
Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

Working Paper

Testing for Volatility Co-movement in Bivariate Stochastic
Volatility Models

Tinbergen Institute Discussion Paper, No. 17-022/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael (2017) : Testing for
Volatility Co-movement in Bivariate Stochastic Volatility Models, Tinbergen Institute Discussion
Paper, No. 17-022/III, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/162288

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/162288
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
TI 2017-022/III 
Tinbergen Institute Discussion Paper  
 

 
 
Testing for Volatility Co-movement in 
Bivariate Stochastic Volatility Models 
 
 
 
Jinghui Chen1 

Masahito Kobayashi2  
Michael McAleer3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
1Graduate School of International Social Sciences, Yokohama National University, Japan; 
2Department of Economics, Yokohama National University, Japan; 
3National Tsing Hua University, Taiwan; Erasmus School of Economics, Erasmus University Rotterdam, and 
Tinbergen Institute, The Netherlands; Complutense University of Madrid, Spain 



 

Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and VU University 
Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl  
 
Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
http://www.tinbergen.nl/


Testing for Volatility Co-movement in

Bivariate Stochastic Volatility Models

Jinghui Chen

Graduate School of International Social Sciences

Yokohama National University

Masahito Kobayashi∗

Department of Economics

Yokohama National University

Michael McAleer

Department of Quantitative Finance

National Tsing Hua University, Taiwan

and

Econometric Institute, Erasmus School of Economics

Erasmus University Rotterdam

and

Department of Quantitative Economics

Complutense University of Madrid, Spain

and

Institute of Advanced Sciences

Yokohama National University, Japan

Revised: February 2017

∗corresponding author: Masahito Kobayashi, Department of Economics, Yokohama National University,

Yokohama 240-8501, Japan; email: kobayashi-masahito-nz@ynu.ac.jp

1



Abstract

The paper considers the problem of volatility co-movement, namely as to whether

two financial returns have perfectly correlated common volatility process, in the

framework of multivariate stochastic volatility models and proposes a test which

checks the volatility co-movement. The proposed test is a stochastic volatility ver-

sion of the co-movement test proposed by Engle and Susmel (1993), who investi-

gated whether international equity markets have volatility co-movement using the

framework of the ARCH model.

In empirical analysis we found that volatility co-movement exists among closely-

linked stock markets and that volatility co-movement of the exchange rate markets

tends to be found when the overall volatility level is low, which is contrasting to the

often-cited finding in the financial contagion literature that financial returns have

co-movement in the level during the financial crisis.

Keywords: Lagrange multiplier test; Volatility co-movement, Stock markets, Exchange

rate Markets; Financial crisis

JEL Classification: C12, C58, G01, G11
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1 Introduction

This paper considers the problem as to whether financial returns have volatility co-movement

using the framework of multivariate stochastic volatility models that were suggested by Harvey

et al. (1994). We propose a stochastic volatility version of the ARCH test proposed by Engle

and Kozicki (1993) and Engle and Susmel (1993), who investigated volatility co-movement,

namely whether international equity markets have a common volatility process, using the multi-

variate ARCH model framework, and found groups of countries that had a similar time-varying

volatility. Fleming et al. (1998) used the multivariate stochastic volatility model to estimate

volatility linkages across stock, bond, and money markets, and found strong correlation between

markets. Fleming et al. (1998) also tested perfectly correlated volatility processes, extending

the model of Tauchen and Pitts. (1983). Their definition of volatility linkage is stronger than

the mere presence of a common factor in volatility processes in that they have no idiosyncratic

volatility factor. They also conducted a Wald-type test, using the GMM framework, and re-

jected the null hypothesis of perfectly correlated volatility and concluded that cross-market

hedging is imperfect.

However, the use of the Wald and likelihood ratio tests in the classical hypothesis testing

framework, which use the estimator of the volatility correlation parameter, is inappropriate for

the null hypothesis of perfectly correlated volatility, as the asymptotic distribution of the Wald

test statistics is different from the conventional chi-squared distribution, as shown, for example,

in Chernoff (1954), since, as the correlation estimator cannot be greater than or equal to one

in absolute value, the distribution of the estimator of the constrained parameter is asymmetric,

and hence non-normal, when the true correlation coefficient is unity under the null hypothesis.

The paper proposes a new Lagrange multiplier (LM) test for volatility co-movement, namely

the hypothesis that the volatility processes of bivariate series have a perfectly correlated com-

mon volatility factor. We use the framework of multivariate stochastic volatility model proposed

by Harvey et al. (1994), where the log volatility follows vector autoregressive (VAR) process

of order one with diagonal autoregressive coefficient matrix.

The Lagrange multiplier test principle is the only alternative for this problem in deriving

the test statistics because it estimates only the null model and does not estimate the parameter

on the boundary of the parameter space. Then the test statistic can follow the conventional
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chi-squared asymptotic distribution under the null hypothesis.

To the best of our knowledge, the Lagrange multiplier test statistic for the perfectly corre-

lated volatility processes has not been proposed in the literature, except Chiba and Kobayashi

(2013), who employed the unconventional assumption that the log of squared returns is nor-

mally distributed in deriving the test statistic. It is not without reason why the LM test has

not been proposed; the conventional method to obtain a score function is unworkable in this

problem, because the derivative of the transition density is intractable under the null hypoth-

esis, as the transition disturbance has zero variance. We here derive the score function using

the ingenious method devised by Chesher (1984), which is the main technical breakthrough in

tackling this problem.

Our test can be regarded as a test for the number of stochastic volatility factors, in line with

the definition of Harvey et al. (1994) and Cipollini and Kapetanios (2008), when the number

of factors is one under the null hypothesis. Cipollini and Kapetanios (2008) used a linearized

model for the log of squared returns, and used the principal component methodology of Stock

and Watson (2002) in deciding the number of factors. Their method has the advantage in that

it is applicable when the number of variables is large, though it is not a statistical test. The

new test developed in the paper is the only existent statistical test for the hypothesis.

We employed the quadrature in evaluating the likelihood function proposed by Watanabe

(1999) and Kitagawa (1987) and the method proposed by Hamilton (1989) in evaluating the

score function.

The remainder of the paper is organized as follows. Section 2 presents the model, Section

3 develops the LM test statistic, Section 4 presents Monte Carlo experiments, and Section 5

illustrates two empirical analyses, and concluding remarks are given in Section 6. Appendices

illustrate the pre-orthogonalization of data and the derivation of the score functions.

2 Model

We here consider the unconstrained bivariate stochastic volatility model. Under the alternative

hypothesis, the observation vector yt = (y1t, y2t)
′ is expressed as follows:
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(Model under the Alternative Hypothesis): y1t

y2t

 =

 exp
(
h1t
2

)
0

0 exp(h2t
2

)

 e1t

e2t

 , t = 1, · · · , T, (1)

 h1t

h2t

 =

 ρ 0

0 ψ

 h1,t−1

h2,t−1

+

 σ 0

ω
√
λ

 u1t

u2t

 , t = 1, · · · , T, (2)

 h11

h21

 =

 σ/
√

(1− ρ2) 0

ω/
√

(1− ψ2)
√
λ/(1− ψ2)

 u11

u21

 , (3)

(e1t, e2t, u1t, u2t)
′ ∼ N(0, I4),

where the log volatility (h1t, h2t)
′ follows a stationary bivariate autoregressive process of order

one, and disturbance term is normally distributed contemporaneously and serially independent

with zero mean unit variance.

The null hypothesis to be tested is

(Null Hypothesis): λ = 0, ψ = ρ, ω = σ. (4)

Under the nullhypothesis the joint distribution of the state variable (h1t, h2t)
′ is degenerate,

since the disturbance term of the transition equation (2) is (σu1t, ωu1t +
√
λu2t)

′; then the

measurement equations have a single common volatility, which is expressed as

(Null Model):

 y1t

y2t

 = exp(h1t/2)

 e1t

e2t

 , (5)

h1t = ρh1,t−1 + σe1t,, h2t = h1t, t = 1, · · · , T. (6)

The multivariate stochastic volatility model was originally suggested by Harvey et al. (1994)

and was examined in detail in Danıelsson (1998) and Asai et al. (2006). The null model of our

paper is the stochastic volatility factor model discussed in Harvey et al. (1994) and Cipollini

and Kapetanios (2008) in the simple case when the number of factors is one.

A remark may be in order here on the assumption that the disturbance term of the mea-

surement equation (1), namely (e1t, e2t)
′, is contemporaneously uncorrelated. We can justify

the use of this simple assumption by showing in Appendices that the data can be transformed

so as to satisfy the assumption of the model under the null hypothesis.
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3 LM test statistic

3.1 Notation

We propose the LM test for the null hypothesis (4) for the observation series y1t and y2t. Define

the unconstrained parameter vector as θ1 = (c, ψ, ω, ρ, σ), and the constrained parameter vector

as θ0 = (0, ψ, ω, ψ, ω) .

First, we obtain the maximum likelihood estimator of the constrained parameter, θ0, of

the state space system (1) and (2). Denote y1 = (y11, y12, . . . , y1T )
′
, y2 = (y21, y22, . . . , y2T )

′
,

h1 = (h11, h12, . . . , h1T )
′
, and h2 = (h21, h22, . . . , h2T )

′
. The likelihood is expressed as

f(y1,y2) =

∫ ∫
f(h1,h2,y1,y2)dh1dh2 =

∫ ∫
f(y1,y2|h1,h2)f(h2|h1)f(h1)dh1dh2,

where the explicit form of f(y1|h1), f(y2|y1,h1,h2), f(h2|h1), and f(h1) are given in Appen-

dices. We perform this integration numerically by the quadrature suggested by Kitagawa

(1987) and Watanabe (1999) in evaluating the likelihood function.

Second, we derive the score function under the alternative hypothesis and evaluate it under

the null hypothesis. Denote

yT = (y11, y12, . . . , y1T , y21, y22, . . . , y2T )
′
= (y1,y2)

and the score function as

∂ log f(yt)

∂θ1
=

(
∂ log f(yt)

∂λ
,
∂ log f(yt)

∂ψ
,
∂ log f(yt)

∂ω
,
∂ log f(yt)

∂ρ
,
∂ log f(yt)

∂σ

)
.

Noting that log f(yt|yt−1) = log f(yt)− log f(yt−1), conditional score function is expressed as

Qt =
∂ log f(yt|yt−1)

∂θ
′
1

=
∂ log f(yt)

∂θ
′
1

−
∂ log f(yt−1)

∂θ
′
1

.

Then the estimated Fisher information matrix is

(Fisher Information Matrix): I(θ) =
1

T

T∑
t=1

QtQ
′

t,

and the score vector is

(Score Vector): U(θ) =
1

T

T∑
t=1

Qt =
1

T

∂ log f(yT )

∂θ
′
1

. (7)
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3.2 Test statistic

The LM test statistic is defined by

(LM Test Statistic): LM = T × U ′
(θ̂0)I(θ̂0)

−1U(θ̂0), (8)

where θ̂0 is the maximum likelihood estimator of θ0 under the null hypothesis. Then, under the

regularity condition that the parameters to be estimated lie in the interior of the parameter

space and the estimated information matrix converges to a nonsingular matrix, and hence the

estimators are normally distributed asymptotically, we have

(Asymptotic Distribution): LM
L−→ χ2(3),

when T is sufficiently large, as shown by Davidson and MacKinnon (1993, p. 91), with three

degrees of freedom of the asymptotic χ2-distribution corresponding to the three restrictions of

the null hypothesis (4).

The score function (7) cannot be evaluated by the conventional method; the derivative

∂f(h2|h1)/∂λ in
∂f(yt)

∂λ
=

∫
f(y1,y2|h1,h2)

∂f(h2|h1)

∂λ
f(h1)dh1dh2 (9)

diverges as λ→ 0, because f(h2|h1) is a normal density with variance λ and hence its derivative,

as well as the score function, with respect λ under the null hypothesis cannot be evaluated

directly. We have circumvented this difficulty using the ingenious method proposed in Chesher

(1984). The algebraic details for the derivation of (10) are found Appendices.

We here give only the final formula of the score functions as follows:

(Score Functions)

∂ log f(y)

∂λ
|H0 =

1

8
trEh1|y

(
− 2×VψY2 exp(−h1)11×T + 1T×TVψ

+ VψY2 exp(−h1) exp(−h′

1)Y2 − 2VψY2H
−1
1

)
,

∂ log f(y)

∂ψ
|H0 =

1

2
11×TV

1/2
ψ ZψEh1|y[h1]−

1

2
tr
[
Y2V

1/2
ψ ZψEh1|y[h1 exp(−h′

1)]
]
,

∂ log f(y)

∂ω
|H0 = − 1

2ω
11×TEh1|y [h1] +

1

2ω
(y2 ◦ y2)

′Eh1|y [exp(−h1) ◦ h1] ,

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 −

ψ

1− ψ2
− 1

2
ω−2tr

(
∂V−1ψ
∂ψ

Eh1|y

(
h1h

′

1

))
,

∂ log f(y)

∂σ
|H0 = −∂ log f(y)

∂ω
|H0 −

t

ω
+

1

ω3
tr
(
V−1ψ Eh1|y

(
h1h

′

1

))
,

(10)
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where ◦ denotes the operator of the element-by-element multiplication (the Hadamard product),

exp(−h1) = (exp(−h11), . . . , exp(−h1T ))′, (11)

Y2 = diag(y2 ◦ y2), (12)

H1 = diag(exp(h11), . . . , exp(h1T )), (13)

and Vψ is the covariance matrix of h2, whose square root Vψ
1/2 is defined by the Cholesky

decomposition.

The algebraic details of the derivation of (10) are found in Appendices.

4 Monte Carlo experiments

In order to confirm that the proposed statistic is asymptotically distributed as χ2(3) under

the null, and whether it has power to reject a false hypothesis, we conduct two Monte Carlo

experiments. The number of iterations is 1000 for the experiment under the null model and

100 for the experiment under the alternative hypothesis. The number of iterations of the

latter is not large, but this limitation is unavoidable because the convergence of the maximum

likelihood estimation is slow and hence the calculation of the test statistics require considerable

computational time when the data is generated from the alternative hypothesis.

It took two minutes on the average to calculate one iteration for the data for Tables 1 and

2 when the sample size is 500 with the parallel computing tool of MATLAB (8 threads) using

a PC with Intel’s Core I7 -3770K . The codes are available from the authors on request.

4.1 Size of Test and Null Distribution

First, we generate artificial samples drawn from the null hypothesis, calculate the test statistic,

and obtain the empirical distribution of the test statistic under the null hypothesis. Second,

we estimate the empirical power by the ratio of the test statistic that exceeds the theoretical

critical value. We also obtain the empirical distribution of the test statistic under the null and

alternative hypotheses by using kernel estimation and histogram to show that it follows the

χ2(3) distribution with sufficient precision.

The rejection rates for some critical values and sample sizes are shown in Table 1, when

the data is generated under the null hypothesis, where θ0 = (λ = 0, ψ, ω, ρ = ψ, σ = ω). Table
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1 shows that, as the sample size T increases, the rejection rate approaches to the theoretical

significance level. The empirical size of the test is sufficiently close to the theoretical value when

the sample size is 500, which suggests that we should use data with at least 500 observations in

practice. The empirical null distribution of the test statistic when T = 500 is shown in Figures

1-3.

Table 1: Rejection Rates of the Null under the Null Hypothesis

Parameter Values in H0 Rejection rates

λ ψ ω ρ σ
T=100 T=200 T=500

5% 1% 5% 1% 5% 1%

0 0.7 1 0.7 1 10.2% 4.3% 8.3% 2.7% 7.1% 1.3%

0 0.9 1 0.9 1 21.0% 9.5% 13.1% 4.8% 6.3% 1.7%

0 0.95 0.45 0.95 0.45 22.5% 10.2% 14.7% 5.6% 7.4% 1.6%

Note: The number of iterations is 1000.

Figure 1: Histogram of LM Test Statistic at ψ=0.7
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Figure 2: Histogram of LM Test Statistic at ψ=0.9

Figure 3: Histogram of LM Test Statistic at ψ=0.95

4.2 Power of test

We generate artificial data under the alternative hypothesis, and calculate the rejection rate to

show that the proposed statistic has sufficient power. The Monte Carlo results are shown in

10



Table 2, where the parameter value deviates from that of the null hypothesis. For example, the

value of λ is set at 0.32 and 0.45 in the first and second rows under the alternative hypothesis,

whereas it should be λ = 0 under the null hypothesis.

Table 2: Rejection Rates of the Null under the Alternative Hypothesis

Parameter Values in H1 Rejection Rates

λ ψ ρ ω σ
T=500

5% 1%

0.32 0.7 0.7 0.32 0.32 28% 13%

0.45 0.7 0.7 0.32 0.32 72% 43%

0 0.5 0.7 0.32 0.32 14% 7%

0 0.9 0.7 0.32 0.32 86% 72%

0 0.7 0.7 0.25 0.32 24% 7%

0 0.7 0.7 0.19 0.32 51% 28%

Note: Null hypothesis is λ = 0, ψ = ρ, ω = σ. The number of iterations is 100.
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5 Empirical analysis

Using the proposed statistical test, we first examine the volatility co-movement between stock

markets to find a group of countries with common volatility factor and show that our method

can be applied to more than two markets. We next investigate the effect of overall volatility

level on the co-movement of exchange rates by comparing the financial crisis period and low

volatility period.

The value of the test statistic depends upon the the order of the variables in the pair and

hence the empirical result is sometime inconsistent when the order is changed, because the

pre-orthogonalization of data illustrated in Appendices is asymmetric with respect to the order

of the variables. The null distribution of the test statistic is unaffected with respect to the

order of variable when the the volatility co-movement exits under the null hypothesis by its

construction; then, the the probability of type I error is correct after the pre-orthogonalization.

Under the alternative hypothesis, however, the pre-orthogonalization can contaminate the joint

distribution of the volatilities, and hence undermine the power of the test statistic.

We believe that we can solve this asymmetry problem in future by estimating the correlation

parameter of the measurement equation in (1) simultaneously, by means of improvement in the

accuracy and speed of the computation .

5.1 Stock markets

First, we checks whether there exists a group of stock markets that shows volatility co-movement

consistently in different times. The data is the adjusted-close prices downloaded from Yahoo

finance for the stock market indexes listed below:

We divided daily data from January, 2011 to December, 2014 into two periods to check the

volatility co-movement in different periods. We excluded observations whenever at least one

market is closed. The test is performed for the 28 pairs, and we have 56 values in Tables 4 and

5, since the value of the test statistic depends upon the order of the variables asymmetrically,

on account of the data pre-orthogonalization process in Appendices.

We see that U.K., Singapore, and Australia can share the same volatility factor consistently

even in different periods, where the null hypothesis is accepted, even if calculated in the different

order, for every possible pairs in the group. China and Japan have volatility factor independent
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Table 3: Stock Market Indexes

Stock Market Symbol Country/Region

Dow Jones Industrial Average DOW U.S.

FTSE Index FTSE U.K.

DAX Index DAX Germany

Shanghai Composite Index SSCI China

Nikkei 225 Stock Average Index NIKKEI Japan

Hang Seng Index HSI Hong Kong

Straits Times Index STI Singapore

All Ordinaries Index AORD Australia

Table 4: Test Statistic for Volatility Co-movement of Stock Markets for 2011-2012

y2

y1 U.S. U.K. Germany China Japan Hong Kong Singapore Australia

U.S. 9.1* 9.19* 21.48** 24.22** 5.00 10.44* 4.07

U.K. 5.14 1.39 20.33** 25.33** 3.66 3.74 1.07

Germany 5.96 8.7* 17.84** 30.19** 2.52 6.22 6.82

China 21.07** 7.63 15.72** 18.07** 4.7 7.92* 8.46*

Japan 22.15** 8.88* 29.5** 15.23** 2.34 10.23* 5.22

Hong Kong 4.9 2.73 5.88 4.14 40.52** 2.87 4.69

Singapore 7.69 2.99 7.03 3.17 34.31** 18.12** 1.98

Australia 2.46 5.56 12.88** 5.19 69.35** 15.88** 2.68

Note: * denotes significance at five percent, ** denotes significance at one percent.

mutually and of the other countries or regions in 2011 and 2012, where the null hypothesis is

rejected with, at least, one of the two test statistic values. In 2013 and 2014, the number of

groups that possibly share the same volatility factor is increased to three, namely
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Table 5: Test Statistic for Volatility Co-movement of Stock Markets for 2013-2014

y2

y1 U.S. U.K. Germany China Japan Hong Kong Singapore Australia

U.S. 0.39 8.05* 11.83** 15.43** 9.24* 4.97 5.21

U.K. 15.79** 9.9* 2.28 4.76 4.17 1.92 2.68

Germany 4.34 7.52 10.64* 21.47** 3.31 7.83* 10.22*

China 11.53** 2.14 10.72* 3.39 12.84** 3.79 6.11

Japan 15.05** 5.68 25.2** 2.58 9.92* 9.78* 9.88*

Hong Kong 7.88* 1.54 7.13 7.47 12.39** 19.45** 2.58

Singapore 11.42** 1.91 23.23** 7.08 7.13 8.32* 1.63

Australia 6.11 0.8 8.03* 2.31 5.71 3.99 4.13

Note: * denotes significance at five percent, ** denotes significance at one percent.

Group 1 : U.K., China, Japan

Group 2 : U.K., Hong Kong, Australia

Group 3 : U.K., Singapore, Australia

Then U.K., Singapore and Australia share the same volatility factor consistently in the two

period, probably because of their close economic ties.

We cannot suggest, at this stage, why the number of groups with possibly the same volatility

factors increased. It is suspected that a determinant is the overall level of volatility and we will

consider this hypothesis in the next subsection using the exchange rate data.

.

5.2 Exchange rate markets

We here investigate the volatility processes of the foreign exchange rates in the global financial

crisis and the low volatility period.

First, we define two time periods representing the financial crisis and the low volatility period

using the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) as an indicator of

high volatility. Figures 4 and 5 show that volatility deviated drastically from the historical
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trend in the financial crisis. We choose Period 1: Oct/1/2008 - Oct/31/2008 as the global

financial crisis, and Period 2: Oct/1/2012 - Oct/31/2012 as low volatility period.

Figure 4: VIX during the Global Financial Crisis (2008-2009)
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Figure 5: VIX during the Low Volatility Period (2012-2013)
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Second, we analyze 6 major currency pairs, namely Euro (EUR), the United States Dollar

(USD), Japanese Yen (JPY), British Pound (GBP), Australian Dollar (AUD), Swiss Franc

(CHF), Canadian Dollar (CAD), using roughly 500 hourly observations for a month, and the

results of the proposed test of volatility co-movement are shown in Tables 6 and 7.

Table 6: Test Statistic for Volatility Co-movement of Exchange Rates in High Volatility Period

y2

y1 EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD

EUR/USD 23.73** 12.06** 34.09** 10.43* 17.89**

USD/JPY 35.45** 17.28** 15.62** 28.23** 54.5**

GBP/USD 14.49** 14.34** 53.78** 18.74** 22.03**

AUD/USD 37.32** 33.16** 30.01** 25.47** 28.3**

USD/CHF 24.47** 33.96** 43.9** 39.49** 23.63**

USD/CAD 18.31** 37.44** 15.14** 19.02** 14.64**

Note: * denotes significance at five percent, ** denotes significance at one percent. The ex-

change rate was downloaded from FXDD’s historical database.

Table 7: Test Statistic for Volatility Co-movement of Exchange Rates in Low Volatility Period

y2

y1 EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD

EUR/USD 11.27* 5.17 7.56 6.61 25.69**

USD/JPY 15.88** 28.67** 12.97** 16.73** 14.86**

GBP/USD 2.15 23.74** 20.35** 5.39 8.38*

AUD/USD 28.07** 18.32** 26.51** 14.97** 22.86**

USD/CHF 3.22 9.53* 4.64 6.9 17.66**

USD/CAD 5.5 6.47 4.83 5.82 4.41

Note: * denote significance at five percent, ** denotes significance at one percent. The exchange

rates data was downloaded from FXDD’s historical database.
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During the financial crisis, when volatility is large, the null hypothesis of volatility co-

movement was rejected in every case in Table 6. On the other hand, several currency pairs are

suggested to share the same volatility factor during the low volatility period; the accepted rate

of the null hypothesis is 43.3%, namely 13 pairs of 30 pairs, in Table 7. Then we can suggest

that the volatility co-movement tends to be found during the low volatility period. This result

is interesting and contrasting to the often-cited finding in the financial contagion literature that

financial returns have co-movement in the level during the financial crisis, which is discussed

critically by Forbes and Rigobon (2002) . It is suspected that, when the overall volatility level

is low, the idiosyncratic volatility factor can be small, or often negligible, in comparison with

the common volatility factor, whereas, when the overall volatility level is high in the financial

crisis, the idiosyncratic volatility factor dominates the common volatility factor.

6 Conclusion

In this paper, we have proposed a Lagrange multiplier test statistic for the null hypothesis

that the volatility processes of a bivariate series are perfectly correlated in the framework of

the multivariate stochastic volatility model. The considered model is the simplest case of a

multiple stochastic volatility model. The extension to a multiple factor model is left for further

research, as it is a challenging problem computationally and theoretically. In order to improve

the efficiency of the numerical calculation we are planning to use the particle filter method

proposed by Kitagawa (1996) and the fast Gauss transform method proposed by Greengard

and Strain (1991).

In the empirical analysis of stock markets, we found that the United Kingdom, Singapore

and Australia share a common time-varying volatility factor consistently. It is also suspected

that the common volatility factor in the global currency market was dominated by the idiosyn-

cratic volatility factors during high volatility periods. A clear-cut conclusion cannot be obtained

because of the asymmetry of the test statistic with respect to the order of the variables, which

is left to the further research.
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Appendices

A Derivation of likelihood and score functions

A.1 Likelihood

In order to express the transition equation (2) in matrix form, we express the log volatilities

and disturbance terms used in (1) and (2) in vector form, as follows:

h1 = (h11, . . . , h1t)
′, h2 = (h21, . . . , h2t)

′,

u1 = (u11, . . . , u1T )′, u2 = (u21, . . . , u2T )′,

e1 = (e11, . . . , e1T )′, e2 = (e21, . . . , e2T )′.

Then the transition equation (2) is

h1 = V1/2
ρ (σu1), h2 = V

1/2
ψ (ωu1 +

√
λu2) = V

1/2
ψ (V−1/2ρ h1ω/σ +

√
λu2), (14)

where Vρ and Vψ are the covariance matrices of the autoregressive processes of order one, h1

and h2, respectively, and V1/2
ρ and V

1/2
ψ are defined by their Cholesky decomposition as follows:

Vρ = (V1/2
ρ )(V1/2

ρ )′, Vψ = (V
1/2
ψ )(V

1/2
ψ )′,

where

V
1/2
ψ =



1/
√

1− ψ2 0 . . . 0 0

ψ/
√

1− ψ2 1 . . . 0 0

ψ2/
√

1− ψ2 ψ . . . 0 0
...

ψT−1/
√

1− ψ2 ψT−2 . . . ψ 1


, V1/2

ρ =



1/
√

1− ρ2 0 . . . 0 0

ρ/
√

1− ρ2 1 . . . 0 0

ρ2/
√

1− ρ2 ρ . . . 0 0
...

ρT−1/
√

1− ρ2 ρT−2 . . . ρ 1


,

(15)
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Their inverses are decomposed as Vψ
−1 = (V

− 1
2

ψ )′V
− 1

2
ψ , Vρ

−1 = (V
− 1

2
ρ )′V

− 1
2

ρ , where:

V
− 1

2
ψ =



√
1− ψ2 0 . . . 0 0

−ψ 1 . . . 0 0

0 −ψ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ψ 1


, V

− 1
2

ρ =



√
1− ρ2 0 . . . 0 0

−ρ 1 . . . 0 0

0 −ρ . . . 0 0

0 0 . . . 0 0
...

0 0 . . . −ρ 1


. (16)

Then the density functions of the transition and measurement equations of the model is

f(h1) =
1

(2π)
T
2 σT

∣∣∣V−1/2ρ

∣∣∣ exp

(
−1

2
σ−2h

′

1V
−1
ρ h1

)
, (17)

f(h2|h1) =
1

(2π)
T
2 (
√
λ)T

∣∣∣V−1/2ψ

∣∣∣ exp

(
−1

2
u

′

2u2

)
, (18)

f(y1|h1) =
1

(2π)
T
2

∣∣∣H−1/21

∣∣∣ exp

(
−1

2
y

′

1H
−1
1 y1

)
, (19)

f(y2|h2) =
1

(2π)
T
2

∣∣∣H−1/22

∣∣∣ exp

(
−1

2
y

′

2H
−1
2 y2

)
, (20)

where

u2 =
(
V
− 1

2
ψ h2 −V

− 1
2

ρ h1
ω

σ

)
/
√
λ, (21)

H1 = diag(exp(h11), . . . , exp(h1T )), H2 = diag(exp(h21), . . . , exp(h2T )). (22)

Then, we can rewrite the likelihood function as

(Likelihood): f(y1,y2) =

∫ ∫
f(y2|h2)f(y1|h1)f(h2|h1)f(h1)dh2dh1, (23)

where

f(u2|h1) =
1

(2π)
T
2

exp

(
−1

2
u

′

2u2

)
(24)

in terms of u2, instead of h2, by the variable transformation (21).

A.2 Score function with respect to λ

We obtain the score function with respect to λ as

∂f(y)

∂λ
=

∫ ∫
∂f(y2|u2,h1)

∂λ
f(y1|h1)f(u2|h1)f(h1)du2dh1, (25)
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because the variance parameter λ appears only in

f(y2|h1,u2) =
1

(2π)
T
2

∣∣∣H−1/22

∣∣∣ exp

(
−1

2
y

′

2H
−1
2 y2

)
through h2 in H2 = diag(exp(h2)), since we have

h2 = V
− 1

2
ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
(26)

from (14).

Then we obtain the derivative of f(y2|h1,u2, ) with respect to λ as follows. First, noting

(26), we define

f(y2|h1,u2) = KF, (27)

where

K = |H2|−1/2 = exp

(
−1

2
11×Th2

)
= exp

(
−1

2
11×TV

1/2
ψ

(√
λu2 + V

− 1
2

ψ

ω

σ
h1

))
,

F = exp

(
−1

2
y

′

2H
−1
2 y2

)
= exp

(
−1

2
( exp(−h2))

′(y2 ◦ y2)

)
(28)

and, for notational convenience, we define

exp(−h2) = (exp(−h21), . . . , exp(−h2T ))′, y2 ◦ y2 =
(
y221, y

2
22, . . . , y

2
2T

)′
and h2 denotes a function of u2 as the abbreviation of equation (26).

Then, defining

M1 =
∂K

∂λ

1√
λ
, M2 =

∂F

∂λ

1√
λ
, (29)

we have

B = lim
λ→0

∂f(y)

∂λ

= lim
λ→0

∫
(other terms)

(
F
∂K

∂λ
+ K

∂F

∂λ

)
du2dh1

= lim
λ→0

√
λ
∫

(other terms)(F M1 + K M2)du2dh1

λ

(30)
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from (25). We then have that

∂K

∂λ
= −1

2
K

1

2
√
λ
11×TV

1/2
ψ u2 = − 1

4
√
λ
K 11×TV

1/2
ψ u2,

∂F

∂λ
= −1

2
F

∂

∂λ
exp(−h′

2)(y2 ◦ y2) =
1

4
√
λ
F G,

G = u
′

2V
1/2
ψ

′

H−12 (y2 ◦ y2),

(31)

since

∂h2

∂λ
=

1

2
√
λ
V

1/2
ψ u2,

∂ exp(−h2)

∂λ
= − 1

2
√
λ
H−12 V

1/2
ψ u2.

Note that the denominators of the derivatives (31) and (29) contain λ, which converges

to zero, and hence is intractable by conventional method. We will use the ingenious method

proposed by Chesher (1984) to solve this singularity. First, applying L’Hopital’s rule with

respect to λ , we obtain

B = 1
2
B + lim

λ→0

√
λ ∂
∂λ

∫
(other terms)(F M1 + K M2)du2dh1. (32)

Comparing the both sides of equation (32), we have

B = 2 lim
λ→0

√
λ

∫
(other terms)

(
∂F

∂λ
M1 +

∂K

∂λ
M2 + F

∂M1

∂λ
+ K

∂M2

∂λ

)
du2dh1

= 2 lim
λ→0

√
λ

∫
(other terms)

(
2M1 M2 + F

∂M1

∂λ
+ K

∂M2

∂λ

)
du2dh1.

(33)

Defining Y2 = diag(y2 ◦ y2), the terms in the integrand are

M1M2 = −1

4
K 11×TV

1/2
ψ u2 ×

1

4
F u

′

2V
1/2
ψ

′

Y2 exp(−h2),

∂M1

∂λ
= −1

4

∂K

∂λ
11×TV

1/2
ψ u2 =

1

16
√
λ
K tr(1T×TV

1/2
ψ u2u

′

2V
1/2
ψ

′

),

∂M2

∂λ
=

1

4

∂F

∂λ
G +

1

4
F
∂G

∂λ
=

1

16
√
λ
FG2 +

1

4
F
∂G

∂λ
,

∂G

∂λ
= u

′

2V
1/2
ψ

′

Y2
∂ exp(−h2)

∂λ
= − 1

2
√
λ
tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)
,

G2 = u
′

2V
1/2
ψ

′

Y2 exp(−h2) exp(−h′

2)Y2V
1/2
ψ u2

= tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h′

2)Y2V
1/2
ψ u2u

′

2

)
.
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Then, we have

B =
1

8
lim
λ→0

∫
f(y1|h1)

1

(2π)
T
2

KF[
−2tr

(
11×TV

1/2
ψ u2u

′

2V
1/2
ψ

′

Y2 exp(−h2)

)
+ tr

(
1T×TV

1/2
ψ u2u

′

2V
1/2
ψ

′
)

+ tr

(
V

1/2
ψ

′

Y2 exp(−h2) exp(−h′

2)Y2V
1/2
ψ u2u

′

2

)
− 2tr

(
V

1/2
ψ

′

Y2H
−1
2 V

1/2
ψ u2u

′

2

)]
f(u2|h1)f(h1)du2dh1.

(34)

We can perform the integration with respect to u2 in (34) analytically. As u2|h1 follows the

T -dimensitonal standard normal distribution, we have that∫
u2u

′

2f(u2|h1)du2 = IT . (35)

Under the null hypothesis h2 = h1 and ψ = ρ, equation (34) is

B =
1

8

∫
f(y1|h1)

1

(2π)
T
2

KF
[
−2tr

(
11×TV

1/2
ρ V1/2

ρ

′

Y2 exp(−h1)
)

+ tr
(
1T×TV

1/2
ρ V1/2

ρ

′)
+ tr

(
V1/2
ρ

′

Y2 exp(−h1) exp(−h′

1)Y2V
1/2
ρ

)
− 2tr

(
V1/2
ρ

′

Y2H
−1
1 V1/2

ρ

)]
f(h1)dh1. (36)

Noting that Vρ = V1/2
ρ V1/2

ρ

′

and applying the cyclic property of the trace operator to

simplify the equation (36), we have

B =
∂f(y)

∂λ

∣∣∣∣
H0

=

∫
trJf(y,h1)dh1, (37)

where

J =
1

8

(
− 2 (11×TVρY2 exp(−h1)) + 1T×TVρ

+ VρY2 exp(−h1) exp(−h′

1)Y2 − 2VρY2H
−1
1

)
.

(38)

Since we have

∂ log f(y)

∂λ

∣∣∣∣
H0

= lim
λ→0

1

f(y)

∂f(y)

∂λ
=

∫
trJ

1

f(y)
f(h1,y)dh1 = trEh1|y(J) (39)

from f(h1|y) = f(h1,y)/f(y), we have only to evaluate Eh1|y [exp(−h1)] andEh1|y
[
exp(−h1) exp(−h1)

′]
to obtain the score function. These expected values have no analytic expressions so that they

should be evaluated numerically.
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A.3 Score function with respect to ψ

In the log-likelihood function, ψ appears only in f(y1|h1,u2) = KF in (27). The partial

derivative of the likelihood with respect to ψ is

∂f(y)

∂ψ
=

∫ (
∂K

∂ψ
K−1 +

∂F

∂ψ
F−1

)
f(y,u2,h1)du2dh1

=

∫ (
∂K

∂ψ
K−1 +

∂F

∂ψ
F−1

)
f(y,h1)dh1,

(40)

since, as will be seen later, u2 can be integrated out in
(
∂K
∂ψ

K−1 + ∂F
∂ψ

F−1
)

. Then we have

∂ log f(y)

∂ψ

∣∣∣
H0

=

∫ (
∂K

∂ψ
K−1 +

∂F

∂ψ
F−1

)
f(h1|y)dh1 = Eh1|y

(
∂K

∂ψ
K−1 +

∂F

∂ψ
F−1

)
, (41)

noting that

f(h1|y) = f(h1,y)/f(y).

First, using (28) and the formula

∂V
1/2
ψ

∂ψ
= −V1/2

ψ ZψV
1/2
ψ , (42)

where

Zψ =
∂V

−1/2
ψ

∂ψ
,

we have that

∂K

∂ψ
= −1

2
K11×T

∂V
1/2
ψ

∂ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
=

1

2
K11×TV

1/2
ψ ZψV

1/2
ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
,

∂F

∂ψ
= −1

2
F

∂

∂ψ
[(y2 ◦ y2)

′ exp(−h2)]

= −1

2
F (y2 ◦ y2)

′H−12 V
1/2
ψ ZψV

1/2
ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
,

(43)

as we have

h2 = V
1/2
ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
, (44)

and hence
∂

∂ψ
h2 =

∂V
1/2
ψ

∂ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
. (45)

23



Evaluating these terms under the null hypothesis λ = 0 and σ = ω, we have

∂K

∂ψ
|H0 = 1

2
K11×TV

1/2
ψ Zψh1, (46)

∂F

∂ψ
|H0 = −1

2
F tr

[
Y2V

1/2
ψ Zψh1 exp(−h′

1)
]
, (47)

using the identity

(y2 ◦ y2)
′H−11 = exp(−h′

1)Y2.

Then, from (41), we have

∂ log f(y)

∂ψ

∣∣∣∣
H0

=
1

2
11×TV

1/2
ρ ZρEh1|y[h1]−

1

2
tr
[
Y2V

1/2
ρ ZρEh1|y[h1 exp(−h′

1)]
]
. (48)

Note that the matrix Y2V
1/2
ρ Zρ is lower triangular, and we have only to calculate the upper

triangular part of the matrix Eh1|y[h1 exp(−h′

1)] in evaluating the score function (48).

A.4 Score function with respect to ω

First, note that, in the log-likelihood function, ω appears only in f(y2|h1,u2) = KF, through

h2 = V
1/2
ψ

(√
λu2 + V

− 1
2

ρ
ω

σ
h1

)
, (49)

as shown in (27). Then, we have the formula

∂ log f(y)

∂ω
= Eu2,h1|y

(
∂K

∂ω
K−1 +

∂F

∂ω
F−1

)
, (50)

using

∂f(y)

∂ω
=

∫
(y1|h1)

∂f(y2|h1,u2)

∂ω
f(h1)f(u2|h1)du2h1

=

∫ (
∂K

∂ω
K−1 +

∂F

∂ω
F−1

)
f(y,h1)dh1, (51)

as we have

∂f(y2|h1,u2)

∂ω
=
∂K

∂ω
F + K

∂F

∂ω
=

(
∂K

∂ω
K−1 +

∂F

∂ω
F−1

)
f(y2|h1,u2). (52)

From (28) their partial derivatives of K and F are

∂K

∂ω

∣∣∣∣
H0

= −1

2
K11×T

1

σ
h1,

∂F

∂ω

∣∣∣∣
H0

= −1

2
F

∂

∂ω
[(y2 ◦ y2)

′ exp(−h2)]
∣∣∣
H0

=
1

2
F tr

[
(y2 ◦ y2)

′H2
1

σ
h1

] ∣∣∣
H0

,

(53)
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noting that, under the null hypothesis, we have ρ = ψ,h1 = h2, and Vρ = Vψ and

∂

∂ω
exp(−h2) = −H−12 ω/σ.

Then we have

∂ log f(y)

∂ω
|H0 = − 1

2σ
11×TEh1|y [h1] +

1

2σ
tr
[
(y2 ◦ y2)

′Eh1|y [exp(−h1) ◦ h1]
]
. (54)

A.5 Score function with respect to ρ

In the log-likelihood function, ρ appears only in f(y1|h1,u2) = KF and f(h1) in (17) and (27).

Then we have the derivative using the formula

∂ log f(y)

∂ρ

∣∣∣
H0

= Eh1|y

(
∂K

∂ρ
K−1 +

∂F

∂ρ
F−1 +

∂f(h1)

∂ρ
f(h1)

−1
)

(55)

analogously to that of (41). Noting (28) and (17) and defining

Zρ =
∂V−1/2ρ

∂ρ
, (56)

the derivatives of K and F are

∂K

∂ρ
= −1

2
K11×TV

1/2
ψ Zρ

ω

σ
h1, (57)

∂F

∂ρ
=

1

2
F (y2 ◦ y2)

′H−11 V
1/2
ψ Zρ

ω

σ
h1, (58)

∂f( h1)

∂ρ
= f(h1)

[
− ρ

1− ρ2
− 1

2
σ−2tr

(
∂V−1ρ
∂ρ

h1h
′

1

)]
. (59)

We have used (∂/∂ρ)
∣∣∣V1/2

ρ

∣∣∣ = 1/
√

1− ρ2 in deriving the first term of equation (59). Noting

that exp(−h1
′)Y2 = (y2 ◦ y2)

′H−11 under the null hypothesis, we have

∂K

∂ρ
|H0 = −1

2
K
[
11×TV

1/2
ρ Zρ

ω

σ
h1

]
= −∂K

∂ψ
|H0 , (60)

∂F

∂ρ
|H0 = −1

2
F tr

[
Y2V

1/2
ρ Zρ

ω

σ
h1 exp(−h′

1)
]

= −∂F
∂ψ
|H0 . (61)

The score function with respect to ρ is

∂ log f(y)

∂ρ
|H0 = −∂ log f(y)

∂ψ
|H0 −

ρ

1− ρ2
− 1

2
σ−2tr

(
∂V−1ρ
∂ρ

Eh1|y

(
h1h

′

1

))
. (62)
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A.6 Score Function with respect to σ

In the likelihood, σ appears only in K,F in (28) and f(h1). Then we can derive the score

function with respect to σ using the formula analogous to that of ρ given in (55), with ρ

replaced by σ. We can easily show from (28) that, under the null hypothesis ω = σ, the

derivatives of K and F with respect to σ are equal to the negative of the derivations with

respect to ω , namely

∂K

∂σ
|H0 = −∂K

∂ω
|H0 , (63)

∂F

∂σ
|H0 = −∂F

∂ω
|H0 , (64)

so that no additional calculations are necessary. From (17), the derivative of f(h1) is

∂f(h1)

∂σ
= f(h1)

[
− t
σ

+
1

σ3
tr
(
V−1ρ h1h

′

1

)]
. (65)

Using the formula

∂ log f(y)

∂σ

∣∣∣
H0

= Eh1|y

(
∂K

∂σ
K−1 +

∂F

∂σ
F−1 +

∂f(h1)

∂σ
f(h1)

−1
)
, (66)

whose derivation is analogous to that of (55), and comparing the formua (50), we have

∂ log f(y)

∂σ
|H0 = −∂ log f(y)

∂ω
|H0 −

t

σ
+

1

σ3
tr
(
V−1ρ Eh1|y

(
h1h

′

1

))
. (67)

B Pre-orthogonalization of data

B.1 Purpose

Before estimating the model using actual data the observed return variables should be or-

thogonalized so that the error terms (e1t, e2t) in the measurement equation (5) are distributed

contemporaneously independently with unit variance according to the assumption in (5), since

the actual financial returns are contemporaneously correlated.

We cannot estimate the model under the assumption that (e1t, e2t)
′ have non-zero correla-

tion and non-unit variances, because the increased number of the parameters to be estimated

increases the computational time of the maximum likelihood estimation considerably. This

problem is especially serious when the volatility series has high autocorrelation. We believe

that this difficulty can be removed in future by improved algorithm. At present, however, this
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assumption is unavoidable to perform Monte Carlo experiments reported in Section 4 with

sufficient number of iterations

We here show that, if the null hypothesis is true, namely h1t ≡ h2t, we can orthogonalize

the observed series so as to satisfy the assumption of uncorrelatedness in (5).

This pre-orthogonalization is not without cost. The most serious demerit is that the result

of the test depends upon the order of variables; we have a different value of the test statistic by

exchanging the order of the variables, because the second variable is redefined by the Cholesky

decomposition.

This asymmetry could be removed by including the correlation parameter in the measure-

ment equation in (5) explicitly and then by estimating it simultaneously by the maximum

likelihood method. However, we cannot use this method because the computational time is

prohibitively large if the correlation parameter is included, so that we are obliged to drop

the correlation parameter from (5) and to orthogonalize data before executing the test in the

empirical analysis in Section 6.

B.2 Algebraic details

We assume that under the null hypothesis h1t = h2t for any t and that the actual data, say

(ỹ1t, ỹ2t), is written as

(Unorthogonalized Model):

 ỹ1t

ỹ2t

 = exp
(h1t

2

)
A

 e1t

e2t

 , A =

 α1 0

α3 α2

 , (68)

in practice, namely when the disturbance term of the measurement equation has non-zero

correlation and non-unit variance, instead of (5). This assumption is justifiable because the

proposed Lagrange multiplier test statistic uses only the estimation of the null model.

We here estimate A−1, which is the desired orthogonalization matrix. First, note that the

product moment of (ỹ1t, ỹ2t) is

Λ ≡ E

 ỹ21t ỹ1tỹ2t

ỹ1tỹ2t ỹ22t

 = E(exp(h1t))AA′. (69)

We can estimate Λ consistently using the sample moment of (ỹ21t, ỹ1tỹ2t, ỹ
2
2t). Then we have

only to estimate E(exp(h1t)) in order to obtain A using the formula

A = (E(exp(h1t)))
−1/2Λ1/2, A−1 = (E(exp(h1t)))

1/2Λ−1/2, (70)
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where Λ1/2 denotes the Cholesky decomposition of Λ defined in (69).

Defining  ÿ1t

ÿ2t

 ≡ Λ−1/2

 ỹ1t

ỹ2t

 , (71)

we have that ÿ1t

ÿ2t

 = A−1(E(exp(h1t)))
−1/2

 ỹ1t

ỹ2t

 = (E(exp(h1t)))
−1/2 exp(h1t/2)

 e1t

e2t

 ,

and hence

log ÿ21t = − log(E(exp(h1t))) + h1t + log e21t.

Then, since we have E(log(e21t)) = −1.27 as shown by Harvey et al. (1994) and E(h1t) = 0

from the stationarity of h1t, we have that

1

T

∑
log ÿ21t ≈ E[log ÿ21t] = − log(E(exp(h1t)))− 1.27

and hence we can estimate E(exp(h1t)) in (70) by

E(exp(h1t)) ≈ exp
(
−(1/T )

∑
log ÿ21t + 1.27

)
.

Then we can have the orthogonalized data in (5) by y1t

y2t

 = Â
−1

 ỹ1t

ỹ2t

 ,

where

Â
−1

= exp
[
−
(

(1/T )
∑

log ÿ21t + 1.27
)
/2
]

Λ̂−
1
2 , (72)

Λ̂ =
1

T

 ∑
ỹ21t

∑
ỹ1tỹ2t∑

ỹ1tỹ2t
∑
ỹ22t

 . (73)
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