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Abstract

In the field of cooperative games with restricted cooperation, various restrictions on coali-

tion formation are studied. The most studied restrictions are those that arise from re-

stricted communication and hierarchies. This survey discusses several models of hierarchy

restrictions and their relation with communication restrictions.

In the literature, there are results on game properties, Harsanyi dividends, core stabil-

ity, and various solutions that generalize exisiting solutions for TU-games. In this survey

we mainly focus on axiomatizations of the Shapley value in different models of games with

a hierarchically structured player set, and their applications. Not only do these axiomati-

zations provide insight in the Shapley value for these models, but also by considering the

types of axioms that characterize the Shapley value, we learn more about different network

structures.

A central model of games with hierarchies are the games with a permission structure

where players in a cooperative transferable utility game are part of a permission structure

in the sense that there are players that need permission from other players before they

are allowed to cooperate. This permission structure is represented by a directed graph.

Generalizations of this model are, for example, games on antimatroids , and games with

a local permission structure. Besides discussing these generalizations, we briefly discuss

some applications, in particular auction games and hierarchically structured firms.

Key words: Cooperative TU-game, hierarchy, permission structure, antimatroid, local

permission structure, applications.

JEL code: C71

AMS subject classifications: 91A12



1 Introduction

A situation in which a finite set of players can generate certain payoffs by cooperation can

be described by a cooperative game with transferable utility (or simply a TU-game). A

TU-game consists of a player set, and for every subset of the player set, called a coalition,

a real number which is the worth that the coalition of players can earn when they agree to

cooperate.

In a TU-game there are no restrictions on the cooperation possibilities of the players,

i.e. every coalition is feasible and can generate a worth. Various models with restrictions

on coalition formation are discussed in the literature. The most applied restrictions are

those arising from restrictions in communication and hierarchies. In this survey we dis-

cuss several models where cooperation is restricted because the players are part of some

hierarchical structure. We review several of such models and their relations. Considering

payoff allocation we focus on the Shapley value, but other solutions such as the nucleolus,

Banzhaf value or Core are considered in the literature.

A central model in this are games with a permission structure which describe sit-

uations in which the players in a TU-game are part of a hierarchical organization that is

represented by a directed graph, refered to as a permission structure, such that there are

players that need permission from other players before they are allowed to cooperate. Var-

ious assumptions can be made about how a permission structure affects the cooperation

possibilities. In the conjunctive approach, it is assumed that every player needs permission

from all its predecessors before it is allowed to cooperate. Alternatively, in the disjunc-

tive approach, it is assumed that every player needs permission from at least one of its

predecessors before it is allowed to cooperate with other players.1

To take account of the limited cooperation possibilities, for every game with a

permission structure a modified game is defined which assigns to every coalition the worth

of its largest feasible subcoalition in the original game. The disjunctive and conjunctive

approach yield different modified games. A solution for games with a permission structure

is a function that assigns to every such a game a payoff distribution over the individual

players. Applying solutions for TU-games to the modified games yields solutions for games

with a permission structure. Applying the Shapley value to the two restricted games

described above yields two different solutions for games with a permission structure: the

conjunctive and the disjunctive (Shapley) permission values .

Games with a permission structure can be generalized in various ways, for exam-

ple to games on antimatroids . Antimatroids are combinatorial structures which, besides

permission structures, also generalize other models such as ordered partition voting where

1References to game models and solutions are given in the main text.
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players are partitioned into levels, and a coalition in a certain level can be active only if a

majority of players in higher levels approve. Since antimatroids are union closed (i.e. the

union of any two feasible coalitions is also feasible), a similar approach as for games with

a permission structure can be followed by defining a restricted game that assigns to every

coalition the worth of its largest feasible subset in the original game, and applying the

Shapley value (or any other TU-game solution) to this restricted game. We discuss how

some results can be generalized to this framework. After that we argue that antimatroids

are a natural counterpart for undirected communication graphs in the sense that they are

defined by properties that are similar to properties that characterize connected coalitions

in undirected communication graphs.

A special class of games with a permission structure that has many applications

in economics and operations research, are peer group games which are also a special case

of so-called digraph games . Peer group games are derived from peer group situations

being games with a permission structure where the game is additive and the permission

structure is a rooted tree. Applications are, e.g. polluted river games, liability games,

the duals of airport games, auction games and ATM games. Digraph games are directly

defined for weighted digraphs (with weights on the nodes/players) and are applied to

measure domination or centrality in directed networks. A model that generalizes games

with a permission structure as well as digraph games are games with a local permission

structure where players need permission from their predecessors to cooperate, but do not

need permission from their predecessors to allow their successors to cooperate. In this

sense, authority and value generation are separated.

From the many applications of games with a permission strucutre, we will briefly

discuss two: (i) auction games which are an application of peer group games, and (ii)

hierarchically structured firms where the permission structure is a rooted tree and the

game is convex such that the only nonnull players are those at the lowest level of the

hierarchy, i.e. those players that have no successors (the other players are supposed to be

managers who coordinate the production process but do not produce value themselves).

This survey is organized as follows. In Section 2, we discuss the central model of games

with a permission structure. In Section 3, we generalize permission structures to antima-

troids. In Section 4, we compare hierarchies with communication graphs, and argue that

antimatroids are a natural counterpart for communication graphs. In Section 5, we discuss

games with a local permission structure that generalize games with a permission structure

as well as digraph games. In Section 6, we discuss some applications. We end with some

concluding remarks in Section 7.
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2 Games with a permission structure

2.1 Cooperative TU-games

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by co-

operation can be described by a cooperative game with transferable utility (or simply a

TU-game), being a pair (N, v) where v: 2N → IR is a characteristic function on N satisfy-

ing v(∅) = 0. For every coalition E ⊆ N , v(E) ∈ IR is the worth of coalition E, i.e. the

members of coalition E can obtain a total payoff of v(E) by agreeing to cooperate. Since

we take the player set to be fixed, we denote a TU-game (N, v) just by its characteristic

function v and refer to this simply as a game. We denote the collection of all TU-games

(characteristic functions) on player set N by GN .

A payoff vector for game v ∈ GN is an |N |-dimensional vector x ∈ IRN assigning a

payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a function

f that assigns a payoff vector f(v) ∈ IRN to every TU-game v ∈ GN . One of the most

famous solutions for TU-games is the Shapley value (Shapley (1953)) given by

Shi(v) =
1

|N |!
∑

π∈Π(N)

mπ
i (v),

where Π(N) is the set of all permutations of N , and for every permutation π:N → N , the

corresponding marginal vector mπ(v) is given bymπ
i (v) = v({j ∈ N | π(j) ≤ π(i)})−v({j ∈

N | π(j) < π(i)}) for all i ∈ N .

The Core (Gillies (1953)) of v ∈ GN is the set of all efficient payoff vectors that are

group stable in the sense that no coalition can do better by separating, and is given by

Core(v) =

{
x ∈ IRN

∣∣∣∣∣∑
i∈N

xi = v(N) and
∑
i∈E

xi ≥ v(E) for all E ⊂ N

}
.

As known, the Core of a game is nonempty if and only if the game is balanced, see e.g.

Bondareva (1962) or Shapley (1967).

Next, we recall some game properties. Game v ∈ GN is monotone if v(E) ≤ v(F ) for

all E ⊆ F ⊆ N . We denote the class of all monotone TU-games on N by GNM . Game v ∈ GN

is superaditive if v(E ∪ F ) ≥ v(E) + v(F ) for all E,F ⊆ N such that E ∩ F = ∅. Game

v ∈ GN is convex if v(E ∪F ) + v(E ∩F ) ≥ v(E) + v(F ) for all E,F ⊆ N . Note that every

convex game is superadditive. A game is additive or inessential if v(E) =
∑

i∈E v({i}) for

all E ⊆ N .

Fot two games v, w ∈ GN , the game (v + w) ∈ GN is given by (v + w)(E) =

v(E) + w(E) for all E ⊆ N .

For every T ⊆ N , T 6= ∅, the unanimity game uT is given by uT (E) = 1 if T ⊆ E,

and uT (E) = 0 otherwise. It is well-known that the unanimity games form a basis for GN :
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for every v ∈ GN it holds that v =
∑

T⊆N
T 6=∅

∆v(T )uT , where ∆v(T ) =
∑

E⊆T (−1)|T |−|E|v(E)

are the Harsanyi dividends , see Harsanyi (1959). Using these Harsanyi dividends the

Shapley value also can be written as

Shi(v) =
∑
E⊆N
i∈E

∆v(E)

|E|
for all i ∈ N.

2.2 Games with a permission structure

A game with a permission structure describes a situation where some players in a TU-game

need permission from other players before they are allowed to cooperate with other players

in a coalition. Formally, a permission structure is a directed graph on N . A directed graph

or digraph is a pair (N,D) where N = {1, ..., n} is a finite set of nodes (representing the

players) and D ⊆ N×N is a binary relation on N . We assume the digraph to be irreflexive,

i.e., (i, i) 6∈ D for all i ∈ N . Since we take the player set to be fixed, we simply refer to

D for a digraph, and we denote the collection of all irreflexive digraphs on N by DN . For

i ∈ N , the nodes in SD(i) := {j ∈ N | (i, j) ∈ D} are called the successors of i, and the

nodes in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors of i in D. For given

D ∈ DN , a (directed) path from i to j in N is a sequence of distinct nodes (h1, . . . , ht)

such that h1 = i, hk+1 ∈ SD(hk) for k = 1, . . . , t − 1, and ht = j. The transitive closure

of D ∈ DN is the digraph tr(D) given by (i, j) ∈ tr(D) if and only if there is a directed

path from i to j. By ŜD(i) = Str(D)(i) we denote the set of successors of i in the transitive

closure of D, and refer to these players as the subordinates of i in D. We refer to the players

in P̂D(i) = {j ∈ N | i ∈ ŜD(j)} as the superiors of i in D. A digraph D ∈ DN is transitive

if D = tr(D). For a set of players E ⊆ N we denote by SD(E) =
⋃
i∈E SD(i), respectively,

PD(E) =
⋃
i∈E PD(i), the sets of successors, respectively predecessors of players in coalition

E. Also, for E ⊆ N , we denote ŜD(E) = ∪i∈E ŜD(i) and P̂D(E) = ∪i∈E P̂D(i).

A directed path (i1, . . . , it), t ≥ 2, in D is a cycle in D if (it, i1) ∈ D. We call digraph

D acyclic if it does not contain any cycle. Note that acyclicity of digraph D implies that D

has at least one node that does not have a predecessor. We refer to these as top nodes , and

denote the set of top nodes by TOP (D) = {i ∈ N | PD(i) = ∅}. A permission structure D

on N is quasi-strongly connected if there exists an i0 ∈ N such that ŜD(i0) = N \ {i0}. A

permission structure D on N is hierarchical if it is acyclic quasi-strongly connected. We

denote the collection of all hierarchical permission structures on N by DNH .

A triple (N, v,D) with N ⊂ IN a finite set of players, v ∈ GN a TU-game and

D ∈ DN a digraph on N is called a game with a permission structure. Again, since we

take the player set N to be fixed, we denote a game with a permission structure just as a

pair (v,D). In the conjunctive approach as introduced in Gilles, Owen and van den Brink
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(1992) and van den Brink and Gilles (1996) it is assumed that a player needs permission

from all its predecessors in order to cooperate with other players. Therefore, a coalition

is feasible if and only if for every player in the coalition all its predecessors are also in the

coalition. So, for permission structure D the set of conjunctive feasible coalitions is given

by

Φc
D = {E ⊆ N |PD(i) ⊆ E for all i ∈ E } .

For every E ⊆ N , let σcD(E) =
⋃
{F∈ΦcD|F⊆E}

F = E \ ŜD(N \ E) be the largest

conjunctive feasible subset2 of E in the collection Φc
D. Then, the induced conjunctive

restricted game of the pair (v,D) is the game rcv,D: 2N → IR that assigns to every coalition

E ⊆ N the worth of its largest conjunctive feasible subset, i.e.

rcv,D(E) = v(σcD(E)) for all E ⊆ N. (2.1)

A solution for games with a permission structure is a function f that assigns a payoff

distribution f(v,D) ∈ IRN to every game with permission structure (v,D) on N . The

conjunctive (Shapley) permission value ϕc is the solution that assigns to every game with

a permission structure the Shapley value of the conjunctive restricted game, thus

ϕc(v,D) = Sh(rcv,D) for all (v,D) ∈ GN ×DN .

Alternatively, for hierarchical permission structures3 in the disjunctive approach as

introduced in Gilles and Owen (1994) (see also Gilles (2010)) and van den Brink (1997) it

is assumed that a non-top player needs permission from at least one of its predecessors.

Therefore, a coalition is feasible if and only if for every player in the coalition (except

the top player), at least one of its predecessors is also in the coalition. So, for permission

structure D the set of disjunctive feasible coalitions is given by

Φd
D = {E ⊆ N |PD(i) ∩ E 6= ∅ for all i ∈ E \ TOP (D)} .

For every E ⊆ N , let σdD(E) =
⋃
{F∈ΦdD|F⊆E}

F be the largest disjunctive feasible

subset4 of E in Φd
D. Then, the induced disjunctive restricted game of the game with

permission structure (v,D) is the game rdv,D: 2N → IR that assigns to every coalition E ⊆ N

the worth of its largest disjunctive feasible subset, i.e.

rdv,D(E) = v(σdD(E)) for all E ⊆ N. (2.2)

2Every coalition having a unique largest feasible subset follows from the fact that ΦcD is union closed,

see also Section 3.
3Although defined for hierarchical permission structures, the disjunctive approach can be extended to

games with an acyclic permission structure in a straightforward way. We define it only for hierarchical

permission structures for notational convenience.
4Similar as in the conjunctive approach, every coalition having a unique largest feasible subset follows

from the fact that ΦdD is union closed, see Section 3.
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Figure 1: Permission structure D of Example 2.1

Then the disjunctive (Shapley) permission value ϕd is the solution that assigns to every

game with a permission structure the Shapley value of the disjunctive restricted game, thus

ϕd(v,D) = Sh(rdv,D) for all (v,D) ∈ GN ×DNH .

Example 2.1 Consider the game with permission structure (v,D) on N = {1, 2, 3, 4}
given by v(E) = 1 if 4 ∈ E, v(E) = 0 if 4 6∈ E, and D = {(1, 2), (1, 3), (2, 4), (3, 4)}
(see Figure 1). The conjunctive feasible coalitions are: {1}, {1, 2}, {1, 3}, {1, 2, 3} and

{1, 2, 3, 4}. Additional5 disjunctive feasible coalitions are {1, 2, 4} and {1, 3, 4}.
The conjunctive restriction is given by rcv,D(E) = 1 if E = {1, 2, 3, 4}, and rcv,D(E) = 0

otherwise. Thus ϕc(v,D) = (1
4
, 1

4
, 1

4
, 1

4
). The disjunctive restriction is given by rdv,D(E) = 1

if E ∈ {{1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}, and rdv,D(E) = 0 otherwise. Thus, ϕd(v,D) =

( 5
12
, 1

12
, 1

12
, 5

12
). 2

In Example 2.1, without any restriction, according to the Shapley value in the unrestricted

game, player 4 earns the full payoff of one, and the other players all earn zero. In the

conjunctive approach, all three other players are necessary to make player 4 active, and

therefore the restricted game becomes the unanimity game of the grand coalition N , and

the conjunctive permission value allocates the payoff equally over all four players, giving

each a payoff of 1
4
. In the disjunctive approach, players 2 and 3 are not necessary to make

player 4 active, although at least one of them is necessary. In the disjunctive permission

value this is reflected in the payoffs, where players 2 and 3 now get only 1
5

of the payoffs

of players 1 and 4 who both get the same payoff.

Which of the two approaches is most suitable? This depends on the application

one has in mind. In general, to motivate solutions we provide axiomatizations, preferably

‘comparable’ axiomatizations which help in comparing different solutions.

5Note that every conjunctive feasible coalition is also disjunctive feasible: ΦcD ⊆ ΦdD for all D ∈ DNH .
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2.3 Axiomatization of the permission values

Since in this paper we focus on the Shapley value, we refer to the conjunctive and dis-

junctive (Shapley) permission values often just as conjunctive and disjunctive permission

values. Player i ∈ N is inessential in game with permission structure (v,D) if i and all

its subordinates are null players in game v, i.e., if v(E) = v(E \ {j}) for all E ⊆ N and

j ∈ {i} ∪ ŜD(i). Player i ∈ N is necessary in game v if v(E) = 0 for all E ⊆ N \ {i}.
Next, we mention some axioms of solutions for games with a permission structure.

Efficiency and additivity are straightforward generalizations of TU-game solution axioms.

The inessential player property requires that inessential players earn a zero payoff. The

necessary player property requires that necessary players earn at least as much as any other

player if the game is monotone. Notice that a necessary player is a ‘strong’ player in a

monotone game.

Efficiency For every v ∈ GN and D ∈ DN , it holds that
∑

i∈N fi(v,D) = v(N).

Additivity For every v, w ∈ GN and D ∈ DN , it holds that f(v + w,D) = f(v,D) +

f(w,D).

Inessential player property For every v ∈ GN and D ∈ DN , if i ∈ N is an inessential

player in (v,D) then fi(v,D) = 0.

Necessary player property For every v ∈ GNM and D ∈ DN , if i ∈ N is a necessary

player in (N, v) then fi(v,D) ≥ fj(v,D) for all j ∈ N .

Both permission values satisfy these four axioms. We obtain an axiomatization of

the conjunctive permission value by adding the following axiom saying that in monotone

games, players earn at least as much as their successors.

Structural monotonicity For every v ∈ GNM and D ∈ DN , if j ∈ SD(i) then fi(v,D) ≥
fj(v,D).

Theorem 2.2 (van den Brink and Gilles (1996)) A solution f for games with a permission

structure is equal to the conjunctive permission value ϕc if and only if it satisfies efficiency,

additivity, the inessential player property, the necessary player property and structural

monotonicity.

We remark that the axioms in all axiomatizations mentioned in this paper are

logically independent.

For hierarchical permission structures, the disjunctive permission value satisfies all

these axioms except structural monotonicity. In Example 2.1, according to the disjunc-

tive permission value, player 2 earns 1
12

while player 4 earns 5
12

, showing that structural
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monotonicity is not satisfied. Note that player 1 still earns at least as much as player

4, also according to the disjunctive permission value. For hierarchical permission struc-

tures, the disjunctive permission value satisfies the following weaker version of structural

monotonicity.

We say that player i ∈ N dominates player j ∈ N completely if all directed ‘per-

mission paths’ from the top-player i0 to player j contain player i. We denote the set of

players that player i dominates completely by SD(i), i.e.,

SD(i) =
{
j ∈ ŜD(i)

∣∣∣ i belongs to every directed path from i0 to j
}
.

Also, define PD(i) = {j ∈ P̂D(i) | i ∈ SD(j)}. Weak structural monotonicity requires that

a players earns at least as much as each of its complete subordinates.

Weak structural monotonicity For every v ∈ GNM and D ∈ DN , if i ∈ N and j ∈ SD(i),

then fi(v,D) ≥ fj(v,D).

Further, the disjunctive permission value satisfies disjunctive fairness which states

that deleting the arc between two players h and j ∈ SD(h) (with |PD(j)| ≥ 2) changes the

payoffs of players h and j by the same amount. Moreover, also the payoffs of all players i

that completely dominate player h change by this same amount6. For D ∈ DN , h ∈ N and

j ∈ SD(h), we denote the permission structure that is left after deleting the arc between h

and j by D−(h,j) = D \ {(h, j)}.

Disjunctive fairness For every v ∈ GN and D ∈ DNH , if h ∈ N and j ∈ SD(h) with

|PD(j)| ≥ 2, then fj(v,D) − fj(v,D−(h,j)) = fi(v,D) − fi(v,D−(h,j)) for all i ∈
{h} ∪ PD(h).

It can be verified from Example 2.1 that the conjunctive permission value does not

satisfy disjunctive fairness. However, it satisfies the alternative conjunctive fairness which

states that deleting the arc between two players h and j ∈ SD(h) (with |PD(j)| ≥ 2)

changes the payoffs of player j and any other predecessor g ∈ PD(j) \ {h} by the same

amount. Moreover, also the payoffs of all players that completely dominate the other

predecessor g change by this same amount.

6This property is some kind of equal-loss-or-gain property. Since it is related to fairness as introduced

in Myerson (1977) for games with a limited communication structure (see Section 4), we refer to this

property as (disjunctive) fairness. Note that in disjunctive fairness we require that the successor on the

arc to be deleted has at least two predecessors, implying that the permission structure that is left after

deleting the arc is still quasi-strongly connected.

8



Conjunctive fairness For every v ∈ GN and D ∈ DNH , if h, j, g ∈ N are such that h 6= g

and j ∈ SD(h)∩SD(g) then fj(v,D)−fj(v,D−(h,j)) = fi(v,D)−fi(v,D−(h,j)) for all i ∈
{g} ∪ PD(g).

The axioms described above characterize the two (Shapley) permission values for

games with a hierarchical permission structure.7

Theorem 2.3 On the class of games with a hierarchical permission structure:

(i) (van den Brink (1997)) a solution f is equal to the disjunctive permission value

ϕd if and only if it satisfies efficiency, additivity, the inessential player property, the nec-

essary player property, weak structural monotonicity and disjunctive fairness.

(ii) (van den Brink (1999)) a solution f is equal to the conjunctive permission

value ϕc if and only if it satisfies efficiency, additivity, the inessential player property, the

necessary player property, weak structural monotonicity and conjunctive fairness.

Theorem 2.3 gives comparable axiomatizations of the conjunctive and disjunctive

permission values, that differ in only one axiom. In particular, an axiom that reflects some

kind of equal treatment with respect to certain players when deleting arcs.

If D = ∅ then there are no restrictions in coalition formation8 (and Φc
D = Φd

D =

2N) and the conjunctive and disjunctive restricted games are just equal to the original

game v. Consequently, ϕc(v,D) = ϕd(v,D) = Sh(v) in that case. Notice that the three

axiomatizations discussed here give the same axiomatization of the Shapley value for TU-

games in case one only considers the empty graph D = ∅. In that case, efficiency and

additivity just boil down to the corresponding axioms for TU-game solutions. Since no

player has subordinates, a player is inessential if and only if it is a null player, and thus the

inessential player property boils down to the null player property for TU-game solutions.

The necessary player property does not depend on the permission structure anyway, and

can be stated as well for TU-game solutions by requiring that a necessary player in a

monotone game earns at least as much as any other player.9 Efficiency, additivity, the

inessential (null) player property and the necessary player property then give uniqeness as

in Shapley (1953). Note that structural monotonicity, disjunctive fairness and conjunctive

fairness have no meaning when D = ∅.
The two fairness axioms that are mentioned above compare the effects of deleting

the arc between players h and j ∈ SD(h) on the payoffs of players h and j, respectively, on

7Other axiomatizations of the conjunctive permission value for games with an acyclic permission struc-

ture are given in van den Brink and Gilles (1996).
8Note that D = ∅ is not quasi-strongly connected, but it is acyclic.
9Since all players in T ⊆ N are necessary players in the unanimity game uT on T , they should earn the

same in that game, which in the axiomatization of the Shapley value is guaranteed by symmetry.
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the payoffs of players g ∈ PD(j) \ {h} and j. These properties do not compare the change

in payoffs of players h and g ∈ PD(j) \ {h} after deleting the arc between h and j. The

opposite change property states that deleting the arc between player h and j ∈ SD(h) (with

|PD(j)| ≥ 2) changes the payoffs of the two predecessors h and g ∈ PD(j) \ {h} in opposite

direction. The Shapley permission values do not satisfy this property.10 The Shapley

permission values do satisfy this property if we restrict ourselves to monotone games. As

shown in van den Brink (2010), the conjunctive and disjunctive Banzhaf permission values

(obtained by applying the Banzhaf value11 to the conjunctive and disjunctive restricted

games, do satisfy this opposite change property. They even satisfy the stronger property

of power split neutrality which requires that the sum of the payoffs of the two predecessors

does not change.12

For monotone games, deleting the arc between two players does not increase the

payoff of the predecessor on the arc according to both Shapley permission values. Also,

deleting an arc does not decrease the payoff of any other predecessor of the successor on

the arc. The effect for the successor on the deleted arc depends on the approach. Ac-

cording to the conjunctive permission value, the payoff of the successor does not decrease,

but according to the disjunctive permission value it does not increase. This comes from a

fundamental difference between the two approaches, where deleting an arc leads to more

feasible coalitions in the conjunctive approach, but to less feasible coalitions in the dis-

junctive approach. In the conjunctive approach, deleting an arc means that the successor

on this arc does not need permission from this predecessor anymore. In the disjunctive

approach, deleting an arc means that the successor cannot use the permission from this

predecessor anymore, so now needs permission from at least one of its other predecessors,

which was also sufficient before deleting the arc. This gives a very different interpreta-

tion to an arc: in the disjunctive approach an additional arc creates possibilities, but in

the conjunctive approach an additional arc creates restrictions. In both approaches, the

feasible coalitions that are lost or gained contain both players on the arc.

Theorem 2.4 (van den Brink (1999)) For every hierarchical permission structure D ∈ DNH
and i, j ∈ N such that (i, j) ∈ D, it holds that Φc

D ⊂ Φc
D−(i,j)

and Φd
D−(i,j)

⊂ Φd
D.

In the following, we refer to a set of coalitions F ⊆ 2N that can be the conjunctive

10Consider, for example, the game with permission structure (v,D) on N = {1, 2, 3, 4, 5}, given by

v = u{4,5}− 7
10u{4}, and D = {(1, 2), (1, 3), (1, 5), (2, 4), (3, 4)}. Then, ϕd2(v,D)−ϕd2(v,D−(2,4)) = − 1

120 and

ϕd3(v,D)−ϕd3(v,D−(2,4)) = − 1
40 . For the conjunctive Shapley permission values ϕc2(v,D)−ϕc2(v,D−(2,4)) =

1
40 and ϕc3(v,D)− ϕc3(v,D−(2,4)) = 1

120 .
11The Banzhaf value as solution for TU-games is based on the Banzhaf index for voting games (Banzhaf

(1965)) and is generalized to TU-games games by, e.g., Owen (1975) and Dubey and Shapley (1979).
12In van den Brink (2010) these axioms are used to axiomatize the conjunctive and disjunctive Banzhaf

permission values, also applying vertical and horizontal merge neutrality properties.
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(respectively disjunctive) feasible set corresponding to some acyclic permission structure,

i.e. there is some acyclic permission structure D such that F = Φc
D (respectively F = Φd

D)

as a conjunctive (respectively disjunctive) feasible set.

3 Games on an antimatroid

Games with a permission structure are one way to model games with a hierarchical struc-

ture on the set of players. Are there other ways to model hierarchically structured player

sets? In Algaba, Bilbao, van den Brink and Jiménez-Losada (2003a, 2003b, 2004), the

structure on the player set is represented by an antimatroid.

3.1 Antimatroids

Antimatroids are a combinatorial structure introduced by Dillworth (1940) and studied by

Edelmann and Jamison (1985).

Definition 3.1 A set of feasible coalitions A ⊆ 2N is an antimatroid on N if it satisfies

1. ∅ ∈ A

2. (Closed under union) If E,F ∈ A then E ∪ F ∈ A

3. (Accessibility) If E ∈ A, E 6= ∅, then there exists an i ∈ E such that E \ {i} ∈ A.

An antimatroid is a normal antimatroid if, additionally, it satisfies

4. (Normality) For every i ∈ N there exists an E ∈ A such that i ∈ E.

Note that normality and union closedness imply that N ∈ A. In the following we refer to

normal antimatroids simply as antimatroids. The conjunctive and disjunctive feasible sets

corresponding to an acyclic permission structure are antimatroids.

Theorem 3.2 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) If D is an

acyclic permission structure on N , then Φc
D and Φd

D are antimatroids on N .

Next question is if antimatroids are really more general than permission structures. First,

we exactly characterize those antimatroids that can be the conjunctive or disjunctive feasi-

ble set of some permission structure. It turns out that conjunctive feasible sets are exactly

those that are closed under intersection. These are well known structures, also known as

poset antimatroids .
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Theorem 3.3 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φc
D if and only if

E ∩ F ∈ A for every E,F ∈ A.

An alternative way to characterize poset antimatroids is by using paths. An extreme player

of E ∈ A is a player i ∈ E such that E\{i} ∈ A. So, extreme players are those players that

can leave a feasible coalition E keeping feasibility. By accessibility, every feasible coalition

has at least one extreme player. Coalition E ∈ A is a path in A if it has a unique extreme

player. The path E ∈ A is a i-path in A if it has i ∈ E as unique extreme player.

The paths form the basis of an antimatroid in the sense that every feasible coalition

in an antimatroid is either a path, or can be written as the union of other feasible coalitions

in the antimatroid. So, if we know the paths then we generate the full antimatroid by

applying the union operator.

Theorem 3.4 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φc
D if and only if

for every player i ∈ N there is a unique i-path in A.

This theorem implies that a conjunctive feasible set (poset antimatroid) has exactly n

paths, one for each player. In Example 2.1 the paths of players 1, 2, 3 and 4, respectively,

are the (feasible) sets {1}, {1, 2}, {1, 3} and {1, 2, 3, 4}. Feasible coalition {1, 2, 3} is the

union of the paths {1, 2} and {1, 3}.
Obviously, in a disjunctive feasible set there can be players that have more than one

path. In Example 2.1, we see that {1, 2, 4} and {1, 3, 4} are both paths of player 4. On

the other hand, typical for the disjunctive feasible set Φd
D is that, given a path, leaving out

the unique extreme player, we have again a path, see for example the sequence of paths

{1, 2, 4}, {1, 2}, {1}, ∅ in Example 2.1. This is not satisfied by the conjunctive feasible

set Φc
D since deleting the unique extreme player from the path {1, 2, 3, 4}, we are left with

{1, 2, 3} which is not a path since both players 2 and 3 are extreme players (as we saw

above, it is the union of the feasible coalitions {1, 2} and {1, 3}). It turns out that this

‘path property’ is typical for disjunctive feasible sets. In fact, we need something stronger.

Theorem 3.5 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) Let A be an

antimatroid. There is an acyclic permission structure D such that A = Φd
D if and only if

1. Every path E has a unique feasible ordering, i.e. E := (i1 > · · · > it) such that

{i1, . . . , ik} ∈ A for all 1 ≤ k ≤ t. Furthermore, the union of these orderings for all

paths is a partial ordering of N .

2. If E,F and E \ {i} are paths such that the extreme player of F equals the extreme

player of E \ {i}, then F ∪ {i} ∈ A.
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Next, we show that antimatroids are really more general than permission structures

by giving an example of an antimatroid that does not satisfy the properties of Theorems

3.4 and 3.5.

Example 3.6 Ordered partition voting Consider player set N = {1, 2, 3, 4, 5}. Suppose

that the player set is partitioned in two levels: Level 1 consists of players 1, 2 and 3, while

Level 2 consists of players 4 and 5. Suppose that all subsets of Level 1 are feasible, but

every subset of Level 2 needs approval of a majority (two-player) coalition of Level 1. So,

the set of feasible coalitions is

A =


∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5},
{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}


This is an antimatroid. However, it is not a conjunctive feasible set (poset an-

timatroid) since {1, 2, 4}, {1, 3, 4} and {2, 3, 4} are all paths of player 4. It is also not a

disjunctive feasible set since taking out the unique extreme player (4) from the path {1, 2, 4}
gives coalition {1, 2} which is not a path. 2

It is not difficult to prove that the conjunctive and disjunctive approach coincide if

and only if the permission structure is a forest.

Theorem 3.7 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) Let D be an

acyclic permission structure. Then Φc
D = Φd

D if and only if |PD(i)| ≤ 1 for all i ∈ N .

3.2 Cooperative games on an antimatroid

A game on an antimatroid is a triple (N, v,A) where v ∈ GN is a characteristic function,

and A is an antimatroid on player set N . Since we take the player set to be fixed, we denote

a game on an antimatroids just as a pair (v,A). The antimatroid is the set of feasible

coalitions in the game, and thus reflects the restricted cooperation possibilities. Since the

conjunctive and disjunctive feasible sets derived from an acyclic permission structure are

antimatroids, this model generalizes the games with a permission structure.

By union closedness, every coalition has a unique largest feasible subset. For antima-

troids, Korte, Lóvasz and Schrader (1991) introduced the interior operator intA: 2N → A
that assigns to every set its largest feasible subset, i.e.

intA(E) =
⋃

{F∈A|F⊆E}

F for all E ⊆ N.
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Using this operator we can easily generalize the definition of the conjunctive and

disjunctive restricted game for games with a permission structure to games on antimatroids.

The restriction of game v on antimatroid A is the game vA that assigns to every coalition

the worth of its largest feasible subset, and thus is given by

vA(E) = v(intA(E)) for all E ⊆ N.

Next, we mention some properties for TU-games that are inherited by the restricted game.13

Player i ∈ N is an atom in antimatroid A if {i} ∈ A. If all i ∈ N are atoms in A, then

A = 2N and vA = v for all games v.

Theorem 3.8 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2004)) Let A be an

antimatroid and v be a monotone game on N . Then

1. vA is monotone.

2. If v is superadditive then vA is superadditive.

3. If v is balanced then vA is balanced. In particular Core(v) ⊆ Core(vA).

4. If v is totally balanced then vA is totally balanced.

5. If A has a unique atom, then vA is monotone, superadditive and totally balanced.

Since the set of conjunctive and the set of disjunctive feasible coalitions in some acyclic

permission structure are antimatroids, the above theorems also hold for (conjunctive and

disjunctive) games with an acyclic permission structure.

3.3 Axiomatization of the restricted Shapley value

A solution f for games on antimatroids assigns a payoff vector f(v,A) ∈ IRN to every game

on an antimatroid (v,A) on N . We consider the solution ϕSh that assigns to every game

on an antimatroid, the Shapley value of the restricted game, i.e.

ϕSh(v,A) = Sh(vA)

Next, we generalize the axioms that characterized the permission values in the previous

section. The first three axioms are straightforward generalizations of the corresponding

axioms for games with a permission structure discussed in the previous section.

Efficiency For every v ∈ GN and antimatroid A, it holds that
∑

i∈N fi (v,A) = v(N).

13For a study of inheritance properties in a general setting, we refer to Algaba, Bilbao and López (2001).
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Additivity For every v, w ∈ GN and antimatroidA, it holds that f (v + w,A) = f (v,A)+

f (w,A).

Necessary player property For every v ∈ GNM and antimatroidA, if i ∈ N is a necessary

player in monotone game v, then fi (v,A) ≥ fj (v,A) for all j ∈ N .

For antimatroids, an inessential player is a null player such that every player that is some-

how dependend on this player in the coalition formation is also a null player. We consider

a player j dependend on another player i in the coalition formation process if i is in at least

one j-path. We denote by A(j) the set of j-paths for j ∈ N . Therefore, for antimatroid

A on N define P̂A(j) =
⋃
E∈A(j) E as the set of players that are in at least one j-path.

Player i ∈ N is an inessential player in (v,A) if player i and every player j ∈ N such that

i ∈ P̂A(j) are null players in v.

Inessential player property For every v ∈ GN and antimatroidA, if i ∈ N is an inessen-

tial player in (v,A) then fi (v,A) = 0.

For structural monotonicity, we require that a player i earns at least as much as any other

player j such that i is in every j-path. For antimatroid A on N define PA(j) =
⋂
E∈A(j) E

as the set of players that are in every j-path.

Structural monotonicity For every v ∈ GNM and antimatroid A, if i ∈ PA(j), then

fi (v,A) ≥ fj (v,A).

Obviously, PA(j) ⊆ P̂A(j). Moreover, an antimatroid is a poset antimatroid if and only if

P̂A(j) = PA(j) for all j ∈ N .

Finally, we generalize both conjunctive as well as disjunctive fairness by requir-

ing that deleting a feasible coalition from an antimatroid, such that what is left is still

an antimatroid, has the same effect on the payoffs of all players in the coalition that is

deleted.14

Fairness For every v ∈ GN and antimatroid A, if E ∈ A is such that A \ {E} is an

antimatroid on N , then

fi (v,A)− fi (v,A \ {E}) = fj (v,A)− fj (v,A \ {E}) for all i, j ∈ E.
14For a coalition E to be deleted leaving behind an antimatroid, the deleted coalition should be a path

(otherwise union closedness will be violated) such that there is no path F ⊃ E with |F | = |E|+1 (otherwise

F has no extreme player and accessibility is violated).
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Theorem 3.9 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2003a)) A solution

f for games on antimatroids is equal to the restricted Shapley value ϕSh if and only if it

satisfies efficiency, additivity, the necessary player property, the inessential player property,

structural monotonicity and fairness.

Recall that in the axiomatizations of the conjunctive and disjunctive permission values

in the previous section, we found that the conjunctive permission value satisfied struc-

tural monotonicity, while the disjunctive permission value only satisfied weak structural

monotonicity. Applying structural monotonicity for antimatroids as defined above to the

conjunctive or disjunctive feasible sets yields weak structural monotonicity since we only

compare the payoffs of a player j with a player i that is in every ‘permission path’ to the

top.

Also, we saw that the conjunctive and disjunctive permission values differ with

respect to the fairness axiom they satisfy: conjunctive fairness, respectively, disjunctive

fairness. Fairness for antimatroids as defined above generalizes both these fairness axioms.

The difference is with respect to the changes in the conjunctive and disjunctive feasible set

as a consequence of deleting an arc. As mentioned in Theorem 2.4, deleting an arc leads to

more feasible coalitions in the conjunctive feasible set, and to less feasible coalitions in the

disjunctive feasible set. But in both cases the two players on the deleted arc are in every

coalition that appears, respectively dissappears, from the set of feasible coalitions.

Besides the axiomatization using conjunctive fairness, Theorem 2.2 axiomatizes the

conjunctive permission value by the stronger structural monotonicity (for games with a

permission structure) and without fairness. Considering the conjunctive feasible set as

an antimatroid, structural monotonicity (for antimatroids) is equivalent to both weak

structural monotonicity as well as structural monotonicity (for games with a permission

structure) since for conjunctive feasible sets every player j has a unique j-path, and thus

PΦcD
(j) = P̂ΦcD

(j). It turns out that deleting fairness from the above axiomatization yields

an axiomatization of the restricted Shapley value (conjunctive permission value) on the

class of poset antimatroids. This result also allows us to characterize the class of poset

antimatroids (among the antimatroids) as those antimatroids where the Shapley value is

characterized by the axioms without fairness.

Theorem 3.10 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2003a)) (i) A solu-

tion f for games on poset antimatroids is equal to the restricted Shapley value ϕSh if and

only if it satisfies efficiency, additivity, the necessary player property, the inessential player

property and structural monotonicity.

(ii) Let A be an antimatroid on N . Then A is a poset antimatroid if and only if ϕSh (·,A)

is the unique solution satisfying efficiency, additivity, the necessary player property, the
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inessential player property and structural monotonicity.

Note that with part (ii) of this theorem, we used an axiomatization of a solution (the Shap-

ley value) to characterize a class of structures (in this case the class of poset antimatroids

among the antimatroids). Although not done very often, characterizing network structures

as those where an axiomatization of the Shapley value is valid (i.e. gives uniqueness) can

be a useful approach to learn more about network structures.

4 Communication versus hierarchies

4.1 Communication graphs

One of the most well-known restrictions on coalition formation are communication restric-

tions as introduced in Myerson (1977). In that model there is a communication network

on the set of players in a cooperative game and a coalition E is feasible if and only if

the players in E are connected within this communication network. This communication

network is represented as an undirected graph on the set of players.

An undirected graph is a pair (N,L) whereN is the set of nodes and L ⊆ {{i, j}|i, j ∈
N, i 6= j} is a collection of subsets of N such that every element of L contains precisely two

elements. The elements of L represent undirected bilateral communication links and are

refered to as edges or links . Since the nodes in a graph represent the positions of players

in a communication network, we refer to the nodes as players. A sequence of k different

players (i1, . . . , ik) is a path in (N,L) if {ih, ih+1} ∈ L for h = 1, . . . , k − 1. Two distinct

players i and j, i 6= j, are connected in graph (N,L) if there is a path (i1, . . . , ik) with

i1 = i and ik = j. A graph is connected if any two players are connected in the graph. For

graph (N,L) and coalition E ⊆ N , the set L(E) = {{i, j} ∈ L|{i, j} ⊆ E} is the set of

links between players in E. A coalition E ⊆ N is connected in graph (N,L) if (N,L(E))

is connected. A maximally connected subset of coalition E in (N,L) is called a component

of E in that graph, i.e. F ⊆ E is a component of E in (N,L) if and only if (i) F is

connected in (N,L(E)) and (ii) for every h ∈ E \F the coalition F ∪{h} is not connected

in (N,L(E)).

A triple (N, v, L) with (N, v) a TU-game and (N,L) an undirected communication

graph is called a communication graph game. Since we take the player set to be fixed, we

denote a communication graph game (N, v, L) just by (v, L). In the communication graph

game (v, L) on N , players can cooperate if and only if they are able to communicate with

each other, i.e. a coalition E is feasible if and only if it is connected in (N,L). Then,

the set of feasible coalitions in a communication graph game (v, L) is the set of coalitions
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Figure 2: Communication graph (N,L) of Example 4.1

FL ⊆ 2N given by

FL = {E ⊆ N | E is connected in (N,L)}.

We refer to this set as the communication feasible set of communication graph (N,L).

Myerson (1977) introduced the restricted game of a communication graph game (v, L) as

the TU-game (N, vL) in which every feasible coalition E can earn its worth v(E). Whenever

E is not feasible it can earn the sum of the worths of its components in (N,L). Denoting the

set of components of E ⊆ N in (N,L) by CL(E), the restricted game (N, vL) corresponding

to communication graph game (v, L) thus is given by15

vL(E) =
∑

F∈CL(E)

v(F ) for all E ⊆ N. (4.3)

As solution, Myerson (1977) proposes to take for every communication graph game the

Shapley value of the corresponding restricted game, a solution that is later named the

Myerson value for communication graph games. Myerson (1977) also axiomatized this

solution by the axioms of component efficiency (meaning that every component allocates

its own worth among its members) and fairness (meaning that deleting an edge changes

the payoffs of the two players on this edge equally).

Example 4.1 Consider the communication graph (N,L) on N = {1, . . . , 5} given by

L = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}}, see Figure 2. Players 1 and 5 are connected by two

paths: (1, 2, 4, 5) and (1, 3, 4, 5). Coalition {1, 4, 5} has two components: {1} and {4, 5}.
Considering the unanimity game u{1,5} we see that the only feasible coalitions containing

the two unanimity players are {1, 2, 4, 5}, {1, 3, 4, 5} and N . Therefore, the Myerson value,

obtained as the Shapley value of the restricted game vL = u{1,2,4,5} + u{1,3,4,5}− uN assigns

payoffs ( 3
10
, 1

20
, 1

20
, 3

10
, 3

10
). 2

15Note that CL(E) is a partition of E.
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Le Breton, Owen and Weber (1992) and Demange (1994, 2004), consider a restricted Core

concept where coalitional stability is required only for feasible coalitions, i.e. they consider

the solution C(v, L) = {x ∈ IRN |
∑

i∈F xi = v(F ) for all F ∈ CL(N), and
∑

i∈E xi ≥ v(E)

for all E ∈ FL}. They show that this set of Core payoff vectors is nonempty if the game is

superadditive and the communication graph is cycle-free16’17 , respectively a tree.18 This

is interesting since superadditivity of a game v does not guarantee the existence of a Core-

stable payoff vector for v. Under the stronger convexity condition on the game, but weaker

cycle-completeness19 on the graph, van den Nouweland and Borm (1992) show that the

restricted game is convex, and therefore the Myerson value belongs to the Core of the

restriced game.

4.2 Characterizing communication feasible sets

Let F ⊆ 2N be an arbitrary feasible set. Since all singletons in a communication graph are

connected, it follows that communication feasible sets arising from communication graphs

contain the empty set and satisfy normality, i.e. every player belongs to at least one feasible

set. Further, they also satisfy accessibility. They even satisfy the stronger property that

every feasible coalition with two or more players has at least two players that can leave

the coalition leaving behind a feasible coalition (2-accessibility). This is easy to see since

pending players (i.e. players that have only one neighbour) always can be deleted. A

cycle-free graph has at least two pending players: the ‘worst’ case is a line-graph but it

still has two pending players. If there are cycles there usually are more extreme players.

Communication feasible sets are not closed under union (as is illustrated by the

two connected coalitions {1, 2} and {5} in Example 4.1 which union is not connected).

However, as shown by Algaba, Bilbao, Borm and López (2001), communication feasible

sets satisfy the weaker union stability meaning that the union of two feasible coalitions

that have a nonempty intersection is also feasible. It turns out that these two properties

together with normality and the emptyset being feasible characterize the communication

16A sequence of players (i1, . . . , ik, i1) is a cycle in (N,L) if (i1, . . . , ik) is a path in (N,L) and {ik, i1} ∈ L.

A graph (N,L) is cycle-free when it does not contain any cycle.
17Under these conditions this solution coincides with the (unrestricted) Core of the restricted game

(N, vL), see also Kaneko and Wooders (1982).
18Demange (2004) defines explicit solutions that are always in the Core of the restricted game if the

original game is superadditive and the graph is a tree, the so-called hierarchical outcomes. The solution

that assigns tot every cycle-free communication graph game the average of these hierarchical outcomes

(for cycle-free graph games) is axiomatized in Herings, van der Laan and Talman (2008) using component

efficiency and a modified component fairness.
19A communication graph is cycle-complete if, whenever there is a cycle, the subgraph restricted to the

players in that cycle is complete. An example of cycle-complete networks are the social quilts considered

in, e.g. Jackson, Rodriguez-Barraquer and Tan (2012).
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feasible sets.

Theorem 4.2 (van den Brink (2012)) Let F ⊆ 2N be a set of feasible coalitions. Then F
is the communication feasible set of some communication graph if and only if

1. ∅ ∈ F

2. (Union stability) If E,F ∈ F with E ∩ F 6= ∅ then E ∪ F ∈ F

3. (2-Accessibility) If E ∈ F , |E| ≥ 2, then there exist i, j ∈ E, i 6= j, such that

E \ {i} , E \ {j} ∈ F .

4. (Normality) For every i ∈ N there exists an E ∈ F such that i ∈ E.

Usually, the set of links L, being coalitions of size two, are considered as the basis of a

communication graph. Note that by applying 2-accessibility we can generate these bilateral

links from any communication feasible set. Also note that given 2-accessibility, normality

implies that {i} ∈ F for all i ∈ N as is the case for communication feasible sets. Given

closedness under union, normality implies that N ∈ F as is the case for antimatroids. By

adding additional properties on a communication feasible set, we can characterize some

special classes of communication graphs that are often encountered in the economic and

OR literature, such as line-graphs, cycle-complete graphs, cycle-free graphs and trees (for

details we refer to van den Brink (2012)). To mention one example, adding closedness

under intersection (i.e. for any two feasible coalitions also their intersection is feasible) to

the properties of Theorem 4.2 characterizes the communication feasible sets arising from

cycle-complete communication graphs.

Comparing Theorem 4.2 with Definition 3.1, we conclude that communication feasible

sets are characterized by similar properties that define hierarchical structures represented

by normal antimatroids. To be specific, besides normality and feasibility of the empty

set, both satisfy an accessibility and a union property. Obviously, 2-accessibility implies

accessibility and thus communication feasible sets satisfy a stronger accessibility property.

But since closedness under union implies union stability, antimatroids satisfy a stronger

union property.

5 Games with a local permission structure

A different type of generalization of games with a permission structure are the games with

a local permission structure. Many applications of games with a permission structure fall

in the special class of peer group games being games with a permission structure where the
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game is additive and the digraph is a rooted tree. A digraph T ∈ DN is a rooted tree on N

if it is hierarchical (i.e. acyclic and quasi-strongly connected) and, moreover, |PD(i)| = 1

for all i ∈ N \ {i0}. (Alternatively, a digraph is a rooted tree if it is hierarchical, and

for every player i ∈ N \ {i0} there is a unique path from the top player to this player

i.) Peer group games are also a special class of digraph games being games derived from

digraphs with weights on the nodes and are used, for example, to rank nodes in a digraph

such as ranking teams in sports competitions, ranking alternatives in a preference profile,

or ranking webpages on the internet. In this section we discuss a model that generalizes

games with a permission structure as well as digraph games.

5.1 Peer group games and digraph games

Brânzei, Fragnelli and Tijs (2002) define a peer group situation as a triple (N, a, T ) where

N ⊂ IN is a set of players, T ∈ DN is a rooted tree, and a ∈ IRN
+ is a vector of nonnegative

weights assigned to the players.20 Again, since we take the player set N to be fixed, we

denote a peer group situation just as a pair (a, T ). To every peer group situation (a, T ),

they assign the peer group game vPa,T given by vPa,T (E) =
∑

i∈E
P̂T (i)⊆E

ai, E ⊆ N . In terms of

unanimity games, a peer group game can be written as vPa,T =
∑

i∈N aiu{i}∪P̂T (i).

In Brânzei, Fragnelli and Tijs (2002) it is already mentioned that every peer group

situation (a, T ) can be seen as a game with a permission structure (wa, T ) where the

permission structure T is a rooted tree and the game wa is the additive game given by

wa(E) =
∑

i∈E ai for all E ⊆ N . Then the peer group game is the conjunctive (or

disjunctive) restricted game.21

Theorem 5.1 (Brânzei, Fragnelli and Tijs (2002)) For every peer group situation (a, T )

it holds that vPa,T = rcwa,T .

Another model of games with a digraph on the set of players are the (weighted) digraph

games introduced in van den Brink and Borm (2002). An irreflexive weighted directed

graph, shortly refered to as weighted digraph, is a triple (N, δ,D) where N ⊂ IN is a set of

nodes, D ∈ DN is an irreflexive digraph, and δ ∈ IRN
+ is a vector of nonnegative weights

assigned to the nodes. The (weighted) digraph game corresponding to (N, δ,D) is the game

(N, vδ,D) where the players represent the nodes and the characteristic function is given by

20Besides games with a permission structure, another model ‘between’ games on antimatroids and peer

group games are the interior operator games introduced by Bilbao, Jiménez-Losada, Lebrón and Chacón

(2005), which are additive games restricted by an antimatroid.
21Since for rooted trees the conjunctive and disjunctive approaches coincide, for peer group situations

the conjunctive and disjunctive restricted games and permission values are the same.
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vδ,D(E) =
∑

i∈E
PD(i)⊆E

δi, E ⊆ N . So, the worth of an arbitrary coalition E ⊆ N of players

(nodes) is the sum of the weights of the players in that coalition for whom all predecessors

belong to the coalition. In terms of unanimity games, a digraph game can be written as

vδ,D =
∑

i∈N δiu{i}∪PD(i). Again, since we take the player set N to be fixed, we denote a

weighted digraph and weighted digraph game on N as (δ,D), respectively, vδ,D.

A peer group game is a special case of a digraph game where the digraph is transitive.

Theorem 5.2 (van den Brink and Dietz (2014)) For every peer group situation (a, T ) it

holds that vPa,T = va,tr(T ).

Since the conjunctive restricted game is the same for a game with permission structure

(v,D) and that game v on the transitive closure tr(D), from the above two propositions

we have the following corollary.

Corollary 5.3 For every peer group situation (a, T ) it holds that vPa,T = rcwa,T = rcwa,tr(T ) =

va,tr(T ).

In van den Brink and Borm (2002) a relational power measure assigning values to every

node in a weighted digraph is obtained by applying the Shapley value to the associated

weighted digraph game. This power measure is refered to as the β-measure and is given

by22

βi(D) = Shi(vδ,D) =
∑

j∈{i}∪SD(i)

δj
(|PD(j)|+ 1)

.

Brânzei, Fragnelli and Tijs (2002), van den Brink and Borm (2002) and van den

Brink and Dietz (2014) also consider other solutions for peer group games and digraph

games.

5.2 Locally restricted games

Comparing games with a permission structure with weighted digraph games, there are

two essential differences, one considering the games and one considering the effect of the

digraph on the restrictions in cooperation. First, games with a permission structure allow

any game, but weighted digraph games only consider additive games. On the other hand,

22In van den Brink and Gilles (2000) a similar game and measure are defined, but a node does not ‘share’

in the power over itself, i.e. they consider the game v′δ,D(E) =
∑

i∈N

PD(i)⊆E
δi, E ⊆ N , having Shapley value

β′i(D) = Shi(v
′
δ,D) =

∑
j∈SD(i)

δj
|PD(j)| . A disadvantage of this measure is that a node can do better in the

associated ranking after ‘being defeated’ by more other nodes.
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to have permission to cooperate, a player in a game with (conjunctive) permission structure

needs permission from all its superiors, but in a weighted digraph game it needs permission

only from its (direct) predecessors. Obviously, the digraph game associated to a transitive

digraph equals the conjunctive restricted game of the corresponding additive game on that

digraph as permission structure. In this section, we only follow the conjunctive approach.23

Theorem 5.4 (van den Brink and Dietz (2014)) For every weighted digraph (δ,D) it holds

that vδ,tr(D) = rc
wδ,D

, where wδ(E) =
∑

i∈E δi for all E ⊆ N . In particular, if D is transitive

then vδ,D = rc
wδ,D

.

Next, we generalize the (weighted) digraph games as well as games with a permission

structure in the sense that we consider pairs (v,D) where v ∈ GN can be any game,

D ∈ DN can be any digraph, but every player needs permission only from its direct

predecessors in order to cooperate. So, a player needs permission from its predecessors

in order to cooperate with other players, but it can give permission to its own successors

without permission from its predecessors.

For any E ⊆ N , let σlD(E) = {i ∈ E | PD(i) ⊆ E} be the subset of players in E

for whom all predecessors also belong to E. We refer to this as the value generating set of

coalition E in D. The locally restricted game rlv,D associated to the pair (v,D) ∈ GN ×DN

is the game rlv,D given by

rlv,D(E) = v(σlD(E)) for all E ⊆ N. (5.4)

An important difference with the conjunctive feasible coalitions is the fact that

σlD(σlD(E)) need not be equal to σlD(E).

Example 5.5 Consider the digraph D on N = {1, 2, 3} given by D = {(1, 2), (2, 3)}. Then

σlD({2, 3}) = {3} but σlD({3}) = ∅. 2

Because of this, the cooperation structure cannot be described just by a set of

feasible coalitions as in the models of the previous sections. In Example 5.5, the coalition

{3} can be considered not feasible, but there is a coalition, to be specific coalition {2, 3},
such that {3} is exactly the coalition that generates value. Therefore, we call {3} a value

generating set in D.

Theorem 5.6 (van den Brink and Dietz (2014)) Let (v,D) ∈ GN × DN and E ⊆ N be

given.

(i) For all F such that σcD(E) ⊆ F ⊆ E it holds that rcv,D(F ) = v(σcD(E))

23A disjunctive approach is a plan for future research.
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(ii) For all F such that σlD(E) ∪ PD(σlD(E)) ⊆ F ⊆ E it holds that rlv,D(F ) = v(σlD(E))

Part (i) implies that for conjunctive restricted games, if a coalition of players E is able to

generate its own worth, then it does not need permission from players outside E to do so;

value generation and permission imply one another. For this reason, this approach can be

described in terms of sets of feasible coalitions Φc
D. This is not the case for locally restricted

games as reflected in part (ii). This part states that the value generating set of a coalition

E can generate its worth together with its predecessors (which are in E), without these

predecessors actually generating any value within this coalition themselves: these coalitions

still earn the worth of σlD(E). Note that a coalition containing the value generating set of

E, but not all its predecessors might generate a different worth. Although it is true that

σlD(F ) = σlD(E) for all F such that σlD(E)∪PD(σlD(E)) ⊆ F ⊆ E, this does not necessarily

hold for all F such that σlD(E) ⊆ F ⊆ E. This is an important difference between the

‘local’ and ‘standard’ conjunctive approach to games with a permission structure.

These two approaches still have in common that for all F ⊆ E \σcD(E) (respectively

for all F ⊆ E \ σlD(E)) it holds that rcv,D(F ) = 0 (respectively rlv,D(F ) = 0).

Example 5.7 Consider the digraph D on N = {1, 2, 3} given in Example 5.5, and the

game v = u{3}. For coalition E = {2, 3}, we have that σlD(E) ∪ PD(σlD(E)) = {3} ∪ {2} =

{2, 3} = E. However, taking F = {3} we have σlD(E) = F ⊂ E, but rlv,D(F ) = v(σlD(F )) =

v(∅) = 0 while v(σlD(E)) = v({3}) = 1. So, indeed the predecessor of the value generating

set of E = {2, 3} is necessary to generate its worth. 2

Next, we introduce some notions to describe the value generation and permission in games

with a local permission structure. For any E ⊆ N , we define αlD(E) = σlD(E)∪PD(σlD(E))

as the active set of E. These are the players that are necessary and sufficient to make the

value generating set σlD(E) of E active.

We call a set E locally feasible in D if αlD(E) = E. We denote the set of all locally

feasible sets in D by ΨD. So,

ΨD = {E ⊆ N | αD(E) = E}.

Let the authorizing set of E be given by αlD(E) = E ∪ PD(E), being the set of players

in E together with all their predecessors. This is the set of players that is necessary and

sufficient to make the players in E active. It is clear that for any coalition E, αlD(E) is

locally feasible.

Example 5.8 Consider the permission structure D of Example 5.5 and coalition {2, 3}.
We already saw that its value generating set is {3}. Its active set is αlD({2, 3}) = {2, 3}
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since permission of 2 is necessary and sufficient to make its value generating set {3} active.

Its authorizing set is αlD({2, 3}) = {1, 2, 3} since player 1 is necessary to make player 2

active who is not value generating in {2, 3} but is still necessary to give permission to

player 3. In this case, Φc
D = {{1}, {1, 2}, {1, 2, 3}} and ΨD = Φc

D ∪ {{2, 3}}. 2

Again, the active sets and authorizing sets show the separation between value generation

and permission which coincide in the standard conjunctive approach.

Theorem 5.9 (van den Brink and Dietz (2014)) For every permission structure D ∈ DN ,

it holds that ∅, N ∈ ΨD and ΨD is closed under union.

The basic elements of ΨD are the sets {i}∪PD(i), i ∈ N . The other elements of ΨD can be

written as the union of two or more basic elements. However, unlike conjunctive feasible

sets, ΨD is not necessarily intersection closed.

Next, we argue that the locally restricted approach to games with a permission

structure generalizes the conjunctive approach as well as digraph games. The conjunctive

restricted game of a game with a permission structure equals the locally restricted game of

that game on the transitive closure of the permission structure. A weighted digraph game

equals the locally restricted game of the additive game determined by the weights and the

digraph as permission structure.

Theorem 5.10 (van den Brink and Dietz (2014))

(i) For every (v,D) ∈ GN × DN , it holds that rcv,D = rlv,tr(D). In particular, if D ∈ DN is

transitive then rcv,D = rlv,D.

(ii) For every weighted digraph (δ,D) it holds that vδ,D = rl
wδ,D

.

5.3 The local permission value

As a solution, van den Brink and Dietz (2014) consider the local (conjunctive) permission

value ϕl being the solution that assigns to every game with a permission structure the

Shapley value of the locally restricted game, i.e.

ϕl(v,D) = Sh(rlv,D) for all (v,D) ∈ GN ×DN .

From the axioms of Theorem 2.2, the local permission value ϕl satisfies efficiency, additivity,

the necessary player property and the inessential player property. It does not satisfy

structural monotonicity as shown by the following example.

25



Example 5.11 Consider the game with permission structures (v,D) on N = {1, 2, 3}
given by D = {(1, 2), (2, 3)} and v = u{3}. Then ϕl(v,D) = (0, 1

2
, 1

2
), and thus player 2

earns more than player 1, although 2 is a successor of 1 and the game is monotone. 2

The local permission value satisfies a weaker version requiring the payoff of a player to be

at least equal to the payoff of any of its successors in a monotone game if at least one of

its successors is a necessary player.

Local structural monotonicity For every v ∈ GNM and D ∈ DN , if i ∈ N and j ∈ SD(i)

are such that there exists at least one h ∈ SD(i) who is a necessary player in v, then

fi(v,D) ≥ fj(v,D).

As mentioned above, the local permission value does satisfy the inessential player property.

It satisfies an even stronger version of the inessential player property, requiring the payoff of

a null player to be zero as soon as all its successors, but not necessarily all its subordinates,

are null players in the game. We say that player i ∈ N is locally inessential in game

with permission structure (v,D) if i and all its successors are null players in v, i.e., if

v(E) = v(E \ {j}) for all E ⊆ N and j ∈ {i} ∪ SD(i).

Local inessential player property For every v ∈ GN and D ∈ DN , if i ∈ N is a locally

inessential player in (v,D) then fi(v,D) = 0.

It turns out that strengthening the inessential player property in this way, and weakening

structural monotonicity as done above characterizes the local permission value.

Theorem 5.12 (van den Brink and Dietz (2014)) A solution f for games with a local

permission structure is equal to the local permission value ϕl if and only if it satisfies

efficiency, additivity, the necessary player property, the local inessential player property,

and local structural monotonicity.

Instead of using local structural monotonicity, we can strengthen the necessary player

property by saying that a player earns at least as much as any other player if this player

is necessary or has at least one necessary successor in a monotone game.

Strong necessary player property For every v ∈ GNM and D ∈ DN , if at least one of the

players in {i}∪SD(i) is a necessary player in v then fi(v,D) ≥ fj(v,D) for all j ∈ N .

Theorem 5.13 (van den Brink and Dietz (2014)) A solution f for games with a local

permission structure is equal to the local permission value ϕl if and only if it satisfies

efficiency, additivity, the strong necessary player property and the local inessential player

property.
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Another interesting difference between the conjunctive and local permission value is the

following. Stated informally, the conjunctive permission value satisfies veto monotonicity

meaning that if a predecessor is going to veto one of its successors, then this does not

harm that predecessor. But the local permission value does not satisfy this property. This

is because a player who is necessary but also has a necessary successor will share the

payoff resulting from its own necessity with its predecessor. So, in case at least one of the

successors of a player is necessary, it is better for that player not to be neccessary since then

it will still have its share in the payoff (because it needs to give permission to a necessary

successor), but because the player itself is not necessary it does not have to share with its

own predecessors.24

6 Applications

Many applications of games with a permission structure are in the special class of peer

group games mentioned in the previous section. Applications of peer group games are,

e.g. polluted river games (Ni and Wang (2007) and Dong, Ni and Wang (2012)), liability

games (Dehez and Ferey (2013)), the duals of airport games (Littlechild and Owen (1973)),

auction games (Graham, Marshall and Richard (1990)) and ATM games (Bjorndal, Hamers

and Koster (2004)). From the many applications of games with a permission structure,

we will briefly discuss two: auction games (which are an application of peer group games),

and hierarchically structured firms.

6.1 Auction games

An allocation situation is a pair (N, V ) where N = {1, . . . , n} is a set of agents or players

and V ∈ IRN
+ is a vector which ith component Vi ∈ IR+ is the non-negative valuation of

player i ∈ N with respect to some indivisible good. Because the good is indivisible it can

be allocated to only one of the players in N . The player who gets the good can compensate

the others by giving them an amount of some numeraire good. We assume that all players

value each unit of the numeraire good at the same value, normalized to be 1. Since we

again take the set of players N fixed, we represent an allocation situation (N, V ) just by

its valuation vector V .

An allocation-compensation scheme for an allocation situation is a pair (i, c) ∈
N × IRN

+ where i ∈ N denotes the player who gets the good and c ∈ IRN , satisfying

24Consider the game with permission structure (v,D) on N = {1, 2, 3} given by D = {(1, 2), (2, 3)} and

v = u{3}. When player 2 vetoes player 3 (see e.g. Haller (1994), Malawski (2002) and Casajus (2014)),

we obtain the unanimity game u{2,3}. So, ϕl(v,D) = (0, 12 ,
1
2 ) while ϕl(u{2,3}, D) = ( 1

3 ,
1
3 ,

1
3 ), and thus in

(v,D) player 2 earns more than in (u{2,3}, D).
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∑
j∈N cj = 0, is the vector of compensations. So cj, j 6= i, is the amount of the numeraire

good that player i gives to player j as compensation, and ci is the total compensation that

has to be paid by i to the other players. The value of allocation-compensation scheme (i, c)

is the vector φ(i, c) ∈ IRN
+ with φj(i, c) = cj if j ∈ N \ {i}, and φi(i, c) = Vi + ci. Main

question in such an allocation situation is who gets the indivisible good and what is a ‘fair’

way to compensate the others. Without loss of generality we assume that V1 ≤ . . . ≤ Vn.

Such allocation problems can be ‘solved’ using auctions. Graham, Marshall and

Richard (1990) describe a process of bidder ring formation in Second-price sealed-bid and

English open auctions, where for every coalition E ⊆ N of bidders they define a strategic

two-player game between the ‘players’ E and N \ E.25 They show that the dominant

strategy of E in the Second-price sealed-bid auction game is to bid v∗(E) = maxi∈E Vi,

and for N \ E a dominant strategy is to bid v∗(N \ E) = maxj∈N\E Vj.
26 From this they

derive the worth of coalition E ⊆ N in the corresponding auction game v to be equal to

v(E) = max

{
max
i∈E

Vi − max
j∈N\E

Vj, 0

}
. (6.5)

Note that this is a peer group game associated to the peer group situation (a, T ) with

ai = Vi − Vi−1, i ∈ N , with V0 = 0, and T =
⋃n
k=2{(k, k − 1)} = {(n, n − 1), (n − 1, n −

2), . . . , , (2, 1)}. In terms of unanimity games, we have v =
∑

i∈N(Vi − Vi−1)u{i,i+1,...,in}.

Applying the Shapley value to this game yields

Shi(v) =
i∑

j=1

Vj − Vj−1

n− j + 1
for all i ∈ N. (6.6)

In Algaba, Bilbao, van den Brink and Jiménez-Losada (2003a) the axioms of Theorem 2.2

are modified and it is shown that this gives uniqueness on the class of auction games. The

axioms can be directly applied to auction situations, except additivity. Additivity can only

be applied to two valuation vectors that have the same ordering of the players with respect

to their valuations. Further, note that a player is an inessential player in the auction

game if and only if its valuation is zero, and is a necessary player if and only if it has the

maximal valuation. An allocation rule for auction situations is a function f : IRN
+ → IRN

that assigns to every auction situation the value of an allocation-compensation scheme. We

state the axioms directly in terms of the auction situation, and refer to the allocation rule

fSh: IRN
+ → IRN that assigns to every valuation vector V ∈ IRN

+ the Shapley value Sh(v) of

the associated auction game v as the Shapley rule.

25Graham and Marshall (1987) support collusion in Second-price sealed-bid and English open auctions

by some incentive-compatible mechanism.
26Similar, the dominant strategy for E in the English open auction game is to remain active until the

bidding reaches v∗(E), and for N \ E to remain active untill the bidding reaches v∗(N \ E).
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An allocation rule f satisfies efficiency if for every allocation situation V ∈ IRN
+ , it

holds that
∑

i∈N fi(V ) = maxi∈N Vi. An allocation rule f satisfies restricted additivity if

for every pair of allocation situations V,W ∈ IRN
+ such that Vi ≥ Vj if and only if Wi ≥ Wj

for all i, j ∈ N , it holds that f(V +W ) = f(V ) + f(W ). An allocation rule f satisfies the

inessential player property if for every allocation situation V ∈ IRN
+ and i ∈ N such that

Vi = 0 it holds that fi(V ) = 0. An allocation rule f satisfies the necessary player property

if for every allocation situation V ∈ IRN
+ and i ∈ N such that Vi = maxj∈N Vj, it holds that

fi(V ) ≥ fj(V ) for all j ∈ N . An allocation rule f satisfies structural monotonicity if for

every allocation situation V ∈ IRN
+ , if Vi ≥ Vj then fi(N, V ) ≥ fj(N, V ).

Theorem 6.1 (Algaba, Bilbao, van den Brink and Jiménez-Losada (2003a)) An allocation

rule f for allocation situations is equal to the Shapley rule if and only if it satisfies effi-

ciency, restricted additivity, the inessential player property, the necessary player property

and structural monotonicity.

Auction games are dual airport games.27 Oishi, Nakayama, Hokari and Funaki (2016)

discuss anti-duality relations between the classes of auction games, airport games, polluted

river games and liability games. Similar as in games with a permission structure, there is

an exogenous ordering on the player set in polluted river games (determined by the location

along a river) and liability games (determined by the position in a sequence of wrongful

acts). On the other hand, in airport games and auction games the order is endogenously

determined by the valuations (respectively costs) of the players. Therefore, on the class of

polluted river games and liability games, the Shapley value satisfies additivity, while for

auction games and airport games it only satisfies the weaker restricted additivity. Similar,

the cost sharing problems of Moulin and Shenker (1992) can be modeled using peer group

games (but with some adaptation), and axiomatizations of their serial cost sharing rule

can be given, see also Albizuri, Santos and Zarzuelo (2002).

Another class of peer group games are the star graph peer group games where the

rooted tree is a star graph. Applications of this are, e.g the ATM games of Bjorndal,

Hamers and Koster (2004).

6.2 Hierarchically structured firms

In van den Brink (2008) and van den Brink and Ruys (2008), games with a permission

structure are applied to model hierarchically structured firms. This is a special class of

games with a permission structure that are not peer group games.

27Recall that the Shapley value is self-dual, i.e. Sh(v) = Sh(v∗) where the dual game v∗ of game v is

given by v∗(E) = v(N)− v(N \ E) for all E ⊆ N .
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Most firms have a hierarchical structure, and not all wages are equal. Within a

particular hierarchical level there can be wage differences because of differences in the

importance of the tasks done or the scarcity of the labor inputs that are able to perform

the different tasks. Besides these horizontal wage differences within levels there are also

vertical wage differences between different levels. As in most part of the firm literature, we

assume that the firm has a tree structure. A hierarchically structured firm can be modeled

by a game with a permission structure (N, v,D) where the set of players N represents the

set of employees in the firm (workers and managers), v is a cooperative production game

describing the potential production possibilities of the employees in the firm, and D is a

rooted tree with root (top-player) i0 representing the hierarchical structure of the firm.

Since we take the firm structure to be fixed28, we represent a hierarchical production game

as a pair (v,D).

By D having a tree structure, it follows that there always exist employees that have

no successors. These employees are the workers in D and the set of workers in D is denoted

by WD = {i ∈ N | SD(i) = ∅}. We assume that these workers operate the production

process in the firm. The other employees are the managers or coordinators who do not

actively produce but who coordinate the production process. The set of managers in D is

denoted by MD = N \WD. For a manager i ∈ MD the set SD(i) = ŜD(i) ∩WD is the set

of workers that are (directly or indirectly) subordinate to i. For notational convenience we

denote SD(i) = {i} for every worker i ∈ WD.

Since the production process is carried out by the workers in WD, its power set is

the domain of a (cooperative) production game v: 2WD → IR+. The value v(E) ∈ IR+ is

the non-negative production output value that can be generated if exactly the workers in

E ⊆ WD are active in the production process. So, it is assumed that every worker i ∈ WD

can choose either to provide all its labor effort or to provide nothing at all. Alternatively,

we can think that firm positions can be occupied by employees or be vacant.

We extend the production game v on the set of workers WD to a game v ∈ GN on

the set of all employees N by adding the managers as null players, i.e. v ∈ GN is given by

v(E) = v(E ∩WD) for all E ⊆ N . The pair (v,D) is a game with permission structure

and is refered to as a hierarchical production game on N . We require that a fully employed

firm produces a positive production output value, i.e. v(WD) > 0. We also assume the

production game to be convex.29

A wage function ϕ assigns a non-negative wage ϕi(v,D) to every employee i ∈ N
in the corresponding hierarchical production game (v,D). We can apply any solution for

28In van den Brink and Ruys (2008) this model is applied to endogenously determine firm size, and to

determine a corporate market equilibrium.
29Milgrom and Roberts (1994) stress the importance of coordination for convex (also often called super-

modular) production technologies.
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games with a permission structure, in particular the Shapley permission value (note that

again, the conjunctive and disjunctive permission value are the same since the hierarchy is

a rooted tree.)

In the literature it is often argued that the wage of a manager in a firm is at least

as high as the wage of any of its subordinates. This property is expressed by structural

monotonicity. Moreover, if the production game is also convex, then according to the

permission value the wage of a manager does not exceed the sum of the wages of its

successors.30

Theorem 6.2 (van den Brink (2008)) Consider a hierarchical production game (v,D) and

manager i ∈MD.

(i) If v is monotone then ϕShi (v,D) ≥ ϕShj (v,D) for all j ∈ SD(i);

(ii) If v is monotone and convex then ϕShi (v,D) ≤
∑

j∈SD(i) ϕ
Sh
j (v,D).

If firm (v,D) has constant span of control, meaning that every manager has the same

number of successors s, then Theorem 6.2 implies that the ratio between the wage of a

manager and the average wage of its successors (if positive) lies between one and the span

of control s. If moreover, the workers in WD are symmetric, meaning that v(E) = v(F )

for all E,F ⊆ WD with |E| = |F |, Theorem 6.2 yields the following corollary.

Corollary 6.3 For every hierarchical production game (v,D) with monotone and convex

v, symmetric workers and constant span of control s, it holds that 1 ≤ ϕShi (v,D)

ϕShj (v,D)
≤ s for all

i ∈MD and j ∈ S(i) with ϕShj (v,D) > 0.

The bounds in this corollary are often assumed in the literature, see e.g. Williamson

(1967). They are sharp bounds in the sense that there are hierarchical production games

such that the inequalities are equalities. We first characterize two types of subordinates

of a manager. Successor j of manager i is indispensable for i if every worker h that is

coordinated by i, but not by j, does not increase the productivity of any set of workers

that does not contain workers coordinated by j (or j if j itself is a worker), i.e. j ∈ SD(i)

is indispensable for i ∈ MD if v(E) = v(E \ {h}) for every h ∈ SD(i) \ SD(j) and every

E ⊂ WD with E ∩ SD(j) = ∅.
Second, worker h is a dummy worker if it increases the productivity of every set of

workers by the value v({h}) which it also can produce on its own, i.e. h ∈ WD is a dummy

worker if v(E) = v(E \ {h}) + v({h}) for every E ⊆ WD with h ∈ E.

30For the first inequality to hold we do not need the assumption that only workers that have no successors

are productive. The second inequality needs this assumption. However, allowing productive workers in all

levels we can prove in a similar way that ϕShi (v,D) ≤
∑
j∈S(i) ϕ

Sh
j (v,D) whenever i ∈MD is a null player

in the production game v defined on 2N .
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It turns out that a manager earns the same wage as one of its successors if this successor

is indispensable for the manager. A manager earns the sum of the wages of its successors

if all its subordinate workers are dummy workers.

Theorem 6.4 (van den Brink (2008)) Consider a hierarchical production game (v,D) and

manager i ∈MD.

(i) If j ∈ SD(i) is indispensable for i in (v,D) then ϕShi (v,D) = ϕShj (v,D);

(ii) If every h ∈ SD(i) is a dummy worker in (v,D) then ϕShi (v,D) =
∑

j∈SD(i) ϕ
Sh
j (v,D).

Applied to the famous constant elasticity of substitution (CES) production functions, the

wage difference increases with the substitutability of labor inputs.

Example 6.5 Applying the famous constant elasticity of substitution (CES) production

functions yield the following production games. A production function with n inputs given

by f : IRN
+ → IR+ is a convex CES production function if there exists ρ ∈ (0, 1], γ > 0 and

α1, . . . , αn > 0 with
∑n

i=1 αi = 1 such that f(x) = γ (
∑n

i=1 αi(xi)
ρ)

1
ρ . The parameter γ is

a scale parameter and ρ is a parameter expressing the substitutability of the inputs.31 In

our model, the n inputs are the |WD| labor inputs. Then xi ≥ 0 is the amount of labor that

is provided by worker i ∈ WD. Since we assume that workers can be either fully active or

inactive, we represent the situation in which exactly the workers in the set E ⊆ WD are

active by the labor input vector xE ∈ {0, 1}|WD| given by xEi = 1 if i ∈ E, and xEi = 0

otherwise. Assuming symmetric workers (i.e. αi = 1
n
, i ∈ {1, . . . , n}) and constant span

of control, the CES production game then can be written as vρ(E) = γ
(
|E|
|WD|

) 1
ρ
. For a

hierarchical convex CES production game with constant span of control and symmetric

workers the results in this section imply that the ratio between the wage of a manager and

the wage of each of its successors is equal to the span of control s in case we have a linear

production game with substitutable labor inputs (i.e. ρ = 1), while it is equal to one in case

the production game is a Cobb-Douglas production game with indispensable labor inputs

(i.e. ρ→ 0). 2

It turns out that the axioms of Theorem 2.2 also characterize the Shapley value as wage

system for hierarchical production games.32 In the context of hierarchical production games

31We need ρ > 0 to obtain a convex production function.
32In firm models, the Shapley value has been applied in, e.g. Hart and Moore (1990) and Rajan and

Zingales (1998). In van den Brink (2008) a more general class of wage systems is considered. In Ruys, van

den Brink and Semenov (2000) different wage systems are related to the cultural dimensions of Hofstede

(1980).
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they boil down to the following. Efficiency boilds down to budget neutrality for firms mean-

ing that the sum of the wages equals the total production value v(N) = v(WD). Additivity

now can be directly applied to hierarchical production games. (So, unlike auction games

it need not be restricted because the hierarchical structure on the employees is fixed.) An

employee i is an inessential employee in hierarchical production game (v,D) if and only if

every worker that is coordinated by i, or i itself if it is a worker, does not add anything in

the production process. The inessential employee property states that an inessential em-

ployee earns zero. A worker i is a necessary worker if, without its labor effort nothing can

be produced. The necessary worker property states that necessary workers always earn at

least as much as any other employee in the firm in case the production game is monotone.

Theorem 6.6 (van den Brink (2008)) A wage function f is equal to ϕSh if and only if

it satisfies budget neutrality, additivity, the inessential employee property, the necessary

worker property and structural monotonicity.

7 Concluding remarks

This survey discussed several results on games with a permission structure and some gen-

eralizations and applications. We mainly focussed on solutions based on the Shapley value.

Other solutions can be applied. For example, van den Brink (2010) applies the Banzhaf

value to the conjunctive and disjunctive restricted games. Axiomatizations use collusion

neutrality properties that are based on those of Haller (1994) for TU-games. Derks and

Gilles (1995) consider the Core of the restricted games. Similar as the Myerson value

for communication graph games need not be in the Core of the restricted game, also the

conjunctive, respectively disjunctive, (Shapley) permission values need not be in the Core

of the corresponding restricted game. For permission tree games (where the permission

structure is a rooted tree but the game can be any game), van den Brink, Herings, van

der Laan and Talman (2015) introduce the Average Tree permission value, which is ob-

tained by applying the Average tree solution (introduced in Herings, van der Laan and

Talman (2008) for cycle-free communication graph games) to the communication graph

game (rcv,D, LD) where rcv,D is the conjunctive restricted game of (v,D) and LD is the undi-

rected graph obtained from digraph D by ignoring the orientation of the arcs. They show

that in case the original game is monotone, the Average Tree permission value belongs to

the Core of the restricted game. Recently, other solutions for permission tree games are

introduced in, e.g. van den Brink, Dietz, van der Laan and Xu (2016) and Álvarez-Mozos,

van den Brink, van der Laan and Tejada (2015). Note that peer group games are a special

case of permission tree games, and thus permission tree games seem to be very useful for

applications.
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Besides axiomatization, it turns out that games with a permission structure are

also useful for computation of solutions for applications. For peer group games, Brânzei,

Solymosi and Tijs (2005) provide a polynomial time algorithm for computing the nucleolus

(Schmeidler (1969)) of the restricted game. In van den Brink, Katsev and van der Laan

(2010, 2011a) polynomial time algorithms for two subclasses of games with a permission

structure, both generalizing peer group situations, are developed. These algorithms also

might help to axiomatically characterize the nucleolus for games with a permission struc-

ture. Next to axiomatization and computation, also strategic implementation of solutions

for games with a permission structure is future research.

In this survey we also discussed several generalizations of games with a permission

structure, such as games on antimatroids and local permission structures. As mentioned,

the restricted game approach is based on the fact that the conjunctive and disjunctive

feasible sets, as any antimatroid, are union closed. In van den Brink, Katsev and van der

Laan (2011b), two different Shapley type values for games on union closed systems are

introduced and axiomatized. For these systems, they only require them to be union closed

(so they do not require accessibility), guaranteeing that every coalition has a unique largest

feasible subset. Other models that generalize games with a permission structure are, e.g.

the before mentioned games on union stable systems (see Algaba, Bilbao, Borm and López

(2000)), games on augmenting systems (see Bilbao (2003), Bilbao and Ordoñez (2009)

and Algaba, Bilbao and Slikker (2010)), and games on regular set systems (see Honda

and Grabisch (2006), Lange and Grabisch (2009) and Grabisch (2013)). Another type

of generalization is by considering more general forms of cooperation in coalitions, such

as fuzzy coalitions in Gallardo, Jimńez, Jimńez-Losada and Lebrón (2014) and Jiménez-

Losada, Fernández, Ordoñez and Grabisch (2010).

Instead of applying restricted games as done in the models discussed in this paper,

an alternative way to take account of cooperation restrictions in cooperative games is to

restrict the set of admissible permutations as done in Faigle and Ken (1992). Initially

defined for partially ordered sets, also this approach has been generalized to more general

structures.

As mentioned above, next to axiomatization of the Shapley permission values and

other solutions, future research will be directed to strategic implementation and compu-

tation of solutions for games with a permission structure and its generalizations. Also

relations with other models, such as the digraph games mentioned in Section 4, extend the

possibilities of application, for example to ranking alternatives in a social choice situation,

ranking teams in sports competitions and ranking webpages on the internet.
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