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Pros

	 Linear regression is a simple and convenient tool 
to establish an empirical relationship between one 
variable and a set of other variables.

	 Linear regression estimated by ordinary least 
squares is the “best linear predictor”: in a given 
sample, the estimated linear combination of 
regressors provides the closest approximation to 
the actual outcome.

	 Ordinary least squares works reasonably well even 
if the model is not perfectly specified.

	 Linear regression with ordinary least squares can 
provide a quick benchmark for more advanced 
methods.

ELEVATOR PITCH
Linear regression is a powerful tool for investigating the 
relationships between multiple variables by relating one 
variable to a set of variables. It can identify the effect 
of one variable while adjusting for other observable 
differences. For example, it can analyze how wages relate 
to gender, after controlling for differences in background 
characteristics such as education and experience. A linear 
regression model is typically estimated by ordinary least 
squares, which minimizes the differences between the 
observed sample values and the fitted values from the 
model. Multiple tools are available to evaluate the model.

AUTHOR’S MAIN MESSAGE
Linear regression can be used to empirically establish the relationship between a variable of interest, say a person’s wage, 
and a set of other variables that may be correlated with each other, such as gender, education, and experience. Estimating 
such relationships is routinely done by ordinary least squares, which tries to make the regression model fit the data as well 
as possible. Linear regression can predict the outcome variable in cases where it is not observed and thus policymakers 
can use it to generate predictions for the outcome variable after changing one or more of the explanatory variables to 
reflect a policy intervention.

Cons

	 Causal relationships are most valuable for policy 
advice and interventions, but interpreting a 
linear regression model as a causal relationship is 
challenging and requires strong assumptions.

	 Specification of a linear regression model is 
not always straightforward because there is no 
simple, hard rule that prescribes how to choose an 
appropriate specification.

	 Specification of a regression model requires care 
and statistical testing, particularly if estimates of 
interest appear very sensitive to the specification 
used or to the set of explanatory variables 
included.

Using linear regression to establish empirical 
relationships
Linear regression is a powerful tool for estimating the relationship 
between one variable and a set of other variables
Keywords:	 linear regression, ordinary least squares, model specification, estimation and inference, causality

KEY FINDINGS

A simple linear regression can investigate the average
relationship between two variables
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Source: Author’s regression using data from [1] on 3,010 men from the 
US National Longitudinal Survey of Young Men. Online at: 
http://www.bls.gov/nls/
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MOTIVATION
A linear regression model specifies the relationship between a variable of interest, say a 
person’s wage, and explanatory variables, for example, background characteristics like 
experience and years of schooling. The impact of each explanatory variable is reflected in 
the corresponding (partial) slope coefficient. Continuing the wage example, this shows the 
expected change in a person’s wage that corresponds to a unit increase in an independent 
variable, say years of experience. Empirically, model coefficients are typically unknown 
and need to be estimated using a sample of data. Because a model is never able to fully 
explain a variable of interest, a linear regression model always contains an additive term 
capturing all influences that the model is not accounting for. That term is called an “error” 
or a “disturbance” term.

A linear regression model is typically estimated by ordinary least squares (OLS). OLS is a 
method for estimating the unknown model coefficients by minimizing the sum of squared 
differences (hence “least squares”) between the observed sample values and the fitted 
values from the model [2]. Whether a linear regression using OLS provides an appropriate 
tool depends on the aims of the analysis.

DISCUSSION OF PROS AND CONS
The meaning of a linear regression model

A linear regression model assumes that the underlying relationship is linear. It may contain 
non-linear functions of explanatory variables or interactions between two variables, as 
long as the model is linear and additive in its coefficients. This allows a large degree of 
flexibility in the functional form. At the same time, the dependent variable, which is the 
variable of interest, may be a transformed variable. For example, frequently log wages 
rather than wages are modeled, while squared years of experience is often included as an 
explanatory variable.

In its most basic role, the linear regression model provides the “best” linear approximation 
of one variable from a set of other variables. Essentially, this is a multivariate extension of a 
bivariate correlation coefficient and does not necessarily have any behavioral significance. 
That is, the regression model provides a means to summarize the data, rather than 
describing economic behavior or a causal relationship. In economics, a linear regression 
model is typically interpreted as approximating a population relationship describing the 
expected value of one variable given a set of others. This is referred to as a “conditional 
expectation.” For example, what is the expected wage of a female worker, given that she 
has finished high school and has ten years of working experience? This interpretation 
requires the correct functional form. Linear regression then decomposes the dependent 
variable into two components: a conditional expectation (a function of the explanatory 
variables) and a residual error term (not related to the explanatory variables).

Alternative terminology for dependent and independent variables

Dependent variable: regressand, variable of interest, outcome variable, y-variable

Independent variables: explanatory variables, covariates, regressors, exogenous variables, 
control variables, x-variables
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In its most challenging role, the linear regression model describes a causal relationship. 
This requires strong assumptions and a good understanding of the underlying economic 
mechanisms. Causal relationships are most valuable for policy advice and interventions, 
but quite challenging to establish empirically. For example, while there is ample evidence 
that education and earnings are positively correlated, there is less consensus in answering 
the question to what extent higher earnings are caused by schooling [3]. It may simply be 
that individuals with more earnings potential (or “ability”) have chosen to acquire more 
schooling [4].

Interpretation of regression coefficients

When the regression model corresponds to a conditional expectation, each slope 
coefficient measures the expected change in the dependent variable following a one-unit 
change in the explanatory variable of interest, holding all other explanatory variables 
constant (the “ceteris paribus” condition). If the focus is on the relationship between one 
outcome variable and one regressor variable (in the example, the relationship between 
earnings and schooling), the other explanatory variables in the model act as control 
variables. Depending on the question of interest, the decision may be to control for some 
factors but not for all [5].

Sometimes the ceteris paribus condition is hard to maintain. For example, in the wage 
equation example, it may be that older people almost always have more experience. 
Although the regression coefficient in this case still measures the effect of age, keeping 
years of experience (and the other variables like gender) fixed, it may not be well identified 
from a given sample because of the high degree of correlation between the two variables 
(“collinearity”). In some cases, it is impossible to maintain the ceteris paribus condition—
for example, when the model includes both age and age-squared. In that case, the two 
terms have to be interpreted together. An easy approach is to analyze the difference in 
expected outcomes (fitted values, predicted values) when age and age-squared change at 
the same time. Doing so shows that the effect of age on expected earnings is not constant 
but varies with age. More generally, the effects of explanatory variables can be allowed 
to vary over the observations by including additional terms involving these variables. For 
example, including an interaction term allows the effect of one variable to depend on the 
other. This way, the model can allow the effect of age on wages to depend on gender or 
schooling, for example. Thus, age might have different effects on earnings for men and 
women or for high school graduates and college graduates.

There are numerous challenges in identifying causal effects in empirical work [6]. 
Interpreting a regression model as a conditional expectation does not necessarily imply 
that its parameters can be interpreted as measuring causal effects. For example, it is 
not unlikely that expected earnings vary for married and unmarried workers, even after 
controlling for many other factors, but it is not very likely that being married causes people 
to have higher earnings. Rather, marital status is a proxy for a variety of observable and 
unobservable characteristics that also affect a person’s wage. Similarly, if you try to relate 
regional crime rates to, say, the number of police officers, you will probably find a positive 
relationship. That is because regions with more crime tend to spend more money on law 
enforcement and therefore have more police, not because the police are causing the crime.

If the desire is to interpret coefficients causally, the ceteris paribus condition must include 
all other (observable and unobservable) factors, not just the explanatory variables that 
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are included in the model. Whether such an extended interpretation of the ceteris paribus 
condition makes sense—and whether a causal interpretation is appropriate—depends 
crucially on the economic context. Unfortunately, statistical tests provide very little 
guidance on this issue. Accordingly, caution is required in attaching a causal interpretation 
to estimated coefficients.

Ordinary least squares

A linear regression model is typically estimated by OLS. In all cases, the OLS estimates are 
determined as the regression coefficients that minimize the sum of squared differences 
between the outcome variable and the linear combination of explanatory variables. When 
there is only one explanatory variable, this boils down to fitting a straight line through 
the observed scatter plot, as depicted in the illustration on page 1. The regression line 
is chosen so as to minimize the sum of squared vertical differences between the fitted 
line (the solid diagonal line) and the observation points. In a multivariate setting, the 
regression model corresponds to a line in a more-dimensional space, but the intuition is 
similar.

The OLS estimator is a random variable whose outcome depends on the sample being 
used. The quality of the OLS estimator is judged by the distributional properties of the 
random variable. An important property is unbiasedness, which means that the expected 
value of the OLS estimator equals the true value in the population. When this result holds 
only for very large samples, the estimator is said to be consistent. Formally, this states 
that as the sample size grows, the estimator comes closer and closer to the true value. 
Another important property is efficiency, which means that the OLS estimator is the most 
accurate estimator given the available sample and the assumptions made. The accuracy 
of an estimator is reflected in its standard error. A small standard error indicates that the 
estimator exhibits little sampling variation (meaning that different samples will produce 
similar estimates), so that the corresponding effect is accurately estimated.

The OLS estimator in the linear regression model has good statistical properties provided 
that several assumptions are satisfied. Most important is that these assumptions impose 
restrictions on the relationship between the disturbance term and the explanatory variables. 
The strongest set of assumptions states that the disturbance terms are independent of all 
explanatory variables. This means that the unobservable variables affecting the outcome 
variable are not related in any way to the observed explanatory variables. Whether this 
makes sense depends crucially on what these unobservable variables (as collected in the 
disturbance term) are and what behavioral interpretation is attached to the model.

This strong set of assumptions leads to the Gauss–Markov theorem, which states that the 
OLS estimator is the “best linear unbiased estimator” for the unknown model coefficients. 
This means that, in repeated sampling, the OLS estimator is on average correct and that 
it is the most accurate estimator among all unbiased estimators that are linear functions 
of the dependent variable. Routinely calculated standard errors are appropriate in this 
case. One of the assumptions underlying this result is that the error terms in the model 
are independent drawings from the same distribution (independent and identically 
distributed). This imposes the crucial assumption that error terms are “homoscedastic,” 
that is, they all have the same variance, independent of the values of the explanatory 
variables in the model. This also imposes the assumption that two different error terms 
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are independent of (and thus uncorrelated with) each other, which is implied by assuming 
that the sample is randomly drawn from a larger population.

The assumption of homoscedasticity is frequently violated, a case referred to as 
“heteroscedasticity.” For example, it may be that higher-educated workers have more 
variation in their unobservable variables affecting wages than do lower-educated 
workers. In that case, routinely calculated standard errors are incorrect, and the use 
of heteroscedasticity-consistent (robust) standard errors is an easy way to fix this [7]. 
With multi-level data (such as students within classes within schools), panel data (for 
example, data on the same individuals over ten years), or time series data (for example, 
data on aggregate monthly unemployment rates over a historical period) it is likely that 
error terms are correlated across different observations, due to serial correlation, group 
effects, unobserved (time-invariant) heterogeneity, or other factors. This problem can 
also be handled by using the OLS estimator in combination with standard errors that 
are robust to serial correlation and heteroscedasticity or by using alternative but related 
estimators like generalizes least squares [8], [9]. In summary, in most circumstances these 
assumptions do not affect the consistency of the OLS estimator, and violation of the 
assumptions can be handled using robust standard errors in combination with OLS [10].

Illustration of ordinary least squares estimation

To illustrate some of the issues discussed here, consider a sample of 3,100 men taken from 
the US National Longitudinal Survey of Young Men (also employed in [1]). This panel survey 
followed a group of men from 1966, when they were 14–24 years old, and interviewed them 
over several consecutive years up to 1981. This example uses labor market information on 
this group for 1976, meaning that it uses cross-sectional data. The dependent variable 
is the natural logarithm of a person’s hourly wage rate (log wage). Explanatory variables 
are years of schooling, years of labor market experience, and dummy variables for being 
black, living in the southern US, and living in an urban area. The example starts with a 
simple bivariate regression relating log wages to years of schooling (see the illustration 
on page 1 and specification 1 in Figure 1). Next, the model is extended by including years 
of experience and years of experience squared (specification 2). Finally, three dummy 
variables are included (black, southern US, and urban residence; specification 3).

In specification 1, the estimated coefficient for years of schooling is 0.0521. This indicates 
that, on average, a man can be expected to have 5.3% higher wages for each additional 
year of schooling (see Figure 1). (Note that a 0.0521 increase in log wages corresponds 
approximately to a 5.3% increase in wages.) This interpretation does not control for 
other characteristics of the person. It simply estimates a person’s expected wage when 
all that is known is the number of years of schooling. The graphical representation of this 
relationship is depicted in the illustration on page 1.

Specification 2 extends the model by including years of experience and its square. Years 
of experience squared is typically included to capture decreasing returns to experience. 
Controlling for differences in experience raises the estimated impact of schooling to 
0.0932, or about 9.8%. This is because people with more years of schooling tend to have 
less experience. As a result, the estimated coefficient for schooling in specification 1 is 
partly capturing the effect of lower years of experience for highly educated men. The 
estimated coefficients on experience reveal that one additional year of experience raises 
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expected wages by about 9% initially, dropping to about 4.2% for ten years of experience, 
keeping years of schooling fixed in both cases.

Specification 3 extends the model with dummy variables for race/ethnicity and residence. 
Wages are lower for black men and for men living in the south. Again, this specification 
affects the estimated effect of schooling, which is now about 7.4% a year. For two men of 
the same race, same residence (captured by “southern US” and “urban area”), and same 
years of experience, this means that wages are expected to be 7.4% higher when one man 
has one more year of schooling than the other.

As long as the model is very explicit about the characteristics it controls for, each of 
the three specifications can be interpreted as just described. If, however, the coefficients 
in specification 3, or in an even more extended specification, are the ones that are of 
interest, the estimates for specifications 1 and 2 are biased since they are not estimating 
the correct effect. This is referred to as “omitted variable bias,” as will be discussed below.

Figure 1 also reports the standard error with each estimated coefficient. The standard 
error can be used to judge the precision of the estimates and to test restrictions on 
the true population coefficients. For example, if the intention is to test whether, in the 
population, being black has an impact on a person’s wage, then one can calculate the 
ratio of the estimated coefficient (–0.1896) to its standard error (0.0176), which yields a 
value of –10.8. Normally, values that are outside the interval of –2 to +2 are interpreted as 
a rejection. This means that in this case, the null hypothesis—being black has no effect on 
a person’s wage—is strongly rejected.

Crucial assumptions

The Gauss–Markov assumptions impose that the explanatory variables are independent 
of the error terms. This is a very strong requirement and likely to be violated when 

Figure 1. Alternative regression models explaining log wages for males 

Note: R2, the coefficient of determination, indicates the proportion of the sample variation in the dependent variable 
that is explained by variation in the explanatory variables. Schooling and experience are measured in years.

Source: Author’s own calculations.
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non-experimental data are used. A weaker alternative imposes “conditional mean 
independence,” whereby the expected value of the error term is zero, conditional on the 
explanatory variables included in the model [5], [6]. It is typically expected that adding 
more control variables increases the likelihood that this assumption is appropriate. Under 
the assumption of conditional mean independence, the OLS estimator is consistent, and 
the regression model can be interpreted causally.

To illustrate this point, one can go back to the example of estimating the returns to 
schooling as a causal question, trying to estimate the impact on workers’ earnings (on 
average) of an exogenous change in their schooling. Put differently, what is the expected 
wage differential between two men who have different amounts of schooling but are 
otherwise identical? As shown in the empirical example above, the advantage of a linear 
regression model is the ability to control for other factors (see Figure 1). Once differences 
in these control variables are accounted for, the unobservable variables affecting earnings 
are less likely to be correlated with schooling. For example, in estimating the relationship 
between earnings and schooling, one might want to control for any other factor that 
makes individuals with higher levels of schooling different from those with lower levels 
of schooling, such as demographic and family background characteristics or proxies for 
ability, such as test scores.

In econometrics, the logic just described is often formulated in terms of omitted variable 
bias. The OLS estimator for the coefficient on schooling is biased (and inconsistent) if 
variables that are omitted from the regression are correlated with schooling. Such variables 
are often referred to as “confounding variables.” Accordingly, a key challenge in empirical 
econometrics is to find an “appropriate” specification for a regression model—one that 
includes all crucial control variables and confounding variables and that has the correct 
functional form. Alternative approaches, such as instrumental variables estimation, are 
available to address the problem of omitted variable bias, but these approaches impose 
strong conditions.

Specification search and testing

Regrettably, there is no simple rule for determining the most appropriate model specification 
in a given application. Because specification is difficult, only a limited amount of reliable 
data is available, and theories are often highly abstract or controversial. Specification 
of a model is thus partly an imaginative process for which it is hard to establish fixed 
rules. (For a discussion of specification searches in practice, combined with the “ten 
commandments of applied econometrics,” see [11], Chapters 5 and 21.) In practice, most 
applied researchers start with a reasonable model specification that could be appropriate 
and then test whether restrictions imposed by the model are correct and restrictions not 
imposed by the model could be imposed. In the first category are misspecification tests 
for omitted variables, but also for homoscedasticity and zero serial correlation in the 
error terms. In the second category are tests of parametric restrictions, for example, that 
one or more explanatory variables have zero coefficients.

Besides formal statistical tests, other criteria are sometimes used to select a set of 
regressors. First of all, the coefficient of determination (R2) measures the proportion of the 
sample variation in the dependent variable that is explained by variation in the explanatory 
variables. By construction, OLS provides the best linear approximation (for a given set of 
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explanatory variables). For the specifications displayed in Figure 1, the R2 varies from 9.9% 
to 29%, depending on the specification. These values indicate, for example, that 9.9% of 
the variation in log wages can be explained by variation in schooling alone, while 29% can 
be explained by variation in schooling, experience, race, and two residence indicators. 
This is a typical order of magnitude for an empirical wage equation.

If the model were to be extended by including more regressors, it is clear that the explained 
variation would never decrease and thus that the R2 would never decrease. Using the R2 as 
the criterion would thus favor models with as many explanatory variables as possible. This 
degree of expansion is certainly not optimal, however, because with too many variables the 
model would not be able to say much about the coefficients, as they might be estimated 
inaccurately. Because the R2 does not “punish” the inclusion of many variables, it would 
be better to use a measure such as the “adjusted R2,” which incorporates this trade-off 
between goodness-of-fit and the number of regressors employed in the model.

A wide variety of statistical tests are available to test the restrictions imposed by the 
linear regression model. These include tests for heteroscedasticity, such as the Breusch-
Pagan test and the White test; tests for serial correlation in time series data, such as the 
Durbin–Watson test and the Lagrange Multiplier test; and tests for functional form, such 
as Ramsey’s RESET test [2], [9]. In general, it is recommended to perform enough such 
tests to be able to argue that the linear regression model is reasonably well-specified 
and that statistical inference is not obviously misleading (for example due to the use of 
incorrect standard errors).

Once a linear regression model is specified and estimated, it can be used for generating 
predictions. For example, one can predict the wage of a worker with certain background 
characteristics. Further, the model can be used to test economic hypotheses. For 
example, one can test whether there is a significant difference between wages for male 
and female workers after controlling for differences in education and experience. This is 
done by means of the t-test or, more generally, the Wald test. These tests are based on 
comparing the coefficient estimates with the hypothesized values, taking into account 
precision of the estimates (standard errors). For robustness, tests are preferably based 
on heteroscedasticity-consistent standard errors. If the regression model has a causal 
interpretation, it can also be used to answer “what if” questions. That is, it can generate 
predictions for the outcome variable after changing one or more of the explanatory 
variables to reflect, for example, a policy intervention.

LIMITATIONS AND GAPS

A linear regression model is typically used when the dependent variable is continuous. 
Alternative models are more appropriate for binary outcomes (such as “working” versus 
“not working”), discrete outcomes, or counts (such as number of children born to 
a woman), although OLS in combination with a linear regression model can often be 
used as a rough approximation. The most important limitation of a linear regression 
model in combination with OLS is that it can be interpreted as a causal model only under 
the assumption of conditional mean independence. This is a strong assumption that is 
often violated when non-experimental data are used. Instrumental variables or other 
approaches are available to address these cases, but the identification of causal effects 
often remains challenging. (For a useful overview of identification strategies for casual 
relationships see [12].)
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An important assumption underlying standard statistical inference is that the sample has 
been randomly selected and that it is representative of the population of interest. If wages 
are being modeled, however, they can be observed only for individuals who are actually 
working, and it may not be valid to extend the estimation results to explain the wages of 
non-workers who are considering entering the labor market. For example, selection into 
the labor market may be non-random and depend on potential wages, which would lead 
to a so-called selection bias in the OLS estimator.

A final drawback of OLS is that its results may be very sensitive to the presence of outliers. 
Loosely speaking, an outlier is an observation that is far away from the (true) regression 
line. Outliers may be due to measurement errors in the data, but they can also occur by 
chance in any distribution, particularly in a distribution with fat tails. If outliers correspond 
to measurement errors, the preferred solution is to discard the corresponding unit from 
the sample (or correct the measurement error if the problem is obvious). In general, it 
makes sense to check the sensitivity of the estimation results with respect to (seemingly) 
small changes in the sample. In some cases, it is advisable to use more robust estimation 
methods rather than OLS, such as least absolute deviations. Random measurement errors 
in an explanatory variable can be dealt with using instrumental variable estimation [9].

SUMMARY AND POLICY ADVICE

The linear regression model using OLS provides a powerful tool for investigating the 
relationship between an outcome variable and multiple explanatory variables that are 
potentially correlated with each other. The impact of one variable can be investigated, 
controlling for other variables or confounding factors (as long as these are observed). 
Under relatively weak assumptions, the linear regression model can be interpreted as 
describing a conditional expectation.

By construction, the linear regression model provides the best linear approximation (or 
the best linear predictor) of the dependent variable. This makes linear regression useful 
in empirical work, even if there is no behavioral content in the model. A regression can 
be used to predict the outcome variable in cases where it is not observed and can thus 
provide a useful tool to answer “what if” questions for policymakers. The specification of 
a regression model should be chosen carefully and should involve some statistical testing. 
Carefully specifying the model is particularly crucial if estimates for the coefficients 
of interest appear very sensitive to the specification used or to the set of explanatory 
variables included in the regression. Policymakers can use linear regression models to 
test the impact of a proposed policy intervention. The model can be used to predict an 
outcome variable after changing one or more of the explanatory variables to reflect the 
proposed policy intervention.

Acknowledgments

The author thanks an anonymous referee and the IZA World of Labor editors for many 
helpful suggestions on earlier drafts. Previous work of the author contains a larger number 
of background references for the material presented here and has been used intensively in 
major parts of this article [2].



IZA World of Labor | February 2017 | wol.iza.org
10

Marno Verbeek  |  Using linear regression to establish empirical relationshipsMarno Verbeek  |  Using linear regression to establish empirical relationships

﻿﻿

Competing interests

The IZA World of Labor project is committed to the IZA Guiding Principles of Research Integrity. 
The author declares to have observed these principles.

©© Marno Verbeek



IZA World of Labor | February 2017 | wol.iza.org
11

Marno Verbeek  |  Using linear regression to establish empirical relationshipsMarno Verbeek  |  Using linear regression to establish empirical relationships

﻿﻿

REFERENCES
Further reading
Cameron, A. C., and P. K. Trivedi. Microeconometrics: Methods and Applications. Cambridge: Cambridge 
University Press, 2005.

Maddala, G. S., and K. Lahiri. Introduction to Econometrics. 4th edition. Hoboken, NJ: John Wiley and 
Sons, 2009.

Wooldridge, J. M. Econometric Analysis of Cross-Section and Panel Data. 2nd edition. Cambridge, MA: MIT 
Press, 2010.

Key references
[1]	 Card, D. “Using geographical variation in college proximity to estimate the return to 

schooling.” In: Christofides, L. N., E. K. Grant, and R. Swidinsky (eds). Aspects of Labour Market 
Behaviour: Essays in Honour of John Vanderkamp. Toronto: University of Toronto Press, 1995; pp. 
201–222.

[2]	 Verbeek, M. A Guide to Modern Econometrics. 4th edition. Hoboken, NJ: John Wiley and Sons, 
2002.

[3]	 Card, D. “The causal effect of education on earnings.” In: Ashenfelter, O., and D. Card (eds). 
Handbook of Labor Economics, Volume 3. Amsterdam: Elsevier, 1999; pp. 1801–1863.

[4]	 Griliches, Z. “Estimating the returns to schooling: Some econometric problems.” Econometrica 
45:1 (1977): 1–22.

[5]	 Wooldridge, J. M. Introductory Econometrics: A Modern Approach. 5th edition. Mason, OH: South-
Western Cengage Learning, 2012.

[6]	 Angrist, J. D., and J. S. Pischke. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, 
NJ: Princeton University Press, 2009.

[7]	 White, H. “A heteroskedasticity-consistent covariance matrix estimator and a direct test for 
heteroskedasticity.” Econometrica 48:4 (1980): 817–838.

[8]	 Petersen, M. A. “Estimating standard errors in finance panel data sets: Comparing 
approaches.” Review of Financial Studies 22:1 (2009): 435–480.

[9]	 Greene, W. H. Econometric Analysis. 7th edition. Upper Saddle River, NJ: Prentice Hall, 2012.

[10]	 Cameron, A. C., and D. L. Miller. “A practitioner’s guide to cluster-robust inference.” The Journal 
of Human Resources 50:2 (2015): 317–372.

[11]	 Kennedy, P. E. A Guide to Econometrics. 5th edition. Oxford: Blackwell Publishing, 2003.

[12]	 Angrist, J. D., and A. B. Krueger. “Empirical strategies in labor economics.” In: Ashenfelter, 
O., and D. Card (eds). Handbook of Labor Economics, Volume 3. Amsterdam: Elsevier, 1999; pp. 
1277–1366.

Online extras

The full reference list for this article is available from: http://wol.iza.org/articles/using-
linear-regression-to-establish-empirical-relationships

View the evidence map for this article: http://wol.iza.org/articles/using-linear-regression-to-
establish-empirical-relationships/map


