
Lux, Thomas

Working Paper

On the distribution of links in financial networks:
Structural heterogeneity and functional form

Economics Working Paper, No. 2017-05

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Lux, Thomas (2017) : On the distribution of links in financial networks: Structural
heterogeneity and functional form, Economics Working Paper, No. 2017-05, Kiel University,
Department of Economics, Kiel

This Version is available at:
https://hdl.handle.net/10419/162397

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/162397
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


On the Distribution of Links in Financial 

Networks: Structural Heterogeneity and 

Functional Form

by Thomas Lux

No 2017-05

issn 2193-2476



On the Distribution of Links in Financial Networks: Structural

Heterogeneity and Functional Form

Thomas Lux 1

June 9, 2017

1Corresponding author. Department of Economics, University of Kiel, Email: lux@bwl.uni-kiel.de.

Acknowledgements: Part of this work has been conducted in the author’s capacity of Bank of
Spain Professor in Computational Economics at University Jaume I in Castellon. The almost final
version has been completed during a research stay at the University of Kyoto and University of Hyogo in
spring 2017 which has been partially supported by a MEXT scholarship within the project ‘Exploratory
Challenges on Post-K Computer’. The Japanese data has been made available by courtesy of Nikkei
Media Marketing Inc. and the consortium of EU FP7 project no.255987 (FOC-II). The excellent
hospitality of my hosts, Hideaki Aoyama and Yoshi Fujiwara is most gratefully acknowledged. I am also
very grateful to them for many stimulating discussions on the topic of this research and the structure of
the Japanese data set that forms part of its empirical basis. My thanks for stimulating discussions also
extend to Abhijit Chakraborty, Lutz Honvehlmann, Hiroyasu Inoue, Eliza Lungu and Hazem Krichene.
Particular thanks go to Lutz Honvehlmann for his extremely able research assistance.

Keywords: Financial networks, interbank market, degree distribution, credit network.

JEL Classification: G21, G01, E42

lux@bwl.uni-kiel.de


Abstract

We investigate the distribution of links in three large data-sets, one of these covering interbank

loans in the electronic trading platform e-MID, the other two covering a large part of the

loans of banks to non-financial companies in the Spanish and Japanese economies, respectively.

In contrast to all previous literature, we do not assume homogeneity of the link distribution

over time and across different categories of agents (banks, firms) but apply our hypothesized

distributions as regression models. As it turns out, many of the tested sources of heterogeneity

turn out to be significant regressors. For instance, we find pervasive time heterogeneity of link

formation in all three data sets, and also heterogeneity for different categories of banks/firms

that can be identified in the data. Across all networks, the Negative Binominal model always

outperforms all alternative models confirming its good performance as a model of economic

count data in many previous applications.



I Introduction

Different major classes of networks are routinely associated with their implied distributions of

degrees, i.e. the number of links of nodes they generate. The major prototypes are Erdös-

Renyi and scale-free networks. The former are random networks that are characterized by a

constant probability of existence of a link which obviously leads to a Binomial distribution

of links that converges toward the Poisson distribution for large networks. Scale-free networks

somehow mark the opposite end of the spectrum in that they generate a very broad distribution

of links via some kind of amplification mechanism (like preferential attachment of new nodes to

those that already possess a large number of connections). As a result, the degree distribution

emerging from such a generating mechanism is of a very heterogeneous nature and its scale-free

behaviour corresponds to a power-law decay of the distribution of links over its entire range

or at least in the upper tail region. Almost all of the related literature focusses on these two

possibilities. However, the Poisson and power-law distributions do certainly not constitute an

exhaustive list of candidate distributions for the number of links in a network setting. Indeed

classes of networks exist which focus on properties other than the degree distribution and for

which no general results for the distribution of links are available. Examples are ‘small world’

networks which are defined by a small average distance between nodes (Watts and Strogatz,

1998) or ‘core-periphery’ networks that are defined by a dichotomic classification of nodes into a

core group and its periphery (Borgatti and Everett, 1999). Both of these classes might contain

members that also share the property of an (asymptotically) power-law like distribution of links

or not. In how much these different categorisations overlap or exclude each other, seems to be

completely unknown and has not received any attention so far. However, the existence of such

alternative categorisations of classes of networks and their pertinent generating mechanisms

makes it likely that for some empirical networks, other distributions than the Poisson and

scale-free could better describe the data.

This should also apply to financial networks, for which the asserted scale-free behaviour had

already been disputed in certain cases (cf. Fricke and Lux, 2015). Due to the dominance of the

Erdös-Renyi and scale-free paradigms, theoretical modelling has typically made use only of these

two classes of models (Nier et al., 2008; Haldane and May, 2011; Anand et al., 2013; Krause and

Giansante, 2013). When generating the link structure of a theoretical model in this way, any

inference on the stability of the network and its susceptibility to contagion effects after shocks

would be determined to a large extend by the (known) properties of the pertinent class of mod-

els. Hence, the extent of contagious cascade effects might be underestimated or overestimated

because of deviations of these theoretical benchmarks from the empirical structure. It, thus,

appears worthwhile to expand the range of candidate distributions and generating mechanisms

beyond these classical ones as it appears likely that often the distribution of links is located

somewhere between these extremes. A better and hopefully robust characterisation of the de-

gree distribution should, therefore, be valuable input to inform the mushrooming literature on

network contagion studies of the banking sector.
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Continuing the line of research initiated by Fricke and Lux (2015), this paper will look at

some intermediate distributions from the large class of compound Poisson distributions (Karlis

and Xekalaki, 2005) that have been found appropriate for modelling discrete events in various

fields but have seemingly not been applied to the discrete variables defined by the counts of

the number of links within a network so far. We will focus here on the Poisson-Gamma and

Poisson-Pareto distributions along with the original Poisson and discrete Pareto (aka power

law or scale-free) distribution, and will compare the performance of these four alternatives for

three important data sets, one covering interbank credit connections, the other two capturing

the network structure of bank-firm loans. As another novel feature within the financial network

literature, we will also apply most of the mentioned distributions within a regression frame-

work. In this way, we can identify the influence of certain characteristics of the nodes on their

propensity to form links.

We will estimate these models for three large data sets of financial linkages due to loan

contracts: interbank loans contracted via the electronic trading platform e-MID, and loans of

financial institutions to non-financial firms in the Spanish and Japanese economies. All data sets

are available over at least one decade. The e-MID data contains daily recordings of all interbank

loans while the other two data sets have yearly granularity. As it will turn out, heterogeneity

is pervasive in all three data sets along various dimensions: there is both a change over time

of the shape of the estimated distributions as well as a highly significant influence of whether

banks/firms belong to some basic classes of agents that can be distinguished in the data. These

exogenous effects are mostly very robust as they appear in a qualitatively similar way in all

distributions under consideration. Irrespective of inclusion of exogenous effects or not, in almost

all cases, the Negative Binominal exhibits the best fit, and dominates all alternatives at any

standard level of significance.

The rest of the paper is structured as follows: sec. II introduces the various distributions

under investigation and their use as regression models. Sec. III describes our data, and sec. IV

provides the empirical results. Sec. V concludes.

II Statistical Models

Since degree distributions are by definition distributions of discrete variables, the present paper

confines itself to comparing the performance of discrete distributions. The simplest benchmark

is the Poisson distribution given by:

P (x) =
e−λλx

x!
, (1)

where x is the number of links (the degree of a node), and λ the unique parameter of this

distribution function. We note that empirical degree distributions are typically truncated at

zero, simply because pertinent data are only collected for entities that are at least minimally
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connected to the network under investigation. Hence, in such applications we would have to

use the truncated Poisson distribution which is given by:

PT (x) =
e−λλx

x!(1− e−λ)
, (2)

where the additional term in the denominator adjusts for the “missing” zero of the empirical

data (note that P (0) = e−λ in the original Poisson distribution).

The Poisson distribution approximates the exact Binomial distribution of degrees in Erdös-

Renyi networks with a high degree of accuracy if the networks are not too small. Since all our

applications would be based on at least three-digit numbers of nodes, the Poisson estimates

should be virtually identical to estimates for a Binomial distribution.

The power-law characterizing scale-free networks is usually described and estimated in its

continuous version, i.e. p(x) ∼ x−α. However, this, of course neglects the discrete nature of the

data. The discrete counterpart of the continuous Pareto distribution is also known as the Zipf

or Zeta distribution, and it is given by the probability mass function:

Pa(x) =
x−α

ζ(α)
, (3)

where ζ(α) is the zeta function ζ(s) =
∑

∞

n=1
1

ns
. No adjustment for the lack of zeros is

needed in this case as the support of the discrete Pareto covers only positive integers. Besides

the elementary Poisson and the discrete Pareto, the most frequently encountered classes of

discrete distribution functions are compound Poisson distributions. Two of these are used in

this paper: The first is the negative Binomial which results if the parameter λ of the original

Poisson distribution (1) is drawn from a Gamma distribution. Note that this amounts to drawing

the realizations from a family of Poisson distributions with heterogeneous mean values, hence

can be seen as a reflection of heterogeneity of the statistical features of the nodes in a network.

We adopt here the following functional form of the negative Binomial:

N(x) =
Γ(θ + x)τ θ(1− τ)x

Γ(1 + x)Γ(θ)
with τ =

θ

θ + λ
(4)

with Γ(.) the gamma function, Γ(n) = (n−1)!, and θ and λ the two parameters for the shape

of the distribution. Alternative functional forms can be found in Greene (2008). The one of eq.

(4) is preferred in the present context as it can be easily related to the Poisson distribution,

since the mean value is in both cases identical to the pertinent parameter λ and the negative

Binomial converges to the Poisson for θ → ∞. The negative Binomial has become hugely

popular in many applications featuring discrete data as it is able to capture the widespread

phenomenon of overdispersion, i.e. the variance exceeding the mean. Namely, while it is well-
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known that the variance of the Poisson distribution is V arP (x) = λ, for the negative Binomial

we obtain V arN (x) = λ(1 + λ

θ
) > λ. For applications without zero counts, we also need to

adjust the negative Binomial in an appropriate way to obtain its truncated version:

NT (x) =
Γ(θ + λ)τ θ(1− τ)x

Γ(1 + x)Γ(θ)(1− τ θ)
. (5)

The negative Binomial enjoys an almost legendary reputation in marketing as the most

versatile tool for fitting purchase frequencies of consumer goods. This literature has been

initiated by Ehrenberg (1959) and surveyed by Schmittlein et al. (1985).

The last candidate to be considered in this paper is the Pareto-Poisson mixture. This

compound model had been studied before in the actuarial literature (cf. Albrecht, 1984) and

has been proposed by Lux (2016) as a model for the degree distribution of credit networks. The

justification for this functional form was the plausible observation that the number of credit

links of both banks and non-financial firms is increasing with their balance sheet size (de Masi

and Gallegati, 2012; de Masi et al., 2011). Taking the size of the underlying entity as a latent

variable in a compound Poisson model and taking into account the well-known empirical fact

that firm size distributions follow a power or Pareto law then leads to a formalization in which

the shape parameter of the Poisson distribution is drawn from a Pareto law:

PP (x) =

∫
∞

λ

e−λλx

x!
α

λα

λα+1
dλ (6)

which defines a family of distributions with two parameters, α and λ. A closed-form solution

for the integral in eq.(6) is not available, so that the probability mass function can only be solved

via numerical integration. In eq. (6), α is the usual shape parameter of the Pareto distribution

(note that since the latent variable size is a continuous variable, we can adopt here the standard

Pareto law), and λ > 0 is a lower boundary for the latent variable which is necessary to guarantee

convergence of the integral. Again, we need the zero-truncated counterpart of eq. (6) which

formally we obtain by setting:

PPT (x) =
PP (x)

1− PP (0)
(7)

which again is obtained by numerical integration. It is worthwhile to add that most applica-

tions (e.g. in marketing) use the Poisson and negative Binomial as regression models (cf. Hilbe,

2007), i.e. modeling the dependency of variables obeying such distributions on exogenous vari-

ables. While network data have to the best of my knowledge only be described via unconditional

distributions so far, such a perspective would be most informative if additional information on

the characteristics of the nodes were available. The Poisson and negative Binomial model could
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be embedded into a regression framework by setting:

λi = exp(β0 + y′

iβ) (8)

where yi is a vector of covariates and i = 1, ..., N is the sample of nodes of the network. This

adds node-specific heterogeneity even in the Poisson model and, in the case of the negative Bino-

mial, could be interpreted as a combination of both observable and unobservable heterogeneity,

the later being represented by the Gamma mixing distribution.

I am not aware of any previous use of the Poisson-Pareto model within a regression frame-

work. Nevertheless, this family can also easily be cast into such a format. It can be shown that

the mean of eq.(6) is E[x] = α

α−1
λ and so it seems most natural to allow exogenous effects to

enter via λ:

λ = exp(β0 + y′

iβ) (9)

While eq.(9) is motivated by the Poisson regression framework, it also allows inference on

the influence of exogenous factors if the mean actually does not exist, i.e. if α ≤ 1 holds.

In contrast, no straight-forward way suggests itself to add a regression framework to the

discrete Pareto distribution, and so we just apply this alternative in its unconditional format.

Since not too much knowledge is available in our data set on the characteristics of individual

nodes, the regression framework model is used to allow for fixed effects of different years, as

well as different categories of actors the nodes belong to and so we can investigate whether this

categorisation is of relevance for the number of their links.

III The data

We consider three large data sets of credit links: The first covers all transactions in the interbank

money market conducted within the electronic trading platform e-MID over the years 1999 to

2014.

The second data set is a comprehensive data base of credit extended from banks to non-

financial firms in Spain which has been extracted from the SABI (Sistema de Análisis de Balances

Ibéricos) archive based on the public commercial registry in Spain. This complete list of bank

connections of all publicly registered companies is available for each year from 1997 to 2008

comprising more than 500,000 links between individual banks and their borrowers. Our third

data set is a similarly large record of credit links between banks and non-financial firms in Japan

collected by Nikkei Media Marketing, Inc. from financial statements of the firms included. These

data are available for us over the period from 1979 through 2011.

All three sources have been used in other studies before: The SABI database has been used
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by Illueca et al. (2014) who study the effects of the regional expansion of Spanish saving banks

during the real-estate boom of the years after the introduction of the Euro. The Japanese

data has been investigated from a network perspective by Marotta et al. (2015). The e-MID

data features prominently in quite a number of contributions to financial network theory (e.g.

de Masi et al., 2006; Fricke and Lux, 2015) as it is the only commercially available data set in

this area.

IV Empirical Results

We now move on to the results of estimating various discrete models for the degree distributions

computed for these data sets.

IV.1 Interbank Loans from e-MID Platform

We first turn to the interbank credit data from the e-MID trading platform. These data have

been relatively intensely scrutinized in various previous papers. Among those, de Masi et al.

(2006) have reported power-law exponents between 2 and 3 for the distribution of degrees.

Fricke and Lux (2015) have questioned this result showing that the histograms of the degree

distribution do hardly resemble a power law. Fitting a variety of both continuous and discrete

distributions they find that the power law is dominated by many other distributions in terms

of proximity to the empirical distribution (evaluated via the Kolmogorov-Smirnov statistic).

Which distribution gets closest to the data, varies with the level of time aggregation and across

subsamples of the data.

Here we complement this analysis in various ways: First, we use tests based upon likelihood

comparisons. Second, we use a larger sample for comparison, namely all banks that have been

operating in the money market within the e-MID platform (while Fricke and Lux have confined

their analysis to Italian banks which constitute the majority of e-MID users). Third, we do not

only estimate the parameters of unconditional distributions, but also apply the Poisson, nega-

tive Binomial and Poisson-Pareto mixture as regression models which also allows us a certain

assessment of the value added of including exogenous variables to explain the distributions of

degrees. Since the implementation of a regression framework is less straightforward in the case

of the discrete Pareto distribution, we estimate only the one shape parameter of this family. To

be precise, the underlying data here use the set union of the degree distributions extracted from

the 64 available quarters 1/1999 to 4/2014. Following Finger et al. (2013) we use such a large

level of time aggregation, since at the high-frequency end (e.g. for daily data), the resulting

networks would be very sparse. Presumably, over a short time horizon, only a small fraction

of all existing links (credit lines) get activated and, thus, high frequency data would provide

us with a very small sample of what we want to measure: namely, existing contacts between

banks that could be used to obtain a loan in the money market if the need arises. This view

is also supported by the finding that many network statistics (such as density, reciprocity etc)
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are very volatile at the high-frequency end and become more stable at around the monthly to

quarterly level of aggregation. Hence, we define a link between two banks to exist if they have

been trading at least once with each other within a quarter and merge the 64 distributions of

degrees obtained in this way into a single one.

The later step could be considered problematic as our time span of 16 years covers very

different periods: an expansive phase after the launch of this market in which transaction volume

and number of market participants had been increasing sharply, the reduction of activity after

the outbreak of the financial turmoil in 2007/08 and the subsequent operation of the exchange

at a reduced level of turnover. Since this exchange is operated by a company based in Milan,

Italy, it has always been predominantly used by Italian banks. However, the fraction of non-

Italian banks has been sharply increasing prior to the crisis and collapsed again during the

aftermath of the financial turmoil. Finger et al. (2013) and Fricke and Lux (2015) observe

that both Italian and non-Italian banks have been mostly trading with counterparts from their

own group, so that the network consisted of two largely distinct clusters. Given this outline

of the history of trading within the e-MID electronic market, we might hypothesize that one

might expect both time heterogeneity of the distribution of degrees as well as an influence

of the geographic location of the banks using this system. Because of this clustering, Fricke

and Lux (2015) neglect the non-Italian participants and focus their analysis on the majority

of market participants operating under Italian law. In our regression framework, we can allow

for differences by including country-specific fixed effects. Since except for Italy, other countries

are hardly ever represented by more than a handful of banks, we restrict ourselves to using a

dummy for the non-Italian origin. in order to account for temporal variation, we additionally

include 15 yearly dummies (β1 to β15) for the years 2000 to 2014.

Table 1 exhibit the results of the estimation of the distributions presented in sec. 2 for

this data set together with the factors entering as determinants of their mean. We find the

best fit for the Negative Binomial, followed by the Poisson-Pareto mixture and the Discrete

Pareto distribution (without exogenous factors). Here and in all other applications, the Poisson

distribution provides a definitely much worse fit than all other alternatives. The yearly dummies

and the dummy for non-Italian banks are all highly significant according to their t-statistics.

The coefficients assume virtually the same values under both the Poisson and Negative Binomial

distributions and behave qualitatively similarly under the Poisson-Pareto mixture. Essentially,

the coefficients depict an almost monotonic decline of the mean degree which is first caused

by mergers and acquisitions and the resulting reduction of the number of market participants

and later by the strong decline of interbank trading during the financial crisis. Coefficients

are, in fact, almost identical for the years 2002-2007, and the years 2009-2014, respectively, so

that one can recognize the well-known phases in the development of this market. The dummy

for non-Italian banks is almost exactly -1 for all three models. The effect has to be seen in

relation to the other parameter estimates. For instance, for the Negative Binomial distribution,

this would imply an expected degree of 72.89 for Italian banks in 1999 (from β0=4.289) while
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non-Italian banks would be expected to only have 25.76 links on average. This expectation does

not exist in the case of the Poisson-Pareto as the estimated tail index of the Pareto is α=0.81.

In contrast, the Discrete Pareto distribution would indicate existence of the first moment. It

seems remarkable that despite the high level of overdispersion, the fat-tailed Poisson-Pareto and

Discrete Pareto distributions are both inferior to the Negative Binomial.

As it is also indicated in Table 1, likelihood ratio tests clearly reject restricted models

without all dummies for all these distributions that have been used in these regressions. Table

2 shows results of a number of additional tests: The Poisson which is nested in the Negative

Binomial, is rejected at all traditional levels of significance. Further, a sequence of Vuong tests

(Vuong, 1989) shows that the Negative Binomial significantly outperforms the Poisson-Pareto

and Discrete Pareto, and the same is obtained for the Poisson-Pareto against the Discrete Pareto.

When adjusting the Vuong test for the difference in estimated parameters1 (18 in the case of

the Negative Binomial and Poisson-Pareto against only one for the simple Discrete Pareto),

only the advantage of the Negative Binomial remains, while the parsimonious Discrete Pareto

would be preferred under this criterion to the Poisson-Pareto with exogenous factors. Fourth,

we have finally compared the Negative Binomial and Poisson-Pareto without exogenous factors

to the Discrete Pareto (keeping only parameters θ and β0 or α and β0, respectively) and find

the Negative Binomial and the Poisson-Pareto to appear superior to the Discrete Pareto. Since

here, the first two alternatives still enjoy the advantage of one more parameter, also the adjusted

version of the Vuong test can be applied, which leaves the pattern of dominance unchanged.

IV.2 Spanish bank-firm credit network

We now move on to the analysis of the degree distributions extracted from the bank-firm credit

network for the Spanish economy over the years 1997-2008. Since this is a bipartite network, it

allows us to investigate degree distributions under different perspectives: Tables 3 and 4 depict

the results for the degree distribution of banks within the bipartite network, Tables 5 and 6

exhibit the results obtained from the so-called one-mode projection of the original data set.

This is the projection of the original adjacency matrix of links, say A, of the bipartite data onto

a symmetric binary matrix for banks only that identifies whether two banks have at least one

lender in common, or do not have any overlap within their group of lenders. This matrix, say B,

is obtained as B = ATA. Tables 7 and 8 present results for the degree distributions of firms from

the original bipartite adjacency matrix. The one-mode projection for firms is less interesting

as the number of joint lenders assumes very small values throughout. Here, we use the original

yearly records as basic input which we merge all into one data set allowing, however, for both

differences in the mean in each year and differences in mean due to the category of banks in our

data set. The later categories are: commercial banks, saving banks, and credit cooperatives.

Particularly the later are typically very small, local institutions which only provide credit to

1As proposed by Vuong (1989) one then subtracts 0.5(K1 − K2)logN from the differences of the likelihoods
(K1 and K2 the number of paramters of both alternative models, and N the number of observations).
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very few borrowers. Not accounting for their different behavior would certainly introduce an

element of misspecification into any statistical model of network links. We take commercial

banks as the default case, and introduce dummies with coefficients γ1 and γ2 for saving banks

and credit cooperatives, respectively.

Starting with the degree distribution of credit relationships of banks to non-financial firms,

Table 3 shows that this distribution is characterized by an even larger degree of overdispersion

(∼13,900) than the interbank network. All dummies except for the first year are significant

under the Poisson and Negative Binomial, and pertinent coefficients are again very similar for

these two distributions. This data set shows an increase of activity over time which squares

with the deregulation of the Spanish banking sector and particularly the regional expansion of

activity of saving banks. The dummies for bank categories show a slightly negative effect for

savings banks and a much stronger negative effect for credit cooperatives. To get a feeling of the

relevance of the coefficients, note that the average degree of commercial banks in the first year,

1997, would have been 550 under the Negative Binomial while the dummy coefficients of -3.16

reduces this number to only ∼23 for credit cooperatives. Results for the coefficients of exogenous

variables differ under the Poisson-Pareto model and are not significant in a number of cases. In

particular, while roughly a positive time trend is found, the coefficients for the two categories

are positive rather than negative which particularly for credit cooperatives contradicts the basic

features of the data. My conjecture is that due to the pronounced fat-tailedness of the estimated

mixture distribution (α=0.35), the non-stationarity of the resulting model makes identification

of exogenous effects very hard as with such a tail index the realisations of the process would be

expected to show immense variation anyway. While again the likelihood ratio tests indicate that

the dummies are jointly significant for all candidate distributions, the improvement in the fit of

the Poisson-Pareto obtained by inclusion of covariates appears quite meagre in absolute terms

compared to the other cases. This underscores that many of these dummies do not contribute

much in this particular case.

The Discrete Pareto in contrast would again indicate finiteness of the mean, and its estimated

shape parameter α=1.21 is very close to the one obtained in Table 1 for the degree distribution

of interbank credit data. We also find in this case that the Discrete Pareto is closer to the

best model, the Negative Binomial, than the Poisson-Pareto. While under the comparison of

the likelihood values without adjustment, the Vuong test in Table 4 indicates superiority of the

Negative Binomial, adjustment for the number of parameters turns the comparison upside down

in favor of the Discrete Pareto. This holds also, if the dummies are discarded and only the two

shape parameters of the Negative Binomial are used. The Discrete Pareto also dominates over

the Poisson-Pareto under all perspectives. The result of the comparison of the adjusted Vuong

test between the Negative Binomial and Discrete Pareto might seem cumbersome as it suggests

to neglect known heterogeneity within our data set. This shows that strong heterogeneity within

a data set could, in principle, lead to a spurious fit of a homogeneous power law distribution.

Table 5 turns to the results for bank’s ‘co-lending’ degrees from the one-mode projection.
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One surprising finding here is that the time dummies are almost never significant under all three

regression models. Hence, despite the structural changes of the banking sector and its credit

relationships to non-financial firms in this period, banks seemed not to have become generally

more connected via joint exposures to the same borrowers. In contrast, the dummies for bank

categories are both significant and have identical signs under all three regression models: while

saving banks are more connected with other banks via joint borrowers, cooperatives are much

less connected. The former finding squares with the observation that saving banks often came

in as additional providers of credit to certain firms during the time of their regional expansion

(cf. Illueca et al., 2014). Again, we find the Negative Binomial to perform best, followed by the

Poisson-Pareto, the one-parameter Discrete Pareto, and finally the Poisson regression. Again the

first ranks are relatively close so that the choice between Negative Binomial and Discrete Pareto

depends on whether one uses the adjusted version of the Vuong test or not (cf. Table 6). Using

only the two shape parameters, the decision is always in favor of the Negative Binomial (which

seems plausible given that most of the regression parameters are not significant). Similarly,

the Poisson-Pareto dominates over the Discrete Pareto under the non-adjusted Vuong test, but

this result changes under adjustment for the number of parameters. Also in this case, the

two-parameter Poisson-Pareto without exogenous factors clearly dominates. These patterns are

also preserved if we include the dummies for the type of financial institution (indicated by the

addition “4 params” in Table 6). As for parameter estimates, it is interesting to note that

the tail indices of both the Poisson-Pareto and Discrete Pareto are extremely close to their

counterparts of Table 1 (while being different between both models).

Tables 7 and 8 exhibit the results for the degree distribution of firms from the original

adjacency matrices of the bank-firm credit network. One notes that these data are characterized

by a variance smaller than the mean, i.e. underdispersion. Hence, there would not necessarily be

a reason to turn to fat-tailed alternatives to the Poisson distribution. Still, we find the Negative

Binomial significantly better than the Poisson but the other alternatives perform worse than

both of them. Here we only have used time dummies as the bank categories obviously cannot

be brought in directly (one could, however, use them to test whether the type of creditor banks

would make a difference). In all three regression models, time dummies show a monotonic

decrease, i.e., firms have decreased their average number of creditors (from 1.65 in 1997 to 1.16

in 2008 according to the results of the Poisson model). This seems at first view a surprising

result as the geographical expansion of savings banks has often led to additional lenders coming

in for single firms. One reason for the overall negative trend could be that the general increase

of the number of registered firms over this period of strong growth of the Spanish economy

has brought many new firms into the data base that initially started out with a single lender

and, thus, had a dampening effect on the average. In the absence of overdispersion, in fact,

the present models basically capture time variation of a narrow distribution of relatively small

entries, so that skipping the regression terms leaves the Negative Binomial even inferior to the

Discrete Pareto.
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IV.3 Japanese bank-firm credit network

Results from our third data set, the network of bank-firm credit in the Japanese economy, are

provided in Tables 9 through 14. Since this record covers a span of more than thirty years, we

have abstained from using annual dummies. Instead, we distinguish between three historical

episodes as potential candidates for fixed effects: the time up to the climax of the Japanese

bubble, the more stagnative period afterwards, and the recent crisis period. Hence, we impose

dummies for the years 1990 to 2007, and 2008 to 2018, respectively. In addition, similarly like

in the Spanish data set, we can distinguish between different categories of financial institutions.

We take as the default category large private banks (labelled ‘city banks’ in our data set), and

define as a second category those of regional banks (those designated explicitly as only regionally

active banks in the data set as well as those identified as Shinkin banks, which are regionally

operating credit cooperatives). As a third category, we define insurance companies active in

the lending market together with so-called long-term credit banks that are both identified as

different classes in our data base, since both of them should be more active as long-term lenders

pursuing business models different from those of ‘city banks’1. In contrast to the Spanish data

set, we also have more detailed information on firms (including balance sheet information) which

here we only use for a binary classification: Namely, in the Japanese case, our selection of non-

financial firms as recipients of loans covers those companies only that are listed on an official

exchange. While the range of companies covered in this way has been relatively constant from

1979 through 1995, the establishment of the new market and its index JASDAQ has greatly

expanded the scope of the data base as of 1996. It would be very questionable whether the

firms operating in the New Market would share the structure of loan relationships of the old

industries, and so it appears sensible to distinguish between both groups. To do so, we impose a

dummy for firms listed in JASDAQ as well as in its later replacement called Hercules. Again we

apply the same chain of model estimations and specification tests as for the other data. Tables

9 and 10 provide results for the degrees of banks in the original bipartite networks, Tables 11

and 12 those for the one-mode projection for banks’ co-lending relationships and Tables 13 and

14 those for the degrees of firms.

Starting with the degrees of banks in the bipartite network, we find similar results for

the fixed effects across models: In all specifications a slight increase of links in 1990 to 2007

and a smaller positive effect (against the benchmark of 1979 to 1989) thereafter are observed.

Regionally active banks have distinctly fewer links leading to a significant negative dummy for

this category throughout. The dummy for insurances/long-term credit banks also indicates that

they have somewhat smaller degrees than city banks, but this effect is not significant for the

Poisson-Pareto model. In terms of shape parameters, we find that the Poisson-Pareto again has

a very small tail index α close to 0.5 which would indicate non-existence of the theoretical mean

while the Discrete Pareto again turns out a value of about 1.2 (both numbers are close to the

pertinent results for the Spanish credit network). As we see in Table 10, the dominating model

1The overall number of cases of these two categories is too small to consider them separately
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is again the NBD model which is preferred over all others independently of whether dummies

are included or not. The Poisson-Pareto is only preferred over the Discrete Pareto if dummies

are included and the Vuong test is adjusted for the different number of parameters. In all other

cases, one would reject the discrete Pareto model in favor of the Poisson-Pareto.

In the one-mode projection of the banking sector (Table 11), we find a clearly significant

negative effect for the period 2008-2011, and a smaller, but also significant tendency of reduced

co-lending in 1990 to 2007 compared to the years before. The regional banks are found to be less

connected than city banks in all specifications, while there is no significant effect of the third

category of insurance companies and long-term credit banks in any of the models. The ranking

of models is the by now ‘usual’ one with NBD dominating over the Poisson-Pareto and Discrete

Pareto and all three of them clearly outperforming the simple Poisson model. Specification

tests in Table 12 show that the differences in likelihoods are reflected in a preference for the

‘better’ performing model according to the Vuong test at all traditional confidence levels. The

tail indices are again remarkably close to their counterparts in the one-mode projection of the

Spanish credit network.

Finally, Tables 13 and 14 provide results for the degree distribution of non-financial firms

receiving loans from the Japanese banking sector. We first note that the mean degree of 9.47

is much higher than the pertinent value for the Spanish firms. The reason is likely that the

restriction to publicly listed entities in the Japanese companies leads to a selection of relatively

large firms. In contrast, the Spanish data set is based on the Spanish commercial register

and, thus, provides a much broader, nearly comprehensive sample of the population of firms

operating in the Spanish economy. In contrast to the Spanish case, the degree distribution is also

characterized by overdispersion justifying the estimation of our various fat-tailed alternatives to

the elementary Poission distribution. In all models, the dummies for the stagnation and crisis

period as well as the one for firms listed in the new market are significantly negative. Hence,

in line with the results for banks (Table 11) the number of credit links per firm has decreased

first after the burst of the Japanese bubble and even more so after the onset of the worldwide

financial crisis. For instance, under the estimated parameters for the Negative Binomial, the

average number of links has decreased from 13.5 in the first period via 9.3 during the stagnation

to 6.5 in the post-crisis years. At the same time, an average firm from the new market that

started during the second period, would have received credit simultaneously from 5.9 banks.

In the specification tests, we see a somewhat unusual outcome as the Poisson-Pareto dom-

inates over the Negative Binomial. While the margin is small, the difference is significant at

all traditional confidence levels. However, the estimated parameters for the Poisson-Pareto are

also unusual as with an estimated α = 1.996, its tail is much higher than the estimates for

the banks’ degree distributions that all were below unity. In comparison, α = 18.190 has been

obtained for Spanish firms. This later estimate is so high that it would not indicate any visible

tail fatness (which indeed is absent given the Spanish firm degrees do not exhibit overdisper-

sion). In the case of Japanese firms, the estimate of about 2 still indicates some mild degree
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of tail fatness which among our selection of models is best captured by the Poisson-Pareto.

The Discrete Pareto has more typical parameter estimate (α = 1.430) but is dominated under

all perspectives by both the Poisson-Pareto and the Negative Binomial irrespective of whether

fixed effects are included as net.

V Conclusion

Our analysis has demonstrated that heterogeneity is pervasive in the degree distributions ex-

tracted from credit networks of different origin. Almost all time dummies and fixed effects for

different catgories of actors that we have included on our estimations turned out to be highly sig-

nificant. Hence, we can safely conclude that the structure of network formation in the markets

under consideration has changed over time and that different types of actors behave in different

ways in these markets. It would therefore be misleading to model the degree distribution of a

financial network with any specific unconditional distribution without taking into account the

heterogeneity of the data. When accounting for such known sources of heterogeneity, we find in

five cases (banks’ degrees in the interbank market as well as in the Spanish and Japanese loan

markets and their co-lending degrees in the same markets) a clear dominance of the Negative

Binomial model. The same applies to firms’ degree distribution in the Spanish loan market

whereas the Japanese firm degree distribution provided the only case of a dominance of the

Poisson-Pareto distribution (which in all other cases was inferior to the Negative Binomial).

If we neglect heterogeneity, we often find the Negative Binomial and the Poisson Pareto

in the vicinity of the one-parameter Discrete Pareto distribution. What is more, the Discrete

Pareto turns out estimates across all our seven empirical degree distributions that are within a

very narrow range (all between 1.2 and 1.4 with the only exception of the Japanese firm degrees).

The apparently good fit of power laws that had been reported in previous publications might,

then, be an artifact of lumping together different categories of nodes. If a sample contains

different classes of agents with different orders of magnitude of links, it might erroneously lead

to the impression of a very fat-tailed unconditional distribution. Taking the heterogeneity

documented in this paper into account in network studies of contagious defaults should also

improve our assessment of the risk of systemic disturbances in loan markets.
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Table 1: E-MID interbank credit data, 1999-2014, time dummies and dummies for Italian/non-
Italian origin

Observations: 9304 Poisson Negative Binonmial Poisson Pareto Discrete Pareto
Mean: 44.36, Variance: 1410.745

β0 4.287 4.289 2.640 -
(0.001) (0.025) (0.014) -

β1 -0.060 -0.070 0.110 -
(0.001) (0.038) (0.020) -

β2 -0.110 -0.114 0.128 -
(0.001) (0.040) (0.020) -

β3 -0.215 -0.210 0.076 -
(0.001) (0.041) (0.021) -

β4 -0.240 -0.204 -0.051 -
(0.001) (0.041) (0.021) -

β5 -0.273 -0.213 -0.121 -
(0.001) (0.040) (0.021) -

β6 -0.278 -0.188 -0.096 -
(0.001) (0.040) (0.021) -

β7 -0.277 -0.173 -0.127 -
(0.002) (0.041) (0.021) -

β8 -0.262 -0.172 -0.111 -
(0.002) (0.041) (0.021) -

β9 -0.511 -0.503 -0.283 -
(0.002) (0.042) (0.024) -

β10 -0.890 -0.975 -0.623 -
(0.003) (0.043) (0.001) -

β11 -0.820 -0.898 -0.677 -
(0.003) (0.045) (0.031) -

β12 -0.870 -0.947 -0.624 -
(0.003) (0.045) (0.032) -

β13 -1.126 -1.168 -0.884 -
(0.004) (0.049) (0.038) -

β14 -1.200 -1.240 -1.032 -
(0.004) (0.050) (0.040) -

β15 -1.086 -1.125 -0.696 -
(0.004) (0.053) (0.035) -

non-Ital. -0.918 -1.040 -1.029 -
(0.002) (0.021) (0.018) -

α - - 0.805 1.258
- - (0.019) (0.003)

θ - 1.992 - -
- (0.030) - -

logL -114993.37 -42518.11 -46,794.15 -53118.76
Lkl ratio 87,202.13 17,828.14 11,242.29 -

(all dummies=0) (0.000) (0.000) (0.000) -
Lkl ratio 35,296.60 2,032.66 1,966.47 -

(non-Ital.=0) (0.000) (0.000) (0.000) -

Note: The table shows estimates of the parameters of the various models for pooled degree data extracted
from the e-MID electronic platform for interbank credit, 1999-2014. Pooling here refers to the degree
distributions of the 64 quarters of this sample. The Poisson, Negative Binomial and Poisson-Pareto mixture
models allow for fixed effects depending on the year of the data while the discrete Pareto distribution has
been estimated without any covariates. Parentheses contain standard errors.
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Table 2: Specification tests for e-MID data

Test Value p-value
Poisson vs Negative Binomial (lkl) 144,950.52 (0.000)
Negative Binomial vs Poisson-Pareto 48.47 (0.000)
Negative Binomial vs Discrete Pareto 102.43 (0.000)
Negative Binomial vs Discrete Pareto (adj.) 24.75 (0.000)
Negative Binomial (2 params) vs Discrete Pareto 16.44 (0.000)
Negative Binomial (2 params) vs Discrete Pareto (adj.) 11.87 (0.000)
Discrete Pareto vs Poisson Pareto -41.34 (1.000)
Discrete Pareto vs Poisson Pareto (adj.) 36.33 (0.000)
Discrete Pareto vs Poisson Pareto (2 params) -6.10 (1.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) -1.53 (0.937)

Note: Specification tests use the Vuong test for non-nested alternatives with the
null hypothesis that both models are equally good descriptions of the data against
the alternative hypothesis that one model fits better. The test statistics of the
Vuong test is based upon the log likelihood differences of both models and, thus,
a positive value indicates a better fit of the first model, a negative value a better
fit for the second model. The resulting test statistic is asymptotically normally
distributed and its p-value is recorded in the last column. The adjusted Vuong
tests includes an additional correction factor for the difference in parameters. For
the comparison between the Poisson and NBD model, the nestedness of the former
in the later allows to conduct a standard likelihood ratio test. Parentheses contain
probabilities of acceptance of the null hypothesis.
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Table 3: Spanish Bank-Firm Credit, 1997-2007, degrees of banks with dummies for years and type of
banks

Observations: 2343 Poisson Negative Binonmial Poisson Pareto Discrete Pareto
Mean: 915.40, Variance: 12,732,367

β0 6.416 6.310 0.749 -
(0.003) (0.072) (0.079) -

β1 0.133 0.128 0.070 -
(0.004) (0.098) (0.096) -

β2 0.177 0.171 -0.082 -
(0.004) (0.095) (0.089) -

β3 0.323 -0.342 -0.035 -
(0.004) (0.094) (0.087) -

β4 0.344 0.373 -0.035 -
(0.004) (0.095) (0.089) -

β5 0.759 0.875 0.254 -
(0.004) (0.099) (0.084) -

β6 0.865 1.006 0.293 -
(0.004) (0.099) (0.084) -

β7 0.981 1.138 0.275 -
(0.004) (0.100) (0.084) -

β8 1.460 1.589 0.211 -
(0.004) (0.109) (0.087) -

β9 1.532 1.688 0.155 -
(0.004) (0.107) (0.088) -

β10 1.525 1.696 0.240 -
(0.004) (0.108) (0.007) -

γ1 -0.049 -0.144 1.919 -
(0.002) (0.078) (0.049) -

γ2 -2.933 -3.160 0.147 -
(0.004) (0.049) (0.035) -

θ - 0.347 - -
- (0.011) - -

α - - 0.345 1.211
- - (0.012) (0.004)

logL -3,192,707.70 -14,964.63 -22,605.91 -15,818.144
Lkl ratio 2,089,449.39 1,689.87 445.636 -
(beta=0) (0.000) (0.000) (0.000) -

Note: The table shows estimates of the parameters of the various models for pooled degree data of the yearly
bank-firm credit networks in Spain, 1997-2007. Pooling here refers to the degree distributions of the 11 years.
The Poisson, Negative Binomial and Poisson-Pareto mixture models allow for fixed effects depending on the year
of the data while the discrete Pareto distribution has been estimated without any covariates. Parentheses contain
standard errors. β1 to β10 are dummies for the years 1998 through 2007, while γ1 and γ2 are dummies for saving
banks and credit cooperatives, respectively.
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Table 4: Specification tests for fitted degree distributions of banks in Spanish
credit network

Test Value p-value
Poisson vs Negative Binomial (lkl) 6,355,486.13 (0.000)
Negative Binomial vs Poisson-Pareto 8.364 (0.000)
Negative Binomial vs Discrete Pareto 16.373 (0.000)
Negative Binomial vs Discrete Pareto (adj.) -34.061 (1.000)
Negative Binomial (2 params) vs Discrete Pareto 0.155 (0.438)
Negative Binomial (2 params) vs Discrete Pareto (adj.) -3.724 (0.999)
Discrete Pareto vs Poisson Pareto 7.378 (0.000)
Discrete Pareto vs Poisson Pareto (adj.) 57.812 (0.000)
Discrete Pareto vs Poisson Pareto (2 params) 7.626 (0.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) 11.506 (0.000)

Note: See Table 2 for details on the specification tests.

19



Table 5: Spanish Bank-Firm Credit, 1997-2007, degrees of banks from one-mode projection

Observations: 2,310 Poisson Negative Binonmial Poisson Pareto Discrete Pareto
Mean: 35.003, Variance: 1415.951

β0 3.812 3.774 1.723 -
(0.011) (0.054) (0.045) -

β1 0.031 0.031 0.053 -
(0.015) (0.077) (0.057) -

β2 -0.017 -0.020 -0.033 -
(0.016) (0.077) (0.059) -

β3 -0.084 -0.078 -0.102 -
(0.016) (0.078) (0.060) -

β4 -0.115 -0.101 -0.126 -
(0.016) (0.076) (0.057) -

β5 -0.022 -0.014 0.024 -
(0.016) (0.079) (0.055) -

β6 0.009 0.055 0.037 -
(0.016) (0.079) (0.055) -

β7 -0.011 0.043 0.022 -
(0.016) (0.080) (0.055) -

β8 -0.015 0.057 0.018 -
(0.016) (0.082) (0.056) -

β9 -0.007 0.084 0.067 -
(0.016) (0.081) (0.056) -

β10 -0.005 0.089 0.132 -
(0.016) (0.081) (0.003) -

γ1 0.172 0.168 1.210 -
(0.008) (0.057) (0.029) -

γ2 -1.202 -1.245 -0.409 -
(0.011) (0.041) (0.001) -

θ - 1.430 - -
- (0.044) - -

α - - 0.832 1.286
- - (0.031) (0.006)

logL -32,949.1872 -10,083.1489 -10,558.0512 -12,088.441
Lkl ratio 21,069.027 1,201.556 904.784 -
(beta=0) (0.000) (0.000) (0.000) -

Note: The table shows estimates of the parameters of the various models for pooled degree data of the yearly
bank-firm credit networks in Spain, 1997-2007. Pooling here refers to the degree distributions of the 11 years.
The Poisson, Negative Binomial and Poisson-Pareto mixture models allow for fixed effects depending on the
year of the data while the discrete Pareto distribution has been estimated without any covariates. Parentheses
contain standard errors. β1 to β10 are dummies for the years 1998 through 2007, while γ1 and γ2 are dummies
for saving banks and credit cooperatives, respectively.
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Table 6: Specification tests for the degree distributions of banks ‘co-lending’
degree obtained from the one-mode projection of the bipartite Spanish firm
network

Test Value p-value
Poisson vs Negative Binomial (lkl) 45,732.077 (0.000)
Negative Binomial vs. Poisson-Pareto 12.718 (0.000)
Negative Binomial (4 params) vs Poisson-Pareto (4 params) 12.963 (0.000)
Negative Binomial vs Discrete Pareto 43.076 (0.000)
Negative Binomial vs Discrete Pareto (adj.) -7.267 (1.000)
Negative Binomial (2 params) vs Discrete Pareto 32.482 (0.000)
Negative Binomial (2 params) vs Discrete Pareto (adj.) 28.609 (0.000)
Negative Binomial (4 params) vs Discrete Pareto 42.945 (0.000)
Negative Binomial (4 params) vs Discrete Pareto (adj.) 31.328 (0.000)
Discrete Pareto vs Poisson Pareto -28.697 (1.000)
Discrete Pareto vs Poisson Pareto (adj.) 21.645 (0.000)
Discrete Pareto vs Poisson Pareto (2 params) -23.722 (1.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) -19.850 (1.000)
Discrete Pareto vs Poisson Pareto (4 params) -28.679 (1.000)
Discrete Pareto vs Poisson Pareto (4 params, adj.) -17.061 (1.000)

Note: see Table 2 for details on the specification tests.

21



Table 7: Pooled Spanish Bank-Firm Credit, 1997-2007, degrees of firms

Observations:1,195,432 Poisson Negative Binonmial Poisson Pareto Discrete Pareto
Mean: 1.794, Variance: 1.295

β0 0.502 0.008 1.192 -
(0.003) (0.008) (0.003) -

β1 0.006 0.012 0.001 -
(0.004) (0.009) (0.004) -

β2 -0.028 -0.023 -0.004 -
(0.005) (0.009) (0.005) -

β3 -0.076 -0.078 -0.011 -
(0.005) (0.009) (0.005) -

β4 -0.066 -0.070 -0.009 -
(0.004) (0.009) (0.004) -

β5 -0.218 -0.247 -0.028 -
(0.004) (0.008) (0.004) -

β6 -0.219 -0.249 -0.028 -
(0.004) (0.008) (0.004) -

β7 -0.253 -0.288 -0.032 -
(0.004) (0.008) (0.004) -

β8 -0.326 -0.373 -0.039 -
(0.004) (0.008) (0.004) -

β9 -0.349 -0.399 -0.041 -
(0.004) (0.008) (0.004) -

β10 -0.357 -0.409 -0.042 -
(0.004) (0.008) (0.000) -

θ - 0.943 - -
- (0.010) - -

α - - 18.190 2.188
- - (0.203) (0.001)

logL -1,492,588.73 -1,466,966.96 -2,088,965.80 -1,614,078.53
Lkl ratio 18.614.33 362,722.02 69,734.62 -
(β = 0) (0.000) (0.000) (0.000) -

Note: The table shows estimates of the parameters of the various models for pooled degree data of the
yearly bank-firm credit networks in Spain, 1997-2007. Pooling here refers to the degree distributions of
the 11 years. The Poisson, Negative Binomial and Poisson-Pareto mixture models allow for fixed effects
depending on the year of the data while the discrete Pareto distribution has been estimated without any
covariates. Parentheses contain standard errors. β0 to β10 are dummies for the years 1998 through 2007.
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Table 8: Specification tests for fitted degree distributions of firms in Span-
ish credit network

Test Value p-value
Poisson vs Negative Binomial (lkl) 51243.519 (0.000)
Negative Binomial vs Poisson-Pareto 538.215 (0.000)
Negative Binomial vs Discrete Pareto 378.873 (0.000)
Negative Binomial vs Discrete Pareto (adj.) 301.472 (0.000)
Negative Binomial (2 params) vs Discrete Pareto -52.653 (1.000)
Negative Binomial (2 params) vs Discrete Pareto (adj.) -59.650 (1.000)
Discrete Pareto vs Poisson Pareto 325.179 (0.000)
Discrete Pareto vs Poisson Pareto (adj.) 402.146 (0.000)
Discrete Pareto vs Poisson Pareto (2 params) 757.484 (0.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) 764.481 (0.000)

Note: See Table 2 for details on the specification tests.

Table 9: Japanese Bank-Firm Credit, 1979 - 2011, degrees of banks

Observations: 4688 Truncated Truncated NBD Truncated Discrete
Mean: 128.97, Variance: 55,927.56 Poisson Poisson Pareto Pareto

β0 6.484 6.515 4.175 -
(0.000) (0.131) (0.029) -

β1 0.265 0.189 0.140 -
(0.000) (0.028) (0.027) -

β2 0.101 0.089 0.091 -
(0.000) (0.049) (0.040) -

γ1 -2.677 -2.682 -2.682 -
(0.000) (0.130) (0.023) -

γ2 -0.420 -0.406 0.120 -
(0.000) (0.201) (0.016) -

θ - 0.977 - -
- (0.021) - -

α - - 0.554 1.237
- - (0.017) (0.003)

logL -165,136.77 -24,732.83 -26,721.45 -28,680.82
Lkl ratio 882,806.41 3390.85 1789.64 -

(all dummies=0) (0.000) (0.000) (0.000) -

Note: The time dummies β1 and β2 are for the years 1990 - 2007 and 2008 - 2011. Categorical
dummies γ1 and γ2 are imposed on the groups of regional banks and insurance companies/ long-term
credit banks, respectively.
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Table 10: Specification tests for the fitted degree distributions of banks
from the Japanese credit network

Test Value p-value
Poisson vs NBD (lkl) 280,807.87 (0.000)
NBD vs Poisson-Pareto 16.71 (0.000)
NBD vs Discrete Pareto 58.27 (0.000)
NBD vs Discrete Pareto (adj.) 37.14 (0.000)
NBD (2 params) vs Discrete Pareto 39.30 (0.000)
NBD (2 params) vs Discrete Pareto (adj.) 35.08 (0.000)
Discrete Pareto vs Poisson Pareto -16.51 (1.000)
Discrete Pareto vs Poisson Pareto (adj.) 4.62 (0.000)
Discrete Pareto vs Poisson Pareto (2 params) -10.86 (1.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) -6.64 (1.000)

Note: see Table 2 for details on the specification tests.

Table 11: Japanese Bank-Firm Credit, 1979 - 2011, degrees of banks from one-mode
projection

Observations: 4688 Truncated Truncated NBD Truncated Discrete
Mean: 118.33, Variance: 932.55 Poisson Poisson Pareto Pareto

β0 5.006 5.005 4.816 -
(0.005) (0.059) (0.011) -

β1 -0.040 -0.038 -0.072 -
(0.001) (0.012) (0.005) -

β2 -0.241 -0.240 -0.482 -
(0.002) (0.018) (0.009) -

γ1 -0.221 -0.220 -0.796 -
(0.005) (0.058) (0.010) -

γ2 -0.004 -0.004 0.003 -
(0.006) (0.082) (0.013) -

θ - 12.022 - -
- (0.177) - -

α - - 1.430 1.190
- - (0.052) (0.003)

logL -35,054.67 -23,402.17 -27,538.15 -34,582.49
Lkl ratio 5918.29 508.02 1328.29 -

(all dummies=0) (0.000) (0.000) (0.000) -

Note: The time dummies β1 and β2 are for the years 1990 - 2007 and 2008 - 2011. Categorical
dummies γ1 and γ2 are imposed on the groups of regional banks and insurance companies/ long-
term credit banks, respectively.
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Table 12: Specification tests for banks’ ‘co-lending’ degrees obtained
from the one-mode projection of the bipartite Japanese credit network

Test Value p-value
Poisson vs NBD (lkl) 23,305.02 (0.000)
NBD vs Poisson-Pareto 34.00 (0.000)
NBD vs Discrete Pareto 85.28 (0.000)
NBD vs Discrete Pareto (adj.) 64.14 (0.000)
NBD (2 params) vs Discrete Pareto 87.50 (0.000)
NBD (2 params) vs Discrete Pareto (adj.) 83.27 (0.000)
Discrete Pareto vs Poisson Pareto -31.88 (1.000)
Discrete Pareto vs Poisson Pareto (adj.) -10.75 (1.000)
Discrete Pareto vs Poisson Pareto (2 params) -30.21 (0.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) -25.98 (0.000)

Note: see Table 2 for details on the specification tests.

Table 13: Japanese Bank-Firm Credit, 1979 - 2011, degrees of firms

Observations: 66,860 Truncated Truncated NBD Truncated Discrete
Mean: 9.47, Variance: 66.94 Poisson Poisson Pareto Pareto

β0 2.600 2.594 1.906 -
(0.001) (0.005) (0.004) -

β1 -0.354 -0.365 -0.327 -
(0.001) (0.005) (0.005) -

β2 -0.699 -0.718 -0.555 -
(0.002) (0.008) (0.008) -

γ -0.435 -0.452 -0.287 -
(0.003) (0.008) (0.007) -

θ - 2.994 - -
- (0.018) - -

α - - 1.996 1.403
- - (0.013) (0.002)

logL -277,219.84 -204,656.73 -203,382.91 -260,337.93
Lkl ratio 49,524.32 10,990.09 9,757.78 -

(all dummies=0) (0.000) (0.000) (0.000) -

Note: The time dummies β1 and β2 are for the years 1990 - 2007 and 2008-2011. γ is a dummy
for firms listed in the new market indices JASDAQ and Hercules.
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Table 14: Specification tests for the fitted degree distributions of firms
in the Japanese credit network

Test Value p-value
Poisson vs NBD (lkl) 145,126.20 (0.000)
NBD vs Poisson-Pareto -7.96 (1.000)
NBD vs Discrete Pareto 203.06 (0.000)
NBD vs Discrete Pareto (adj.) 180.84 (0.000)
NBD (2 params) vs Discrete Pareto 191.87 (0.000)
NBD (2 params) vs Discrete Pareto (adj.) 186.31 (0.000)
Discrete Pareto vs Poisson Pareto -207.44 (1.000)
Discrete Pareto vs Poisson Pareto (adj.) -185.22 (1.000)
Discrete Pareto vs Poisson Pareto (2 params) -201.58 (1.000)
Discrete Pareto vs Poisson Pareto (2 params, adj.) -196.02 (1.000)

Note: see Table 2 for details on the specification tests.

26


	Seite 1
	Introduction
	Statistical Models
	The data
	Empirical Results
	Interbank Loans from e-MID Platform
	Spanish bank-firm credit network
	Japanese bank-firm credit network

	Conclusion

