣
∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b−η1

a+η1

ϕ̃n(x) d∆
(−1)
n (x)

∣∣∣∣ ≤
ε

3
. (A.8)

Putting together equations (A.6)–(A.8) implies that, for all n ≥ max(N1, N2, N3, N4),

∣∣∣∣
∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x)

∣∣∣∣ ≤ ε .

Since ε can be chosen arbitrarily small,

∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x) −→ 0 .

43



By using equation (A.2) we get

∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−→

∫ b

a
ϕ̃(x) d∆(−1)(x) .

Theorem 1.1 of Bai and Silverstein (1998) shows that on a set Ω2 of probability one, there

are no sample eigenvalues outside the interval [a− η1, a+ η1], for all n large enough. Therefore,

on the set Ω ..= Ω1 ∩ Ω2 of probability one,

∫
ϕ̃n(x) d∆

(−1)
n (x)−→

∫ b

a
ϕ̃(x) d∆(−1)(x) .

Together with equation (A.1), this proves Lemma A.2.

Lemma A.3.

1

p
log
[
det
(
Σ−1
n S̃n

)] a.s.−→
∫ b

a
log
[
ϕ̃(x)

]
dF (x)−

∫
log(t) dH(t) .

Proof of Lemma A.3.

1

p
log
[
det
(
Σ−1
n S̃n

)]
=

1

p
log
[
det
(
Σ−1
n

)
det
(
S̃n
)]

=
1

p
log
[
det
(
Σ−1
n

) p∏

i=1

ϕ̃n(λi)
]

=

∫
log [ϕ̃n(x)] dFn(x)−

∫
log(t) dHn(t) . (A.9)

A reasoning analogous to that conducted in the proof of Lemma A.2 shows that the first term

on the right-hand side of equation (A.9) converges almost surely to
∫ b
a log

[
ϕ̃(x)

]
dF (x). Given

that Hn converges weakly to H, Lemma A.3 follows.

We are now ready to tackle Theorem 3.1. Lemma A.1 and Lemma A.2 imply that

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
ϕ̃(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) .

Lemma A.3 implies that

−1

p
log
[
det
(
Σ−1
n S̃n

)]
− 1

a.s.−→
∫

log(t) dH(t)−
∫ b

a
log
[
ϕ̃(x)

]
dF (x)− 1 .

Putting these two results together completes the proof of Theorem 3.1.

A.2 Proof of Proposition 3.1

We start with the simpler case where ∀n ∈ N, ∀x ∈ R, ψ̃n(x) ≡ ψ̃(x). We make implicitly use

of Theorem 1.1 of Bai and Silverstein (1998), which states that, for any fixed η > 0, there are

no eigenvalues outside the interval [a− η, b+ η] with probability one, for all n large enough.
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For any given estimator S̃n with limiting shrinkage function ϕ̃, define the univariate function

∀x, y ∈ [a, b], ψ̃(x) ..= ϕ̃(x)/x and the bivariate function

∀x, y ∈ [a, b] ψ̃♯(x, y) ..=





xψ̃(x)− yψ̃(y)

x− y
if x 6= y

xψ̃′(x) + ψ̃(x) if x = y .

Since ψ̃ is continuously differentiable on [a, b], ψ̃♯ is continuous on [a, b] × [a, b]. Consequently,

there exists K > 0 such that, ∀x, y ∈ [a, b], |ψ̃♯(x, y)| ≤ K.

Lemma A.4.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) . (A.10)

Proof of Lemma A.4.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi
=

1

p2

p∑

j=1

p∑

i=1

ψ̃♯(λi, λj)−
1

p2

p∑

j=1

ψ̃♯(λj , λj)

=

∫ b

a

∫ b

a
ψ̃♯(x, y) dFn(x) dFn(y)−

1

p2

p∑

j=1

ψ̃♯(λj , λj) .

Given equation (3.1), the first term converges almost surely to the right-hand side of equation

(A.10). The absolute value of the second term is bounded by K/p; therefore, it vanishes

asymptotically.

Lemma A.5.

∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) = −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) . (A.11)

Proof of Lemma A.5. Fix any ε > 0. Then there exists η1 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣2
∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)− 2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x)

∣∣∣∣ ≤
ε

4
.

The definition of the Stieltjes transform implies

−2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x) = 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x) dF (y) .

There exists η2 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x)dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2}dF (x)dF (y)

∣∣∣∣∣ ≤
ε

4

and

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y)−

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣ ≤
ε

4
.

45



We have

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y) =

∫ b

a

∫ b

a

xψ̃(x)− yψ̃(y)

x− y
1{|x−y|≥η2} dF (x) dF (y)

=

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)

+

∫ b

a

∫ b

a

yψ̃(y)

y − x
1{|y−x|≥η2} dF (y) dF (x)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y) .

Note that

2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y

v2

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y) ,

and that

∀(x, y) such that |x− y| ≥ η2
v2

(x− y)2 + v2
≤ v2

η22 + v2
.

The quantity on the right-hand side can be made arbitrarily small for fixed η2 by bringing v

sufficiently close to zero. This implies that there exists η3 ∈ (0, η1) such that, for all v ∈ (0, η3),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣∣ ≤
ε

4
.

Putting these results together yields

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) + 2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)

∣∣∣∣ ≤ ε .

Since this holds for any ε > 0, equation (A.11) follows.

Putting together Lemmas A.4 and A.5 yields

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→ −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) .

Lemma A.6. As n and p go to infinity with their ratio p/n converging to the concentration c,

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] −→ 1 +

1− c

c
log(1− c) .

Proof of Lemma A.6. It is well known that, for every positive integer ν,

E[log(χ2
ν)] = log(2) +

Γ′(ν/2)

Γ(ν/2)
,
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where Γ(·) denotes the gamma function. Thus,

1

p

p∑

j=1

E[log(χ2
n−j+1)] = log(2) +

1

p

p∑

j=1

Γ′((n− j + 1)/2)

Γ((n− j + 1)/2)
.

Formula 6.3.21 of Abramowitz and Stegun (1965) states that

∀x ∈ (0,+∞)
Γ′(x)

Γ(x)
= log(x)− 1

2x
− 2

∫ ∞

0

t dt

(t2 + x2)(e2πt − 1)
.

It implies that

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] = −1

p

p∑

j=1

log

(
1− j − 1

n

)
+

1

p

n∑

k=n−p+1

1

k

+
1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)

=.. −1

p

p∑

j=1

log

(
1− j − 1

n

)
+An +Bn .

It is easy to verify that

−1

p

p∑

j=1

log

(
1− j − 1

n

)
−→ −1

c

∫ c

0
log(1− x)dx = 1 +

1− c

c
log(1− c) .

Therefore, all that remains to be proven is that the two terms An and Bn vanish. Using

formulas 6.3.2 and 6.3.18 of Abramowitz and Stegun (1965), we see that

An
..=

1

p

n∑

k=n−p+1

1

k
=

1

p

[
Γ′(n)

Γ(n)
− Γ′(n− p+ 1)

Γ(n− p+ 1)

]
=

1

p
log

(
n

n− p+ 1

)
+O

(
1

p(n− p+ 1)

)
,

which vanishes indeed. As for the term Bn, it admits the upper bound

Bn
..=

1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)
≤
∫ ∞

0

t dt

[t2 + ((n− p+ 1)/2)2](e2πt − 1)
,

which also vanishes.

Going back to equation (2.2), we notice that the term

2

p

p∑

j=1

λjψ̃
′(λj)

remains bounded asymptotically with probability one, since ψ̃′ is bounded over a compact set.

Putting all these results together shows that the unbiased estimator of risk Θn(Sn, Σ̂)

converges almost surely to

(1− c)

∫ b

a
ψ̃(x)dF (x)−

∫ b

a
log[ψ̃(x)]dF (x)− 2c

∫ b

a
xψ̃(x)Re[m̆F (x)]dF (x) +

1− c

c
log(1− c)

=

∫ b

a

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x) +

∫ b

a
log(x)dF (x) +

1− c

c
log(1− c)

=

∫ b

a

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x) +

∫
log(t) dH(t)− 1 ,

where the last equality comes from the following lemma.
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Lemma A.7.

∫ b

a
log(x) dF (x) +

1− c

c
log(1− c) =

∫
log(t) dH(t)− 1 .

Proof of Lemma A.7. Setting ϕ̃(x) = x for all x ∈ Supp(F ) in Lemma A.3 yields

1

p
log
[
det
(
Σ−1
n Sn

)] a.s.−→
∫ b

a
log(x) dF (x)−

∫
log(t) dH(t) . (A.12)

In addition, note that

1

p
log
[
det
(
Σ−1
n Sn

)]
=

1

p
log

[
det

(
Σ−1
n

1

n

√
ΣnX

′
nXN

√
Σn

)]

=
1

p
log

[
det

(
1

n
X ′

nXn

)]
a.s.−→ c− 1

c
log(1− c)− 1 , (A.13)

where the convergence comes from equation (1.1) of Bai and Silverstein (2004). Comparing

equation (A.12) with equation (A.13) proves the lemma.

It is easy to verify that these results carry through to the more general case where the

function ψ̃n can vary across n, as long as it is well behaved asymptotically in the sense of

Assumption 3.4.

A.3 Proof of Proposition 3.2

We provide a proof by contradiction. Suppose that Proposition 3.2 does not hold. Then there

exist ε > 0 and x0 ∈ Supp(F ) such that

1− c− 2 c x0 Re[m̆F (x0)] ≤
a1

h
− 2ε . (A.14)

Since m̆F is continuous, there exist x1, x2 ∈ Supp(F ) such that x1 < x2, [x1, x2] ⊂ Supp(F ),

and

∀x ∈ [x1, x2] 1− c− 2 c xRe[m̆F (x)] ≤
a1

h
− ε .

Define, for all n ∈ N and x ∈ R,

ϕ(x) ..= x1[x1,x2](x)

ϕn(x)
..= ϕ(x)

Dn
..= Diag

(
ϕn(λn,1), . . . , ϕn(λn,p)

)

Sn
..= UnDnU

′
n .

By Lemmas A.1–A.2,

1

p
Tr
(
Σ−1
n Sn

) a.s.−→
∫
ϕ(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) . (A.15)

The left-hand side of equation (A.15) is asymptotically bounded from below as follows.

1

p
Tr
(
Σ−1
n Sn

)
=

1

p

p∑

i=1

u′n,iΣ
−1
n un,i × λn,i 1[x1,x2](λn,i)

≥ λn,1

h
[Fn(x2)− Fn(x1)]

a.s.−→ a1

h
[F (x2)− F (x1)] . (A.16)
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The right-hand side of equation (A.15) is bounded from above as follows.

∫
ϕ(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) ≤

(
a1

h
− ε

)
[F (x2)− F (x1)] . (A.17)

Given that F (x2)−F (x1) > 0, equations (A.15)–(A.17) form a logical contradiction. Therefore,

the initial assumption (A.14) must be false, which proves Proposition 3.2.

A.4 Proof of Proposition 3.3

If we compare equations (3.8) and (3.9), we see that the term
∫
log(t) dH(t) appears in both,

so it can be ignored. The challenge is then to prove that

κ∑

k=1

∫ bk

ak

{
c+ 2 c xRe[m̆F (x)] + log(x)

}
dF (x) <

κ∑

k=1

∫ bk

ak

log

[
x

1− c− 2 c xRe[m̆F (x)]

]
dF (x) .

(A.18)

Rearranging terms, we can restate this inequality as

κ∑

k=1

∫ bk

ak

{
c+ 2 c xRe[m̆F (x)] + log (1− c− 2 c xRe[m̆F (x)])

}
dF (x) < 0 . (A.19)

Setting y ..= c+2 c xRe[m̆F (x)] leads us to investigate the function y 7→ y+log(1−y). Elementary

calculus shows that it is strictly negative over its domain of definition, except at y = 0, where

it attains its maximum of zero. The condition y = 0 is equivalent to xRe[m̆F (x)] = −1/2.

If we set the variable x equal to a1, the lower bound of the leftmost interval of the support

of the limiting sample spectral distribution F , we get

a1 Re[m̆F (a1)] = PV

∫ ∞

−∞

a1
λ− a1

dF (λ) , (A.20)

where PV denotes the Cauchy Principal Value (Henrici, 1988, pp. 259–262). The quantity in

equation (A.20) is nonnegative because λ ≥ a1 for all λ ∈ Supp(F ). By continuity, there exists

some β1 ∈ (a1, b1] such that xRe[m̆F (x)] > −1/2 for all x ∈ [a1, β1]. This implies that the strict

inequality (A.19) is true.

A.5 Proof of Proposition 3.4

Subtracting equation (3.8) from equation (3.14) shows that the difference between limiting losses

MS
c (H,ϕ

M )−MS
c

(
H,ϕS

)
is equal to

∫ {
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)
− 1− log

[
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)

]}
dF (x) . (A.21)

The function y 7−→ y − 1 + log(y) is strictly positive over its domain of definition, except at

y = 1, where it attains its minimum of zero. Therefore

∀x ∈ Supp(F )
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)
− 1− log

[
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)

]
≥ 0 , (A.22)
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which implies that MS
c (H,ϕ

M ) − MS
c

(
H,ϕS

)
≥ 0, as we already knew from Corollary 3.1.

Elementary calculus shows that the inequality (A.22) is strict if and only if −xRe[m̆F (x)] 6=
F (x). As in the proof of Proposition 3.3, we use a1, the lower bound of the leftmost interval of

the support of the limiting sample spectral distribution F :

∀x ∈ [0, a1) − xRe[m̆F (x)] =

∫
x

x− λ
dF (λ) = 1 +

∫
λ

x− λ
dF (λ) , (A.23)

which is a strictly decreasing function of x. Therefore, using the fact that m̆F is continuous

(Silverstein and Choi, 1995, Theorem 1.1), −a1 Re[m̆F (a1)] is strictly below the value that

−xRe[m̆F (x)] takes at x = 0, which is itself zero. It implies −a1 Re[m̆F (a1)] 6= F (a1). By

continuity, there exists some β′1 ∈ (a1, b1] such that −xRe[m̆F (x)] 6= F (x) for all x ∈ [a1, β
′
1].

This in turn implies that the integral in equation (A.21) is strictly positive.

A.6 Proof of Proposition 3.5

The linear shrinkage estimator in equation (14) of Ledoit and Wolf (2004) is of the form

SL
n

..= mnIn +
a2n
d2n

(Sn −mnIn) , (A.24)

where

mn
..=

∫
λ dFn(λ)

a.s.−→
∫
λ dF (λ) (A.25)

a2n
..=

∫
t2dHn(t)−

[∫
t dHn(t)

]2
−→

∫
t2dH(t)−

[∫
t dH(t)

]2
(A.26)

d2n
..=

∫
λ2dFn(λ)−

[∫
λ dFn(λ)

]2
a.s.−→

∫
λ2dF (λ)−

[∫
λ dF (λ)

]2
. (A.27)

Thus, the linear shrinkage function is ϕL
n : x 7−→ mn +

(
a2n/d

2
n

)
(x−mn). Under Assumptions

3.1–3.3,

∀x ∈ Supp(F ) ϕL
n(x)

a.s.−→
∫
λ dF (λ) +

∫
t2dH(t)−

[∫
t dH(t)

]2

∫
λ2dF (λ)−

[∫
λ dF (λ)

]2
[
x−

∫
λ dF (λ)

]
.

(A.28)

Since the support of F is compact, the convergence is uniform.

B Proofs of Theorems in Section 4

B.1 Proof of Theorem 4.1

Lemma B.1. Under Assumptions 3.1–3.3, there exists a nonrandom function ∆(1) defined

on R such that the random function ∆
(1)
n (x) converges almost surely to ∆(1)(x), for all x ∈ R.

Furthermore, ∆(1) is continuously differentiable on R and can be expressed as

∀x ∈ R ∆(1)(x) =




0 if x < a,
∫ x
a δ

(1)(λ)dF (λ) if x ≥ a,
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where ∀λ ∈ [a,+∞), δ(1)(λ) ..= λ/|1− c− c λ m̆F (λ)|2.

Proof of Lemma B.1. Follows directly from Theorem 4 of Ledoit and Péché (2011).

Lemma B.2. Under Assumptions 3.1–3.4,

1

p
Tr
(
ΣnS̃

−1
n

) a.s.−→
∫ b

a

1

ϕ̃(x)
d∆(1)(x) .

Proof of Lemma B.2. Note that

1

p
Tr
(
ΣnS̃

−1
n

)
=

1

p

p∑

i=1

u′iΣnui
ϕ̃n(λi)

=

∫
1

ϕ̃n(x)
d∆(1)

n (x) .

The remainder of the proof is similar to the proof of Lemma A.2 and is thus omitted.

Lemma B.1 and Lemma B.2 imply that

1

p
Tr
(
ΣnS̃

−1
n

) a.s.−→
∫ b

a

x

ϕ̃(x) |1− c− c x m̆F (x)|2
dF (x) . (B.1)

Lemma A.3 implies that

−1

p
log
[
det
(
ΣnS̃

−1
n

)]
− 1

a.s.−→
∫ b

a
log
[
ϕ̃(x)

]
dF (x)−

∫
log(t) dH(t)− 1 .

Putting these two results together completes the proof of Theorem 4.1.

B.2 Proof of Theorem 4.2

Note that

1

p
Tr

[(
Σn − S̃n

)2]
=

1

p

p∑

i=1

[
τ2n,i − 2u′n,iΣnun,i ϕ̃n(λn,i) + ϕ̃n(λn,i)

2
]

=

∫
x2 dHn(x)− 2

∫
ϕ̃n(x) d∆

(1)
n (x) +

∫
ϕ̃n(x)

2 dFn(x) .

The remainder of the proof is similar to the proof of Lemma A.2 and is thus omitted.

B.3 Proof of Theorem 4.3

Note that

1

p
Tr

[(
Σ−1
n − S̃−1

n

)2]
=

1

p

p∑

i=1

[
1

τ2n,i
− 2

u′n,iΣ
−1
n un,i

ϕ̃n(λn,i)
+

1

ϕ̃n(λn,i)2

]

=

∫
1

x2
dHn(x)− 2

∫
1

ϕ̃n(x)
d∆(−1)

n (x) +

∫
1

ϕ̃n(x)2
dFn(x) .

The remainder of the proof is similar to the proof of Lemma A.2 and is thus omitted.
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C Proof of Theorem 5.2

Define the shrinkage function

∀x ∈ Supp
(
F τ̂n
n,p

)
ϕ̂∗
n(x)

..=
x

1− p

n
− 2

p

n
xRe

[
m̆τ̂n

n,p(x)
] .

Theorem 2.2 of Ledoit and Wolf (2015) and Proposition 4.3 of Ledoit and Wolf (2012) imply

that ∀x ∈ Supp(F ), ϕ̂∗
n(x)

a.s−→ ϕ∗(x), and that this convergence is uniform over x ∈ Supp(F ),

apart from arbitrarily small boundary regions of the support. Theorem 5.2 then follows from

Corollary 3.1.

D Proof of Theorems in Section 6

D.1 Proof of Theorem 6.1

Lemma D.1. Under Assumptions 3.2–3.3 and 6.1, there exists a nonrandom function ∆(−1)

defined on R such that ∆
(−1)
n (x) converges almost surely to ∆(−1)(x), for all x ∈ R − {0}.

Furthermore, ∆(−1) is continuously differentiable on R− {0} and can be expressed as ∀x ∈ R,

∆(−1)(x) =
∫ x
−∞ δ(−1)(λ)dF (λ), where

∀λ ∈ R δ(−1)(λ) ..=





0 if λ < 0,
c

c− 1
· m̆H(0)− m̆F (0) if λ = 0,

1− c− 2 c λRe[m̆F (λ)]

λ
if λ > 0 .

Proof of Lemma D.1. The proof of Lemma D.1 follows directly from Ledoit and Péché (2011,

Theorem 5) and the corresponding proof, bearing in mind that we are in the case c > 1 because

of Assumption 6.1.

The proof of Theorem 6.1 proceeds as the proof of Theorem 3.1, except that Lemma D.1 replaces

Lemma A.1.

D.2 Proof of Theorem 6.2

Define the shrinkage function

ϕ̂∗
n(0)

..=

(
p/n

p/n− 1
· ̂̆mH(0)− ̂̆mF (0)

)−1

,

and ∀x ∈ Supp
(
F τ̂n

n,p

)
ϕ̂∗
n(x)

..=
x

1− p

n
− 2

p

n
xRe

[
m̆τ̂n

n,p(x)
] .

First, since both ̂̆mH(0) and ̂̆mF (0) are strongly consistent estimators, ϕ̂∗
n(0)

a.s−→ ϕ∗(0). Second,

Theorem 2.2 of Ledoit and Wolf (2015) and Proposition 4.3 of Ledoit and Wolf (2012) applied

to F imply that ∀x ∈ Supp(F ), ϕ̂∗
n(x)

a.s−→ ϕ∗(x), and that this convergence is uniform over

x ∈ Supp(F ), apart from arbitrarily small boundary regions of the support. Theorem 6.2 then

follows from Corollary 6.1.
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E Proof of Propositions in Section 7

E.1 Common Notation

Let Vn denote a matrix of eigenvectors of Σn arranged to match the ascending order of the

eigenvalues vector τn = (τn,1, . . . , τn,p). Let vn,p denote the pth column vector of the matrix Vn.

We can decompose the population covariance matrix Σn into its bulk and arrow components

according to Σn = ΣB
n +ΣA

n , where

ΣB
n

..= Vn × Diag(τn,1, . . . , τn,p−1, 0)× V ′
n (E.1)

ΣA
n

..= Vn × Diag( 0, . . . , 0︸ ︷︷ ︸
p− 1 times

, τn,p)× V ′
n . (E.2)

Note that the min(n, p) largest eigenvalues of Sn are the same as those of Tn ..= n−1XnΣnX
′
n, so

in many instances we will be able to simply investigate the spectral decomposition of the latter

matrix. Equations (E.1–E.2) enable us to write Tn = TB
n + TA

n , where TB
n

..= n−1XnΣ
B
nX

′
n and

TA
n

..= n−1XnΣ
A
nX

′
n.

E.2 Proof of Proposition 7.1

Given that the bulk population eigenvalues are below h, Theorem 1.1 of Bai and Silverstein

(1998) shows that there exists a constant B such that the largest eigenvalue of TB
n is below

B almost surely for all n sufficiently large. Furthermore, due to the fact that the rank of

the matrix TA
n is one, its second largest eigenvalue is zero. Therefore the Weyl inequalities

(e.g., see Theorem 1 in Section 6.7 of Franklin (2000) for a textbook treatment) imply that

λn,p−1 ≤ B+0 = B a.s. for sufficiently large n. This establishes the first part of the proposition.

As for the second part, it comes from

λn,p
τn,p

≥
v′n,pSnvn,p

τn,p
=

1

τn,p
v′n,p

√
Σn

X ′
nXn

n

√
Σnvn,p = v′n,p

X ′
nXn

n
vn,p

a.s.−→ 1. (E.3)

E.3 Proof of Proposition 7.2

Lemma E.1. Under Assumptions 3.1, 3.2.a–c and 3.2.f, there is spectral separation between

the arrow and the bulk in the sense that

sup

{
t ∈ R : F τn

n,p(t) ≤
p− 1

p

}
< inf

{
t ∈ R : F τn

n,p(t) >
p− 1

p

}
(E.4)

for large enough n.

Proof of Lemma E.1. From page 5356 of Mestre (2008b), a necessary and sufficient condition

for spectral separation to occur between the arrow and the bulk is that

∃t ∈ (τn,p−1, τn,p) s.t. Θn(t) ..=
1

p

p∑

i=1

τ2n,i(
τn,i − t

)2 − 1

c
< 0 . (E.5)

This is equivalent to the condition that the function xF (m) defined in Equation (1.6) of

Silverstein and Choi (1995) is strictly increasing at m = −1/t. Section 4 of Silverstein and Choi
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(1995) explains in detail how this enables us to determine the boundaries of the support of F τn
n,p .

Assumption 3.2.f guarantees that

∀i = 1, . . . , p− 1, ∀t ∈ (τn,p−1, τn,p),
τ2n,i(

τn,i − t
)2 ≤ h

2

(
h− t

)2 , (E.6)

therefore a sufficient condition for arrow separation is that

∃t ∈ (τn,p−1, τn,p) s.t. θn(t) ..=
p− 1

p

h
2

(
h− t

)2 +
1

p

τ2n,p(
τn,p − t

)2 − 1

c
< 0 . (E.7)

The function θn is strictly convex on
(
h, τn,p

)
and goes to infinity as it approaches h and τn,p,

therefore it admits a unique minimum on
(
h, τn,p

)
characterized by the first-order condition

θ′n(t) = 0 ⇐⇒ 2
p− 1

p

h
2

(
h− t

)3 + 2
1

p

τ2n,p(
τn,p − t

)3 = 0

⇐⇒ p− 1

p

h
2

(
t− h

)3 =
1

p

τ2n,p(
τn,p − t

)3

⇐⇒
(

p

p− 1

)1/3 t− h

h
2/3

= p1/3
τn,p − t

τ
2/3
n,p

⇐⇒ t = t∗n
..=
(
h τn,p

)2/3
(

p
p−1

)1/3
τ
1/3
n,p +

(
1
p

)1/3
h
1/3

(
p

p−1

)1/3
h
2/3

+
(
1
p

)1/3
τ
2/3
n,p

.

Note that t∗n ∼ h
2/3
β
1/3
1 p2/3, therefore

θn
(
t∗n
)
∼ h

2

h
4/3
β
2/3
1 p4/3

+
β21 p

2

β21 p
3
− 1

c
−→ −1

c
< 0 , (E.8)

which implies that condition (E.7) is satisfied for large enough n, and the arrow separates from

the bulk.

Since the function Θn from equation (E.5) is strictly convex over the interval
(
τn,p−1, t

∗
n

)
,

limtցτn,p−1
Θn(t) = +∞ and Θn(t

∗
n) ≤ θn(t

∗
n) < 0 by Lemma E.1, Θn admits a unique zero in(

τn,p−1, t
∗
n

)
. Call it bn. An asymptotically valid bound for bn is given by the following lemma.

Lemma E.2. Under Assumptions 3.1, 3.2.a–c and 3.2.f,

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N bn ≤
(
1 +

√
c+ ε

)
h . (E.9)

Proof of Lemma E.2.

Θ(bn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 +
1

p

τ2n,p(
τn,p − bn

)2 =
1

c
. (E.10)

From bn ≤ t∗n and τn,p ∼ β1p we deduce

1

p

τ2n,p(
τn,p − bn

)2 ∼ 1

p
−→ 0 ; (E.11)
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therefore,

1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 −→ 1

c
. (E.12)

This implies that ∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N

1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 ≥ 1

c+ ε

p− 1

p

h
2

(
h− bn

)2 ≥ 1

c+ ε
(
h− bn

)2

h
2 ≤ c+ ε

bn ≤
(
1 +

√
c+ ε

)
h. (E.13)

Since the function Θn from equation (E.5) is strictly convex over the interval
(
t∗n, τn,p

)
,

limtրτn,p Θn(t) = +∞ and Θn(t
∗
n) ≤ θn(t

∗
n) < 0 by Lemma E.1, Θn admits a unique zero in(

t∗n, τn,p
)
. Call it tn. An asymptotically valid equivalency result for tn is given by the following

lemma.

Lemma E.3. Under Assumptions 3.1, 3.2.a–c and 3.2.f,

τn,p − tn ∼ τn,p√
n
. (E.14)

Proof of Lemma E.3.

Θ(tn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 +
1

p

τ2n,p(
τn,p − tn

)2 =
1

c
. (E.15)

From the inequalities tn ≥ t∗n and τn,i ≤ h (for i = 1, . . . , p− 1) we deduce

1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 ≤ p− 1

p

h
2

(
h− t∗n

)2 ∼ h
2/3

β
2/3
1 p4/3

−→ 0 , (E.16)

therefore

1

p

τ2n,p(
τn,p − tn

)2 −→ 1

c

1

n

τ2n,p(
τn,p − tn

)2 −→ 1

τn,p − tn
τn,p/

√
n

−→ 1.

Lemma E.4. Define

λn
..= inf

{
t ∈ R : F τn

n,p(t) >
p− 1

p

}
. (E.17)

Then under Assumptions 3.1, 3.2.a–c and 3.2.f,

τn,p − λn ∼ 2
τn,p√
n
. (E.18)
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Proof of Lemma E.4. Equation (13) of Mestre (2008b) gives

λn = tn − c tn
1

p

p∑

i=1

τn,i
τn,i − tn

. (E.19)

This is equivalent to plugging m = −1/tn into equation (1.6) of Silverstein and Choi (1995).

These authors’ Section 4 explains why method yields the boundary points of Supp(F τn
n,p). From

equation (E.19) we deduce

1− λn
tn

= c
1

p

τn,p
τn,p − tn

− c
1

p

p−1∑

i=1

τn,i
tn − τn,i

. (E.20)

Lemma E.3 enables us to approximate the first term on the right-hand side by

c
1

p

τn,p
τn,p − tn

∼ p

n
× 1

p
×
√
n =

1√
n
. (E.21)

Since τn,i ≤ h < tn, the second term is bounded by

0 ≤ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

≤ c
h

tn − h
∼ c

h

β1p
, (E.22)

therefore it is negligible with respect to the first term. We conclude by remarking that

1− λn
tn

∼ 1√
n

tn − λn ∼ tn√
n
∼ τn,p√

n

τn,p − λn =
(
τn,p − tn

)
+
(
tn − λn

)
∼ 2

τn,p√
n
.

Lemma E.5. Define

µn
..= sup

{
t ∈ R : F τn

n,p(t) ≤
p− 1

p

}
. (E.23)

Then under Assumptions 3.1, 3.2.a–c and 3.2.f,

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N µn ≤
(
1 +

√
c+ ε

)2
h . (E.24)

Proof of Lemma E.5. Equation (13) of Mestre (2008b) gives

µn = bn − c bn
1

p

p∑

i=1

τn,i

τn,i − bn
. (E.25)

This is equivalent to plugging m = −1/bn into equation (1.6) of Silverstein and Choi (1995).

Fix any i ∈ {1, 2, . . . , p− 2} and hold (τn,j)j 6=i constant. Define the function

∀b ∈ (τn,p−1, t
∗
n), ∀t ≤ τn,i+1 Fi(b, t) ..= b− c b

1

p

t

t− b
− c b

1

p

p∑

j=1
j 6=i

τn,j
τn,j − b

. (E.26)
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Then clearly µn = Fi(bn, τn,i). Viewing µn and bn as two univariate functions of τn,i, we can

write:
dµn
dτn,i

=
∂Fi

∂b
(bn, τn,i)×

dbn
dτn,i

+
∂Fi

∂t
(bn, τn,i) . (E.27)

But notice that

∀b ∈ (τn,p−1, t
∗
n), ∀t ≤ τn,i+1

∂Fi

∂b
(b, t) = 1− c

1

p

t2

(t− b)2
− c

1

p

p∑

j=1
j 6=i

τ2n,j
(τn,j − b)2

; (E.28)

therefore,
∂Fi

∂b
(bn, τn,i) = −c Θn(bn) , (E.29)

which is identically equal to zero by equation (E.5). By the envelope theorem, equation (E.27)

simplifies into

dµn
dτn,i

=
∂Fi

∂t
(bn, τn,i) = c

1

p

b
2
n

(τn,i − bn)2
> 0 . (E.30)

We can thus obtain an upper bound on µn by setting τn,1, . . . , τn,p−2 equal to τn,p−1. In this

particular case, bn verifies

p− 1

p

τ2n,p−1

(τn,p−1 − bn)2
+

1

p

τ2n,p

(τn,p − bn)2
=

1

c
. (E.31)

From equation (E.13) and τn,p ∼ β1p we deduce

p− 1

p

τ2n,p−1

(τn,p−1 − bn)2
−→ 1

c
(E.32)

τn,p−1

τn,p−1 − bn
−→ − 1√

c
. (E.33)

Thus, in the particular case where τn,1, . . . , τn,p−2 are all equal to τn,p−1, µn verifies

µn
bn

= 1− c
p− 1

p

τn,p−1

τn,p−1 − bn
− c

1

p

τn,p

τn,p − bn
−→ 1 +

√
c . (E.34)

Remember that, by equation (E.30), the particular case τn,1 = · · · = τn,p−2 = τn,p−1 yields an

upper bound on µn that holds in the general case τn,1 ≤ · · · ≤ τn,p−2 ≤ τn,p−1, therefore putting

together equations (E.13) and (E.34) yields the conclusion

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N µn ≤
(
1 +

√
c+ ε

)2
h. (E.35)

The first part of Proposition 7.2 follows from Lemma E.5 and from the observation that

qp−1
n,p (τn) is no greater than µn as defined in equation (E.23). The second part of Proposition 7.2

follows from Lemma E.4 and from the observation that qpn,p (τn) is no smaller than λn as defined

in equation (E.17).
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E.4 Proof of Proposition 7.3

The eigenvalues of TB
n are bounded from below by zero. Given that the bulk population

eigenvalues are below h, Theorem 1.1 of Bai and Silverstein (1998) shows that there exists a

constant B such that the largest eigenvalue of TB
n is below B almost surely for all n sufficiently

large. Therefore the Weyl inequalities imply that

λAn,p ≤ λn,p ≤ λAn,p +B (E.36)

almost surely for sufficiently large n, where λAn,p denotes the largest eigenvalue of TA
n .

Furthermore, we have
λAn,p
τn,p

= v′n,p
X ′

nXn

n
vn,p

a.s.−→ 1 . (E.37)

Putting together equations (E.36) and (E.37) yields λn,p/τn,p
a.s.−→ 1, as desired.

E.5 Proof of Proposition 7.4

Since the function Θn from equation (E.5) is strictly convex over the interval
(
τn,p,+∞

)
,

limtցτn,p Θn(t) = +∞ and limtց+∞Θn(t) = −1/c < 0, Θn admits a unique zero in
(
τn,p,+∞

)
.

Call it tn. An asymptotically valid equivalency result for tn is given by the following lemma.

Lemma E.6. Under Assumptions 3.1, 3.2.a–c and 3.2.f,

tn − τn,p ∼
τn,p√
n
. (E.38)

Proof of Lemma E.6.

Θ(tn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 +
1

p

τ2n,p(
τn,p − tn

)2 =
1

c
. (E.39)

From tn ∼ β1p and τn,i ≤ h (for i = 1, . . . , p− 1) we deduce

1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 ∼ h
2

β21p
2
−→ 0 ; (E.40)

therefore,

1

p

τ2n,p(
τn,p − tn

)2 −→ 1

c

1

n

τ2n,p(
τn,p − tn

)2 −→ 1

tn − τn,p
τn,p/

√
n

−→ 1.

Lemma E.7. Define

λn ..= sup
{
t ∈ R : F τn

n,p(t) < 1
}
. (E.41)

Then under Assumptions 3.1, 3.2.a–c and 3.2.f,

λn − τn,p ∼ 2
τn,p√
n
. (E.42)
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Proof of Lemma E.7. Equation (13) of Mestre (2008b) gives

λn = tn − c tn
1

p

p∑

i=1

τn,i
τn,i − tn

. (E.43)

This is equivalent to plugging m = −1/tn into equation (1.6) of Silverstein and Choi (1995).

From equation (E.43) we deduce

λn
tn

− 1 = c
1

p

τn,p
tn − τn,p

+ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

. (E.44)

Lemma E.6 enables us to approximate the first term on the right-hand side by

c
1

p

τn,p
tn − τn,p

∼ p

n
× 1

p
×
√
n =

1√
n
. (E.45)

Since τn,i ≤ h < tn, the second term is bounded by

0 ≤ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

≤ c
h

tn − h
∼ c

h

β1p
; (E.46)

therefore, it is negligible with respect to the first term. We conclude by remarking that

λn
tn

− 1 ∼ 1√
n

λn − tn ∼ tn√
n
∼ τn,p√

n

λn − τn,p =
(
λn − tn

)
+
(
tn − τn,p

)
∼ 2

τn,p√
n
.

The observation that λn ≤ qpn,p (τn) ≤ λn together with Lemmas E.4 and E.7 establishes

Proposition 7.4.

E.6 Proof of Lemma 7.1

For ease of notation, let us denote ϕ̃n(λn,i) by ϕ̃n,i in this proof only.

L
S
n(Σn, S̃n) =

1

p

p∑

i=1

ϕ̃n,i · un,iΣ−1
n un,i +

1

p

p∑

i=1

log(τn,i)−
1

p

p∑

i=1

log(ϕ̃n,i)− 1

∂LS
n(Σn, S̃n)

∂ϕ̃n,i
=

1

p
un,iΣ

−1
n un,i −

1

p

1

ϕ̃n,i

The first-order condition is

∂LS
n(Σn, S̃n)

∂ϕ̃n,i
= 0 ⇐⇒ ϕ̃n,i =

1

un,iΣ
−1
n un,i

.
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E.7 Proof of Proposition 7.5

As in the proof of Proposition 7.3 above, let Vn denote a matrix of eigenvectors of Σn arranged

to match the nondescending order of the eigenvalues τn = (τn,1, . . . , τn,p), and let vn,i denote its

ith column vector (i = 1, . . . , p). The matrix ΣA
n defined in equation (E.2) is a rank-degenerate

version of the population covariance matrix where all bulk eigenvalues have been neglected. The

sample covariance matrix that corresponds to ΣA
n is

SA
n

..= n−1
√
ΣA
nX

′
nXn

√
ΣA
n . (E.47)

It admits a spectral decomposition on the same orthonormal basis as Σn and ΣA
n :

SA
n = Vn × Diag

(
λAn,1, . . . , λ

A
n,p

)
× V ′

n , (E.48)

with all eigenvalues equal to zero except for λAn,p = n−1τn,p · v′n,pX ′
nXnvn,p. Viewing Sn as a

perturbation of SA
n , equation (5.1) of Meyer and Stewart (1988) gives the approximation

∀i = 1, . . . , p− 1 u′n,pvn,i =
v′n,i

(
Sn − SA

n

)
vn,p

λAn,p − λAn,i
+O

((
τn,i
τn,p

)2
)
, (E.49)

from which we deduce

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i
=

p−1∑

i=1

τn,p
τn,i

[
v′n,i

(
Sn − SA

n

)
vn,p

λAn,p − λAn,i

]2
+O

(
1

p

)
. (E.50)

Note that ∀i = 1, . . . , p − 1, v′n,iS
A
n vn,p = 0, and v′n,iSnvn,p = n−1√τn,i τn,p · v′n,iX ′

nXnvn,p,

therefore this expression simplifies to

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i
=

1

n

p−1∑

i=1

(
v′n,iX

′
nXnvn,p

)2
/n

(
v′n,pX

′
nXnvn,p/n

)2 +O

(
1

p

)
. (E.51)

By the law of large numbers, (p−1)−1
∑p−1

i=1

(
v′n,iX

′
nXnvn,p

)2/
n

a.s.→ 1 and v′n,pX
′
nXnvn,p/n

a.s.→ 1;

therefore,

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i

a.s.−→ c . (E.52)

Given that
∑p

i=1

(
u′n,pvn,i

)2
= 1, we have (u′n,pvn,p)

2 a.s.−→ 1. This enables us to conclude that

τn,p · u′n,pΣ−1
n un,p =

(
u′n,pvn,p

)2
+ τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i

a.s.−→ 1 + c .

E.8 Proof of Proposition 7.6

Lemma E.8. Let

τA
n

..= ( 0, . . . , 0︸ ︷︷ ︸
p− 1 times

, τn,p) . (E.53)

Then under Assumptions 3.1, 3.2.a–c and 3.2.f, 1 + λn,p m̆
τ
A
n

n,p(λn,p)
a.s.−→ 0.
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Proof of Lemma E.8. By taking the limit of equation (5.7) as m ∈ C
+ approaches the real

line, we find that for all λ ∈ (0,+∞), m ..= m̆
τ
A
n

n,p(λ) is the unique solution in C
+ ∪ R to the

equation

m = −p− 1

pλ
+

1

p

1

τn,p

(
1− p

n
− p

n
λm

)
− λ

. (E.54)

With the change of variables m̃ ..= pm+ (p− 1)/λ, equation (E.54) becomes

m̃ =
1

τn,p

(
1− 1

n
− 1

n
λ m̃

)
− λ

(E.55)

τn,p
1

n
λm̃2 +

(
τn,p

1

n
+ λ− τn,p

)
m̃+ 1 = 0 . (E.56)

(E.56) is a classic quadratic equation whose discriminant is ∆ =
(
τn,pn

−1 + λ− τn,p
)2−4τn,pn

−1.

In turn, the equation ∆ = 0 is itself a quadratic equation in λ:

λ2 − 2τn,p

(
1

n
+ 1

)
λ+ τ2n,p

(
1

n
− 1

)2

= 0 . (E.57)

It admits two distinct real, positive solutions: λ = τn,p
(
1± n−1/2

)2
. This enables us to factorize

the discriminant ∆ into

∆ =

[
λ− τn,p

(
1 +

1√
n

)2
]
×
[
λ− τn,p

(
1− 1√

n

)2
]
. (E.58)

This factorization shows that equation (E.56) admits a solution in C
+ if and only if λ ∈(

τn,p(1 + n−1/2)2, τn,p(1 + n−1/2)2
)
. Over this interval, the solution with positive imaginary

part is

m̃ =
τn,p(1− n−1)− λ+ i ·

√[
λ− τn,p(1− n−1/2)2

]
×
[
τn,p(1 + n−1/2)2 − λ

]

2 τn,p λ/n
. (E.59)

This is none other than the Stieltjes transform of the celebrated Marčenko-Pastur (1967)

distribution with scale parameter τn,p and concentration parameter 1/n. Changing back to

the original variable m, we obtain the following solution for equation (E.54):

m = −p− 1

pλ
+
τn,p(1− n−1)− λ+ i ·

√[
λ− τn,p(1− n−1/2)2

]
×
[
τn,p(1 + n−1/2)2 − λ

]

2 τn,p λ p/n
,

(E.60)

for all λ ∈
[
τn,p(1 − n−1/2)2, τn,p(1 + n−1/2)2

]
. Note that this closed interval, along with zero,

constitutes the support of F
τ
A
n

n,p . The general solution for all λ > 0 can be expressed concisely

by introducing the function

∀λ ∈ (0,+∞) u(λ) ..=





−1 if 0 < λ < τn,p(1− n−1/2)2,

i if τn,p(1− n−1/2)2 ≤ λ ≤ τn,p(1 + n−1/2)2,

1 if τn,p(1 + n−1/2)2 < λ .

(E.61)
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It is

m̆τ
A
n

n,p(λ) = −p− 1

pλ
+
τn,p(1− n−1)− λ+ u(λ)

√∣∣λ− τn,p(1− n−1/2)2
∣∣×
∣∣τn,p(1 + n−1/2)2 − λ

∣∣

2 τn,p λ p/n
,

from which we deduce, after simplification,

1 + λ m̆τ
A
n

n,p(λ) =
1

2p
+

n

2p

(
1− λ

τn,p

)
+
nu(λ)

2p

√√√√
∣∣∣∣∣
λ

τn,p
−
(
1− 1√

n

)2
∣∣∣∣∣×
∣∣∣∣∣

(
1 +

1√
n

)2

− λ

τn,p

∣∣∣∣∣ .

(E.62)

Lemma E.8 then follows by setting λ = λn,p in equation (E.62) and using Proposition 7.3.

Lemma E.9.

∀λ ∈ (0,+∞)
∣∣∣1 + λ m̆τn

n,p(λ)
∣∣∣ ≤

√
n

p
. (E.63)

Proof of Lemma E.9. Section 2.2 of Ledoit and Wolf (2012) defines the ancillary function

mτn
n,p(z)

..=
p− n

nz
+
p

n
mτn

n,p(z), ∀z ∈ C
+ . (E.64)

Call its image mτn
n,p (C

+). Equation (1.4) of Silverstein and Choi (1995) states that the function

mτn
n,p has a unique inverse on C

+ given by

zτn
n,p(m) ..= − 1

m
+

1

n

p∑

i=1

τn,i
1 +mτn,i

, ∀m ∈ mτn
n,p

(
C
+
)
. (E.65)

The change of variables m = mτn
n,p(z) ⇐⇒ z = zτn

n,p(m) yields

∀z ∈ C
+ 1 + zmτn

n,p(z) =
n

p

[
1 + zmτn

n,p(z)
]
=
n

p

[
1 + zτn

n,p(m)m
]
=

1

p

p∑

i=1

mτn,i
1 +mτn,i

. (E.66)

By Jensen’s inequality,

∀m ∈ mτn
n,p

(
C
+
)

(
1

p

p∑

i=1

Re

[
mτn,i

1 +mτn,i

])2

≤ 1

p

p∑

i=1

(
Re

[
mτn,i

1 +mτn,i

])2

(E.67)

(
1

p

p∑

i=1

Im

[
mτn,i

1 +mτn,i

])2

≤ 1

p

p∑

i=1

(
Im

[
mτn,i

1 +mτn,i

])2

. (E.68)

Adding these two equations, we obtain

∀m ∈ mτn
n,p

(
C
+
)

∣∣∣∣∣
1

p

p∑

i=1

mτn,i
1 +mτn,i

∣∣∣∣∣

2

≤ 1

p

p∑

i=1

∣∣∣∣
mτn,i

1 +mτn,i

∣∣∣∣
2

. (E.69)

Since zτn
n,p(m) ∈ C

+ for all m ∈ mτn
n,p (C

+), we have:

∀m ∈ mτn
n,p

(
C
+
)

Im
[
zτn
n,p(m)

]
> 0 . (E.70)
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Let m1
..= Re[m] and m2

..= Im[m]. Equation (1.3) of Silverstein and Choi (1995) implies that

mτn
n,p (C

+) ⊂ C
+; therefore, m2 > 0. This enables us to deduce from equation (E.70) that

∀m ∈ mτn
n,p

(
C
+
)

Im

[
− 1

m1 + im2
+

1

n

p∑

i=1

τn,i
1 + (m1 + im2)τn,i

]
> 0

m2

m2
1 +m2

2

− 1

n

p∑

i=1

m2τ
2
n,i

(1 +m1τn,i)2 +m2τ2n,i
> 0

1

p

p∑

i=1

τ2n,i(m
2
1 +m2

2)

(1 +m1τn,i)2 +m2τ2n,i
<
n

p

1

p

p∑

i=1

∣∣∣∣
mτn,i

1 +mτn,i

∣∣∣∣
2

<
n

p
. (E.71)

Putting together equations (E.66), (E.69), and (E.71) yields ∀z ∈ C
+
∣∣1 + zmτn

n,p(z)
∣∣2 < n/p.

Lemma E.9 then follows from taking the limit as z ∈ C
+ goes to λ ∈ (0,+∞).

By taking the limit of equation (5.7) as m ∈ C
+ approaches the real line, we find that for

all λ ∈ (0,+∞), m ..= m̆τn
n,p(λ) is the unique solution in C

+ ∪ R to the equation

m =
1

p

p−1∑

i=1

1

τn,i

(
1− p

n
− p

n
λm

)
− λ

+
1

p

1

τn,p

(
1− p

n
− p

n
λm

)
− λ

. (E.72)

Comparing equation (E.72) with equation (E.54) yields

∀λ ∈ (0,+∞) λ
[
m̆τn

n,p(λ)− m̆τ
A
n

n,p(λ)
]
=

1

p

p−1∑

i=1

τn,i

[
1− p

n
− p

n
λ m̆τn

n,p(λ)
]

τn,i

[
1− p

n
− p

n
λ m̆τn

n,p(λ)
]
− λ

. (E.73)

Remember that by Assumption 3.2.f, there exists h > 0 such that 0 ≤ τn,1 ≤ · · · ≤ τn,p−1 ≤ h

for all n large enough. Furthermore by Assumption 3.1 there exists c such that p/n ≤ c for all

n large enough. Lemma E.9 then yields the following bound for sufficiently large n:

∀λ ∈
(
h
(
1 +

√
c
)
,+∞

)
λ
∣∣∣m̆τn

n,p(λ)− m̆τ
A
n

n,p(λ)
∣∣∣ ≤

h
(
1 +

√
c
)

λ− h
(
1 +

√
c
) . (E.74)

By Proposition 7.3, this implies

λn,p

[
m̆τn

n,p(λn,p)− m̆τ
A
n

n,p(λn,p)
]

a.s.−→ 0 . (E.75)

Using Lemma E.8, we obtain

1 + λn,p m̆
τn
n,p(λn,p)

a.s.−→ 0 , (E.76)

from which we can finally conclude that

λn,p

1− p

n
− 2

p

n
λn,p Re

[
m̆τn

n,p(λn,p)
] a.s.∼ λn,p

1 +
p

n

a.s.∼ τn,p
1 + c

. (E.77)
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